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We investigate the vacuum structure of dense quark matter in strong magnetic fields in a three-flavor
Nambu Jona Lasinio (NJL) model including the Kobayashi-Maskawa-t’Hooft (KMT) determinant term
using a variational method. The method uses an explicit construct for the “ground” state in terms of quark-
antiquark condensates as well as diquark condensates in the background of a constant magnetic field. The
coupled mass gap equations and the superconducting gap equation are solved self-consistently and are used
to compute the thermodynamic potential along with charge neutrality conditions imposed for bulk matter.
Within the model, we observe inverse magnetic catalysis for chiral symmetry breaking for moderate
magnetic fields. Further, we observe gapless modes in the presence of the magnetic field when charge
neutrality conditions are imposed. The equation of state for charge neutral magnetized strange quark matter
is derived, and found to be stiffer compared to the vanishing magnetic field counterpart. This could be
relevant for gross structural properties of neutron stars.
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I. INTRODUCTION

The structure of vacuum in quantum chromodynamics
(QCD) and its modification under extreme environment has
been a major theoretical and experimental challenge in
current physics [1]. In particular, it is interesting to study
the modification of the structure of ground state at high
temperature and/or high baryon densities as related to the
nonperturbative aspects of QCD. This is important not only
from a theoretical point of view, but also for many
applications to problems of quark-gluon plasma (QGP)
that could be copiously produced in relativistic heavy ion
collisions as well as for the ultradense cold nuclear/quark
matter which could be present in the interior of compact
stellar objects like neutron stars. In addition to hot and dense
QCD, the effect of strong magnetic field on QCD vacuum
structure has attracted recent attention. This is motivated by
the possibility of creating ultrastrong magnetic fields in
noncentral collisions at RHIC and LHC. The strengths of the
magnetic fields are estimated to be of hadronic scale [2,3] of
the order of eB ∼ 2 m2

π (m2
π ≃ 1018Gauss) at RHIC, to about

eB ∼ 15 m2
π at LHC [3]. There have been recent calculations

both analytic as well as with lattice simulations, which
indicate that the QCD phase diagram is affected by strong
magnetic fields [4–6].
In the context of cold dense matter, compact stars can be

strongly magnetized. Neutron star observations indicate the
magnetic field to be of the order of 1012–1013 Gauss at the
surface of ordinary pulsars [7]. Further, the magnetars which
are strongly magnetized neutron stars, may have even
stronger magnetic fields of the order of 1015–1016 Gauss
[8–14]. The physical upper limit on the magnetic field in a
gravitationally bound star is 1018 Gausswhich is obtained by
comparing the magnetic and gravitational energies using
virial theorem [7]. This limit could be higher for self-bound
objects like quark stars [15]. Since the magnetic field
strengths are of the order of QCD scale, this can affect both
the thermodynamic as well as the hydrodynamics of such
magnetized matter [16]. The phase structure of dense matter
in the presence of the magnetic field along with a nonzero
chiral density has been investigated for two-flavor Polyakov
Loop extended Nambu-Jona Lasinio model (PNJL) model
for high temperatures relevant for RHIC and LHC [17].
There have also been many investigations to look into the
vacuum structure of QCD and it has been recognized that the
strong magnetic field acts as a catalyzer of chiral symmetry
breaking [18–22]. The effects of magnetic field on the
equation of state have been recently studied in the Nambu
Jona Lasinio model at zero temperature for three flavors and
the equation of state has been computed for the cold quark
matter [23,24] taking into account chiral condensate structure
with the quark-antiquark pair for the ground state.
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On the other hand, color superconductivity is now an
accepted conjectured state of cold and dense quark matter
describing Cooper pairing of quarks of different colors and
different flavors [25,26]. One can have a rigorous treatment
of the phenomenon of such pairing using asymptotic
freedom of QCD at very high densities. In its simplest
form, when masses of the three quarks can be neglected
compared to the chemical potential one can have the color
flavor locked (CFL) phase [25,26]. However, to apply it to
neutron star matter, the situation is more complicated as for
the densities expected in the interior of neutron star, the
masses of strange quarks cannot be neglected. Further,
many nontrivial complications arise when beta equilibrium
and charge neutrality conditions are imposed in such
systems [27]. Since the well known sign problem prevents
the first principle lattice simulations at finite chemical
potentials, one has to rely on effective models at this regime
of moderate densities. One model that has been extensively
studied in this context has been the Nambu Jona Lasinio
(NJL) model with contact interactions [28,29].
Of late, there has been a lot of attention on the

investigation of color superconductivity in the presence
of the magnetic field [18,19,30–32]. Essentially, this is due
to its possible application in the astrophysical situations as
the densities in compact star cores are large enough to have
a possible superconducting phase as well as such compact
stars can have a strong magnetic field as mentioned above.
Let us also mention here that although such systems can be
color superconductors, these phases can be penetrated by a
“rotated” long range magnetic field. The corresponding
rotated gauge field is a linear combination of vacuum
photon field and the eighth gluon field [33,34]. These
rotated magnetic fields are not subjected to the Meissener
effect. While the Cooper pair is neutral with respect to the
magnetic field, the quark quasiparticles have well-defined
charges. Therefore, the pairing phenomenon is affected by
the presence of the magnetic field. Initially, the effect of the
magnetic field on superconducting phase has been studied
for the CFL phase [30] where all three quarks take part in
the pairing dynamics. However, for realistic densities, such
symmetric pairing is disfavored due to large strange quark
mass that leads to large mismatch in the Fermi surface. The
condition of charge neutrality further complicates the
pairing mechanism leading to gapless modes for homo-
geneous diquark pairing [35,36]. Superconductivity for the
two-flavor quark matter in the presence of the magnetic
field has been studied in Refs. [19,37,38] within the NJL
model. The effect of charge neutrality along with the
interplay of chiral and superconducting condensates has
been analyzed in Refs. [37,38] in this model. A complete
three-flavor analysis of magnetized dense quark matter
including superconductivity has not been attempted so far.
In the present investigation we include the effects of strange
quarks that take part in chiral condensation but not in the
diquark channel in the magnetized quark matter. As we

shall see, the strange quarks, similar to the vanishing
magnetic field case, play an important role for charge
neutral matter and the resulting equation of state. Moreover,
with the inclusion of a flavor mixing interaction term, the
strange quark scalar condensate not only affects the light
quark condensates but also the diquark condensates.
We had earlier considered a variational approach to study

chiral symmetry breaking as well as color superconduc-
tivity in hot and dense matter with an explicit structure for
the “ground state” [36,39–41] with quark-antiquark con-
densate. The calculations were carried out within NJL
model with minimization of free energy density to decide
which condensate will exist at what density and/or temper-
ature. A nice feature of the approach is that the four
component quark field operator in the chiral symmetry
broken phase gets determined from the vacuum structure.
In the present work, we aim to investigate how the vacuum
structure in the context of chiral symmetry breaking and
color superconductivity gets modified in the presence of a
magnetic field. In the context of chiral symmetry breaking,
it was seen that, since the vacuum contains quark-antiquark
pairs, the Dirac vacuum gets corrections due to the effective
magnetic field apart from the modification of the medium
or the Fermi sea of quarks. In our analysis we also keep
these contributions to the equation of state.
We organize the paper as follows. In Sec. II, we discuss

an ansatz state with quark-antiquark pairs related to chiral
symmetry breaking, diquark and diantiquark pairs for the
light flavors related to color superconductivity in the
presence of a magnetic field. We then generalize such a
state to include the effects of temperature and density.
In Sec. III, we consider the three-flavor NJL model along
with the so-called the Kobayashi-Maskawa-t’Hooft (KMT)
term—the six fermion determinant interaction term which
breaks U(1) axial symmetry as in QCD. We use this
Hamiltonian and calculate its expectation value with
respect to the ansatz state to compute the energy density
as well the thermodynamic potential for this system. We
minimize the thermodynamic potential to determine the
ansatz functions and the resulting mass gap equations.
These coupled mass and superconducting gap equations are
solved and we discuss the results in Sec. IV. We discuss
here the results with and without constraints of charge
neutrality. Finally we summarize and conclude in Sec. V. In
the Appendix we give some details of the derivation of the
evaluation of expectation values of the order parameters.

II. THE ANSATZ FOR THE GROUND STATE

Let us first consider the ground state structure relevant
for chiral symmetry breaking in the presence of a strong
magnetic field [24]. We shall then modify the same relevant
for color superconductivity. To make the notations clear, we
first write down the field operator expansion for quarks
with a current quark massm and charge q in the momentum
space in the presence of a constant magnetic field B.
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We take the field direction to be along the z axis. We choose
the gauge such that the electromagnetic vector potential is
given as AμðxÞ ¼ ð0; 0; Bx; 0Þ. The quark field operator
expansion in the presence of a constant magnetic field is
given as [24,42]

ψðxÞ ¼
X
n

X
r

Z
dp x

2π
½q0rðn;p xÞU0

rðx;p x; nÞ

þ q̃0rðn;−p xÞV0
rðx;−px; nÞ�eip x·x x : ð1Þ

Here n is the Landau level and the sum over it runs from 0
to infinity. In the above, p x ≡ ðpy; pzÞ, and r ¼ �1
denotes the up and down spins. We have suppressed the
color and flavor indices of the quark field operators. The
quark annihilation and antiquark creation operators, q0r and
q̃0r , respectively, satisfy the quantum algebra

fq0rðn;p xÞ; q0†r0 ðn0;p0
xÞg ¼ fq̃0rðn;p xÞ; q̃0†r0 ðn0;p0

xÞg
¼ δrr0δnn0δðp x − p0

xÞ: ð2Þ

In the above, Ur and Vr are the four component spinors
for the quarks and antiquarks respectively. The explicit
forms of the spinors for the fermions with mass m and
electric charge q are given by

U0
↑ðx;p x;nÞ¼

0
BBBBB@

cosϕ0

2
ðθðqÞInþθð−qÞIn−1Þ

0

p̂z sin
ϕ0

2
ðθðqÞInþθð−qÞIn−1Þ

−ip̂⊥ sinϕ0

2
ðθðqÞIn−1−θð−qÞInÞ

1
CCCCCA

ð3aÞ

U0
↓ðx;p x;nÞ¼

0
BBBBB@

0

cosϕ0

2
ðθðqÞIn−1þθð−qÞInÞ

ip̂⊥ sinϕ0

2
ðθðqÞIn−θð−qÞIn−1Þ

−p̂z sin
ϕ0

2
ðθðqÞIn−1þθð−qÞInÞ

1
CCCCCA

ð3bÞ

V0
↑ðx;−p x;nÞ¼

0
BBBBB@

p̂⊥ sinϕ0

2
ðθðqÞIn−θð−qÞIn−1Þ

ip̂z sin
ϕ0

2
ðθðqÞIn−1þθð−qÞInÞ

0

icosϕ0

2
ðθðqÞIn−1þθð−qÞInÞ

1
CCCCCA

ð3cÞ

V0
↓ðx;−p x;nÞ¼

0
BBBBB@

ip̂z sin
ϕ0

2
ðθðqÞInþθð−qÞIn−1Þ

p̂⊥ sinϕ0

2
ðθðqÞIn−1−θð−qÞInÞ

−icosϕ0

2
ðθðqÞInþθð−qÞIn−1Þ

0

1
CCCCCA
: ð3dÞ

Here θðxÞ is the Heaviside theta function. In the above, the
energy of the nth Landau level is given as ϵn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z þ 2njqjB
p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ jp2j
p

with p2 ¼ p2
z þ p2⊥

so that p2⊥ ¼ 2njqjB, p̂z ¼ pz=jpj, p̂⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqjBp

=jpj.
In Eqs. (3), cotϕ0 ¼ m=jpj. Clearly, for vanishing masses
ϕ0 ¼ π=2. The functions I0n s (with n ≥ 0) are functions of
ξ ¼ ffiffiffiffiffiffiffiffiffijqBjp ðx − py=jqBjÞ and are given as

InðξÞ ¼ cn exp

�
−
ξ2

2

�
HnðξÞ; ð4Þ

whereHnðξÞ is the Hermite polynomial of the nth order and
I−1 ¼ 0. The normalization constant cn is given by

cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijqjBp
n!2n

ffiffiffi
π

p
s

:

The functions InðξÞ satisfy the orthonormality condition

Z
dξInðξÞImðξÞ ¼

ffiffiffiffiffiffiffiffiffi
jqjB

p
δn;m; ð5Þ

so that the spinors are properly normalized. The detailed
derivation of these spinors and some of their properties are
presented in the Appendix of Ref. [24].
With the field operators now defined in terms of the

annihilation and the creation operators in the presence of a
constant magnetic field, one can write down an ansatz for
the ground state as in Ref. [24]. The ground state is taken as
a squeezed coherent state involving quark and antiquarks
pairs. Explicitly [24,36,39,41],

jΩi ¼ UQj0i: ð6Þ

Here, UQ is an unitary operator which creates quark-
antiquark pairs from the vacuum j0i which in annihilated
by the quark/antiquark annihilation operators given in
Eq. (1). Explicitly, the operator UQ is given as [24]

UQ ¼ exp

�X∞
n¼0

Z
dp xq0ir †ðn; p xÞair;sðn; pzÞhiðn; pzÞ

× q̃0is ðn;−pxÞ − H:c:

�
: ð7Þ

In the above ansatz for the ground state, the function
hiðn; pzÞ is a real function describing the quark-antiquark
condensates related to the vacuum realignment for chiral
symmetry breaking to be obtained from a minimization of
the thermodynamic potential. In the above equation, the
spin dependent structure air;s is given by

air;s ¼
1

jpij
½−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqijB

p
δr;s − ipzδr;−s�; ð8Þ

with jpij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqijB

p
denoting the magnitude of the

three momentum of the quark/antiquark of ith flavor (with
electric charge qi) in the presence of a magnetic field.
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Summation over three colors and three flavors is under-
stood in the exponent of UQ in Eq. (7). Clearly, a nontrivial
hiðn; pzÞ breaks the chiral symmetry.
It is easy to show that the transformation of the ground

state as in Eq. (6) is a Bogoliubov transformation. With the
ground state transforming as Eq. (6), any operatorO0 in the
j0i basis transforms as

O ¼ UQO0U†
Q; ð9Þ

and, in particular, one can transform the creation and
annihilation operators of Eq. (1) to define the transformed
operators as above satisfying the same anticommutation
relations as in Eq. (2):

ψðxÞ ¼
X
n

X
r

1

2π

Z
dp x½qrðn;p xÞUrðx; n;p xÞ

þ q̃rðn;−p xÞVrðx; n;−p xÞ�eip x·x x ; ð10Þ

with qrjΩi ¼ 0 ¼ q̃†r jΩi. In the above, we have suppressed
the flavor and color indices. It is easy to see that the form of
U, V spinors is exactly similar to the form of the spinors
U0, V0 as in Eq. (3) but with the shift of the function ϕ0 →
ϕ ¼ ϕ0 − 2h with the function hðkÞ to be determined by a
minimization of free energy. As we shall see later, it is more
convenient to vary ϕðkÞ rather than hðkÞ. Let us note that
with Eq. (10), the four component quark field operator gets
defined in terms of the vacuum structure for chiral
symmetry breaking given through Eq. (6) and Eq. (7) in
the presence of a magnetic field [43].
The chiral order parameter in the condensate vacuum

jΩi can be evaluated explicitly using the field operator
expansion given in Eq. (10) and is given by [24] (for ith
flavor)

Iis ¼ hΩjψ̄ iψ ijΩi ¼ −
X
n

Ncαn
jqiBj
ð2πÞ2

Z
dpz cosϕi: ð11Þ

This expression for the quark-antiquark condensate is
exactly the same form as derived earlier in the absence
of the magnetic field [39,40] once one realizes that in the
presence of a quantizing magnetic field with discrete
Landau levels, one has for the phase space integration [37]

Z
dp

ð2πÞ3 →
X∞
n¼0

αn
jqBj
ð2πÞ2

Z
dpz:

Next, we would like to generalize the ansatz of Eq. (6)
with quark-antiquark pairs in the presence of a magnetic
field, to include quark-quark pairs for the description of the
ground state as relevant for color superconductivity.
However, few comments in this context are in order. It
is known that in the presence of color superconductivity,
the diquark is electromagnetically charged and the usual

magnetic field will have a Meissner effect. However, a
linear combination of the photon field and the gluon field
given by Ãμ ¼ cos αAμ − sin αG8

μ still remains massless
and is unscreened. For two-flavor color superconductivity,
cos α ¼ g=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ e2=3

p
∼ 1=20 [33]. The electron couples

to this rotated gauge field by the coupling ẽ ¼ e cosðαÞ.
The quark field couples to the rotated gauge field through
its rotated charge Q̃. In units of ẽ, the rotated charge matrix
in the flavor-color space is given by

Q̃ ¼ Qf ⊗ 1c − 1f ⊗
T8
c

2
ffiffiffi
3

p : ð12Þ

Thus, the ẽ charges of red and green u quarks is 1=2; red
and green down and strange quarks is −1=2. The blue u
quark has Q̃ charge asþ1, while the blue d and s quarks are
Q̃ chargeless. We shall take the rotated U(1) magnetic field
along the z axis and spatially constant as before without the
absence of superconductivity. The ansatz for the ground
state with quark-antiquark condensate is now taken as, with
i being the flavor index,

jΩiχ ¼ exp
X
flav

ðB†
i − BiÞj0i: ð13Þ

The flavor dependent quark-antiquark pair creation oper-
ator for u quark (i ¼ 1) is given as, with a ¼ 1, 2, 3 being
the color indices for red, blue and green respectively,

B†
u¼

X3
a¼1

X∞
n¼0

Z
dp xq1ar ðn;p xÞ†a1r;sðn;pzÞf1aðn;pxÞq̃1as ðn;−p xÞ;

ð14Þ

while, for the down and strange quarks (i ¼ 2, 3) the same
is given as

B†
i ¼

X2
a¼1

X∞
n¼0

Z
dp xqiar ðn;p xÞ†air;sðn;pzÞhiaðn;p xÞq̃1as ðn;−p xÞ

þ
Z

dpqi3r ðpÞ†ðσ ·p̂ÞrshiðpÞq̃i3s ð−pÞ: ð15Þ

The difference between the pair creation operator in
Eqs. (14) and (15) lies on the contribution of the blue color.
While the up blue quark has Q̃ charge, the blue quarks of
down and strange quark are Q̃ neutral.
Next, we write down the ansatz state for having quark-

quark condensates which is given by

jΩi ¼ UdjΩiχ ≡ expðB†
d − BdÞjΩiχ : ð16Þ

In the above, B†
d is the diquark (and di-antiquark) creation

operator given as

AMAN ABHISHEK and HIRANMAYA MISHRA PHYS. REV. D 99, 054016 (2019)

054016-4



B†
d ¼

X
n

Z
dpx½qiar ðn; pxÞ†rfðn; pzÞqjb−rðn;−px; pzÞ

þ iq̃iar ðn; pxÞ†rf1ðn; pzÞq̃jb−rðn; pxÞ†�ϵij3ϵ3ab: ð17Þ

In the above, i, j are the flavor indices, a, b are the color
indices and r ¼ �1=2 are the spin indices. The Levi-Cività
tensor ensures that the operator is antisymmetric in color
and flavor space along with the fact that only u, d quarks
with red and green colors take part in diquark condensation.
The blue u, d quarks as well as the strange quarks (all three
colors) do not take part in the diquark condensation. The
functions fðn; pzÞ and f1ðn; pzÞ are condensate functions
associated with quark-quark and antiquark-antiquark con-
densates respectively. These functions are assumed to be
independent of color and flavor indices. We shall give a
post facto justification for this that these functions depend
upon the average energy and average chemical potentials of
the quarks that condense.
To include the effects of temperature and density we next

write down the state at finite temperature and density
jΩðβ; μÞi through a thermal Bogoliubov transformation
over the state jΩi using the thermofield dynamics (TFD)
method as described in Refs. [24,44,45]. This is particu-
larly useful while dealing with operators and expectation
values. We write the thermal state as

jΩðβ; μÞi ¼ Uβ;μjΩi ¼ Uβ;μUQj0i; ð18Þ
where Uβ;μ is given as

Uβ;μ ¼ eB
†ðβ;μÞ−Bðβ;μÞ;

with

B†ðβ; μÞ ¼
X∞
n¼0

Z
½dk xqiar ðn; kxÞ†θia− ðkz; n; β; μÞqiar ðn; kxÞ†

þ q̃iar ðn; kxÞθiaþðkz; n; β; μÞq̃iar ðn; kxÞ�: ð19Þ
In Eq. (19), the underlined operators are the operators in

the extended Hilbert space associated with thermal dou-
bling in the TFD method, and the color flavor dependent
ansatz functions θia�ðn; kz; β; μÞ are related to quark and
antiquark distributions as can be seen through the mini-
mization of the thermodynamic potential.
All the functions in the ansatz in Eq. (18) are to be

obtained by minimizing the thermodynamic potential. We
shall carry out this minimization in the next section.
However, before carrying out the minimization procedure,
let us focus our attention to the expectation values of some
known operators to show that with the above variational
ansatz for the ground state given in Eq. (18) these reduce to
the already known expressions in the appropriate limits.
Let us first consider the expectation value of the chiral

order parameter. The expectation value for chiral order
parameter for the ith flavor is given as

Iis ¼ hΩðβ; μÞjψ̄ iψ ijΩðβ; μÞi ¼
X3
a¼1

Iias : ð20Þ

These expectation values can be evaluated easily once we
realize that the state jΩðβ; μÞi as in Eq. (18) is obtained
through successive Bogoliubov transformations on the state
j0i as in Eqs. (13) and (16). The details of evaluation for the
different order parameters is relegated to the Appendix.
Explicitly, for the quarks that take part in superconductivity

Iias ¼−
X
n

αn
jqiaBj
ð2πÞ2

×
Z

dpz cosϕiað1−Fia−Fia
1 Þ; ði;a¼ 1;2Þ; ð21Þ

where αn ¼ ð2 − δn;0Þ is the degeneracy factor of the nth
Landau level (all levels are doubly degenerate except the
lowest Landau level). Further,

Fia¼sin2θia− þsin2fð1−sin2θia− − jϵijjϵabjsin2θjb− Þ; ð22Þ

arising from the quarks which condense and

Fia
1 ¼sin2θiaþ þsin2f1ð1−sin2θiaþ− jϵijjϵabjsin2θjbþ Þ; ð23Þ

arising from antiquarks which condense. Thus, the scalar
condensates arising from quarks that take part in super-
conductivity depend both on the condensate functions in
quark-antiquark channel (ϕi) as well as in quark-quark
channel (f; f1). Further, the thermal functions sin2 θia� , as
we shall see later, will be related to the number density
distribution functions.
Next, for the nonsuperconducting blue up quarks, the

contribution to the scalar condensate is given by

I13s ¼−
X
n

αn
jq13jB
ð2πÞ2

Z
dpz cosϕ13ð1− sin2θ13− − sin2θ13þ Þ:

ð24Þ

Let us note that in the limit of vanishing of the color
superconducting condensate functions (f; f1 → 0), the
contributions given in Eq. (21) reduce to Eq. (24) as they
should [24].
Similarly, scalar condensate contribution from the

charged strange quarks (red, green) is given by

I3as ¼−
X
n

αn
jq3ajB
ð2πÞ2

×
Z

dpz cosϕ3að1− sin2θ3a− − sin2θ3aþ Þ ða¼ 1;2Þ:

ð25Þ
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Finally, for the uncharged quarks, i.e., blue down and blue
strange quarks, the contributions to the scalar condensates
are given by, for flavor i (i ¼ 2, 3),

Ii3s ¼ −
2

ð2πÞ3
Z

dk cosϕið1 − sin2 θi3− − sin2 θi3þÞ: ð26Þ

Next, we write down the condensate in the supercon-
ducting channel which is given as

ID ¼ hψ̄ ia
c γ

5ψ jbiϵijϵ3ab

¼
X
n

αn
jqiBj
ð2πÞ2

Z
dpz cos

�
ϕ1 − ϕ2

2

�

× ½sin 2fð1 − sin2θ1− − sin2θ2−Þ
þ sin 2f1ð1 − sin2θ1þ − sin2θ2þÞ�: ð27Þ

Let us note that the superconducting condensate also
depends upon the chiral condensate functions ϕðpzÞ
through the function cosðϕ1−ϕ2

2
Þ apart from the thermal

distribution functions sin2 θia� . Further, this dependence
vanishes when the u and d quark scalar condensates or
equivalently the corresponding masses of the quarks
are equal.
The other quantity that we wish to investigate is the axial

fermion current density that is induced at finite chemical
potential including the effect of temperature. The expect-
ation value of the axial current density is given by

hj35i≡ hψ̄a
i γ

3γ5ψa
j i:

Using the field operator expansion Eq. (10) and Eq. (3) for
the explicit forms for the spinors, we have for the ith flavor

hji35 i¼
X
n

Nc

ð2πÞ2
Z

dpxðI2n−I2n−1Þðsin2θi−−sin2θiþÞ: ð28Þ

Integrating over dpy using the orthonormal condition of
Eq. (5), all the terms in the above sum for the Landau levels
cancel out except for the zeroth Landau level so that

hji35 i ¼
NcjqijB
ð2πÞ2

Z
dpz½sin2 θi0− − sin2 θi0þ�; ð29Þ

which is identical to that in Ref. [46] once we identify the
functions sin2 θi0∓ as the particle and the antiparticle dis-
tribution functions for the zero modes [see e.g., Eq. (55) in
the next section]. In the chiral limit at zero temperature and
without superconductivity, one gets the following as the
axial current after summing over all three flavors:

hj05i ¼
3eB
2π2

�
μþ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

s

q �
: ð30Þ

III. EVALUATION OF THERMODYNAMIC
POTENTIAL AND GAP EQUATIONS

As has already been mentioned, we shall consider in the
present investigation, the three-flavor Nambu Jona Lasinio
model including the Kobayashi-Maskawa-t-Hooft (KMT)
determinant interaction. The corresponding Hamiltonian
density is given as [24,28,36,47]

H ¼ ψ†ð−iα ·ΠÞ þ γ0m̂Þψ

−GS

X8
A¼0

½ðψ̄λAψÞ2 − ðψ̄γ5λAψÞ2�

þ K½detf½ψ̄ð1þ γ5Þψ � þ detf½ψ̄ð1 − γ5Þψ ��
−GD½ðψ̄γ5ϵϵcψCÞðψ̄Cγ5ϵϵcψÞ�; ð31Þ

where ψ i;a denotes a quark field with color “a” (a¼ r, g, b),
and flavor “i” (i ¼ u, d, s), indices. Π ¼ −ið∇ − iẽÃQ̃Þ is
the canonical momentum in the presence of the rotated
U(1) gauge field Ãμ. ϵ is the Levi-Cività tensor in flavor
space while ϵc is the Levi-Cività tensor in color space.
ψC ¼ iγ1γ2ψ is the charge conjugate spinor. When there is
no superconductivity Aμ ¼ Ãμ which is the usual massless
photon field with the coupling to the quark field being given
the electromagnetic charge eQf, where Qf is diagonal
matrix ð2=3;−1=3;−1=3Þ. As mentioned in the previous
section, when the superconducting gap is nonvanishing, the
massless gauge field is given by Ãμ ¼ cos αAμ − sin αG8

μ,

where cos α ¼ g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ e2=3

p
. We have taken here the

standard convention of SUð3Þc generators in the adjoint
representation [33]. The Q̃ charges of the quarks are given in
Table I. Itmay also be relevant here tomention that,whilewe
are taking into account combination of the photon and gluon
field which is massless, the other orthogonal massive
component, is either Meissner screened or nucleated into
vortices [48].
The matrix of current quark masses is given by m̂ ¼

diagfðmu;md;msÞ in the flavor space. We shall assume in
the present investigation, isospin symmetry with mu ¼ md.

TABLE I. Table: List of quarks and their electromagnetic and
rotated charges.

Quark e-charge ẽ-charge

u-red 2
3

1
2

u-green 2
3

1
2

u-blue 2
3

1
d-red − 1

3
− 1

2

d-green − 1
3

− 1
2

d-blue − 1
3

0
s-red − 1

3
− 1

2

s-green − 1
3

− 1
2

s-blue − 1
3

0
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In Eq. (31), λA, A ¼ 1;…8 denote the Gellmann matrices

acting in the flavor space and λ0 ¼
ffiffi
2
3

q
1f, 1f as the unit

matrix in the flavor space. The four point interaction term
∼GS is symmetric in SUð3ÞV × SUð3ÞA ×Uð1ÞV ×Uð1ÞA.
In contrast, the determinant term ∼K which for the
case of three flavors generates a six point interaction which
breaks Uð1ÞA symmetry. In the absence of magnetic field,
if the mass term is neglected, the overall symmetry is
SUð3ÞV × SUð3ÞA ×Uð1ÞV . This spontaneously breaks to
SUð3ÞV × Uð1ÞV implying the conservation of the baryon
number and the flavor number. The current quark mass
term introduces additional explicit breaking of chiral
symmetry leading to partial conservation of the axial
current. The last term in Eq. (31) describe a scalar diquark
interaction in the color antitriplet and flavor antitriplet
channel. Such a form of four point interaction can arise e.g.,
by Fierz transformation of a four point vector current-
current interaction having quantum numbers of a single
gluon exchange. In that case the diquark coupling GD is
related to the scalar coupling as GD ¼ 0.75GS.
Next we evaluate the expectation value of the kinetic

term in Eq. (31) which is given as

T ¼ hΩðβ; μÞjψ ia†ð−iα ·∇ − q̃iaBxα2Þψ iajΩðβ; μÞi
≡X

ia

Tia: ð32Þ

In the above the sum over the colors a and flavors
i is understood. The color flavor dependent charges

q̃ia for the quasiparticles is given in Table I. To evaluate
this, for nonvanishing q̃ charges, we use Eq. (10) and the
results of spatial derivatives on the functions InðξÞ
(ξ ¼ ffiffiffiffiffiffiffiffiffiffijqijB

p ðx − py=ðjqijBÞÞÞ:

∂In
∂x ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
jqiajB

q
½−ξIn þ

ffiffiffiffiffiffi
2n

p
In−1�;

∂In−1
∂x ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
jq̃iajB

q
½−ξIn−1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn − 1Þ

p
In−2�: ð33Þ

Using the above, a straightforward but somewhat tedious
manipulations lead to the contribution arising from the
quarks that take part in superconductivity, i.e., for color,
flavor indices i, a ¼ 1, 2,

Tia ¼ −
X∞
n¼0

αn
jẽBj

2ð2πÞ2
Z

dpzðmi cosϕi þ jpij sinϕiÞ

× ð1 − Fia − Fia
1 Þ; ði; a ¼ 1; 2Þ; ð34Þ

where we have defined jpij2 ¼ p2
z þ 2njq̃Bj, (q̃ ¼ ẽ=2).

Here, the quark-antiquark condensate effects are encoded in
the function ϕi while diquark and di-antiquark condensate
effects are encoded in the functions Fia and Fia

1 respec-
tively as given in Eqs. (22) and (23).
For the blue u quark, which is charged but does not take

part in diquark condensation the corresponding contribu-
tion to the kinetic term is given by

T13 ¼ −
X∞
n¼0

αn
jẽBj
ð2πÞ2

Z
dpzðm1 cosϕ1 þ jp1j sinϕ1Þð1 − sin2 θ13− − sin2 θ13þ Þ: ð35Þ

The contribution of the charged strange quarks (with charges ẽ=2) to the kinetic energy is given by, with a ¼ 1, 2,

T3a ¼ −
X∞
n¼0

αn
jẽBj

2ð2πÞ2
Z

dpzðm3 cosϕ3 þ jp3j sinϕ3Þð1 − sin2θ3a− − sin2θ3aþ Þ: ð36Þ

Finally, the contribution from the ẽ -charge neutral quarks (blue d and blue s) is given as

Ti3 ¼ −
Z

dp
ð2πÞ3 ðmi cosϕi þ p sinϕiÞð1 − sin2θi3− − sin2θi3þÞ ði ¼ 2; 3Þ: ð37Þ

The contribution to the energy density from the quartic
interaction term in Eq. (31), using Eq. (20) turns out to be

VS ≡ −GShΩðβ; μÞ
����
X8
A¼0

½ðψ̄λAψÞ2 − ðψ̄γ5λAψÞ2�
����Ωðβ; μÞi

¼ −2GS

X
i¼1;3

Iis2; ð38Þ

where Iis ¼ hψ̄ iψ ii is the scalar quark-antiquark
condensate given in Eq. (20). Further, in the above,

we have used the properties of the Gellman matri-
ces

P
8
A¼0 λ

A
ijλ

A
kl ¼ 2δilδjk.

Next, let us discuss the contribution from the six quark
determinant interaction term to the energy expectation
value. There will be six terms in the expansion of the
determinant, each involving three pairs of quark operators
of different flavors. These are to be “contracted” in all
possible manner while taking the expectation value. This
means in the present context of having quark-antiquark
and diquark condensates, one can contract a ψ with a ψ̄
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or ψ with a ψ . The former leads to condensates having
quark-antiquark condensates IðiÞs while the latter leads to
diquark condensates ID. Further, for the case of quark-
antiquark condensate contributions, the contracting ψ
and ψ̄ having the same color will lead to the dominant
contribution while contracting similar operators with differ-
ent colors will lead to a Nc suppressed contribution. Next,
regarding the contributions arising from the diquark, terms
which are proportional to strange quark-antiquark con-
densate hs̄si will be dominant. These will have the
contractions of strange quark-antiquarks having the
same color. The rest of the four terms will be suppressed
at least by a factor Nc. Explicitly these two terms are given
by ∼

P
h s̄ O

hs½ūÔhu × ðd̄ÔhdÞ − ūÔhd × ðd̄ÔhuÞ�, where
h ¼ � and Ô� ¼ ð1� γ5Þ. When contracted diquark wise,
both terms give identical contributions, except that the
contribution of the second term will be of opposite sign as
compared to the first term. This is a consequence of the
flavor antisymmetric nature of the diquark condensates.
This leads to

Vdet ¼ þKhdetf½ψ̄ð1þ γ5Þψ � þ detf½ψ̄ð1 − γ5Þψ �i

¼ 1

3
jϵijkjIðiÞs IðjÞs IðkÞs þ K

4
Ið3Þs I2D:

Next, the contribution from the diquark interaction is
given by

VD ¼ −hGD½ðψ̄γ5ϵϵcψCÞðψ̄Cγ5ϵϵcψÞ�i ¼ −GDI2D; ð39Þ

where the diquark condensate ID is already defined
in Eq. (27).
To calculate the thermodynamic potential (negative of the

pressure), we also have to specify the chemical potentials
relevant for the system. Here, we shall be interested in the
form of quark matter that might be present in compact stars
that are older than a few minutes so that chemical equili-
bration for weak interaction is satisfied. The relevant
chemical potentials in such a case are the baryon chemical
potential μB ¼ 3μq, the chemical potential μE associated
with the electromagnetic charge, and, the color potentials μ3
and μ8. The chemical potential is a matrix that is diagonal in
color and flavor space and is given by

μij;ab ¼ ðμδij þQijμEÞδab þ ðT3
abμ3 þ T8

abμ8Þδij: ð40Þ

Since red and green color of a given flavor of quark is
degenerate and the diquark is in the blue direction in the
color space, we can assume μ3 ¼ 0.
The thermodynamic potetial, Ω, is then given by using

Eqs. (32), (38), and (39), with s being the entropy density,

Ω ¼ T þ VS þ Vdet þ VD − hμNi − 1

β
s; ð41Þ

where we have introduced

hμNi ¼ hψ ia†μij;abψ
jbi ¼

X
i;a

μiaρia; ð42Þ

where ρia is the vector density ρia ¼ hψ ia†ψ iai. For the
superconducting quarks this is given by

ρia ¼
X
n

αn
ẽB

2ð2πÞ2
Z

dpzðFia−Fia
1 Þ; ði;a¼ 1;2Þ; ð43Þ

while for the blue u quark, the same is given by

ρ13 ¼
X
n

αn
ẽB

ð2πÞ2
Z

dpzðsin2 θ13− − sin2 θ13þ Þ: ð44Þ

For the charged strange quarks, this density is given by

ρ3a¼
X
n

αn
ẽB

2ð2πÞ2
Z

dpzðsin2θ3a− −sin2θ3aþ Þ; ða¼1;2Þ:

ð45Þ

For the ẽ-uncharged quarks (blue down and blue
strange), the vector density is given by

Ii3v ¼ 2

ð2πÞ3
Z

dpðsin2θi3− − sin2θi3þÞ: ði ¼ 2; 3Þ: ð46Þ

Finally, the entropy density is given by s ¼ P
i;as

ia,
where sia is the entropy density for quarks of flavor i and
color a. For the quarks with charge q̃ia, the phase space
is Landau quantized and we have the entropy density given
as [44]

sia ¼ −
X
n

αn
jqiajB
ð2πÞ2

Z
dpzfðsin2θia− ln sin2θia− þ cos2θia− ln cos2θia− Þ þ ð− → þÞg: ð47Þ

On the other hand, for the uncharged (blue down and blue strange) quarks, the entropy density is given by

si3 ¼ −
2

ð2πÞ3
Z

dpfðsin2θi3− ln sin2θi3− þ cos2θi3− ln cos2θi3− Þ þ ð− → þÞg; ði ¼ 2; 3Þ: ð48Þ
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Thus, the thermodynamic potential is now completely
defined in terms of the condensate functions ϕi, fðkÞ
and the thermal distribution functions θia∓ which will be
determined through a functional extremization of the
thermodynamic potential. Minimizing the thermodynamic
potential with respect to the quark-antiquark condensate
function ϕiðpÞ, i.e., δΩ=δϕi ¼ 0, leads to

cotϕia ¼ ðmi − 4GSIis þ KϵijkIjsIks þ δi3
k
4
I2DÞ

jpiaj
≡ Mi

jpiaj
;

ð49Þ

where, as earlier, we have defined jpiaj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqiajB

p
and we have defined the constituent quark mass Mi ¼
mi−4GSI

ðiÞ
s þKjϵijkjIðiÞs IðjÞs IðkÞs þδi3I2D

k
4
. These expres-

sions are actually self-consistent equations for the constitu-

ent quark masses as scalar condensate IðiÞs as given in
Eq. (20) involve Mi through their dependence on ϕi.
Explicitly, these mass gap equations are given as

Mu ¼ mu − 4GSI
ðuÞ
s þ 2KIðdÞs IðsÞs ; ð50Þ

Md ¼ md − 4GSI
ðdÞ
s þ 2KIðuÞs IðsÞs ; ð51Þ

Ms ¼ ms − 4GSI
ðsÞ
s þ 2KIðdÞs IðuÞs þ K

4
I2D: ð52Þ

Let us note that while the color and flavor dependence on
the quark-antiquark condensate functions ϕia arises only
from the momentum jpiaj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njq̃iajB

p
through the

color flavor dependent q̃ charges, the constituent quark
masses are color singlets and are given by the solutions of
the self-consistent equations (50)–(52). Further, the flavor
mixing determinant interaction makes the masses of quark
of a given flavor dependent upon the condensates of the
other flavor quarks. This apart, the strange quark mass
explicitly depends upon the diquark condensates through
this determinant interaction. Note that for the two flavor
superconductivity as considered here, the strange quark
mass is affected explicitly by the superconducting gap
given by the last term on the right-hand side Eq. (52). Of
course, there is implicit dependence on the superconducting
gap in the second term through the functions F and F1

[given in Eqs. (22) and (23)]. Further, when chiral
symmetry is restored for the light quarks, i.e., when the
scalar condensates for the nonstrange quarks vanish, still,
the determinant term gives rise to a density dependent
dynamical strange quark mass arising from diquark con-
densates of the light quarks [47]. Such a mass generation is
very different from the typical mechanism of quark mass
generation through quark-antiquark condensates [49].
In a similar manner, minimizing the thermodynamic

potential with respect to the diquark function fðkÞ and di-
antiquark function f1ðkÞ, i.e., δΩ

δfðkÞ¼0 and δΩ
δf1ðkÞ¼0, leads to

tan 2fðkÞ ¼ 2ðGD − K
4
Ið3Þs ÞID

ϵ̄n − μ̄
cos

�
ϕ1 − ϕ2

2

�

≡ Δ
ϵ̄n − μ̄

cos

�
ϕ1 − ϕ2

2

�
;

tan 2f1ðkÞ ¼
Δ

ϵ̄n þ μ̄
cos

�
ϕ1 − ϕ2

2

�
; ð53Þ

where we have defined the superconducting gap Δ as

Δ ¼ 2

�
GD −

K
4
Ið3Þs

�
ID; ð54Þ

and ϵ̄¼ðϵunþϵdnÞ=2, μ̄¼ðμurþμdgÞ=2¼μþ1=6μEþ1=
ffiffiffi
3

p
μ8,

where we have used Eq. (40) for the chemical potentials.
Further, ϵin is the nth Landau level energy for the ith
flavor with constituent quark mass Mi given as
ϵin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqijBþM2

i

p
. It is thus seen that the diquark

condensate functions depend upon the average energy and
the average chemical potential of the quarks that condense.
We also note here that the diquark condensate functions
depend upon the masses of the two quarks which condense
through the function cosððϕ1 − ϕ2Þ=2Þ. The function
cosϕi ¼ Mi=ϵin can be different for u,d quarks, when the
charge neutrality condition is imposed. Such a normaliza-
tion factor is always there when the condensing fermions
have different masses as has been noted in Ref. [50] in the
context of the CFL phase.
Finally, the minimization of the thermodynamic potential

with respect to the thermal functions θia�ðkÞ gives

sin2θia� ¼ 1

expðβðωi;a � μiaÞÞ þ 1
: ð55Þ

Various ωia’s ði; a≡ flavor; colorÞ are explicitly given as

ω11
n� ¼ ω12

n� ¼ ω̄n� þ δϵn � δμ ≡ ωu
n�; ð56Þ

ω21
n� ¼ ω22

n� ¼ ω̄n� − δϵn ∓ δμ ≡ ωd
n�; ð57Þ

for the quarks participating in condensation. Here,
¯ωn� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ̄n � μ̄Þ2 þ Δ2 cos2ðϕ1 − ϕ2Þ=2

p
. Further, δϵn ¼

ðϵun − ϵdnÞ=2 is half the energy difference between the
quarks which condense in a given Landau level and δμ ¼
ðμur − μdgÞ=2 ¼ μE=2 is half the difference between
the chemical potentials of the two condensing quarks.
For the charged quarks which do not participate in the
superconductivity,

ωia
n� ¼ ϵin � μia: ð58Þ

In the above, the upper sign corresponds to antiparticle
excitation energies while the lower sign corresponds to the
particle excitation energies.
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Let us note that when the charge neutrality conditions are
not imposed, the masses of u and d quarks will be almost the
same but for the effect of the (rotated) magnetic field
as the magnitude of the charges for red and green quarks
are the same and that of the blue color is different. Since the
chemical potentials of all the quarks are the same when
charge neutrality is not imposed, all four quasiparticles
taking part in diquark condensation will have (almost) the
same energy ω̄n−. On the other hand, when charge neutrality
condition is imposed, it is clear from the dispersion relations

given in Eqs. (56) and (57) that it is possible to have zero
modes, i.e., ωia ¼ 0 depending upon the values of δϵn and
δμ. So, although we shall have nonzero order parameter Δ,
there will be fermionic zero modes or the gapless super-
conducting phase [51,52].
Substituting the solutions for the quark-antiquark con-

densate function ϕi of Eq. (49), we have the solutions for
the different quark-antiquark condensates, i.e., Iias given by,
using Eqs. (21), (24), and (25),

Iias ¼ −
X
n

αn
ẽB

2ð2πÞ2
Z

dpz
Miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2nðẽB=2Þ þM2

i

p ð1 − Fia − Fia
1 Þ; ði; a ¼ 1; 2Þ; ð59Þ

I13s ¼ −
X
n

αn
ẽB

ð2πÞ2
Z

dpz
M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2nðẽBÞ þM2

1

p ð1 − sin2θ13− − sin2θ13þ Þ; ð60Þ

I3as ¼ −
X
n

αn
ẽB

2ð2πÞ2
Z

dpz
M3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2nðẽB=2Þ þM2

3

p ð1 − sin2θ3a− − sin2θ3aþ Þ; ða ¼ 1; 2Þ; ð61Þ

for the ẽ charged quarks while for the uncharged quarks (blue down and blue strange quarks),

Ii3s ¼ −
2

ð2πÞ3
Z

dp
Mi

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

p ð1 − sin2θi3− − sin2θi3þÞ; ði ¼ 2; 3Þ: ð62Þ

Similarly, substituting the solutions for the diquark/di-antiquark condensate functions from Eq. (53) in Eq. (27), we have,
with the usual notations, ξ̄n� ¼ ϵ̄n � μ̄ and ω̄n� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2n� þ Δ2 cos2ðϕ1 − ϕ2Þ=2

p
,

ID ¼ 2

ð2πÞ2
X
n

αnjẽB=2j
Z

dpzΔcos2
�
ϕ1 − ϕ2

2

��
1

ω̄n−
ð1 − sin2θ1− − sin2θ2−Þ þ

1

ω̄nþ
ð1 − sin2θ1þ − sin2θ2þÞ

�
: ð63Þ

Thus Eqs. (50)–(52) for the mass gaps, Eq. (54) for the superconducting gap and Eqs. (59)–(63) define the self-consistent
mass gap equation for the ith quark flavor and the superconducting gap.
Next we discuss the thermodynamic potential. We substitute the solutions for the condensate functions [Eqs. (49) and

(53)] in the expression for the thermodynamic potential [Eq. (41)] and use the gap equations [Eqs. (50)–(52) and (54)]. The
thermodynamic potential is then given by

Ωq ¼ Ωsc
1=2 þΩs

1=2 þ Ω0 þ Ω1 þ 4Gs

X
i

Ii
2

s − 4KIus Ids Iss þ
Δ2

4G0
D
−
K
4
IssI2D; ð64Þ

where we have defined an effective diquark coupling G0
D ¼ GD − K

4
Iss in the presence of the determinant term which mixes

the flavors. Let us now discuss each of the terms in Eq. (64). The first term is the contribution from the quarks that take part
in superconductivity, i.e., the red and blue, u,d quarks. This contribution is given by

Ωsc
1=2 ¼ −2

X
n

αn
ẽB

2ð2πÞ2
Z

ðϵun þ ϵdnÞdpz þ 2
X
n

αn
ẽB

2ð2πÞ2
Z

ððξ̄n− þ ξ̄nþÞ − ðω̄n− þ ω̄nþÞÞ

− 2
X
n

X
i¼u;d

αn
ẽB

ð2πÞ2β
Z

dpz½logð1þ expð−βðωi
n− − μirÞÞÞ þ logð1þ expð−βðωi

nþ þ μirÞÞÞ�

≡Ωsc
1=2;0ðT ¼ 0; μ ¼ 0Þ þ Ωsc

1=2;medðT; μÞ; ð65Þ

where we have separated the contribution of the medium Ωsc
1=2;med from T ¼ 0, μ ¼ 0 contribution. Similarly, the (ẽ)

charged strange quark contribution to the thermodynamic potential is given by
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Ωs
1=2 ¼ −2

X
n

αn
ẽB

2ð2πÞ2
Z

dpzϵ
s
n −

X
n

X
a¼1;2

X
s¼�1

αn
ẽB

2ð2πÞ2β
Z

dpz½logð1þ expð−βðω3a þ sμiaÞ�

≡Ωs
1=2;0 þΩs

1=2;med: ð66Þ

The term Ω1 in Eq. (64) arises from the blue colored u quark with charge ẽ and is given as

Ω1 ¼ −
X
n

αn
ẽB

ð2πÞ2
Z

ðϵunÞ −
X
n

X
s¼�1

αn
ẽB

ð2πÞ2β
Z

dpz½logð1þ expð−βðω33 þ sμ33Þ�≡Ωu
1;0 þ Ωu

1;med:

Finally, the ẽ uncharged quarks’ contributions to the thermodynamic potential Ω0 are given by

Ω0 ¼ −2
X
i¼2;3

Z
dp

ð2π3Þ ϵ
iðpÞ − 2

ð2πÞ3β
Z

dp
X
s¼∓1

½logð1þ expð−βðω23 þ sμ33Þ�: ð67Þ

Now, all the zero temperature and zero chemical potential
contributions of the thermodynamic potential in Eqs. (65)–
(67) are ultraviolet divergent. This divergence also gets
transmitted to the gap equations through the quark-antiquark
as well as diquark condensates in Eqs. (59), (60), (61), and
(63). For the chargeless case, these can be rendered finite
through a regularizationwith a sharp cutoff in themagnitude
of three momentum as is usually done in the NJL models.
However, it is also seen that a sharp cutoff in the presence of
magnetic field for charged particles suffers from cutoff
artifacts since the continuousmomentumdependence in two
spatial dimensions are replaced by the sum over discrete
Landau levels. To avoid this, some calculations use a smooth
parametrization for the cutoff as e.g., in Ref. [17]. In the
present work however we follow the elegant procedure that
was followed in Ref. [23] by adding and subtracting a
vacuum (zero field) contribution to the thermodynamic
potential which is also divergent. This manipulation makes
e.g., the Dirac vacuum contribution in the presence of
magnetic field to a physically more appealing form by
separating the same to a zero field vacuumcontribution and a
finite field contribution written in terms of the Riemann-
Hurwitz ζ function. The vacuum contribution to the energy
density arising from a charged quark can be written as
[23,24]

−
X∞
n¼0

αnjqiBj
ð2πÞ2

Z
dpz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqijBþM2

i

q

¼ −
2

ð2πÞ3
Z

dp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

q

−
jqiBj2
2π2

�
ζ0ð−1; xiÞ −

1

2
ðx2i − xiÞ ln xi þ

x2i
4

�
; ð68Þ

where we have defined the dimensionless quantity,

xi ¼ M2
i

2jqiBj, i.e., the mass parameter in units of the magnetic

field. Further, ζ0ð−1; xÞ ¼ dζðz; xÞ=dzjz¼1 is the derivative
of the Riemann-Hurwitz zeta function [53].

Using Eq. (68), the quark-antiquark condensate of (q̃)
charged quarks can be written as

hψ̄ iaψ iai¼−
2

ð2πÞ3
Z

dp
Miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2þM2
i

p

−
MijqiBj
2π2

�
xið1− lnxiÞþ lnΓðxiÞþ

1

2
ln
�
xi
2π

��

þ Iiasmed

≡ Iiasvacþ Iias fieldþ Iiasmed: ð69Þ

The first term, Iias vac can be explicitly evaluated with a cutoff
Λ as

Iias vac ¼
Mi

2π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

q
−M2

i log

�
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

p
Mi

��
:

ð70Þ

The medium contribution to the scalar condensate from
the superconducting part is

Iiasmed ¼
X
n

αn
ẽB

2ð2πÞ2
Z

dpz
Mi

ϵin
ðFia − Fia

1 Þ; ð71Þ

while, for the nonsuperconducting blue u quarks,

I13smed ¼
X
n

αn
ẽB

ð2πÞ2
Z

dpz
M1

ϵ1n
ðsin2θ13− − sin2θ13þ Þ: ð72Þ

Similarly, the contribution of the medium to the (q̃) charged
strange quark-antiquark condensate is

I3asmed¼
X
n

αn
ẽB

2ð2πÞ2

×
Z

dpz
M3

ϵ3n
ðsin2θ3a− −sin2θ3aþ Þ; ða¼1;2Þ: ð73Þ
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In what follows, we shall focus our attention to zero tem-
perature calculations. Using the relation limβ→∞

1
β lnð1þ

expð−βωÞÞ ¼ −ωθð−ωÞ and using Eqs. (65) and (68), we
have the zero temperature thermodynamic potential for the
color superconducting quarks given as

Ωsc
1=2ðT ¼ 0; μ; BÞ ¼ Ωsc

1=2;0ðT ¼ 0; μ ¼ 0Þ
þ Ωsc

1=2;medðT ¼ 0; μÞ; ð74Þ

with

Ωsc
1=2;0ðT ¼ 0; μ ¼ 0Þ
¼ −2 × 2

X
i¼u;d

GðΛ;MiÞ − 2
X
i¼u;d

Fðxi; BÞ; ð75Þ

where we have defined the function GðΛ;MÞ as

GðΛ;MÞ ¼ 1

ð2πÞ3
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2

q
dp

¼ 1

16π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
ð2Λ2 þM2Þ

−M4 log

�
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p

M

��
: ð76Þ

The prefactors in the first term correspond to color and spin
degeneracy factors while the same in the second term
corresponds to the color degeneracy factor. The magnetic
field dependent function, Fðxi; BÞ with xi ¼ M2

i =jqiBj,

Fðxi;BÞ¼
jqiBj2
2π2

�
ζ0ð−1;xiÞ−

1

2
ðx2i −xiÞ lnxiþ

x2i
4

�
: ð77Þ

The medium contribution from the superconducting
quarks is given as

Ωsc
1=2;medðT ¼ 0; μÞ ¼ 2

Xnmax

n¼0

αn
ẽB

2ð2πÞ2
Z

pmax
z;n

0

dpz½ξ̄n− þ ξ̄nþ − ðω̄n− þ ω̄nþÞ�

þ 2
Xnmax

n¼0

X
i¼u;d

αn
ẽB

2ð2πÞ2
Z

pmax
z;n

0

dpzi½ωi
n−θð−ωi

n−Þ þ ωi
nþθð−ωi

nþÞ�: ð78Þ

The three momentum cutoff Λ for the magnitude of momentum in the absence of magnetic field leads to the sum over the
Landau level up to nmax ¼ Λ2

ẽB. Further, the positivity of the magnitude of pz restricts the cutoff in jpzj as pmax
z;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − nẽB

p
for a given value of n of the Landau level.
The contribution of the blue up quark to the thermodynamic potential Ω1 ¼ Ω1;0 þ Ω1;med with

Ω1;0ðT ¼ 0; μ ¼ 0Þ ¼ −2GðΛ;MuÞ − Fðxu; BÞ; ð79Þ

and

Ω1;medðT ¼ 0; μÞ ¼
Xnumax

n¼0

αn
ẽB

ð2π2Þ

2
64μub

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ub −M2

nu

q
þM2

nu log

0
B@μub þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ub −M2

nu

q
Mnu

1
CA
3
75; ð80Þ

where Mnu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

u þ 2nẽB
p

is the nth Landau level mass for up quark and numax ¼ Int½μ2ub−M2
u

2ẽB � is the maximum number of
Landau level consistent with the zero temperature distribution function.
The ẽ charged strange quark contribution to the thermodynamic potential Ωs

1=2 ¼ Ωs
1=2;0 þ Ωs

1=2;med, with

Ωs
1=2;0ðT ¼ 0; μ ¼ 0Þ ¼ −2 × 2GðΛ;MsÞ − 2Fðxs; BÞ; ð81Þ

and

Ω1=2;medðT ¼ 0; μÞ ¼ 2
Xnsmax

n¼0

αn
ẽB

2ð2π2Þ
�
μsr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2sr −M2

ns

q
þM2

ns log

�
μsr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2sr −M2

ns

p
Mns

��
; ð82Þ

where Mns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s þ 2nẽB
p

is the nth Landau level mass for the s quarks. Further, the sum over the Landau levels is

restricted to nsmax ¼ Int½μ2sr−M2
s

ẽB � arising from the distribution function at zero temperature θðμ − ϵnÞ.
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For the uncharged quarks, i.e., blue down and strange
quarks, we have Ω0 ¼ Ω0;0 þ Ω0;med with

Ω0;0ðT ¼ 0; μ ¼ 0Þ ¼ −2
X
i¼d;s

GðΛ;MiÞ; ð83Þ

and for the medium part, with pfi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i −M2

i

p
,

Ω0;medðT ¼ 0; μÞ ¼ 2
X
i¼d;s

Hiðμi3; pfiÞ: ð84Þ

In the aboveHi is the medium contribution from a single
chargeless flavor given as

Hiðμ; pfÞ ¼
1

16π2

�
pfiμiðp2

fi þ μ2i Þ −M4
i log

�
μi þ pfi

Mi

��
:

ð85Þ

Next, we write down the expressions for the condensates
at zero temperature, which are needed to compute the
thermodynamic potential in Eq. (64). This is already given
by Eq. (69). Here, we write down explicitly the zero
temperature limit for the same. The scalar condensate
for, say, u quarks is given as

Ius ¼ IusvacþIursmedþIugsmedþIubsmedþ
X3
a¼1

Ifield−us ðxuaÞ: ð86Þ

The vacuum contribution Ius vac is already given in Eq. (70).
The scalar condensate medium contribution from the

superconducting red up and green up quarks is given as

Iursmed ¼ Iugsmed ¼−
Xnmax

n¼0

αn
ðẽBÞ
2ð2πÞ2

Z
dpz

Mu

ϵun
ðFurþFur

1 Þ:

ð87Þ

The expressions for the distribution functions Fia and Fia
1

are already given in Eqs. (22) and (23) in terms of the
diquark condensate functions and the thermal distribution
functions. In the zero temperature limit, the distribution
functions for e.g., u quarks become

Fur ¼ 1

2

�
1 −

ξ̄n−
ω̄n−

�
ð1 − θð−ωdÞÞ; ð88Þ

and

Fur
1 ¼ 1

2

�
1 −

ξ̄nþ
ω̄nþ

�
: ð89Þ

The blue up quark contribution to the scalar condensate
is given by

Iubsmed ¼ −
Xnumax

n¼0

2Mαn
ẽB

ð2πÞ2 log
�
pmax
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pmax
z

2 þM2
nu

p
Mnu

�
:

ð90Þ

As in Eq. (80) here we have defined the nth Landau level
mass for the blue up quark as M2

nu ¼ M2
u þ 2njẽBj. The

magnetic field contribution to the scalar condensate for the
up quarks of a given color “a” is given by

Ifield−us ðxuaÞ¼−Mu
jqaBj
2π2

�
xað1− lnxaÞþ lnΓðxaÞþ

1

2

xa
2π

�
;

ð91Þ
where xa ¼ M2

u=2jqaBj and qa ¼ ẽ=2 for red and green
colors and qa ¼ ẽ for blue color up quarks.
In an identicalmanner, the scalar condensates for the down

and strange quarks Ids , Iss can be written down with appro-
priate changes for the charges and the masses. The diquark
condensate 4ID is given in Eq. (63) where the zero temper-
ature limit can be taken by replacing the distribution
functions sin2 θi ¼ θð−ωiÞ, (i ¼ u, d). Thus the thermody-
namic potential,Ωq given inEq. (64) gets completely defined
for the quark matter in the presence of a magnetic field.
In the context of neutron star matter, the quark phase that

could be present in the interior consists of the u,d,s quarks
as well as electrons, in weak equilibrium,

d → uþ e− þ ν̄e− ; ð92aÞ

s → uþ e− þ ν̄e− ; ð92bÞ

and

sþ u → dþ u; ð92cÞ

leading to the relations between the chemical potentials μu,
μd, μs, μE as

μs ¼ μd ¼ μu þ μE: ð93Þ

The neutrino chemical potentials are taken to be zero as
they can diffuse out of the star. So there are two indepen-
dent chemical potentials needed to describe the matter in
the neutron star interior which we take to be the quark
chemical potential μq and the electric charge chemical
potential μe in terms of which the chemical potentials
are given by μs ¼ μq − 1

3
μe ¼ μd, μu ¼ μq þ 2

3
μe and

μE ¼ −μe. In addition, for a description of the charge
neutral matter, there is a further constraint for the chemical
potentials through the following relation for the particle
densities given by

QE ¼ 2

3
ρu −

1

3
ρd −

1

3
ρs − ρE ¼ 0: ð94Þ
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The color neutrality condition corresponds to

Q8 ¼
1ffiffiffi
3

p
X

i¼u;d;s

ðρi1 þ ρi2 − 2ρi3Þ ¼ 0: ð95Þ

In the above, ρia is the number density for quarks of flavor i
and color a. In particular, the number densities of the
condensing quarks are given as

ρia ¼
X
n

ẽB
2ð2πÞ2

Z
dpzðFia−Fia

1 Þ; ði;a¼ 1;2Þ; ð96Þ

where Fia; Fia
1 are defined in Eqs. (22) and (23) respec-

tively in terms of the condensate functions and e.g., for zero
temperature is given explicitly in Eq. (88) for up red quarks.
For the blue colored quarks, the same for the up blue quarks
is given by

ρub ¼
Xnumax

n¼0

αn
ẽB
2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ub −M2

u − 2nẽB
q

; ð97Þ

while for the ẽ uncharged d quarks

ρdb ¼ ðμ2db −M2
dÞ3=2

3π2
: ð98Þ

For the charged strange quarks the number densities are
given by

ρsr ¼ ρsg ¼
Xnsmax

n¼0

αn
ẽB

ð2πÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2sr −M2

s − nẽB
q

; ð99Þ

while for the ẽ uncharged blue strange quarks

ρsb ¼ ðμ2sb −M2
sÞ3=2

3π2
: ð100Þ

The electron number density is given by

ρE ¼
Xnmaxe

n

αn
ẽB
π2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2E − 2nẽB

q �
: ð101Þ

To discuss the pressure in the context of matter in the
core of the neutron star, one also has to add the contribution
of the electrons to the thermodynamic potential. Since we
shall describe the system as a function of ẽB, we shall take
the approximations ẽ ∼ e, Aμ ∼ Ãμ to a good approximation
as the mixing angle is small. The corresponding thermo-
dynamic potential for the electrons is given by

Ωe ¼
Xnemax

n¼0

αn
eB

ð2πÞ2
�
μE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2E − 2neB

q

− 2neB log

�
μE þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2E − 2neBÞ

p
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
��

; ð102Þ

where nemax ¼ μ2E
2jẽBj. Clearly in Eqs. (101) and (102) we have

neglected the electron mass (mE ∼ 0.5 MeV), which is
small compared to μE which is few tens of MeV. Thus the
total thermodynamic potential or the negative of the
pressure is given as, with Ωq given in Eq. (64)

Ω ¼ Ωq þΩe: ð103Þ

The thermodynamic potential [Eq. (103)], the mass and
superconducting gap equations [Eqs. (50)–(52) and (54)],
along with the charge neutrality conditions [Eq. (94) and
(95)] are the basis for our numerical calculations for various
physical situations that we shall discuss in detail in the
following section.

IV. RESULTS AND DISCUSSIONS

We begin the discussions with the parameters of the NJL
model. The model parameters are the three current masses
of quarks, namely mu, md and ms and the couplings GS, GD
and the determinant coupling K. This apart, one additional
parameter, the momentum cutoff Λ, is also required to
regularize the divergent integrals which are characteristic of
the four point interaction of NJL models. Except for the
diquark couplingGD, there are several parameter sets for the
couplings derived from fitting of the meson spectrum and
chiral condensate [54–56]. The diquark coupling is not
known from fitting since one does not have a diquark
spectrum to fit with. The Fierz transforming quark-antiquark
term from one gluon exchange term gives the relation GD ¼
0.75 GS. Although not precise, many other references use
this value [47,57,58]. However some other referen-
ces [59,60] also consider the case of stronger diquark
couplingGD ¼ GS apart fromGD ¼ 0.75 GS. In the follow-
ing we shall limit ourselves only to the case of
GD ¼ 0.75 GS. For a nice discussion on this we refer the
interested reader to Sec. 4.2.2 of Ref. [61]. The parameters
used in our calculations are mu¼ 5.5MeV,md ¼ 5.5 MeV,
ms ¼ 140.7 MeV for the current quark masses, the
momentum cutoff Λ ¼ 602.5 MeV and the couplings Gs
Λ2 ¼ 1.835 and KΛ5 ¼ 12.36 as have been chosen in
Ref. [56]. After choosing the light current quark mass
mu ¼ md ¼ 5.5 MeV, the remaining four parameters are
chosen to fit vacuum values of pion decay constant fπ ,
masses of pion, kaon and η0.With this set of parameters the η
meson mass is underestimated by about 6 percent and leads
to u and d constituent mass in vacuum to be about 368MeV.
The strange mass is about 549 MeVat zero temperature and
density. The determinant interaction is responsible forUð1ÞA
anomaly and getting the correct eta mass. Further, this
interaction also mixes the various gap equations and affects
the superconducting gap significantly as we shall see.
However, we must point out that there is a large discrepancy
in the determination of this six fermion interaction coupling
K. For example, in Ref. [54] the parameter KΛ5 differs by as
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large as 30 percent as compared to the value chosen here.
This discrepancy is due to the difference in the treatment of
η0 mesons with a high mass [28]. In fact, this leads to an
unphysical imaginary part for the corresponding polariza-
tion diagram in the η0 meson channel. This is unavoidable
because NJL is not confining and is unrealistic in this
context. Within the above-mentioned limitations of the
model and the uncertainty in the value of the determinant
coupling, we proceed with the present parameter set which
has already been used for phase diagram of dense matter in
Refs. [28,59] and for neutron star matter in Ref. [62].
We begin our discussion for the simpler case where the

charge neutrality conditions are not imposed. In this case,
the electrical and color charge chemical potential are set to
zero so that all the quarks have same potential μq. In this
case we have to solve four gap equations, three for the
constituent masses [Eqs. (50)–(52)] and the fourth for the
superconducting gap [Eqs. (54) and (63)]. For given values
of quark chemical potential and magnetic field we solve the
gap equations self-consistently. A few comments regarding
solving these gap equations may be in order. Although the
gap equations and the thermodynamic potential has been
written down for a given T and μ, we confine our attention
to the case of zero temperature only in the present
investigation. Second, for nonvanishing magnetic fields,
all the Landau levels for the medium part up to a cutoff,

nmax ¼
ffiffiffiffiffiffiffiffiffiffi
μ2−M2

i

p
2ẽB for each flavor i, are taken into account.

Near the μc, the critical chemical potential for chiral
transition for light quarks, there can be multiple solutions
for the gap equations. We have chosen the solutions which
have the lowest thermodynamic potential.

In Fig. 1, we have shown the variation of the masses as a
function of quark chemical potential μq for three different
values of magnetic fields, ẽB ¼ 0.1 m2

π , 5 m2
π , 10 m2

π . The
results for ẽB ¼ 0.1 m2

π reproduce the vanishing magnetic
field results. As the chemical potential increases, the
masses remain constant up to a critical value of quark
chemical potential μc and the superconducting gap remains
zero. At the critical chemical potential there is a first order
phase transition and the constituent masses drop sharply
from their vacuum values and the superconducting gap
becomes nonzero. For vanishing magnetic field, the isospin
symmetry for the light quarks is unbroken and the
constituent masses of u and d quarks are degenerate.
The critical chemical potential, μc, is about 340 MeV
for (almost) vanishing magnetic field. In this case, the up
and the down quark masses decrease from their vacuum
values of about 368 MeV to about 80 MeV. The strange
mass being coupled to other gaps via determinant inter-
action also decreases from 549 to 472 MeV when this first
order transition happens for the light quarks. However,
since this μc is still less than the strange mass its density
remains zero. The superconducting gap rises from 0 to
88.0 MeV at μc. As the chemical potential is increased
beyond μc, the superconducting gap shows a mild increase
reaching a maximum value of 122 MeV at around μq ∼
475 MeV beyond which the gap shows a mild decrease
with μ.
Such a decrease of the gap with chemical potential could

be due to two reasons. First, at higher chemical potentials,
beyond μ ¼ 475 MeV, the strange quark mass starts
decreasing rapidly. This leads to a decrease of the effective
diquark couplingG0

D ¼ GD þ K
4
hs̄si resulting in a decrease

0

50

100

150

200

250

300

350

400

450

500

M
u

[M
eV

]

0 100 200 300 400 500

q [MeV]

B = 0.1 m
B = 5 m
B = 10 m

0

100

200

300

400

500

600

700

M
s,

[M
eV

]

0 100 200 300 400 500

q [MeV]

B = 0.1 m
B = 5 m
B = 10 m

(a) (b)

FIG. 1. Constituent quark masses and superconducting gap when charge neutrality conditions are not imposed. Part (a) shows the Mu
at zero temperature as a function of quark chemical potential for different values of the magnetic field. Part (b) shows the same for the
strange quark mass Ms and the superconducting gap.
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in the superconducting gap with increasing chemical
potential. Second, such a behavior of decreasing super-
conducting gap with μ for large μ could also be a
manifestation of a finite cutoff in the momentum integra-
tion in e.g., Eq. (78). One may note that the first term in
Eq. (78) is the contribution from the medium. Indeed, for
T ¼ 0, μ ¼ 0 the contributions of the two terms in the
integrand here cancel out unlike the term in Eq. (68) which
is a genuine vacuum contribution and is divergent. The
second term in Eq. (78) in any case gives a contribution
from the medium when δμ ≠ 0. For both terms the upper
limit of pz integration, pmax

z;n , has a Λ dependence.
Therefore, it is expected that there will be a cutoff
dependence in the contribution of this term to the thermo-
dynamic potential. This effect of finite cutoff therefore will
be more pronounced at large μ. Thus the decrease of the
superconducting gap at large μ in Fig. 1(b) could also be a
reflection of this effect. Therefore the decreasing behavior
of Δ can be both due to the decrease of effective diquark
coupling G0

D, and the effects of a finite cutoff.
In Fig. 2, we have plotted the total baryon number density

in units of nuclear matter density (ρN ¼ 0.17=fm−3) as a
function of quark chemical potential. For vanishing mag-
netic field, at the critical chemical potential μc ∼ 340 MeV,
the baryon density jumps from0 to 0.38 fm−3which is about
2.2 times the nuclear matter density.
Upon increasing the magnetic field, as seen in Fig. 1, the

vacuum constituent quark masses increase due to magnetic
catalysis at zero density. It may also be observed here that
the μc for chiral transition for the light quarks decreases
with the magnetic field. Such a phenomenon is known as
inverse magnetic catalysis at finite chemical potential [63].
Let us note that in the superconducting phase the ẽ charges

of the u and d quarks are identical in magnitude while that
of the unpaired blue quark are different for u and d quarks.
This results in the color summed scalar condensate Ius and
Ids to be different in the presence of a magnetic field. This
leads to the difference in constituent masses for the light
quarks. For ẽB ¼ 10 m2

π the u mass in the chiral symmetry
broken phase increases by about 13.6 percent and strange
mass by about 4.7 percent. The critical chemical potential
decreases from about 340 MeV to about 291 MeV. As seen
in the plot, the superconducting gap decreases and the peak
value decreases from 122 to 111 MeV. As may be seen
from Eqs. (54) and (63), the superconducting gap depends
upon the effective diquark coupling G0

D ¼ GD-
K
4
Iss. With

an increase in magnetic field the effective coupling G0
D has

a slight increase in magnitude as the strange quark con-
densate increases with magnetic field. Therefore, one
would have expected an increase in Δ with magnetic field.
However, the variation in Δ due to the magnetic field is
essentially decided by Eq. (63). From here also one would
have expected an increase in Δ with magnetic field as ẽB
occurs in the numerator in Eq. (63). In fact, this behavior is
actually seen for high magnetic field, where only the lowest
Landau level contributes to the integral in Eq. (63). For
moderately strong magnetic fields, contributions of the
higher Landau levels become relevant for the behavior of
gap with magnetic field. As long as the contribution of
higher Landau levels are nonvanishing, the gap equation
can support the solution for the gap that decreases with
magnetic field. We may point out that ẽB ¼ 5 m2

π and
10 m2

π the cutoff for Landau levels nmax equals 3 and 1
respectively. For ẽB ≥ 20 m2

π only the lowest Landau level
contributes to the integral in Eq. (63) and the gap increases
with magnetic field. One may also note that at higher
magnetic fields the charge asymmetry between the u and d
quark becomes apparent in their masses as expected. At
10 m2

π the difference is about 3.4 percent and at 15 m2
π its

about 5.7 percent at lower chemical potentials.
One may note that below the critical chemical potential

μc the u quarks have higher mass compared to d quarks as
all the three colors are charged for u quarks while for the d
quarks, the blue color is chargeless. However, beyond the
critical chemical potential the u quark has a lower mass
compared to d quarks. This is because with magnetic field
the medium contribution to chiral condensate increases.
This increase is the same for the condensing pairs of u and d
quarks but different for the blue quarks. The blue up quark
has charge ẽ ¼ 1whereas it is zero for the down blue quark.
Therefore the medium contribution from the up quark is
more than the down quark and it reduces the condensate for
the up quark and consequently its mass too. As we shall see
later, imposing charge neutrality requires the d quark
chemical potential to be much higher compared to u quarks
to balance their larger positive charge. This forces the d
quark mass to be smaller compared to u quark mass above
critical chemical potential. This results in an opposite
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behavior for the u and d quark masses with chemical
potential, beyond μc when the charge neutrality condition is
imposed vis-à-vis when such a condition is not imposed.
As may be observed from Fig. 2, the baryon number

density increases with magnetic field for a given chemical
potential. This is because for the magnetic fields considered
here, the symmetry is restored for lower chemical potential
at higher magnetic field. Thus for a given chemical
potential beyond the critical chemical potential the masses
become smaller for higher magnetic field leading to larger
baryon number density. This is consistent with inverse
magnetic catalysis. One may note however that for very
large fields, there is magnetic catalysis of chiral symmetry
breaking in the sense that critical chemical potential
increases with magnetic field. In Fig. 3 we show the
behavior of μc as a function of magnetic field. It is observed
that μc is minimum for ẽB ¼ 19 m2

π.
To examine the effect of flavor mixing determinant

interaction, we show in Fig. 4 the variation of the masses
and the superconducting gap without the determinant
interaction. As expected, without the mixing of flavors
the strange mass remains unaffected when u and d quark
masses decrease. This is significantly different behavior
compared to Fig. 1 where the strange mass decreases by
about 74 MeV beyond μc when there is a first order
transition for the light quarks. This also affects the super-
conducting gap. The superconducting gap is smaller as the
effective diquark coupling decreases without the determi-
nant interaction term.
In Fig. 5 we show the variation of the gaps as a function

of the magnetic field for μ ¼ 200 MeV and μ ¼ 400 MeV.
μ ¼ 200 MeV is less than the critical μc for any value of
magnetic field considered here. Hence the constituent
masses are high and the superconducting gap is zero.

We find that the masses increase monotonically with the
magnetic field. At ẽB ¼ 10 m2

π , the u mass increases by 14
percent of its zero field value while strange mass increases
by 5 percent. Similarly for μ ¼ 400 MeV which is larger
than the critical chemical potential for magnetic fields
considered here, one also has finite superconducting gap.
However, in this case it is observed that the u and d masses
decrease slowly andmonotonicallywithmagnetic fieldwhile
strange quark mass remains almost constant. The super-
conducting gap shows an oscillatory behavior with increase
in magnetic field. The oscillatory behavior is associated with
the discontinuous changes in the density of states due to
Landau quantization and is similar to de Hass van Alphen
effects for magnetized condensed matter system.
Finally, in Fig. 6 we have plotted the axial current density

normalized to the same for three flavor without any
condensates as given in Eq. (30) as a function of baryon
density for values of magnetic field 5 and 10 m2

π . For
smaller chemical potentials but above the chiral transition
this ratio is about 0.75 since strange quarks do not
contribute as their masses are larger than these values of
chemical potential. For μq about 480 MeV the strange
quarks contribution to the axial current density becomes
nonvanishing and the ratio approaches to the value
when there are no condensates. Let us note that while
quark masses decrease with chemical potential, the super-
conducting gap increases with chemical potential. This
leads to a nearly constant value for this ratio for the range of
chemical potential below the strange quark mass. Above
μq ¼ 480 MeV, the ratio shows a monotonic increase
with chemical potential as the strange quark mass starts
decreasing.
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A. Charge neutral magnetized quark matter

Next we discuss the consequences of imposing charge
neutrality conditions (QE ¼ 0,Q8 ¼ 0). In Fig. 7 we show
the results for the masses and the superconducting gaps
for strength of the external magnetic field ẽB ¼ 0.1 m2

π

[Fig. 7(a)] and ẽB ¼ 10 m2
π [Fig. 7(b)]. For small magnetic

field (ẽB ¼ 0.1 m2
π) the masses in the symmetry broken

phase are the same as before but the critical chemical
potential is now shifted to around μc ¼ 364 MeV as
compared to μc ¼ 335 MeV when the condition is not
imposed. At the transition point with neutrality the u-quark

mass decreases from 367 to 111 MeV and the down quark
mass from 367 to 87 MeV. Charge neutrality requires d
quark number densities to be higher as compared to u
quarks. Let us note that near the critical chemical potential
there are multiple solutions of the gap equations. The
solution which is thermodynamically preferred when the
charge neutrality condition is not imposed may no longer be
the preferred solution when the constraint of charge neutral-
ity is imposed [36]. The strange quarkmass is higher than the
chemical potential at the chiral restoration so its density
is zero. However due to the determinant interaction the
strange mass decreases at the chiral restoration from 549 to
472MeV.At still higher chemical potential the strange quark
density becomes nonzero and strange quark also helps in
maintaining charge neutrality.
The critical baryon density when charge neutrality is

imposed is however similar to the case when neutrality is
not imposed. Specifically ρc ∼ 2.25ρ0 with charge neutral-
ity while ρc ∼ 2.26ρ0 without charge neutrality despite
the fact that μc is higher (μc ¼ 364 MeV) for the charge
neutral matter compared when such charge neutrality con-
dition is not imposed (μc ¼ 335 MeV). This is because the
constituent masses at the transition is large (Mu ∼ 111 MeV
and Md ∼ 87 MeV) for charge neutral case compared to
(Mu ∼Md ∼ 85 MeV) without the charge neutrality con-
dition. For ẽB ¼ 0.1 m2

π, at the chiral transition μc ¼
364 MeV the superconducting gap increases from zero to
69 MeV. As the chemical potential is further increased the
superconducting gap increases to 80 MeV until μ ¼ μ1 ∼
420 MeV where it shows a sudden jump to 106 MeV. This
happens when the gapless modes cease to exist as explained
below. As magnetic field is increased to ẽB ¼ 10 m2

π , as
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may be observed in Fig. 6(b), the critical chemical potential
μc for the charge neutral matter decreases to 350 MeV
similar to the case without the charge neutrality condition
with inverse magnetic catalysis. The superconducting gap
on the other hand becomes smaller. One can also observe
that unlike the vanishingly small magnetic field case, the
superconducting gap increases smoothly with chemical
potential from zero initial value to 73 MeV at μ ¼ μ1 ∼
400 MeV where it again jumps to a value of 83 MeV.

B. Gapless modes

In the region between μc and μ1 the system shows
gapless mode which we discuss now in some detail.
Without magnetic field this has earlier been seen for charge
neutral matter [35,36,64].
As discussed earlier, from the dispersion relations for

Landau levels for the superconducting matter as given in
Eqs. (56) and (57), it is possible to have zero modes
depending upon the values of δμ and δϵn. These quantities
are not independent parameters but are dependent dynami-
cally on the charge neutrality condition and the gap
equations. For charge neutral matter, near μc, the d-quark
number density is larger so that δμ ¼ μE=2 is negative. This
renders ωu

nðpzÞ > 0 for any value of momentum pz. On the
other hand, for δμ negative, ωd

n can vanish for some values
of pz. This defines the Fermi surfaces for the super-
conducting d quarks. It is easy to show that the excitation
energy of nth Landau level ωd

n for the condensing d quarks
vanishes for momenta jpznj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2� − 2nẽB

p
. Here μ�=

(μ̄�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
)θðδμ − ΔÞ. Thus higher Landau levels

can also have gapless modes so long as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2� − 2nẽB

p
is

non-negative. Gapless modes occur when the chemical
potential difference δμ is greater than the superconducting
gap. In Fig. 8(a), we have plotted the dispersion relation
i.e., the excitation energy as a function of momentum for
the lowest Landau level for the condensing quarks for μq ¼
340 MeV and magnetic field ẽB ¼ 10 m2

π . The super-
conducting gap turns out to be Δ ¼ 35.3 MeV and
δμ ¼ −74.5 MeV. The dispersion for the d quarks is given
as ωd

0− ¼ ω̄0− − δϵþ δμ while the same for the u quark is
given as ωu

0− ¼ ω̄0− þ δϵ − δμ. The average chemical
potential is μ̄ ¼ 366 MeV. Far from the pairing region,
jpzj ∼ μ̄ ¼ 366 MeV the spectrum looks like the usual
BCS-type dispersion relation. Of the two excitation ener-
gies, ωu

0 shows a minimum at pz ¼ μ̄ with a value
ωu
0−ðjpzj ¼ μ̄Þ ∼ Δ − δμ ¼ 110 MeV. On the other hand,

ωd
0− vanishes at momenta jpzj ¼ μ�. In this breached

pairing region one has only unpaired d quarks and no u
quarks. This can be seen explicitly as below.
The number densities of u quarks participating in

condensation is given by

ρusc ¼ ρur þ ρug

¼
X
n

αnẽB
ð2πÞ2

Z
dpz

�
1

2

�
1 −

ζ̄n−
ω̄n−

�
ð1 − θð−ωd

nÞÞ

−
1

2

�
1 −

ζ̄nþ
ω̄nþ

��
; ð104Þ

where ζ̄n− ¼ ϵ̄n − μ̄, μ ¼ μ11þμ22
2

and ϵ̄ ¼ ϵuþϵd
2

. This is

because ωu
n− ¼ ω̄n− − δμþ δϵ is always positive as δμ ¼

μu−μd
2

is negative and the theta function θð−ωu
nÞ does not

0

100

200

300

400

500

600

700

M
u
,M

d
,M

s,
[M

eV
]

q [MeV]

B=0.1 m
Mu

Md

0

100

200

300

400

500

600

700

M
u
,M

d
,M

s,
[M

eV
]

200 250 300 350 400

(a) (b)

450 500 200 250 300 350 400 450 500

q [MeV]

B=10
Mu

Md

FIG. 7. Constituent quark masses and superconducting gap when charge neutrality conditions are imposed. Part (a) shows the masses
and superconducting gap at zero temperature as a function of quark chemical potential for magnetic field ẽB ¼ 0.1 m2
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contribute. Similarly the density of d quarks participating in
condensation is given by

ρdsc¼ρdrþρdg

¼
X
n

αn
ẽB

ð2πÞ2
Z
dpz

�
θð−ωd

nÞþ
1

2

�
1−

ζ̄n−
ω̄n−

�
ð1−θð−ωd

nÞÞ

−
1

2

�
1−

ζ̄nþ
ω̄nþ

��
: ð105Þ

For positive ωd
n−, the θ-function contributions vanishes and

the distribution functions are the BCS distribution function.
On the other hand, when jpzj ∈ [Pn−; Pnþ], ωd

n is negative
leading to ρusc to vanish but for the antiparticle contribution.
In this region of momenta, ρdsc is unity. We have plotted
in Fig. 8(b) the occupation number of the up and down
quarks that take part in condensation as a function of
the magnitude of momentum pz i.e., the integrands of
Eqs. (104) and (105) respectively for the lowest Landau
level. It is easy to see from Eqs. (104) and (105) e.g., for the
lowest Landau level that, except for the interval ðμ−; μþÞ,
the distribution function is like the BCS distribution
function. This is shown by the blue long-dashed line.
The u-quark distribution is shown by the red solid line
while the d-quark distribution is shown by the green short
dashed line. Indeed, except for the interval ðμ−; μþÞ, all
three curves overlap with each other. In the “gapless”
momentum region, the u-quark occupation vanishes while
d-quark occupation is unity. This leads to the fact that the
momentum integrated distribution function for the con-
densing u and d quarks is not the same for the gapless
region unlike the usual BCS phase. We have plotted the

number densities for the u and d quarks in Fig. 9 which
shows a fork structure in the gapless region.
Gapless modes have been considered earlier for two

flavor quark matter both with [37,38] and without magnetic
field [35,36]. However it has been shown [65,66] that in
QCD at zero temperature the gapless 2SC phases are
unstable. This instability manifests itself in imaginary
Meissner mass of some species of the gluons. Finite
temperature calculations [67] show that at some critical
value of temperature the instability vanishes. This value
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may range from fewMeV to tens of MeV. The instability of
the gapless phases indicates that there should be other
phases of quark matter breaking translational invariance
e.g., inhomogenous phase of quark matter like crystalline
color superconductivity [68,69]. One may note that these
considerations apply to the case without magnetic field and
may change in the presence of a strong magnetic field.
In Fig. 10, we have plotted the electric and color

chemical potentials μE and μ8 to maintain the electric
and color charge neutrality conditions given in Eqs. (94)
and (95) as a function of quark chemical potential.
For 2þ 1 flavor matter, strange quarks play an important

role in maintaining charge neutrality. As the quark chemical
potential increases, jμEj increases to maintain charge
neutrality. When the chemical potential becomes large
enough for strange quarks to contribute to densities, they
also help in maintaining charge neutrality. This leads to a
decrease in electron density or the corresponding chemical
potential jμEj. This behavior is reflected in Figs. 10(a) and
10(b) as the initial slow rise of the jμEj. However, as jμEj
increases, the difference δμ ¼ −μE=2 also increases and at
μ1, the condition δμ > Δ for gapless modes to exist ceases
to be satisfied. At the gapless to BCS transition point, the
u-quark number density increases while that of d quarks
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decreases and both become equal as in the usual BCS
pairing phase. This leads to an increase in the positive
electric charge density. To maintain electrical charge
neutrality, the electron density increases at this point.
Therefore gapless to BCS transition is accompanied with
an increase in jμEj. On the other hand, at higher densities
when strange quarks start contributing to the density, it is
accompanied with a drop in jμEj as strange quarks help in
maintaining the charge neutrality along with the electrons.
It turns out that for ẽB ¼ 0.1 m2

π, the strange quark
densities become nonvanishing after the gapless to BCS
transition. This leads to the continuous decrease in the jμEj
in the BCS phase as seen in Fig. 10(a). On the other hand,
for larger fields, e.g., ẽB ¼ 10 m2

π, chiral transition occurs
at a lower μc due to magnetic catalysis and the strange
quark density starts becoming nonvanishing at lower
chemical potential. This leads to a decrease in jμEj at μ ¼
392 MeV as may be seen in Fig. 10(b). At μ ¼ 400 MeV,
there is the transition from the gapless to BCS phase and is
accompanied with a rise in jμEj as discussed above. Beyond
μ ¼ 400 MeV, jμEj starts decreasing monotonically as
strange quark density increase.
In Figs. 10(c) and 10(d), we have plotted the color

chemical potential μ8. For the weak field case, μ8 is rather
small (few MeVs) compared to both the electric chemical
potential as well as the quark chemical potential which are
2 orders of magnitude larger. For the small field, the
difference in densities of red and green quarks and the
blue quarks essentially arises because of the difference in
the distribution functions. This results in a small but finite
net color charge. To maintain color neutrality one needs a
small μ8. On the other hand, at the large magnetic field, the
net color charge difference becomes larger as the ẽ charges
of red and green quarks and that of blue quarks are

different. This requires a somewhat larger μ8 to maintain
color neutrality as seen in Fig. 10(d). In Fig. 11 we have
plotted the number densities of each species for the charge
neutral matter for two different magnetic fields. As may be
clear from both plots the electron number densities get
correlated with the strange quark number densities.
Finally, we discuss the equation of state (EOS) for

differentmagnetic fields. In Fig. 12we have plotted pressure
as a function of energy for ẽB ¼ 0.1 m2

π and 10 m2
π . One can

observe that the EOSs become stiffer with increase in
magnetic field. This can be understood as follows. For
μ < μc, the thermodynamic potential contribution from the
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field as in Eqs. (75), (79), and (81) is dominant and decreases
with an increase in magnetic field. This leads to a higher
pressure for higher magnetic field. As the chemical potential
increases, for μ > μc, the medium contribution becomes
dominant. As the masses decrease with magnetic field, the
medium contribution increases with magnetic field.
Moreover, the field contributions also lead to an increase
in pressure. Both these effectsmake the resulting EOS stiffer
at higher magnetic field as may be seen in Fig. 12.

V. SUMMARY

We have analyzed here the effect of magnetic field and
neutrality conditions on the chiral as well as diquark
condensates within the framework of a three-flavor NJL
model. This essentially generalizes the results of Ref. [24]
to include the u-d superconductivity in the presence of a
magnetic field. The methodology uses an explicit varia-
tional construct for the ground state in terms of quark-
antiquark pairing for all three flavors as well as diquark
pairing for the light quarks. A nice feature of the approach
is that the four component quark field operator in the
presence of a magnetic field could get expressed in terms of
the ansatz functions that appear for the description of the
ground state. Apart from the methodology being different,
we also have new results. Namely, the present investiga-
tions have been done in a three-flavor NJL model along
with a flavor mixing six quark determinant interaction at
finite temperature and density and fields within the same
framework. In that sense it generalizes the two flavor color
superconductivity in the presence of a magnetic field
considered earlier in Refs. [19,37,38]. The gap functions
and the thermal distribution functions could be determined
self-consistently for given values of the temperature, the
quark chemical potential and the strength of magnetic field.
For the charge neutral matter the chiral transition is a first

order transition and we observe inverse magnetic catalysis
at finite density. The chiral condensate for strange quark
affects the u-d superconductivity through the flavor mixing
determinant interaction. The effective diquark coupling
increases in the presence of strange quark condensates.
On the other hand the diquark condensates contribute to the
mass of the strange quark through the determinant inter-
action. Inverse magnetic catalysis is observed for magnetic
fields up to 19 m2

π. Beyond it magnetic catalysis is
observed for chiral symmetry breaking [63].
At finite densities, the effects of Landau quantization get

manifested in the oscillation of the order parameters similar
to the de Hass van Alphen effect for magnetization in
metals. However, in the present case of dense quark matter,
the order parameters, the masses and the superconducting
gap themselves are dependant on the strength of magnetic
fields which leads to a nonperiodic oscillation of the order
parameter.
Imposition of charge neutrality condition for the quark

matter leads to gapless modes even in presence of magnetic

field. The superconducting gaps in gapless modes are
smaller compared to the gaps in the BCS phase. The
transition from gapless to BCS phase is a sharp transition.
The difference in the gap in the two phases at this transition
decreases with magnetic field. For charge neutral matter the
strange quark plays an important role in maintaining the
charge neutrality. This leads to a depletion of electron
density at higher chemical potential where strange quarks
start to contribute to the densities. The resulting equation of
state becomes stiffer with magnetic field.
We have considered here quark-antiquark pairing and

diquark pairing in the ansatz for ground state which is
homogeneous with zero total momentum. However it is
possible that the condensates be spatially inhomogeneous
[70] with a net total momentum [71–74]. Indeed, the gapless
modes for the charge neutral matter leads to instability
arising from imaginary Meissner masses for some of the
gluons when δμ > Δ [66]. This can be suggestive of having
inhomogeneous superconducting phases [68,69] which are
not considered here. The phase structure here would be
nontrivial and interesting in the presence of two vectors, the
magnetic field and nonzero momentum of the condensate.
Furthermore, the equation of state derived for charge neutral
quark matter combined with the same for hadronic matter
can be used to study structural properties of neutron star with
quark matter core. It will be interesting to see the compat-
ibility of such an equation of state which is constrained by
astrophysical observations like GW170817 [75]. Some of
these investigations are in progress and will be reported
elsewhere.
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APPENDIX: EVALUATION OF OPERATOR
EXPECTATION VALUES OF

SOME OPERATORS

We give here some details of the evaluation of some
operators at finite T, μ and B in the state given in Eq. (18).
As the state is obtained from j0i, one can calculate the
expectation values of different operators, e.g.,

hqia†r ðn;kxÞ;qjbr0 ðn0;k0xÞi¼δijδabδrr0δnn0δðk x−k0
xÞFiaðk xÞ;

ðA1Þ

where

Fiaðk xÞ ¼ sin2θia− þ sin2fð1 − sin2θia− − jϵijϵabjsin2θjb− Þ
× ð1 − δa3Þð1 − δi3Þ: ðA2Þ

Similarly for the expectation values for the operators
involving antiquarks, we have
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hq̃ia†r ðn; kxÞ; q̃jbr0 ðn0; k0xÞi ¼ δijδabδrr0δnn0δðk x − k0
xÞð1 − Fia

1 ðk xÞÞ; ðA3Þ

where

Fia
1 ðk xÞ ¼ sin2θiaþ þ sin2f1ð1 − sin2θiaþ − jϵijϵabjsin2θjbþ Þð1 − δa3Þð1 − δi3Þ: ðA4Þ

Using the field operator expansion of Eq. (10) and Eqs. (A1) and (A3), one can evaluate

hψ ia†
α ðxÞψ jb

β ðyÞi ¼
X
n

jqiBj
ð2πÞ2

Z
dkxeik x·ðx−yÞΛia;jb

− βαðn; kxÞ ðA5Þ

with

Λia;jb
− ¼ δijδab½Fiaðn; kzÞUβrðn; kxÞUrαðn; kxÞ† þ ð1 − Fia

1 ðn; kzÞÞVβrðn;−kxÞVrαðn;−kxÞ†�: ðA6Þ

Explicitly,

Urðn; p xÞU†
rðn; p xÞ ¼

1

2

0
BBBB@

ð1þ cosϕÞI2n 0 p̂z sinϕI2n ip̂⊥ sinϕInIn−1
0 ð1þ cosϕÞI2n−1 −ip̂⊥ sinϕInIn−1 −p̂z sinϕI2n−1

p̂z sinϕI2n ip̂⊥ sinϕInIn−1 ð1 − cosϕÞI2n 0

−ip̂⊥ sinϕInIn−1 −p̂z sinϕI2n−1 0 ð1 − cosϕÞI2n−1

1
CCCCA:

¼ 1

2

�
I2nð1þ γ0 cosϕÞΠþ þ I2n−1ð1þ γ0 cosϕÞΠ− þ p̂z

2
sinϕðγ0γ3ðI2n þ I2n−1Þ þ γ5ðI2n − I2n−1ÞÞ

− p̂⊥ sinϕγ2γ0
�
; ðA7Þ

where we have defined Π� ¼ ð1� iγ1γ2Þ=2, p̂z ¼ pz
jpj, p̂⊥ ¼

ffiffiffiffiffiffiffiffi
2nqB

p
jpj with jpj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p
.

Similarly for the antiquark spinors

Vrðn;−pxÞV†
rðn;−pxÞ ¼

1

2

0
BBBB@

ð1 − cosϕÞI2n 0 −p̂z sinϕI2n −ip̂⊥ sinϕInIn−1
0 ð1 − cosϕÞI2n−1 ip̂⊥ sinϕInIn−1 p̂z sinϕI2n−1

−p̂z sinϕI2n −ip̂⊥ sinϕInIn−1 ð1þ cosϕÞI2n 0

ip̂⊥ sinϕInIn−1 p̂z sinϕI2n−1 0 ð1þ cosϕÞI2n−1

1
CCCCA:

¼ 1

2

�
I2nð1 − γ0 cosϕÞΠþ þ I2n−1ð1 − γ0 cosϕÞΠ− −

p̂z

2
sinϕðγ0γ3ðI2n þ I2n−1Þ þ γ5ðI2n − I2n−1ÞÞ

þ p̂⊥ sinϕγ2γ0
�
: ðA8Þ

This leads to, e.g., for the expectation value of chiral condensate for a given flavor as

Iis ¼ hψ̄ iψ ii ¼ −
1

ð2πÞ2
X
n

X
a

Z
dpydpzð1 − Fia − Fia

1 Þ cosϕi
nðI2n þ I2n−1Þ: ðA9Þ

One can integrate over dpy to obtain the contribution for the quarks that are charged as

Iis ¼
X
a

X
n

αn
ð2πÞ2 jqiBj

Z
dpzð1 − Fia − Fia

1 Þ cosϕi
n: ðA10Þ

On the other hand, the contribution to the scalar condensate from the quarks that are neutral (down blue and strange blue) is
given as
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Iis ¼
2

ð2πÞ3
Z

dp cosϕið1 − sin2θi3− − sin2θi3þÞ ði ¼ 2; 3Þ: ðA11Þ

Next, we discuss about the contributions to diquark condensates. Similar to Eq. (A12), we have

hqiar ðn; kxÞ; qjbr0 ðn0; k0xÞi ¼ rδr;−r0ϵijϵ3abδnn0δðk x þ k0
xÞ sin 2fðn; kzÞð1 − sin2θia− − sin2θjb− Þ

≡ rδr;−r0ϵijϵ3abδnn0δðk x þ k0
xÞGðkz; nÞ ðA12Þ

and, for antiquark operators

hq̃iar ðn; kxÞ; q̃jbr0 ðn0; k0xÞi ¼ rδr;−r0ϵijϵ3abδnn0δðk x þ k0
xÞ sin 2fðn; kzÞð1 − sin2 θia− − sin2 θjb− Þ

≡ rδr;−r0ϵijϵ3abδnn0δðk x þ k0
xÞG1ðkz; nÞ: ðA13Þ

For the diquark condensates we have

hψ ia
α ðxÞψ jb

β ðyÞi ¼ ϵijϵ3ab
X
n

jqiBj
ð2πÞ2

Z
dkxeik x·ðx−yÞ½PuCγ5Gðkz; nÞ þ PvCγ5G1ðkz; nÞ�βα; ðA14Þ

where PuCγ5 ¼
P

rrUαrU0
−rβ and PvCγ5 ¼

P
rrVαrV 0

−rβ and the prime on the spinors denotes a spinor with opposite
charge and momentum corresponding to the unprimed spinors. Explicitly,

Pu ¼
1

2

0
BBBBB@

cos ϕ
2
cos ϕ

0
2
I2n 0 p̂z cos

ϕ
2
sin ϕ0

2
I2n ip̂⊥ cos ϕ

2
sin ϕ0

2
InIn−1

0 cos ϕ
2
cos ϕ

0
2
I2n−1 −ip̂⊥ cos ϕ

2
sin ϕ0

2
InIn−1 −p̂z cos

ϕ
2
sin ϕ0

2
I2n−1

p̂z cos
ϕ0
2
sin ϕ

2
I2n ip̂⊥ cos ϕ

0
2
sin ϕ

2
InIn−1 sin ϕ

2
sin ϕ0

2
I2n 0

−ip̂⊥ sin ϕ
2
cos ϕ

0
2
InIn−1 −p̂z sin

ϕ
2
cos ϕ

0
2
I2n−1 0 sin ϕ

2
sin ϕ0

2
I2n−1

1
CCCCCA

ðA15Þ

and

Pv ¼
1

2

0
BBBBB@

− sin ϕ
2
sin ϕ0

2
I2n 0 p̂z sin

ϕ
2
cos ϕ

0
2
I2n ip̂⊥ sin ϕ

2
cos ϕ

0
2
InIn−1

0 − sin ϕ
2
sin ϕ0

2
I2n−1 −ip̂⊥ sin ϕ

2
cos ϕ

0
2
InIn−1 −p̂z sin

ϕ
2
cos ϕ

0
2
I2n−1

p̂z cos
ϕ
2
sin ϕ0

2
I2n ip̂⊥ cos ϕ

2
sin ϕ0

2
InIn−1 − cos ϕ

2
cos ϕ

0
2
I2n 0

−ip̂⊥ cos ϕ
2
sin ϕ0

2
InIn−1 −p̂z cos

ϕ
2
sin ϕ0

2
I2n−1 0 − cos ϕ

2
cos ϕ

0
2
I2n−1

1
CCCCCA
: ðA16Þ

This leads to, e.g., for expectation value of the diquark condensate as

ID ¼ hψ̄ ia
c γ

5ψ jbiϵijϵ3ab

¼ 2

ð2πÞ2
X
n

αnjqiBj
Z

dpz cos

�
ϕ1 − ϕ2

2

�
½sin 2fð1 − sin2 θ1− − sin2 θ2−Þ þ sin 2f1ð1 − sin2 θ1þ − sin2 θ2þÞ�: ðA17Þ
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