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We investigate the vacuum structure of dense quark matter in strong magnetic fields in a three-flavor
Nambu Jona Lasinio (NJL) model including the Kobayashi-Maskawa-t’Hooft (KMT) determinant term
using a variational method. The method uses an explicit construct for the “ground” state in terms of quark-
antiquark condensates as well as diquark condensates in the background of a constant magnetic field. The
coupled mass gap equations and the superconducting gap equation are solved self-consistently and are used
to compute the thermodynamic potential along with charge neutrality conditions imposed for bulk matter.
Within the model, we observe inverse magnetic catalysis for chiral symmetry breaking for moderate
magnetic fields. Further, we observe gapless modes in the presence of the magnetic field when charge
neutrality conditions are imposed. The equation of state for charge neutral magnetized strange quark matter
is derived, and found to be stiffer compared to the vanishing magnetic field counterpart. This could be
relevant for gross structural properties of neutron stars.
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I. INTRODUCTION

The structure of vacuum in quantum chromodynamics
(QCD) and its modification under extreme environment has
been a major theoretical and experimental challenge in
current physics [1]. In particular, it is interesting to study
the modification of the structure of ground state at high
temperature and/or high baryon densities as related to the
nonperturbative aspects of QCD. This is important not only
from a theoretical point of view, but also for many
applications to problems of quark-gluon plasma (QGP)
that could be copiously produced in relativistic heavy ion
collisions as well as for the ultradense cold nuclear/quark
matter which could be present in the interior of compact
stellar objects like neutron stars. In addition to hot and dense
QCD, the effect of strong magnetic field on QCD vacuum
structure has attracted recent attention. This is motivated by
the possibility of creating ultrastrong magnetic fields in
noncentral collisions at RHIC and LHC. The strengths of the
magnetic fields are estimated to be of hadronic scale [2,3] of
the order of eB ~ 2 m2 (m2 ~ 10'8 Gauss) at RHIC, to about
eB ~ 15 m2 at LHC [3]. There have been recent calculations
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both analytic as well as with lattice simulations, which
indicate that the QCD phase diagram is affected by strong
magnetic fields [4-6].

In the context of cold dense matter, compact stars can be
strongly magnetized. Neutron star observations indicate the
magnetic field to be of the order of 10'2-10'3 Gauss at the
surface of ordinary pulsars [7]. Further, the magnetars which
are strongly magnetized neutron stars, may have even
stronger magnetic fields of the order of 101°-10'® Gauss
[8—14]. The physical upper limit on the magnetic field in a
gravitationally bound star is 10'® Gauss which is obtained by
comparing the magnetic and gravitational energies using
virial theorem [7]. This limit could be higher for self-bound
objects like quark stars [15]. Since the magnetic field
strengths are of the order of QCD scale, this can affect both
the thermodynamic as well as the hydrodynamics of such
magnetized matter [16]. The phase structure of dense matter
in the presence of the magnetic field along with a nonzero
chiral density has been investigated for two-flavor Polyakov
Loop extended Nambu-Jona Lasinio model (PNJL) model
for high temperatures relevant for RHIC and LHC [17].
There have also been many investigations to look into the
vacuum structure of QCD and it has been recognized that the
strong magnetic field acts as a catalyzer of chiral symmetry
breaking [18-22]. The effects of magnetic field on the
equation of state have been recently studied in the Nambu
Jona Lasinio model at zero temperature for three flavors and
the equation of state has been computed for the cold quark
matter [23,24] taking into account chiral condensate structure
with the quark-antiquark pair for the ground state.
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On the other hand, color superconductivity is now an
accepted conjectured state of cold and dense quark matter
describing Cooper pairing of quarks of different colors and
different flavors [25,26]. One can have a rigorous treatment
of the phenomenon of such pairing using asymptotic
freedom of QCD at very high densities. In its simplest
form, when masses of the three quarks can be neglected
compared to the chemical potential one can have the color
flavor locked (CFL) phase [25,26]. However, to apply it to
neutron star matter, the situation is more complicated as for
the densities expected in the interior of neutron star, the
masses of strange quarks cannot be neglected. Further,
many nontrivial complications arise when beta equilibrium
and charge neutrality conditions are imposed in such
systems [27]. Since the well known sign problem prevents
the first principle lattice simulations at finite chemical
potentials, one has to rely on effective models at this regime
of moderate densities. One model that has been extensively
studied in this context has been the Nambu Jona Lasinio
(NJL) model with contact interactions [28,29].

Of late, there has been a lot of attention on the
investigation of color superconductivity in the presence
of the magnetic field [18,19,30-32]. Essentially, this is due
to its possible application in the astrophysical situations as
the densities in compact star cores are large enough to have
a possible superconducting phase as well as such compact
stars can have a strong magnetic field as mentioned above.
Let us also mention here that although such systems can be
color superconductors, these phases can be penetrated by a
“rotated” long range magnetic field. The corresponding
rotated gauge field is a linear combination of vacuum
photon field and the eighth gluon field [33,34]. These
rotated magnetic fields are not subjected to the Meissener
effect. While the Cooper pair is neutral with respect to the
magnetic field, the quark quasiparticles have well-defined
charges. Therefore, the pairing phenomenon is affected by
the presence of the magnetic field. Initially, the effect of the
magnetic field on superconducting phase has been studied
for the CFL phase [30] where all three quarks take part in
the pairing dynamics. However, for realistic densities, such
symmetric pairing is disfavored due to large strange quark
mass that leads to large mismatch in the Fermi surface. The
condition of charge neutrality further complicates the
pairing mechanism leading to gapless modes for homo-
geneous diquark pairing [35,36]. Superconductivity for the
two-flavor quark matter in the presence of the magnetic
field has been studied in Refs. [19,37,38] within the NJL
model. The effect of charge neutrality along with the
interplay of chiral and superconducting condensates has
been analyzed in Refs. [37,38] in this model. A complete
three-flavor analysis of magnetized dense quark matter
including superconductivity has not been attempted so far.
In the present investigation we include the effects of strange
quarks that take part in chiral condensation but not in the
diquark channel in the magnetized quark matter. As we

shall see, the strange quarks, similar to the vanishing
magnetic field case, play an important role for charge
neutral matter and the resulting equation of state. Moreover,
with the inclusion of a flavor mixing interaction term, the
strange quark scalar condensate not only affects the light
quark condensates but also the diquark condensates.

We had earlier considered a variational approach to study
chiral symmetry breaking as well as color superconduc-
tivity in hot and dense matter with an explicit structure for
the “ground state” [36,39-41] with quark-antiquark con-
densate. The calculations were carried out within NJL
model with minimization of free energy density to decide
which condensate will exist at what density and/or temper-
ature. A nice feature of the approach is that the four
component quark field operator in the chiral symmetry
broken phase gets determined from the vacuum structure.
In the present work, we aim to investigate how the vacuum
structure in the context of chiral symmetry breaking and
color superconductivity gets modified in the presence of a
magnetic field. In the context of chiral symmetry breaking,
it was seen that, since the vacuum contains quark-antiquark
pairs, the Dirac vacuum gets corrections due to the effective
magnetic field apart from the modification of the medium
or the Fermi sea of quarks. In our analysis we also keep
these contributions to the equation of state.

We organize the paper as follows. In Sec. II, we discuss
an ansatz state with quark-antiquark pairs related to chiral
symmetry breaking, diquark and diantiquark pairs for the
light flavors related to color superconductivity in the
presence of a magnetic field. We then generalize such a
state to include the effects of temperature and density.
In Sec. III, we consider the three-flavor NJL model along
with the so-called the Kobayashi-Maskawa-t’Hooft (KMT)
term—the six fermion determinant interaction term which
breaks U(1) axial symmetry as in QCD. We use this
Hamiltonian and calculate its expectation value with
respect to the ansatz state to compute the energy density
as well the thermodynamic potential for this system. We
minimize the thermodynamic potential to determine the
ansatz functions and the resulting mass gap equations.
These coupled mass and superconducting gap equations are
solved and we discuss the results in Sec. IV. We discuss
here the results with and without constraints of charge
neutrality. Finally we summarize and conclude in Sec. V. In
the Appendix we give some details of the derivation of the
evaluation of expectation values of the order parameters.

II. THE ANSATZ FOR THE GROUND STATE

Let us first consider the ground state structure relevant
for chiral symmetry breaking in the presence of a strong
magnetic field [24]. We shall then modify the same relevant
for color superconductivity. To make the notations clear, we
first write down the field operator expansion for quarks
with a current quark mass m and charge ¢ in the momentum
space in the presence of a constant magnetic field B.
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We take the field direction to be along the z axis. We choose
the gauge such that the electromagnetic vector potential is
given as A,(x) = (0,0, Bx,0). The quark field operator
expansion in the presence of a constant magnetic field is
given as [24,42]

_ ;Z/%[Qg(n,pxﬂje(xapw”)
Spemler ()

Here n is the Landau level and the sum over it runs from 0
to infinity. In the above, py = (py,p.), and r =+l
denotes the up and down spins. We have suppressed the
color and flavor indices of the quark field operators. The
quark annihilation and antiquark creation operators, ¢° and
3", respectively, satisfy the quantum algebra

+ q(r)(n’ _px)v(r)(x

U p)Y ={@(n.py). 3 (. py)}
= 5rr’6nn’6(pk - p)c) (2)

In the above, U, and V, are the four component spinors
for the quarks and antiquarks respectively. The explicit
forms of the spinors for the fermions with mass m and
electric charge ¢ are given by
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Here 6(x) is the Heaviside theta function. In the above, the
energy of the nth Landau level is given as ¢, =
\/m2 + p2+2nlq|B = \/m2 +|p?| with p?=p?+ pzl

so that p3 = . b= p./Ipl. b1 =/2nlq|B/|p|.
In Egs. (3), cotpy = m/|p|. Clearly, for vanishing masses
¢o = =/2. The functions I/, s (with n > 0) are functions of

= +/|gB|(x — py/|gB|) and are given as

2

10 = coexp (=5 ) (@) (@)

where H (&) is the Hermite polynomial of the nth order and
I_; = 0. The normalization constant ¢, is given by

o | V1alB
" n2"\/n

The functions 7,,(£) satisfy the orthonormality condition

/ dEL () () = v/ a1 B (5)

so that the spinors are properly normalized. The detailed
derivation of these spinors and some of their properties are
presented in the Appendix of Ref. [24].

With the field operators now defined in terms of the
annihilation and the creation operators in the presence of a
constant magnetic field, one can write down an ansatz for
the ground state as in Ref. [24]. The ground state is taken as
a squeezed coherent state involving quark and antiquarks
pairs. Explicitly [24,36,39,41],

1) = Uogl0). (6)

Here, Uy is an unitary operator which creates quark-
antiquark pairs from the vacuum |0) which in annihilated
by the quark/antiquark annihilation operators given in
Eq. (1). Explicitly, the operator U, is given as [24]

to =exo (3 [ o0t . p 0.

n=0
x gd(n,—py) — Hc) (7)

In the above ansatz for the ground state, the function
hi(n, p.) is a real function describing the quark-antiquark
condensates related to the vacuum realignment for chiral
symmetry breaking to be obtained from a minimization of
the thermodynamic potential. In the above equation, the
spin dependent structure a’ is given by

ai’,s = [_ 2n|Qi|Bér,s - ipz(sr,—s]’ (8)

1
Ip|

with |p;| = \/p? + 2n|q;|B denoting the magnitude of the
three momentum of the quark/antiquark of ith flavor (with

electric charge ¢;) in the presence of a magnetic field.
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Summation over three colors and three flavors is under-
stood in the exponent of U, in Eq. (7). Clearly, a nontrivial
hi(n, p.) breaks the chiral symmetry.

It is easy to show that the transformation of the ground
state as in Eq. (6) is a Bogoliubov transformation. With the
ground state transforming as Eq. (6), any operator O° in the
|0) basis transforms as

0 =Uy,0%U), 9)

and, in particular, one can transform the creation and
annihilation operators of Eq. (1) to define the transformed
operators as above satisfying the same anticommutation
relations as in Eq. (2):

X) = ZZ%/dpx[qr(n,px)Ur(x,n,px)
=PV (x, n,—py)]eP i, (10)

with ¢,|Q) = 0 = §}|Q). In the above, we have suppressed
the flavor and color indices. It is easy to see that the form of
U, V spinors is exactly similar to the form of the spinors
Uy, Vy as in Eq. (3) but with the shift of the function ¢, —
¢ = ¢y — 2h with the function i(k) to be determined by a
minimization of free energy. As we shall see later, it is more
convenient to vary ¢ (k) rather than A(k). Let us note that
with Eq. (10), the four component quark field operator gets
defined in terms of the vacuum structure for chiral
symmetry breaking given through Eq. (6) and Eq. (7) in
the presence of a magnetic field [43].

The chiral order parameter in the condensate vacuum
|Q2) can be evaluated explicitly using the field operator
expansion given in Eq. (10) and is given by [24] (for ith
flavor)

+g,(n

— (Qpyi|Q) = —;Ncan% [ dpecosyr. )

This expression for the quark-antiquark condensate is
exactly the same form as derived earlier in the absence
of the magnetic field [39,40] once one realizes that in the
presence of a quantizing magnetic field with discrete
Landau levels, one has for the phase space integration [37]

dp -~ |98

| - 2 (ny

Next, we would like to generalize the ansatz of Eq. (6)
with quark-antiquark pairs in the presence of a magnetic
field, to include quark-quark pairs for the description of the
ground state as relevant for color superconductivity.
However, few comments in this context are in order. It

is known that in the presence of color superconductivity,
the diquark is electromagnetically charged and the usual

magnetic field will have a Meissner effect. However, a
linear combination of the photon field and the gluon field
given by A” = cosaA, —sinaG} still remains massless
and is unscreened. For two-flavor color superconductivity,
cosa = g/\/g* + €>/3 ~ 1/20 [33]. The electron couples
to this rotated gauge field by the coupling & = e cos(a).
The quark field couples to the rotated gauge field through
its rotated charge Q. In units of 2, the rotated charge matrix
in the flavor-color space is given by

T?
O (12)

Thus, the & charges of red and green u quarks is 1/2; red
and green down and strange quarks is —1/2. The blue u
quark has Q charge as 41, while the blue d and s quarks are
Q chargeless. We shall take the rotated U(1) magnetic field
along the z axis and spatially constant as before without the
absence of superconductivity. The ansatz for the ground
state with quark-antiquark condensate is now taken as, with
i being the flavor index,

Q:Qf®1c_1

Q), =exp) (B] - B:)0). (13)

flav

The flavor dependent quark-antiquark pair creation oper-
ator for u quark (i = 1) is given as, with @ = 1, 2, 3 being
the color indices for red, blue and green respectively,

3
BL"_ZZ/CIM npy)al(np,)f'“np)a“n—py).

a=1n=0

(14)

while, for the down and strange quarks (i = 2, 3) the same
is given as

Zi/dpxq ’pk Tars(n pz)hm( ’p)c) ( —Px)

a=1 n=0

4 / dpg? (p)! (D), (£)77 (—p). (15)

The difference between the pair creation operator in
Egs. (14) and (15) lies on the cpntribution of the blue color.
While the up blue quark has Q charge, the blue quarks of
down and strange quark are Q neutral.

Next, we write down the ansatz state for having quark-
quark condensates which is given by

Q) = U4lQ), = exp(B, = By)|®),.  (16)
In the above, BL is the diquark (and di-antiquark) creation
operator given as
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Bz—Z/dPx (n.py)trf(n.p)g"(n.—p.p.)

+ig(n, p )T rfi(n p.)gl(n. py)fleBe®.  (17)

In the above, i, j are the flavor indices, a, b are the color
indices and r = 41/2 are the spin indices. The Levi-Civita
tensor ensures that the operator is antisymmetric in color
and flavor space along with the fact that only u, d quarks
with red and green colors take part in diquark condensation.
The blue u, d quarks as well as the strange quarks (all three
colors) do not take part in the diquark condensation. The
functions f(n, p.) and f(n, p.) are condensate functions
associated with quark-quark and antiquark-antiquark con-
densates respectively. These functions are assumed to be
independent of color and flavor indices. We shall give a
post facto justification for this that these functions depend
upon the average energy and average chemical potentials of
the quarks that condense.

To include the effects of temperature and density we next
write down the state at finite temperature and density
|Q(B, 1)) through a thermal Bogoliubov transformation
over the state |Q2) using the thermofield dynamics (TFD)
method as described in Refs. [24,44,45]. This is particu-
larly useful while dealing with operators and expectation
values. We write the thermal state as

|Q(B, 1))

where Uy , is given as

= Up Q) = Uy, Up|0), (18)

Uy, = &5 00-EGw)

with

[Se]

B (B.u) = Z
+ 3, (n, k)0 (koo n, B )@t (n k)] (19)

In Eq. (19), the underlined operators are the operators in
the extended Hilbert space associated with thermal dou-
bling in the TFD method, and the color flavor dependent
ansatz functions Hig(n, k.,p,u) are related to quark and
antiquark distributions as can be seen through the mini-
mization of the thermodynamic potential.

All the functions in the ansatz in Eq. (18) are to be
obtained by minimizing the thermodynamic potential. We
shall carry out this minimization in the next section.
However, before carrying out the minimization procedure,
let us focus our attention to the expectation values of some
known operators to show that with the above variational
ansatz for the ground state given in Eq. (18) these reduce to
the already known expressions in the appropriate limits.

Let us first consider the expectation value of the chiral
order parameter. The expectation value for chiral order
parameter for the ith flavor is given as

(kg (. k)0 (k.. o) g (m. )

I = (QB. ) [y | QB 1))

Z Ia. (20)

These expectation values can be evaluated easily once we
realize that the state |Q(f,u)) as in Eq. (18) is obtained
through successive Bogoliubov transformations on the state
|0) as in Egs. (13) and (16). The details of evaluation for the
different order parameters is relegated to the Appendix.
Explicitly, for the quarks that take part in superconductivity

: "B
[i=-%"q
P2 Gy

x/dpzcosd)i"(l—Fi”—F’i“), (i,a=12), (21)

where @, = (2 —4,) is the degeneracy factor of the nth
Landau level (all levels are doubly degenerate except the
lowest Landau level). Further,

Fi¢=sin? 6 +sin” f(1—sin?0 — |e'/]e??|sin?0/%),  (22)
arising from the quarks which condense and
Fia =sin0' +sin? f (1 —sin? 0 — | |e“? | sin26""),  (23)

arising from antiquarks which condense. Thus, the scalar
condensates arising from quarks that take part in super-
conductivity depend both on the condensate functions in
quark-antiquark channel (¢") as well as in quark-quark
channel (f, f). Further, the thermal functions sinZ 0%, as
we shall see later, will be related to the number density
distribution functions.

Next, for the nonsuperconducting blue up quarks, the
contribution to the scalar condensate is given by

—‘Z |61

13|

/dp cos@'3 (1 —sin?0"3 —sin?613).
(24)

Let us note that in the limit of vanishing of the color
superconducting condensate functions (f,f; — 0), the
contributions given in Eq. (21) reduce to Eq. (24) as they
should [24].

Similarly, scalar condensate contribution from the
charged strange quarks (red, green) is given by

3a
3a __ |q |B
== (27)?

n

X / dp.cosd®(1 —sin?0* —sin?03")  (a=1,2).

(25)
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Finally, for the uncharged quarks, i.e., blue down and blue
strange quarks, the contributions to the scalar condensates
are given by, for flavor i (i = 2, 3),

i3 _
IY = —

2 . . .
) / dk cos ¢'(1 —sin® 63 —sin? 673).  (26)

Next, we write down the condensate in the supercon-
ducting channel which is given as

]D — <l/_/ia751//jb> ij€3ab

B
|Qz |/deC S< 2¢2>

X [sin 2f(1 — sin?0L — sin’6?)
+sin 2 (1 — sin?0!. — sin?0%)]. (27)

Let us note that the superconducting condensate also
depends upon the chiral condensate functions ¢(p.)
through the function cos('/’I ~%2) apart from the thermal
distribution functions sin®@'¢. Further, this dependence
vanishes when the u and d quark scalar condensates or
equivalently the corresponding masses of the quarks
are equal.

The other quantity that we wish to investigate is the axial
fermion current density that is induced at finite chemical
potential including the effect of temperature. The expect-
ation value of the axial current density is given by

(j2) = (wir'rws).

Using the field operator expansion Eq. (10) and Eq. (3) for
the explicit forms for the spinors, we have for the ith flavor

<j§3>zz(év70)2/dpx(lﬁ—li_l)(sinzei—sin29"+). (28)

Integrating over dp,, using the orthonormal condition of
Eq. (5), all the terms in the above sum for the Landau levels
cancel out except for the zeroth Landau level so that

N.|q;|B
(27)?

which is identical to that in Ref. [46] once we identify the
functions sin? @2 as the particle and the antiparticle dis-
tribution functions for the zero modes [see e.g., Eq. (55) in
the next section]. In the chiral limit at zero temperature and
without superconductivity, one gets the following as the
axial current after summing over all three flavors:

(J5) =

/dpz[sm 00 —sin? 07],  (29)

3eB

By [M+;\/M2—m3]- (30)

(/8) =

III. EVALUATION OF THERMODYNAMIC
POTENTIAL AND GAP EQUATIONS

As has already been mentioned, we shall consider in the
present investigation, the three-flavor Nambu Jona Lasinio
model including the Kobayashi-Maskawa-t-Hooft (KMT)
determinant interaction. The corresponding Hamiltonian
density is given as [24,28,36,47]

H =y (—ie- II) + Y1)y

8

=G5 Y _[(@hw)? = (r

A=0

Hy)?]

+ Kldet [r(1 +ys)w| + det (1 — ys)y]]
— Gpl(preewC) (W ee.y)], (31)

where ¢ denotes a quark field with color “a” (a =r, g, b),
and flavor “i” (i = u, d, s), indices. IT = —i(V leAQ) is
the canomcal momentum in the presence of the rotated
U(1) gauge field ;\M. ¢ is the Levi-Civita tensor in flavor
space while ¢, is the Levi-Civita tensor in color space.
wC = iy'y*y is the charge conjugate spinor. When there is
no superconductivity A, = Aﬂ which is the usual massless
photon field with the coupling to the quark field being given
the electromagnetic charge eQy, where Q; is diagonal
matrix (2/3,—1/3,—1/3). As mentioned in the previous
section, when the superconducting gap is nonvanishing, the
massless gauge field is given by Aﬂ = cosaA, — sin aGﬁ,
where cosa = g/+\/g* + ¢?/3. We have taken here the
standard convention of SU(3), generators in the adjoint
representation [33]. The O charges of the quarks are given in
Table I. It may also be relevant here to mention that, while we
are taking into account combination of the photon and gluon
field which is massless, the other orthogonal massive
component, is either Meissner screened or nucleated into
vortices [48].

The matrix of current quark masses is given by 7 =
diags(m,, my, my) in the flavor space. We shall assume in
the present investigation, isospin symmetry with m, = m,.

TABLE I. Table: List of quarks and their electromagnetic and
rotated charges.

Quark e-charge é-charge
u-red % %
u-green z :
u-blue z 1
d-red -1 -1
d-green - % - %
d-blue -1 0
s-red - % - %
s-green -1 -1
s-blue -1 0
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In Eq. (31), 24, A =
acting in the flavor space and A° = \/%1 #» 14 as the unit

1, ...8 denote the Gellmann matrices

matrix in the flavor space. The four point interaction term
~Gg is symmetric in SU(3), x SU(3), x U(1), x U(1),.
In contrast, the determinant term ~K which for the
case of three flavors generates a six point interaction which
breaks U(1), symmetry. In the absence of magnetic field,
if the mass term is neglected, the overall symmetry is
SU(3)y x SU(3), x U(1)y. This spontaneously breaks to
SU(3)y x U(1), implying the conservation of the baryon
number and the flavor number. The current quark mass
term introduces additional explicit breaking of chiral
symmetry leading to partial conservation of the axial
current. The last term in Eq. (31) describe a scalar diquark
interaction in the color antitriplet and flavor antitriplet
channel. Such a form of four point interaction can arise e.g.,
by Fierz transformation of a four point vector current-
current interaction having quantum numbers of a single
gluon exchange. In that case the diquark coupling G, is
related to the scalar coupling as Gp = 0.75Gg.

Next we evaluate the expectation value of the kinetic
term in Eq. (31) which is given as

= (Q(B, u) |y (i - V = G Bxay )y |Q(B, )
=) T (32)
In the above the sum over the colors a and flavors

i is understood. The color flavor dependent charges
|

G'* for the quasiparticles is given in Table 1. To evaluate
this, for nonvanishing ¢ charges, we use Eq. (10) and the
results of spatial derivatives on the functions I,(¢)

& = +/l|9:|B(x = py/(lq:|B))):

81’1 ia
A = \/ |q |B[_§In + \/2_nlrz—l]a

aln—l o
ox

|~m| [ gln 1+ 2(1’[— 1)In—2]' (33)

Using the above, a straightforward but somewhat tedious
manipulations lead to the contribution arising from the
quarks that take part in superconductivity, i.e., for color,
flavor indices i, a = 1, 2,

:—Za |eB\ /dpz(m cos ¢; + |p;| sin¢;)

x(1—F’“—F’{‘), (ia=12), (34)

where we have defined |p;|> = p? + 2n|gB|, (§ = &/2).
Here, the quark-antiquark condensate effects are encoded in
the function ¢; while diquark and di-antiquark condensate
effects are encoded in the functions F and F' respec-
tively as given in Eqgs. (22) and (23).

For the blue u quark, which is charged but does not take
part in diquark condensation the corresponding contribu-
tion to the kinetic term is given by

> éB . . .
T3 = _Zan%/dpz(ml cos ¢y + |p1| singh;)(1 — sin? 013 — sin 9'3). (35)
n=0

The contribution of the charged strange quarks (with charges ¢/2) to the kinetic energy is given by, with a = 1, 2,

B
__ Z |e | /dpz(m3 cos b3 + | p3| sin p3) (1 — sin@3¢ — sin?63%). (36)

Finally, the contribution from the & -charge neutral quarks (blue d and blue s) is given as

) d . .
T5 = —/ (2;3 (m; cos ¢; + psing;)(1 — sin?03 — sin%07) (i=2,3). (37)

The contribution to the energy density from the quartic
interaction term in Eq. (31), using Eq. (20) turns out to be

8
MIDNZESEE

A=0

= -2Gs ) 1%, (38)

i=13

Vg =—Gg(Q gy 2ty)?]|Q(B, )

where Ii = (yw;) is the scalar quark-antiquark
condensate given in Eq. (20). Further, in the above,

|
we have used the properties of the Gellman matri-
ces Y5 AiAf = 26,8

Next, let us discuss the contribution from the six quark
determinant interaction term to the energy expectation
value. There will be six terms in the expansion of the
determinant, each involving three pairs of quark operators
of different flavors. These are to be ‘“contracted” in all
possible manner while taking the expectation value. This
means in the present context of having quark-antiquark
and diquark condensates, one can contract a y with a
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or y with a y. The former leads to condensates having
quark-antiquark condensates 1§’> while the latter leads to
diquark condensates I,. Further, for the case of quark-
antiquark condensate contributions, the contracting
and  having the same color will lead to the dominant
contribution while contracting similar operators with differ-
ent colors will lead to a N, suppressed contribution. Next,
regarding the contributions arising from the diquark, terms
which are proportional to strange quark-antiquark con-
densate (5s) will be dominant. These will have the
contractions of strange quark-antiquarks having the
same color. The rest of the four terms will be suppressed
at least by a factor N .. Explicitly these two terms are given
by ~32, 5 0"s[a0"u x (dO"d) — u0"d x (dO"u)), where
h =4 and O = (1 £ y5). When contracted diquark wise,
both terms give identical contributions, except that the
contribution of the second term will be of opposite sign as
compared to the first term. This is a consequence of the
flavor antisymmetric nature of the diquark condensates.
This leads to

Ve = +K(det [ (1 + ys)w] +det [y (1 —ys)y])

1 D10 K
=3 el 110 + 2171,

Next, the contribution from the diquark interaction is
given by

Vi = =(Gpl(#reey ) (F reey)]) = =Gplp.  (39)

where the diquark condensate I, is already defined
in Eq. (27).

To calculate the thermodynamic potential (negative of the
pressure), we also have to specify the chemical potentials
relevant for the system. Here, we shall be interested in the
form of quark matter that might be present in compact stars
that are older than a few minutes so that chemical equili-
bration for weak interaction is satisfied. The relevant
chemical potentials in such a case are the baryon chemical
potential up = 3u,, the chemical potential uy associated
with the electromagnetic charge, and, the color potentials y3
and ug. The chemical potential is a matrix that is diagonal in
color and flavor space and is given by

|B
2

sia = —Zan
p )

|qia
2z

Hijap = (U6;; + Qitg)Sap + (T3 u3 + Tibﬂ8)5ij- (40)

Since red and green color of a given flavor of quark is
degenerate and the diquark is in the blue direction in the
color space, we can assume y3 = 0.

The thermodynamic potetial, €, is then given by using
Egs. (32), (38), and (39), with s being the entropy density,

1
Q=T+ Vs+ Vo +Vp— (uN) — " (41)
where we have introduced

(UN) = (Wi gy ) = piapi, (42)

where pi® is the vector density p@ = (y“Tyi?). For the
superconducting quarks this is given by

: ¢B o ,
pia :zn:anm/dpz(F’“—F’l"), (a=1.2). (43)
while for the blue u quark, the same is given by
13 eB s02 913 _ 02 913
pl3 = Z%W dp,(sin* 62 —sin“0).  (44)
For the charged strange quarks, this density is given by

eB . .
P = s [dp.sino—sinie), (a=1.2)
(45)

For the é-uncharged quarks (blue down and blue
strange), the vector density is given by

. 2 . .
I3 = 2 )3/dp(sin29’_3 — sin?673). (i=2,3). (46)
)

Finally, the entropy density is given by s =), s,
where s is the entropy density for quarks of flavor i and
color a. For the quarks with charge §“, the phase space
is Landau quantized and we have the entropy density given

as [44]

/dpz{(sinzﬁi_“ In sin?0 + cos?60™ In cos?0@) + (— — +)}. (47)

On the other hand, for the uncharged (blue down and blue strange) quarks, the entropy density is given by

B3 _ 2

(@)

N

/dp{(sinzﬁi_3 Insin?6? + cos?6™ In cos?0?) + (= — +)},

(i=2,3). (48)
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Thus, the thermodynamic potential is now completely
defined in terms of the condensate functions ¢, f(k)
and the thermal distribution functions 6%¢ which will be
determined through a functional extremization of the
thermodynamic potential. Minimizing the thermodynamic
potential with respect to the quark-antiquark condensate
function ¢;(p), i.e., 5Q/6¢; = 0, leads to

(m; — AGgli + Kellk [Tk + 5 51%) _M;
|pia| |pia| ’
(49)

where, as earlier, we have defined |p;,| = \/p? + 2n|q;,|B
and we have defined the constituent quark mass M; =
m; —4GI\ +K|e,-jk|1£l)lgj)1£k> +6%13% These expres-
sions are actually self-consistent equations for the constitu-
ent quark masses as scalar condensate IE’) as given in
Eq. (20) involve M, through their dependence on ¢;.
Explicitly, these mass gap equations are given as

cotgp'® =

M = mt — 4G 1" + 2k 110, (50)

M? = m? - 4Gg1\ D +2k11, (51)
$ _ s (s) @) Ko
M* = m* 4Gl + KL LY + 7 (52)

Let us note that while the color and flavor dependence on
the quark-antiquark condensate functions ¢ arises only

from the momentum |p;,| = \/p? + 2n|g,,|B through the
color flavor dependent § charges, the constituent quark

masses are color singlets and are given by the solutions of
the self-consistent equations (50)—(52). Further, the flavor
mixing determinant interaction makes the masses of quark
of a given flavor dependent upon the condensates of the
other flavor quarks. This apart, the strange quark mass
explicitly depends upon the diquark condensates through
this determinant interaction. Note that for the two flavor
superconductivity as considered here, the strange quark
mass is affected explicitly by the superconducting gap
given by the last term on the right-hand side Eq. (52). Of
course, there is implicit dependence on the superconducting
gap in the second term through the functions F and F,
[given in Egs. (22) and (23)]. Further, when chiral
symmetry is restored for the light quarks, i.e., when the
scalar condensates for the nonstrange quarks vanish, still,
the determinant term gives rise to a density dependent
dynamical strange quark mass arising from diquark con-
densates of the light quarks [47]. Such a mass generation is
very different from the typical mechanism of quark mass
generation through quark-antiquark condensates [49].

In a similar manner, minimizing the thermodynamic
potential with respect to the diquark function f(k) and di-

antiquark function £, (k), i.e., 5?—?)—0 and g(l =0, leads to

tan 2f (k) = Z(GD %ﬁg )b (4”1;4)2)
(5"

where we have defined the superconducting gap A as
K
A=2 <GD -7 1@) Ip. (54)

and é=(eli+ed)/2, i=(u""+u")/2=p+1/6up+1/3us,
where we have used Eq. (40) for the chemical potentials.
Further, €, is the nth Landau level energy for the ith
flavor with constituent quark mass M; given as

= \/p? + 2n|q;|B + M?. 1t iis thus seen that the diquark
condensate functions depend upon the average energy and
the average chemical potential of the quarks that condense.
We also note here that the diquark condensate functions
depend upon the masses of the two quarks which condense
through the function cos((¢p, — ¢,)/2). The function
cos¢; = M, /€l can be different for u,d quarks, when the
charge neutrality condition is imposed. Such a normaliza-
tion factor is always there when the condensing fermions
have different masses as has been noted in Ref. [50] in the
context of the CFL phase.

Finally, the minimization of the thermodynamic potential
with respect to the thermal functions 0¢(k) gives

. 1
sin20i¢ = . 55
2 = o (Blang £ ) + 1 (53)

Various @'®’s (i, a = flavor, color) are explicitly given as

Wy = )% = @, + b6, £, = wl,, (56)

21 22

W, = W5 = wn:ﬁ: 5€n + 5# = O)Zi’ (57)

for the quarks participating in condensation. Here,
wny =/ (€, £ 1)> + A% cos?(¢p; — ¢,)/2. Further, de, =
(e“ —e?)/2 is half the energy difference between the
quarks which condense in a given Landau level and oy =
(Mur = Hag)/2 = pg/2 is half the difference between
the chemical potentials of the two condensing quarks.
For the charged quarks which do not participate in the
superconductivity,

', = ¢l £ . (58)

In the above, the upper sign corresponds to antiparticle
excitation energies while the lower sign corresponds to the
particle excitation energies.
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Let us note that when the charge neutrality conditions are
not imposed, the masses of u and d quarks will be almost the
same but for the effect of the (rotated) magnetic field
as the magnitude of the charges for red and green quarks
are the same and that of the blue color is different. Since the
chemical potentials of all the quarks are the same when
charge neutrality is not imposed, all four quasiparticles
taking part in diquark condensation will have (almost) the
same energy @,_. On the other hand, when charge neutrality
condition is imposed, it is clear from the dispersion relations
|

given in Egs. (56) and (57) that it is possible to have zero
modes, i.e., »'* = 0 depending upon the values of d¢, and
op. So, although we shall have nonzero order parameter A,
there will be fermionic zero modes or the gapless super-
conducting phase [51,52].

Substituting the solutions for the quark-antiquark con-
densate function ¢ of Eq. (49), we have the solutions for
the different quark-antiquark condensates, i.e., I/ given by,
using Egs. (21), (24), and (25),

ia __
Is - -

¢B /
a,——— | dp.
20272 ) VTt an(en

eB
1;3 = - ay - dp
; (2n)2 ) T \/pT+2n(eB) + M3

M. . )
l /2) M2(1_Fm_Flla)9 (i,a=1,2), (59)
+ M;
M
L (1 —sin?013 — sin?0'3), (60)
(1 = sin63 — sin?63%), (a=1,2), (61)

3 = Za Ms

dp
‘ VP2 +2n(¢B/2) + M3

for the & charged quarks while for the uncharged quarks (blue down and blue strange quarks),

) 2 M,
123 == ’;/dp l
(27) iv/p*+ M?

(1 —sin?0"

—sin?03),  (i=2.3). (62)

Similarly, substituting the solutions for the diquark/di-antiquark condensate functions from Eq. (53) in Eq. (27), we have,

with the usual notations, &,; =&, + i and @, = /&2, + A% cos?(¢,

2Za |eB/2/deAcos <¢l ¢2> L}

— sin?6L

n—

—$1)/2,

—sin?62) + — (1 —sin?0'. —sin?@%2)|.  (63)

n+

Qi

Thus Egs. (50)—(52) for the mass gaps, Eq. (54) for the superconducting gap and Egs. (59)—(63) define the self-consistent
mass gap equation for the ith quark flavor and the superconducting gap.

Next we discuss the thermodynamic potential. We substitute the solutions for the condensate functions [Eqgs. (49) and
(53)] in the expression for the thermodynamic potential [Eq. (41)] and use the gap equations [Eqgs. (50)—(52) and (54)]. The

thermodynamic potential is then given by

Q 7QSC

where we have defined an effective diquark coupling G}, = Gp

16+ Q)+ Qo+ Q) +4G,) IF
i

AT K
—4KT'I9TS + e Z1;;12,‘3, (64)
D

- §I ¥ in the presence of the determinant term which mixes

the flavors. Let us now discuss each of the terms in Eq. (64). The first term is the contribution from the quarks that take part
in superconductivity, i.e., the red and blue, u,d quarks. This contribution is given by

Qi = —220{,1 2(62—5)2/(6” +ed)dp, + 22(1
- 22 Z a,

n i=u,d

= Q% (T =0,u=0) + Q% (T, 1),

¢B
27)*

(2i)_2ﬁ/ dp_[log(1 + exp(=p(@}- — pir))) + log(1 + exp(=f(@} + i)

/((gn—+€n+) ( Wy (Dn+))

(65)

where we have separated the contribution of the medium Qi 2meq from T =0, p = 0 contribution. Similarly, the (&)
charged strange quark contribution to the thermodynamic potentlal is given by
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Q) =2 g [ -3 3 S a

Stary [ Aol + exp(=plan, + )]

n a=1,2s=%1
= Q5022 mea- (66)
The term Q; in Eq. (64) arises from the blue colored u quark with charge é and is given as
éB
Ql = _Zan / Z Z ay, 77)2ﬂ/ dpz[log(l + exp(_ﬂ(a)33 + Sﬂ33)] = Ql 0 + Ql ,med*
n n s==+1
Finally, the & uncharged quarks’ contributions to the thermodynamic potential €, are given by
2
= [ dp > llog(1 + exp(—Blwss + suss)]. (67)
i= 23 ) ﬂ s=F1

Now, all the zero temperature and zero chemical potential
contributions of the thermodynamic potential in Egs. (65)—
(67) are ultraviolet divergent. This divergence also gets
transmitted to the gap equations through the quark-antiquark
as well as diquark condensates in Egs. (59), (60), (61), and
(63). For the chargeless case, these can be rendered finite
through a regularization with a sharp cutoff in the magnitude
of three momentum as is usually done in the NJL models.
However, it is also seen that a sharp cutoff in the presence of
magnetic field for charged particles suffers from cutoff
artifacts since the continuous momentum dependence in two
spatial dimensions are replaced by the sum over discrete
Landau levels. To avoid this, some calculations use a smooth
parametrization for the cutoff as e.g., in Ref. [17]. In the
present work however we follow the elegant procedure that
was followed in Ref. [23] by adding and subtracting a
vacuum (zero field) contribution to the thermodynamic
potential which is also divergent. This manipulation makes
e.g., the Dirac vacuum contribution in the presence of
magnetic field to a physically more appealing form by
separating the same to a zero field vacuum contribution and a
finite field contribution written in terms of the Riemann-
Hurwitz ¢ function. The vacuum contribution to the energy
density arising from a charged quark can be written as
[23,24]

[Se]

a,|q;B
Z | |/dpz\/pz +2nq;|B + M}
= /dp\/p + M?
277.'

2
|q,B\ {C’( x;) — ;(x —x;) Inx; +4] (68)

where we have defined the dimensionless quantity,
MZ
X; = 375> 1-., the mass parameter in units of the magnetic

field. Further, {'(—1, x) = d{(z,x)/dz|,—, is the derivative
of the Riemann-Hurwitz zeta function [53].

Using Eq. (68), the quark-antiquark condensate of (§)
charged quarks can be written as

<l//m1//m / 2 +M2
M~|q-B| 1
+I§lined
= Ifac + ea T Linea: (69)

The first term, 1i4,. can be explicitly evaluated with a cutoff
A as

M; A+ /AN + M?
[, = — [A\//@ + M? - M? log<%>].

T

[\

(70)

The medium contribution to the scalar condensate from
the superconducting part is

eB M;
smed zan / p: 1 (Fm

l’l

Fi). (71

while, for the nonsuperconducting blue u quarks,
¢B M,
B = Za ¢ /dpZ L(sin20"3 —sin2013).  (72)
n

Similarly, the contribution of the medium to the (§) charged
strange quark-antiquark condensate is

. ¢B
I fed = zﬂ:anm

M
y / dp. B (sin203 —in20%), (a=1.2). (73)
en
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In what follows, we shall focus our attention to zero tem- B 1 ) )
perature calculations. Using the relation limﬁ_)ooéln(l—i- G(AM) = (27)} / VP~ +M~dp
exp(—pw)) = —wb(—w) and using Egs. (65) and (68), we 1
have the zero temperature thermodynamic potential for the = 1622 {A A+ MP(2N° + M?)
color superconducting quarks given as
Mo <A + VA* + MZ)] (76)
Q> (T = 0.1, B) = (T = 0.4 = 0) M '
+ Q% mea(T =0.p).  (74)  The prefactors in the first term correspond to color and spin
degeneracy factors while the same in the second term
with corresponds to the color degeneracy factor. The magnetic
field dependent function, F(x;, B) with x; = M?/|q;B],
Q4 o(T = 0. = 0) oo | -
i 2 i
=-2x2> G(AM;) -2 F(x.B). (75) F(x;,B)=——~ {C’( xi) =5 (x; —xi)lnxi+z]' (77)

i=u.d i=u,d
The medium contribution from the superconducting
where we have defined the function G(A, M) as quarks is given as

Mmax

QIL/ZmedT Oﬂ —220

/PM dpz[én— + énJr - (&)n— + 6)”+)]

Mmax éB przr} ) )
#2353 aug [ dpeiloh 0o )+ 0l0ar ) (79)

The three momentum cutoff A for the magnitude of momentum in the absence of magnetic field leads to the sum over the
Landau level up to n,,,, = £5. Further, the positivity of the magnitude of p, restricts the cutoffin |p, | as pT* = v A’ —néB
for a given value of n of the Landau level.

The contribution of the blue up quark to the thermodynamic potential ; = Q; § + £} ;peq With

Qi o(T =0,u=0)=-2G(A,M,) - F(x,, B), (79)
and

<L 2B fap 1\ iy = M,
Qumea(T = 0,4) =Y @y |Huv\/ 12y — M + M3, log : (80)

27[2) Hub Mnu

3
Il

=
~~

where M, = \/M?> + 2néB is the nth Landau level mass for up quark and n%,, = I nt[ =M 7] is the maximum number of
Landau level consistent with the zero temperature distribution function.
The & charged strange quark contribution to the thermodynamic potential Qj , = Qj,, +Qj , .4 with

Q) o(T=0,u=0) = -2x2G(A, M) - 2F (x,. B), (81)

and

ey eB sr + ,M?r - M%Ls
Ql 2, d(TZO’,u) =2 A 273 o |: sr M?r_M%Ls_FM%leg( ’ (82)
/2.me HZ:; 2(27%) V M,,

where M, = \/M? + 2néB is the nth Landau level mass for the s quarks. Further, the sum over the Landau levels is
restricted to 717, = Int[Foz= = ] arising from the distribution function at zero temperature 0(u — €,,).
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For the uncharged quarks, i.e., blue down and strange
quarks, we have Qy = €y + € eq With

Qoo(T=0.4=0)=-2) G(A.M;). (83)
i=d,s

and for the medium part, with py; = \/u? — M7,

Qomea(T =0,p) = ZZHi(ﬂiSa pri)- (84)

i=d,s

In the above H; is the medium contribution from a single
chargeless flavor given as

1 U+ py
H,»(,u,pf) = 1622 [Pfiﬂi(l?%i ‘|‘ﬂ12) —M? log( M ! )}

(85)

Next, we write down the expressions for the condensates
at zero temperature, which are needed to compute the
thermodynamic potential in Eq. (64). This is already given
by Eq. (69). Here, we write down explicitly the zero
temperature limit for the same. The scalar condensate
for, say, u quarks is given as

3
I = e 1 g 10 g 10 g+ Y T (). (86)
a=1

The vacuum contribution /¥, is already given in Eq. (70).
The scalar condensate medium contribution from the
superconducting red up and green up quarks is given as

nmux -
e KR, @B) [ M,

Jur —
smed o 2(27)? p: e

smed

(Fur + Fl]u)
(87)

The expressions for the distribution functions F¢ and Fi¢
are already given in Egs. (22) and (23) in terms of the
diquark condensate functions and the thermal distribution
functions. In the zero temperature limit, the distribution
functions for e.g., u quarks become

puzgo-?%)u—mﬂw», (38)

,,_
and
1 én+
FY =—(1-=—"-|. 89
! 2 < a)n+> ( )

The blue up quark contribution to the scalar condensate
is given by

Minax P 2 2
eB pr7nax + pmax + M
o= 2M 1 = £ L
s med nz:; ay (2”)2 Og< Mnu )

(90)

As in Eq. (80) here we have defined the nth Landau level
mass for the blue up quark as M2, = M2 + 2n|éB|. The
magnetic field contribution to the scalar condensate for the

up quarks of a given color “a” is given by

B| 1x

eii-u(y, ) = — g, 14 1-1 INC(x,) +~2%

s (xuu) u 271_2 x(l( nxu) + n (x(l) + 2271_ ’
o1

where x, = M?/2|q,B| and g, = &/2 for red and green
colors and g, = & for blue color up quarks.

In an identical manner, the scalar condensates for the down
and strange quarks /¢, I¥ can be written down with appro-
priate changes for the charges and the masses. The diquark
condensate 4/, is given in Eq. (63) where the zero temper-
ature limit can be taken by replacing the distribution
functions sin? @ = (—w'), (i = u, d). Thus the thermody-
namic potential, €, givenin Eq. (64) gets completely defined
for the quark matter in the presence of a magnetic field.

In the context of neutron star matter, the quark phase that
could be present in the interior consists of the u,d,s quarks
as well as electrons, in weak equilibrium,

d—-u+e +17,, (92a)
Ss=ute + U, (92b)

and
s+u—d+u, (92¢)

leading to the relations between the chemical potentials y,,,
Has Hs> HE aS

Hs = Ha = Hu + HE- (93)

The neutrino chemical potentials are taken to be zero as
they can diffuse out of the star. So there are rwo indepen-
dent chemical potentials needed to describe the matter in
the neutron star interior which we take to be the quark
chemical potential u, and the electric charge chemical
potential y, in terms of which the chemical potentials
are given by ;= p, —iHe = pigs Hy = Hg + 34, and
ug = —H,. In addition, for a description of the charge
neutral matter, there is a further constraint for the chemical
potentials through the following relation for the particle
densities given by

2 1 1

3Pu=3Pa=3Ps =P =0. (94)

Op = 3
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The color neutrality condition corresponds to

1 o
S iy pi2 _ 9,3 = 0, 95
05 \ﬁ;u;,s(p P’ —2pB) (95)

In the above, p'“ is the number density for quarks of flavor i
and color a. In particular, the number densities of the
condensing quarks are given as

ia _éB ia ia -

where Fi¢, F'@ are defined in Egs. (22) and (23) respec-
tively in terms of the condensate functions and e.g., for zero
temperature is given explicitly in Eq. (88) for up red quarks.
For the blue colored quarks, the same for the up blue quarks
is given by

u
Mmax

éB N
Pl = E anz—ﬂz\/,uﬁb — M2 —2néB, (97)
n=0

while for the é uncharged d quarks

(IuZ _M2)3/2
pdb — db 37[2 d . (98)

For the charged strange quarks the number densities are
given by

ni“rlax “‘B
P =1 =3 B\~ M3 e, (99)
n=0 (2ﬂ)

while for the & uncharged blue strange quarks

(3, — M3)*?

sb — 100

p 32 (100)
The electron number density is given by
nmaxe éB -

PE = 20,1?(\///!%—27163). (101)

To discuss the pressure in the context of matter in the
core of the neutron star, one also has to add the contribution
of the electrons to the thermodynamic potential. Since we
shall describe the system as a function of B, we shall take
the approximations & ~ e, A, ~ ;\” to a good approximation
as the mixing angle is small. The corresponding thermo-
dynamic potential for the electrons is given by

Mhax eB
Qe = Zanw |:/lE\/,M% —2neB

n=0
pe + /(i = 2”€B)>]

—2neBlo , 102

g( v2neB (102)

= %. Clearly in Eqgs. (101) and (102) we have
neglected the electron mass (mg ~ 0.5 MeV), which is
small compared to pz which is few tens of MeV. Thus the
total thermodynamic potential or the negative of the

pressure is given as, with €, given in Eq. (64)

where 1§,

Q=Q,+Q,. (103)
The thermodynamic potential [Eq. (103)], the mass and
superconducting gap equations [Egs. (50)—(52) and (54)],
along with the charge neutrality conditions [Eq. (94) and
(95)] are the basis for our numerical calculations for various
physical situations that we shall discuss in detail in the
following section.

IV. RESULTS AND DISCUSSIONS

We begin the discussions with the parameters of the NJL
model. The model parameters are the three current masses
of quarks, namely m,, m; and m, and the couplings Gy, Gp
and the determinant coupling K. This apart, one additional
parameter, the momentum cutoff A, is also required to
regularize the divergent integrals which are characteristic of
the four point interaction of NJL models. Except for the
diquark coupling Gp, there are several parameter sets for the
couplings derived from fitting of the meson spectrum and
chiral condensate [54-56]. The diquark coupling is not
known from fitting since one does not have a diquark
spectrum to fit with. The Fierz transforming quark-antiquark
term from one gluon exchange term gives the relation G, =
0.75 Gg. Although not precise, many other references use
this value [47,57,58]. However some other referen-
ces [59,60] also consider the case of stronger diquark
coupling G, = Gy apart from G, = 0.75 Gg. In the follow-
ing we shall limit ourselves only to the case of
Gp = 0.75 Gg. For a nice discussion on this we refer the
interested reader to Sec. 4.2.2 of Ref. [61]. The parameters
used in our calculations are m,, = 5.5 MeV, m; = 5.5 MeV,
m, = 140.7 MeV for the current quark masses, the
momentum cutoff A = 602.5 MeV and the couplings Gy
A?> =1.835 and KA> = 12.36 as have been chosen in
Ref. [56]. After choosing the light current quark mass
m, = m,; = 5.5 MeV, the remaining four parameters are
chosen to fit vacuum values of pion decay constant f_,
masses of pion, kaon and 7. With this set of parameters the 5
meson mass is underestimated by about 6 percent and leads
to u and d constituent mass in vacuum to be about 368 MeV.
The strange mass is about 549 MeV at zero temperature and
density. The determinant interaction is responsible for U(1) 4
anomaly and getting the correct eta mass. Further, this
interaction also mixes the various gap equations and affects
the superconducting gap significantly as we shall see.
However, we must point out that there is a large discrepancy
in the determination of this six fermion interaction coupling
K. For example, in Ref. [54] the parameter KA? differs by as
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Constituent quark masses and superconducting gap when charge neutrality conditions are not imposed. Part (a) shows the M,

at zero temperature as a function of quark chemical potential for different values of the magnetic field. Part (b) shows the same for the

strange quark mass M, and the superconducting gap.

large as 30 percent as compared to the value chosen here.
This discrepancy is due to the difference in the treatment of
' mesons with a high mass [28]. In fact, this leads to an
unphysical imaginary part for the corresponding polariza-
tion diagram in the 7/ meson channel. This is unavoidable
because NJL is not confining and is unrealistic in this
context. Within the above-mentioned limitations of the
model and the uncertainty in the value of the determinant
coupling, we proceed with the present parameter set which
has already been used for phase diagram of dense matter in
Refs. [28,59] and for neutron star matter in Ref. [62].

We begin our discussion for the simpler case where the
charge neutrality conditions are not imposed. In this case,
the electrical and color charge chemical potential are set to
zero so that all the quarks have same potential y,. In this
case we have to solve four gap equations, three for the
constituent masses [Eqs. (50)—(52)] and the fourth for the
superconducting gap [Eqgs. (54) and (63)]. For given values
of quark chemical potential and magnetic field we solve the
gap equations self-consistently. A few comments regarding
solving these gap equations may be in order. Although the
gap equations and the thermodynamic potential has been
written down for a given T and y, we confine our attention
to the case of zero temperature only in the present
investigation. Second, for nonvanishing magnetic fields,
all the Landau levels for the medium part up to a cutoff,

Ny = 7"’;;”[’2 for each flavor i, are taken into account.
Near the u., the critical chemical potential for chiral
transition for light quarks, there can be multiple solutions
for the gap equations. We have chosen the solutions which

have the lowest thermodynamic potential.

In Fig. 1, we have shown the variation of the masses as a
function of quark chemical potential p, for three different
values of magnetic fields, 2B = 0.1 m2, 5 m2, 10 m2. The
results for €B = 0.1 mZ reproduce the vanishing magnetic
field results. As the chemical potential increases, the
masses remain constant up to a critical value of quark
chemical potential y. and the superconducting gap remains
zero. At the critical chemical potential there is a first order
phase transition and the constituent masses drop sharply
from their vacuum values and the superconducting gap
becomes nonzero. For vanishing magnetic field, the isospin
symmetry for the light quarks is unbroken and the
constituent masses of u and d quarks are degenerate.
The critical chemical potential, u., is about 340 MeV
for (almost) vanishing magnetic field. In this case, the up
and the down quark masses decrease from their vacuum
values of about 368 MeV to about 80 MeV. The strange
mass being coupled to other gaps via determinant inter-
action also decreases from 549 to 472 MeV when this first
order transition happens for the light quarks. However,
since this p, is still less than the strange mass its density
remains zero. The superconducting gap rises from 0 to
88.0 MeV at u.. As the chemical potential is increased
beyond p.., the superconducting gap shows a mild increase
reaching a maximum value of 122 MeV at around p, ~
475 MeV beyond which the gap shows a mild decrease
with .

Such a decrease of the gap with chemical potential could
be due to two reasons. First, at higher chemical potentials,
beyond u =475 MeV, the strange quark mass starts
decreasing rapidly. This leads to a decrease of the effective
diquark coupling G}, = Gp + & (3s) resulting in a decrease
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FIG. 2. Baryon number density in units of nuclear matter
density as a function of chemical potential for different strengths
of magnetic field at zero temperature.

in the superconducting gap with increasing chemical
potential. Second, such a behavior of decreasing super-
conducting gap with p for large u could also be a
manifestation of a finite cutoff in the momentum integra-
tion in e.g., Eq. (78). One may note that the first term in
Eq. (78) is the contribution from the medium. Indeed, for
T =0, u =0 the contributions of the two terms in the
integrand here cancel out unlike the term in Eq. (68) which
is a genuine vacuum contribution and is divergent. The
second term in Eq. (78) in any case gives a contribution
from the medium when du # 0. For both terms the upper
limit of p, integration, p¥3*, has a A dependence.
Therefore, it is expected that there will be a cutoff
dependence in the contribution of this term to the thermo-
dynamic potential. This effect of finite cutoff therefore will
be more pronounced at large p. Thus the decrease of the
superconducting gap at large y in Fig. 1(b) could also be a
reflection of this effect. Therefore the decreasing behavior
of A can be both due to the decrease of effective diquark
coupling G, and the effects of a finite cutoff.

In Fig. 2, we have plotted the total baryon number density
in units of nuclear matter density (py = 0.17/fm™) as a
function of quark chemical potential. For vanishing mag-
netic field, at the critical chemical potential y. ~ 340 MeV,
the baryon density jumps from 0 to 0.38 fm~ which is about
2.2 times the nuclear matter density.

Upon increasing the magnetic field, as seen in Fig. 1, the
vacuum constituent quark masses increase due to magnetic
catalysis at zero density. It may also be observed here that
the p. for chiral transition for the light quarks decreases
with the magnetic field. Such a phenomenon is known as
inverse magnetic catalysis at finite chemical potential [63].
Let us note that in the superconducting phase the & charges

of the u and d quarks are identical in magnitude while that
of the unpaired blue quark are different for u and d quarks.
This results in the color summed scalar condensate /¢ and
I1¢ to be different in the presence of a magnetic field. This
leads to the difference in constituent masses for the light
quarks. For 2B = 10 m2 the u mass in the chiral symmetry
broken phase increases by about 13.6 percent and strange
mass by about 4.7 percent. The critical chemical potential
decreases from about 340 MeV to about 291 MeV. As seen
in the plot, the superconducting gap decreases and the peak
value decreases from 122 to 111 MeV. As may be seen
from Egs. (54) and (63), the superconducting gap depends
upon the effective diquark coupling G}, = GD—§I§I. With
an increase in magnetic field the effective coupling G/, has
a slight increase in magnitude as the strange quark con-
densate increases with magnetic field. Therefore, one
would have expected an increase in A with magnetic field.
However, the variation in A due to the magnetic field is
essentially decided by Eq. (63). From here also one would
have expected an increase in A with magnetic field as éB
occurs in the numerator in Eq. (63). In fact, this behavior is
actually seen for high magnetic field, where only the lowest
Landau level contributes to the integral in Eq. (63). For
moderately strong magnetic fields, contributions of the
higher Landau levels become relevant for the behavior of
gap with magnetic field. As long as the contribution of
higher Landau levels are nonvanishing, the gap equation
can support the solution for the gap that decreases with
magnetic field. We may point out that 2B = 5 m2 and
10 m2 the cutoff for Landau levels n,,, equals 3 and 1
respectively. For 2B > 20 m2 only the lowest Landau level
contributes to the integral in Eq. (63) and the gap increases
with magnetic field. One may also note that at higher
magnetic fields the charge asymmetry between the u and d
quark becomes apparent in their masses as expected. At
10 m2 the difference is about 3.4 percent and at 15 m2 its
about 5.7 percent at lower chemical potentials.

One may note that below the critical chemical potential
U the u quarks have higher mass compared to d quarks as
all the three colors are charged for u quarks while for the d
quarks, the blue color is chargeless. However, beyond the
critical chemical potential the u quark has a lower mass
compared to d quarks. This is because with magnetic field
the medium contribution to chiral condensate increases.
This increase is the same for the condensing pairs of u and d
quarks but different for the blue quarks. The blue up quark
has charge & = 1 whereas it is zero for the down blue quark.
Therefore the medium contribution from the up quark is
more than the down quark and it reduces the condensate for
the up quark and consequently its mass too. As we shall see
later, imposing charge neutrality requires the d quark
chemical potential to be much higher compared to u quarks
to balance their larger positive charge. This forces the d
quark mass to be smaller compared to u quark mass above
critical chemical potential. This results in an opposite
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FIG. 3. Critical chemical potential for chiral transition at zero
temperature as a function of magnetic field.

behavior for the u and d quark masses with chemical
potential, beyond y. when the charge neutrality condition is
imposed vis-a-vis when such a condition is not imposed.

As may be observed from Fig. 2, the baryon number
density increases with magnetic field for a given chemical
potential. This is because for the magnetic fields considered
here, the symmetry is restored for lower chemical potential
at higher magnetic field. Thus for a given chemical
potential beyond the critical chemical potential the masses
become smaller for higher magnetic field leading to larger
baryon number density. This is consistent with inverse
magnetic catalysis. One may note however that for very
large fields, there is magnetic catalysis of chiral symmetry
breaking in the sense that critical chemical potential
increases with magnetic field. In Fig. 3 we show the
behavior of 4, as a function of magnetic field. It is observed
that g, is minimum for B = 19 m2.

To examine the effect of flavor mixing determinant
interaction, we show in Fig. 4 the variation of the masses
and the superconducting gap without the determinant
interaction. As expected, without the mixing of flavors
the strange mass remains unaffected when u and d quark
masses decrease. This is significantly different behavior
compared to Fig. 1 where the strange mass decreases by
about 74 MeV beyond u,. when there is a first order
transition for the light quarks. This also affects the super-
conducting gap. The superconducting gap is smaller as the
effective diquark coupling decreases without the determi-
nant interaction term.

In Fig. 5 we show the variation of the gaps as a function
of the magnetic field for 4 = 200 MeV and y = 400 MeV.
1 =200 MeV is less than the critical y, for any value of
magnetic field considered here. Hence the constituent
masses are high and the superconducting gap is zero.

sool éB =0.1 m2

o

-

400

300F

Gaps [MeV]

200

100

0 100 200 300 400 500
Hq [MeV]

FIG. 4. Gaps without determinant interaction at zero temper-
ature as a function of quark chemical potential. The solid curve
refers to masses of u-d quarks, the dashed curve refers to the mass
of strange quark and the dotted curve corresponds to the super-
conducting gap.

We find that the masses increase monotonically with the
magnetic field. At 2B = 10 m2, the u mass increases by 14
percent of its zero field value while strange mass increases
by 5 percent. Similarly for 4 = 400 MeV which is larger
than the critical chemical potential for magnetic fields
considered here, one also has finite superconducting gap.
However, in this case it is observed that the u and d masses
decrease slowly and monotonically with magnetic field while
strange quark mass remains almost constant. The super-
conducting gap shows an oscillatory behavior with increase
in magnetic field. The oscillatory behavior is associated with
the discontinuous changes in the density of states due to
Landau quantization and is similar to de Hass van Alphen
effects for magnetized condensed matter system.

Finally, in Fig. 6 we have plotted the axial current density
normalized to the same for three flavor without any
condensates as given in Eq. (30) as a function of baryon
density for values of magnetic field 5 and 10 m2. For
smaller chemical potentials but above the chiral transition
this ratio is about 0.75 since strange quarks do not
contribute as their masses are larger than these values of
chemical potential. For p, about 480 MeV the strange
quarks contribution to the axial current density becomes
nonvanishing and the ratio approaches to the value
when there are no condensates. Let us note that while
quark masses decrease with chemical potential, the super-
conducting gap increases with chemical potential. This
leads to a nearly constant value for this ratio for the range of
chemical potential below the strange quark mass. Above
Hg = 480 MeV, the ratio shows a monotonic increase
with chemical potential as the strange quark mass starts
decreasing.
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A. Charge neutral magnetized quark matter

Next we discuss the consequences of imposing charge
neutrality conditions (Qr = 0,Qg = 0). In Fig. 7 we show
the results for the masses and the superconducting gaps
for strength of the external magnetic field B = 0.1 m2
[Fig. 7(a)] and B = 10 m2 [Fig. 7(b)]. For small magnetic
field (¢B = 0.1 m2) the masses in the symmetry broken
phase are the same as before but the critical chemical
potential is now shifted to around p. = 364 MeV as
compared to u,. = 335 MeV when the condition is not
imposed. At the transition point with neutrality the u-quark

mass decreases from 367 to 111 MeV and the down quark
mass from 367 to 87 MeV. Charge neutrality requires d
quark number densities to be higher as compared to u
quarks. Let us note that near the critical chemical potential
there are multiple solutions of the gap equations. The
solution which is thermodynamically preferred when the
charge neutrality condition is not imposed may no longer be
the preferred solution when the constraint of charge neutral-
ity isimposed [36]. The strange quark mass is higher than the
chemical potential at the chiral restoration so its density
is zero. However due to the determinant interaction the
strange mass decreases at the chiral restoration from 549 to
472 MeV. Atstill higher chemical potential the strange quark
density becomes nonzero and strange quark also helps in
maintaining charge neutrality.

The critical baryon density when charge neutrality is
imposed is however similar to the case when neutrality is
not imposed. Specifically p. ~ 2.25p, with charge neutral-
ity while p,. ~2.26p, without charge neutrality despite
the fact that y. is higher (u. = 364 MeV) for the charge
neutral matter compared when such charge neutrality con-
dition is not imposed (4, = 335 MeV). This is because the
constituent masses at the transition is large (M,, ~ 111 MeV
and M, ~ 87 MeV) for charge neutral case compared to
(M, ~M, ~85 MeV) without the charge neutrality con-
dition. For B = 0.1 m2, at the chiral transition u, =
364 MeV the superconducting gap increases from zero to
69 MeV. As the chemical potential is further increased the
superconducting gap increases to 80 MeV until y = p; ~
420 MeV where it shows a sudden jump to 106 MeV. This
happens when the gapless modes cease to exist as explained
below. As magnetic field is increased to ¢B = 10 m2, as
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FIG. 7. Constituent quark masses and superconducting gap when charge neutrality conditions are imposed. Part (a) shows the masses
and superconducting gap at zero temperature as a function of quark chemical potential for magnetic field 2B = 0.1 m2. Part (b) shows

the same for 2B = 10 m2.

may be observed in Fig. 6(b), the critical chemical potential
u. for the charge neutral matter decreases to 350 MeV
similar to the case without the charge neutrality condition
with inverse magnetic catalysis. The superconducting gap
on the other hand becomes smaller. One can also observe
that unlike the vanishingly small magnetic field case, the
superconducting gap increases smoothly with chemical
potential from zero initial value to 73 MeV at u = pu; ~
400 MeV where it again jumps to a value of 83 MeV.

B. Gapless modes

In the region between yu,. and u; the system shows
gapless mode which we discuss now in some detail.
Without magnetic field this has earlier been seen for charge
neutral matter [35,36,64].

As discussed earlier, from the dispersion relations for
Landau levels for the superconducting matter as given in
Eqgs. (56) and (57), it is possible to have zero modes
depending upon the values of dy and Je,,. These quantities
are not independent parameters but are dependent dynami-
cally on the charge neutrality condition and the gap
equations. For charge neutral matter, near u,, the d-quark
number density is larger so that Sy = p/2 is negative. This
renders @} (p.) > 0 for any value of momentum p,. On the
other hand, for du negative, ¢ can vanish for some values
of p,. This defines the Fermi surfaces for the super-
conducting d quarks. It is easy to show that the excitation
energy of nth Landau level o for the condensing d quarks

vanishes for momenta |p.,| = \/u% —2néB. Here pu.=
(£ \/ou* — A*)O(Su — A). Thus higher Landau levels
can also have gapless modes so long as 4/ yzi —2néB is

non-negative. Gapless modes occur when the chemical
potential difference oy is greater than the superconducting
gap. In Fig. 8(a), we have plotted the dispersion relation
i.e., the excitation energy as a function of momentum for
the lowest Landau level for the condensing quarks for y, =
340 MeV and magnetic field ¢B = 10 m2. The super-
conducting gap turns out to be A =35.3 MeV and
op = —74.5 MeV. The dispersion for the d quarks is given
as a)f)’_ = @y_ — 6¢ + 6u while the same for the u quark is
given as wj_ = @o_ + 6¢ —ou. The average chemical
potential is g = 366 MeV. Far from the pairing region,
|p.| ~ i =366 MeV the spectrum looks like the usual
BCS-type dispersion relation. Of the two excitation ener-
gies, w{j shows a minimum at p, = j with a value
of_(|p;| =) ~A—6u =110 MeV. On the other hand,
wd_ vanishes at momenta |p.| = p.. In this breached
pairing region one has only unpaired d quarks and no u
quarks. This can be seen explicitly as below.

The number densities of u quarks participating in
condensation is given by

Pse = p" +p*

-5 a1 (- ‘5) (1 - 6(-at))

n

— l 1— E"_Jr
2 Cbn-‘r ’
1402

where £, =€, —ji, p =" and € =

(104)

€, tey

>4 This is

because w¥ = @, — ou + o€ is always positive as ou =

u_,d ., . .
£5% is negative and the theta function 6(—wj};) does not
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Dispersion relation and the occupation number for condensing quarks at T = 0, 4, = 340 MeV. Part (a) shows the dispersion

relation for the condensing quarks for zeroth Landau level. The upper curve is for u quark and the lower curve corresponds to d quark
dispersion relation. Part (b) shows the occupation number as a function of momentum for ¢B = 10 m2.

contribute. Similarly the density of d quarks participating in
condensation is given by

ple=p+p®

=S s fan - +5(1-22) 1-0(-of)

A5

2 d)n-‘r .

For positive w?_, the #-function contributions vanishes and
the distribution functions are the BCS distribution function.
On the other hand, when |p.| € [P,_, P, ], ®¢ is negative
leading to pY. to vanish but for the antiparticle contribution.
In this region of momenta, pZ. is unity. We have plotted
in Fig. 8(b) the occupation number of the up and down
quarks that take part in condensation as a function of
the magnitude of momentum p, i.e., the integrands of
Eqgs. (104) and (105) respectively for the lowest Landau
level. It is easy to see from Eqgs. (104) and (105) e.g., for the
lowest Landau level that, except for the interval (u_, u. ),
the distribution function is like the BCS distribution
function. This is shown by the blue long-dashed line.
The u-quark distribution is shown by the red solid line
while the d-quark distribution is shown by the green short
dashed line. Indeed, except for the interval (u_,u.), all
three curves overlap with each other. In the “gapless”
momentum region, the u-quark occupation vanishes while
d-quark occupation is unity. This leads to the fact that the
momentum integrated distribution function for the con-
densing u and d quarks is not the same for the gapless
region unlike the usual BCS phase. We have plotted the

(105)

number densities for the u and d quarks in Fig. 9 which
shows a fork structure in the gapless region.

Gapless modes have been considered earlier for two
flavor quark matter both with [37,38] and without magnetic
field [35,36]. However it has been shown [65,66] that in
QCD at zero temperature the gapless 2SC phases are
unstable. This instability manifests itself in imaginary
Meissner mass of some species of the gluons. Finite
temperature calculations [67] show that at some critical
value of temperature the instability vanishes. This value
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FIG. 9. Number densities of up and down quarks participating
in the superconductivity for 2B = 0.1 m2 (dashed line) and B =
10 m2 (solid line).
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may range from few MeV to tens of MeV. The instability of
the gapless phases indicates that there should be other
phases of quark matter breaking translational invariance
e.g., inhomogenous phase of quark matter like crystalline
color superconductivity [68,69]. One may note that these
considerations apply to the case without magnetic field and
may change in the presence of a strong magnetic field.
In Fig. 10, we have plotted the electric and color
chemical potentials ur and pg to maintain the electric
and color charge neutrality conditions given in Eqgs. (94)
and (95) as a function of quark chemical potential.
For 2 4 1 flavor matter, strange quarks play an important
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role in maintaining charge neutrality. As the quark chemical
potential increases, |ug| increases to maintain charge
neutrality. When the chemical potential becomes large
enough for strange quarks to contribute to densities, they
also help in maintaining charge neutrality. This leads to a
decrease in electron density or the corresponding chemical
potential |uz|. This behavior is reflected in Figs. 10(a) and
10(b) as the initial slow rise of the |uy|. However, as |ug]|
increases, the difference 6y = —up/2 also increases and at
U1, the condition o > A for gapless modes to exist ceases
to be satisfied. At the gapless to BCS transition point, the
u-quark number density increases while that of d quarks
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FIG. 10. Chemical potential s and ug for charge neutral quark matter. |ug| is plotted as a function of quark chemical potential y,, for
magnetic field ¢B = 0.1 m2 (a) and for ¢B = 10 m2 (b). In (a) and (b) we have also plotted the mass of strange quarks and
superconducting gap as a function of quark chemical potential to highlight the dependence of charge chemical potential on these two
parameters. In the lower two plots, the color chemical potential ug is plotted as a function yu, for éB = 0.1 m2 (c) and for

B =10 m2 (d).
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decreases and both become equal as in the usual BCS
pairing phase. This leads to an increase in the positive
electric charge density. To maintain electrical charge
neutrality, the electron density increases at this point.
Therefore gapless to BCS transition is accompanied with
an increase in |ug|. On the other hand, at higher densities
when strange quarks start contributing to the density, it is
accompanied with a drop in |ug| as strange quarks help in
maintaining the charge neutrality along with the electrons.
It turns out that for B = 0.1 m2, the strange quark
densities become nonvanishing after the gapless to BCS
transition. This leads to the continuous decrease in the |ux|
in the BCS phase as seen in Fig. 10(a). On the other hand,
for larger fields, e.g., 2B = 10 m2, chiral transition occurs
at a lower u,. due to magnetic catalysis and the strange
quark density starts becoming nonvanishing at lower
chemical potential. This leads to a decrease in |ug| at y =
392 MeV as may be seen in Fig. 10(b). At 4 = 400 MeV,
there is the transition from the gapless to BCS phase and is
accompanied with arise in |u| as discussed above. Beyond
u =400 MeV, |ug| starts decreasing monotonically as
strange quark density increase.

In Figs. 10(c) and 10(d), we have plotted the color
chemical potential xg. For the weak field case, pg is rather
small (few MeVs) compared to both the electric chemical
potential as well as the quark chemical potential which are
2 orders of magnitude larger. For the small field, the
difference in densities of red and green quarks and the
blue quarks essentially arises because of the difference in
the distribution functions. This results in a small but finite
net color charge. To maintain color neutrality one needs a
small ug. On the other hand, at the large magnetic field, the
net color charge difference becomes larger as the é charges
of red and green quarks and that of blue quarks are
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Population of different species for charge neutral quark matter for 2B = 0.1 m2 (a) and for B = 10 m2 (b).

different. This requires a somewhat larger yg to maintain
color neutrality as seen in Fig. 10(d). In Fig. 11 we have
plotted the number densities of each species for the charge
neutral matter for two different magnetic fields. As may be
clear from both plots the electron number densities get
correlated with the strange quark number densities.
Finally, we discuss the equation of state (EOS) for
different magnetic fields. In Fig. 12 we have plotted pressure
as a function of energy for 2B = 0.1 m2 and 10 m2. One can
observe that the EOSs become stiffer with increase in
magnetic field. This can be understood as follows. For
u < p., the thermodynamic potential contribution from the
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FIG. 12. Equation of state for 2B = 0.1 m2 (dashed line) and
&B = 10 m2 (solid line).
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field asin Egs. (75), (79), and (81) is dominant and decreases
with an increase in magnetic field. This leads to a higher
pressure for higher magnetic field. As the chemical potential
increases, for u > u,., the medium contribution becomes
dominant. As the masses decrease with magnetic field, the
medium contribution increases with magnetic field.
Moreover, the field contributions also lead to an increase
in pressure. Both these effects make the resulting EOS stiffer
at higher magnetic field as may be seen in Fig. 12.

V. SUMMARY

We have analyzed here the effect of magnetic field and
neutrality conditions on the chiral as well as diquark
condensates within the framework of a three-flavor NJL
model. This essentially generalizes the results of Ref. [24]
to include the u-d superconductivity in the presence of a
magnetic field. The methodology uses an explicit varia-
tional construct for the ground state in terms of quark-
antiquark pairing for all three flavors as well as diquark
pairing for the light quarks. A nice feature of the approach
is that the four component quark field operator in the
presence of a magnetic field could get expressed in terms of
the ansatz functions that appear for the description of the
ground state. Apart from the methodology being different,
we also have new results. Namely, the present investiga-
tions have been done in a three-flavor NJL model along
with a flavor mixing six quark determinant interaction at
finite temperature and density and fields within the same
framework. In that sense it generalizes the two flavor color
superconductivity in the presence of a magnetic field
considered earlier in Refs. [19,37,38]. The gap functions
and the thermal distribution functions could be determined
self-consistently for given values of the temperature, the
quark chemical potential and the strength of magnetic field.

For the charge neutral matter the chiral transition is a first
order transition and we observe inverse magnetic catalysis
at finite density. The chiral condensate for strange quark
affects the u-d superconductivity through the flavor mixing
determinant interaction. The effective diquark coupling
increases in the presence of strange quark condensates.
On the other hand the diquark condensates contribute to the
mass of the strange quark through the determinant inter-
action. Inverse magnetic catalysis is observed for magnetic
fields up to 19 mZ. Beyond it magnetic catalysis is
observed for chiral symmetry breaking [63].

At finite densities, the effects of Landau quantization get
manifested in the oscillation of the order parameters similar
to the de Hass van Alphen effect for magnetization in
metals. However, in the present case of dense quark matter,
the order parameters, the masses and the superconducting
gap themselves are dependant on the strength of magnetic
fields which leads to a nonperiodic oscillation of the order
parameter.

Imposition of charge neutrality condition for the quark
matter leads to gapless modes even in presence of magnetic

field. The superconducting gaps in gapless modes are
smaller compared to the gaps in the BCS phase. The
transition from gapless to BCS phase is a sharp transition.
The difference in the gap in the two phases at this transition
decreases with magnetic field. For charge neutral matter the
strange quark plays an important role in maintaining the
charge neutrality. This leads to a depletion of electron
density at higher chemical potential where strange quarks
start to contribute to the densities. The resulting equation of
state becomes stiffer with magnetic field.

We have considered here quark-antiquark pairing and
diquark pairing in the ansatz for ground state which is
homogeneous with zero total momentum. However it is
possible that the condensates be spatially inhomogeneous
[70] with a net total momentum [71-74]. Indeed, the gapless
modes for the charge neutral matter leads to instability
arising from imaginary Meissner masses for some of the
gluons when 6 > A [66]. This can be suggestive of having
inhomogeneous superconducting phases [68,69] which are
not considered here. The phase structure here would be
nontrivial and interesting in the presence of two vectors, the
magnetic field and nonzero momentum of the condensate.
Furthermore, the equation of state derived for charge neutral
quark matter combined with the same for hadronic matter
can be used to study structural properties of neutron star with
quark matter core. It will be interesting to see the compat-
ibility of such an equation of state which is constrained by
astrophysical observations like GW170817 [75]. Some of
these investigations are in progress and will be reported
elsewhere.
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APPENDIX: EVALUATION OF OPERATOR
EXPECTATION VALUES OF
SOME OPERATORS

We give here some details of the evaluation of some
operators at finite T, # and B in the state given in Eq. (18).
As the state is obtained from |0), one can calculate the
expectation values of different operators, e.g.,

(G (k). 2 (0 ) = 59525,8,,p6(k , =KL F1 (K ).
(A1)
where

Fia(k ) = sin?0 + sin? (1 — sin?0'® — |e"/e“?|sin?04")

x (1 =89)(1-63). (A2)

Similarly for the expectation values for the operators
involving antiquarks, we have
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<qia1’(n’ kX)’ Q{;’b(n/’ k/)()> = 51'./'54;/75”/5””/5(1()( - k/)()(l - Flla (kX))’ (A3)
where
Fio(k ) = sin20 + sin?f, (1 — sin20¢ — |ee??|sin2¢/”) (1 — §3) (1 — 63). (A4)

Using the field operator expansion of Eq. (10) and Egs. (Al) and (A3), one can evaluate

i () = 3 gﬁl / di et by (0 k) (A5)
with
Niwdb = 55 [Fia(n, k) Up,(n, ky)U,o(n,ky)" + (1 = Fi¢(n, k) V. (n, —ky )V, (n, —ky)']. (A6)
Explicitly,
(1 +cosgp)I? 0 p.singl? ip, singl,I,_,
U,(n.p)Ul(n.py) = ! R .0 (1 oo Doy ~ibsindlil,my - —pesingly,
2 p. singl? ip,singl,I,., (1 —cosp)l? 0
—ip,singl,l,_, —p.singl>_, 0 (1 —cos)I?_,
= % -13,(1 +70cos )T + 15, (1 +° cos )1 +%Sin o’ (I + L)+ (L - 1)))
— pusingy*y°|. (A7)

where we have defined IT* = (1 +iy'y?)/2, p. = ”7‘ pL =" iﬁqB with |p| = \/p? + 2ngB.
Similarly for the antiquark spinors

(1 —cos)I? 0 —p.singl?2  —ip, singl,I,_,
v Vi 1 0 (1—cos@)>_, ip,singl,I,_, p.singl?_,
H(n,=p)Vi(n.—py) = B P! T )
p.sin I ip,singl,d,_; (1+cosp)l; 0
ipysingl,l,_, p.singl?_, 0 (1 +cos)I?_,
[ _ b, .
=5 |1 =72 cos )T + 11 (1 =7 cos I = ZEsinp(ror* (I + L) +7° (1 = 12y))
+ P sin qbyzyo} . (A8)

This leads to, e.g., for the expectation value of chiral condensate for a given flavor as
Iy = (p'y') = _(2_;11)22 Z / dpydp (1 = F' = F{") cos ¢}, (I; + ;). (A9)
One can integrate over dp, to obtain the contribution for the quarks that are charged as
1= Y5 sl [ dp.(1- 1 = P cos g, (A10)

On the other hand, the contribution to the scalar condensate from the quarks that are neutral (down blue and strange blue) is
given as
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. 2 . . .
Il = 2y / dpcos ¢'(1 —sin?03 —sin20?) (i = 2,3). (All)
™

Next, we discuss about the contributions to diquark condensates. Similar to Eq. (A12), we have

(qi4(n, ky), g7 (0 Ky)) = 16, _p€e¥8,,,8(k  + KY) sin2f (n, k,) (1 — sin0 — sin26/)
= 15,_y€ie5,,5(k  + Ki)G(k..n) (A12)

and, for antiquark operators

(G4(n,ky), @7 (0 k) = 16, _p€Ue¥8,,5(k  + KY) sin2f (n, k,) (1 — sin® 6 — sin® /%)
= r5,_p€7e35,,5(k  + K\)G, (k, n). (A13)
For the diquark condensates we have

Wi (pwry (v) = ey ('Z'fl

[ i PG k) + P CG ke (A14)

where P,Cy> =" ,rU,,U" o and P,Cy> =>_,rV, V. o and the prime on the spinors denotes a spinor with opposite
charge and momentum corresponding to the unprimed spinors. Explicitly,

cos$cos? e 0 fazcos%sin%/lﬁ iﬁlcos%sinﬂl I,
1 0 cos%cosﬂl2 —iﬁLcos%sin%/I,,I,,_, —p,cos$ sm‘/’ 2,
Pu=3 ¢ nd ¢ b i (AL3)
p.cos5sing I ipy cos5sing Ilnl sin 7 sin5 I, 0
—ip, 51n%c0571,,1n_1 -p. 51n¢cos";1ﬁ . 0 sm‘gsm"b 2,
and
—sin%sin%’lﬁ 0 p251n¢cos¢ I ip,sin? coszl I,_
b, 1 0 —s1n§sm I, —ip, sinfcos® I I N s1n¢cos I% | (AL6)
2 p.cost s1n‘/’ I2 iﬁlcos%sm—l I,l , —coszcos‘/’ 12 0
—szcosgmn?I,,ln_l —p,cos? sm"ﬁl2 0 —cosg’cos";lﬁ |

This leads to, e.g., for expectation value of the diquark condensate as
I <l//ta},51//jb>€ij€3ab

ZZan|q,B|/dpzcos( ¢2> [sin2f(1 — sin? @1 —sin2 02) 4 sin2f, (1 —sin® O} —sin262)].  (A17)
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