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In this paper we show that Bose-Einstein enhancement generates strong correlations which, in the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution, increase with energy. This increase leads to double
gluon densities (®), which are much larger than the product of the single gluon densities (¢). However,
numerically, it turns out that the ratio ®/¢? « (1/x)% with &, ~ ag/(N2 — 1)?/> < 1, and so we do not
expect a large correction for the experimentally accessible range of energies. However, for N, = 3,
0, = 0.07Agpk1, Where Agggp denotes the intercept of the BFKL Pomeron, and thus we can anticipate a

substantial increase for the range of rapidities ¥ ~ 20. We show that all 1/(N2 — 1) corrections to the
double gluon densities stem from Bose-Einstein enhancement.
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I. INTRODUCTION

For a long time the double parton distribution functions
(DPDFs) and their Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution' have been of interest to the
theoretical high energy community, and they have been
discussed in detail [2-32]. On the other hand the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) evolution’ and related to
them the double gluon densities [transverse momentum
distributions (TMD2s)] have attracted less interest from the
theorists, in spite of the fact that they give the simplest way
to estimate the possible correlations in the QCD parton
cascade at high energies, where experimental observations
of the double parton interactions [39-45] were made.

In this paper we revisit the evolution equation in the
BFKL kinematic region of small x, where partons are either
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'"The DGLAP equation [1] describes the evolution in In(Q?),
where Q is the hardest transverse momentum in the process,
assuming that @gIn(Q?) ~ 1 but &g < 1 and agln(1/x) < 1.
This evolution was generalized for double parton distributions in
Refs. [2-7].

>The BFKL equation [33] is written for evolution in x (the
energy scale of the process) assuming that @gIn(1/x) ~ 1 but
&g < 1 and @ 1n(Q?) < 1. This evolution has been considered
in Refs. [34-38] for the double gluon densities.
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gluons or colorless dipoles. In the coordinate representation
we use colorless dipoles as partons, while in the momentum
representation, it is more convenient to discuss the parton
cascade in terms of gluons. This evolution equation was
written in Ref. [34] (see also Ref. [35]) for the double gluon
densities ®(x1,py. 3%, por) = @Y =y1.p1.03Y =2, Par)
with respect to the rapidity (¥) of the initial hadron
(projectile). Note that we use the notation ®(xy, pyr;
Xy, por) for the double gluon density, and ¢(x, py) for
the single gluon density. x; is the fraction of energy of the
gluon “i” while p; r denotes its transverse momentum. In
the reference frame where the initial hadron is fast moving,
In(1/x;) = Y —y;, Y denotes the rapidity of the projectile
(hadron) and y; the rapidity of the parton i. This evolution
answers the question, what are the multiplicities of two
colorless dipoles in one parent dipole, that moves with
rapidity Y? We believe that in the spirit of the BFKL
evolution we need to answer a different question: what is
the multiplicity of two gluons with rapidities y; and y,, if
we know their multiplicities at y; =) and y, =9?
Therefore, the first goal of our paper is rewrite the evolution
equation in a convenient form to answer this question. It
turns out that such evolution has been discussed in
Refs. [36-38] in the framework of the color glass con-
densate (CGC) approach (see Ref. [46] for the review of
this approach). The evolution equations have been derived
in these papers in the desired form, for y; = y,. It was
shown that it is not necessary to take into account the
nonlinear corrections for the double gluon (and multigluon)
densities, and that the evolution equations reduce to the
BFKL evolution. In Ref. [38] this evolution was written
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taking into account the corrections of the order of 1/N2,
where N, is the number of colors. The linear evolution
equations for the double gluon density are closely related to
the Bartels, Kwiecinski and Praszalowicz equations [47] for
the scattering amplitude, and 1/N? corrections to these
equations have been discussed in Refs. [48-54].

The second goal is to include the Bose-Einstein enhance-
ment coming from the correlations of identical gluons, in
the evolution. Bose-Einstein correlations have drawn con-
siderable attention recently, since they give essential con-
tributions to the azimuthal angle correlations [55-60]. It has
been shown (see Ref. [58] for example) that the Bose-
Einstein enhancement leads to a significant contribution to
the measured angle correlations. We believe that this fact
calls for a generalization of the evolution equation by
taking into account this enhancement. We show that the
Bose-Einstein enhancement is responsible for a term in the
linear evolution which is suppressed as 1/(N2 — 1), which
has been found in Ref. [38]. In other words, we state that all
corrections of the order of 1/N? in the evolution equations
for the double gluon density stem from the Bose-Einstein
enhancement. In particular, the symmetry between the
azimuthal angle ¢ and the angle = — ¢ does not appear.
This symmetry, which is not based on the principle features
of our CGC approach, reveals itself in the scattering
amplitudes, but we do not find any indication of it in
|

the double gluon densities. We wish to stress that the Bose-
Einstein corrections are closely related to the Bartels,
Kwiecinski and Praszalowicz equations [47] and generate
the energy behavior of the twist four operator which
increases as s, with A4 > 2A,, where A, denotes the
intercept of the BFKL Pomeron (see Refs. [48-50]).

We have discussed the Bose-Einstein enhancement for
the DGLAP evolution [61] and have shown that it changes
considerably the high energy behavior of the DPDFs. In
particular it turns out that the widely used assumption
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does not hold, even at small x; and x,, due to the Bose-
Einstein correlations.’

Before describing the structure of the paper we
would like to introduce the observables of interest: the
parton density ¢(x, p;, gr) and the double parton density
D(x1,p17:%. P27 qr)- The single gluon density charac-
terizes the multiplicity of gluons with fraction of energy x
and transverse momentum p; at gy = 0, and it can be
written as follows:
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where ¥ denotes the partonic wave function of the fast hadron, |Q,) = [[* a™ (x;,k; 7, ¢;)|0) (|0) denotes the vacuum state)
and a* (x;,k; 7, c;) and a(x;, k; 7, ¢;) denote the creation and annihilation operators for partons (gluons for small x;) with
fraction of energy x;, transverse momentum k; 7 and color c;. The produced gluon has longitudinal momentum x and

transverse momentum p,, while b indicates its color.

The double transverse momentum densities describe the number of gluons with (x;, p;7) and (x,, p, 7) in the parton
cascade, and it can be written with the aid of the wave function of the produced gluon W({x;, k;7}) as follows:

oo n dx,
O(x1.p173 X2, P23 qrs b ) = Z/H7d2ki$TZ<Q;|ly*({xi’ki.T;Ci})
n=2 i=1 7 ci

5‘1

1
X {aﬁL (xl,pl,r +

1
~qr;b

X a<x1,P1,T )

*In Refs. [62,63] it is shown that Eq. (1) is a good approxi-
mation to the solution of the DGLAP evolution equation for the
double parton distribution functions at small x and large p, but
this claim is only correct when neglecting the contributions of the
order of 1/(N%—1).

1
~4r: ¢

b =qr;
T ) qr; ¢

2

> at (xz,Pz,T -

)}q}<{xi,k,-,T;ci}>|szn>.

1
) a (xz,Pz,T + >

(3)

I

The paper is organized as follows. In the next section we
discuss the BFKL evolution of the double gluon density in
the region of low x. For completeness of presentation we
review the derivation of the evolution equations for the
double gluon densities which was done in Refs. [36—38] in
the framework of the dipole approach [64]. In spite of the
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fact that this derivation is only valid for y; = y,, it shows
that these evolution equations are linear BFKL equations
which are not affected by nonlinear shadowing corrections.
In Sec. IIT we rederive the BFKL equations for the double
gluon densities directly in the momentum representation. In
this representation, we generalize the equation for the case
of y; # y, and rewrite the equations in the form which is
suitable for taking into account the Bose-Einstein enhance-
ment (BEE). In this section we find the solutions to the
equations without BEE. The interference diagrams that
are responsible for the BEE are discussed in Sec. IV. In
Sec. V the evolution equations with BEE are proposed, and
we find that ®/¢? « (1/x)% with 8, ~ ag/ (N2 — 1)*/3.
Section VI is also devoted to a discussion of the energy
behavior of the double gluon densities. In the Conclusions
we discuss our main results.

II. BFKL EVOLUTION OF DOUBLE DIPOLE
DENSITIES IN THE CGC APPROACH

In this section we discuss the evolution equation for the
double gluon densities in the framework of the CGC
approach. As mentioned this equation has been derived
in Refs. [36-38]; here we give a brief review both for the
completeness of the presentation and to display the main
features of the multigluon densities, which are not the main
subject of these papers. The partonic wave function can be
expanded as the sum of Fock states with fixed multiplicity
of partons (colorless dipoles):

P({ri,b;}) = Zan|9n> (4)

The colorless dipole is characterized by two variables: its
size r; and its impact parameter b;. However, in this paper
we will sometimes use a different set of variables: x; for
the position of the quark and y; for the position of the
antiquark in the dipole. One can see that r; = x; —y; and
b; =1 (x; +y;). a2 is the probability to find n dipoles with
the same value of rapidity Y:

ay = P,(Y;{r.b;}). (5)

The QCD cascade can be written as the linear functional
equation for the following functional [36,64]:

207 =7 = yilu)) = Y [ Pur:{rib)
n=1
X u(ri,bi)dzrid2b,- (6)
i=1
where u(r;, b;) = u; is an arbitrary function of r; and b; and

y = y; = y,. It follows immediately from Eq. (5) that the
functional obeys the condition: at u; = 1

Z(F:fu = 1) = 1. (7)

The physical meaning of Eq. (7) is that the sum over all
probabilities is 1.

A. Balitsky-Kovchegov parton cascade

To write the evolution equation, we need to specify the
QCD processes with color dipoles. The parton cascade that
leads to the Balitsky-Kovchegov nonlinear equation for the
scattering amplitude stems from the process of the decay of
one dipole to two dipoles, which gives the main contribu-
tion at the leading order of perturbative QCD at large N,
[64]. The probability of this decay is equal to

ag (r +r,)?
P1—>2(|r1+"2|—>"1+72):ﬁ‘ lrzrz - (8
1

Bearing Eq. (8) in mind, we can write the linear equation
for Z:

0z
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The functional derivative with respect to u(r, b) plays the
role of an annihilation operator for a dipole of size r, at
impact parameter b. The multiplication by u(r,b) corre-
sponds to a creation operator for this dipole. Therefore,
Eq. (9) is a typical cascade equation in which the first term
describes the depletion of the probability due to splitting
into n + 1 dipoles, while the second term is responsible for
the growth due to splitting of (n — 1) dipoles into n dipoles.
From Eq. (6), one can see that the multidipole density
p"(Y =Yy {r;.b;}) can be found as follows:

(11)
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which gives the probability of finding n-dipoles with the given kinematics.

From Eq. (9) we obtain

ap( (Y rlvbl
asaY

n
H ’ bn)

i=1

For p® we have

oI (¥; r17b17r2,b2 22:
a)
aS(?Y

There are two main features of the equation: (i) there are no
nonlinear corrections, and (ii) we have two contributions,
the BFKL evolution of p(?) and the contribution to p(?) from
single parton showers. This structure is the same as in the
DGLAP evolution (see Refs. [2-7]).

B. 1/N? corrections to the Balitsky-Kovchegov cascade

In Ref. [38] it was suggested to add the following term to
Eq. (9):

2 1
][ 2. 0. n
/[Zldxid yid ZN%—]

X Pi_a(jxy =y1] = P2 —z| + [z = y1)
X (1 —u(xy,y2)) (u(x2,y1) — u(z.y1)u(x,,2))
% (v lu). (15)

X
5“(351,)’1) 5“(x27y2)

The process thatis described by Eq. (15) is shown in Fig. 1. If
we have two parent dipoles composed of quarks and
antiquarks of the same color, then the additional dipole
created which is composed of a quark from one parent dipole
and an antiquark from the other parent dipole, can create an
additional dipole which decays into a quark an antiquark and
a gluon. The term of Eq. (15) generates the 1/(N? —1)
corrections to Eq. (14) which have the following form:

:_Zw( )p( )(Y y’rl’bl

I‘l’ bn)

/2
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X (p@(Vixy,p252.91) + pP(V3%1,92:%2,2)
=P (Vix1, 220, 31)) + (1 5 2)}. (16)

(x1,31)

One can see that the structure of Eq. (16) is similar to that
of Eq. (14): i.e., the production of two dipoles from the
single parton cascade, and the evolution of the double
density with a kernel which is different from Eq. (14),

X4 r X4
X2 (Y1) ! X2 (Y1)
X3 7} X3

X4(Yo) X4 (Y2)

t

[
| |
| |
| |
| |
| |
|

b-1/2(x,— x,)! b=1/2(x;—Xg) ' b\

o ® b4

FIG. 1. A graphical representation of the decay of two dipoles
to three dipoles: x5 4 X34 = X3 + X4 = X5 + X3, + x14. The
lines of the same colors indicate the colorless dipole which
decays into two dipoles due to the emission of a gluon with
coordinate z.
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although it consists of the same elements. We need to
rewrite Eq. (14) with the additional term of Eq. (16) in the
momentum representation, to obtain the more familiar form
of the double gluon density evolution equation. However,
we chose a different strategy: we derive the equation
directly in the momentum representation. First, we believe
that we can relax the assumption that y; = y, and second,
we hope that this derivation will clarify the physical
meaning of the additional term of Eq. (16).

We would like to stress that the derivation, which we
have discussed, is very instructive for understanding the
different contributions to the evolution due to the clear
physics interpretation of the dipole approach in perturba-
tive QCD.

III. BFKL EVOLUTION WITHOUT BOSE-
EINSTEIN ENHANCEMENT

A. Equations for agly, —y| > 1

In this section we rewrite Eq. (14) in the momentum
representation using two lessons from the derivation of the
previous section. The double parton density is not affected
by the shadowing (screening) corrections and obeys the
linear BFKL equations, and the equation should match
Eq. (14) at y; = y,.

In the BFKL region we consider that agln(1/x;) =
Y —y; > 1 while agIn(p?;/ Q%) < 1, and &g < 1 and the
evolution equations sum the contributions of the order of
(agIn(1/x))" [leading log(1/x) approximation (LLA)].

In the region of small x; only a gluon can be produced
[46], and for the double gluon density we expect to have
two equations of the following forms (see Fig. 2):

O0(Y =y, prr;Y = y2. Pariar)
‘9(Y —)’1)

_ d*k
=ag Z—HTK(PLT, krs qr)®(Y =y, krs Y = y2, Pariqr)

+asp(Y =y .pir +P27)0(P1, P23 Y1sY2); (17)
OO(Y =y, pr7;Y = Y2, Par3 qr)
Y = ya)
=ag / d;f: K(par ki qr)®(Y = y1. pirs Y — ya. kr)
+asp(Y =y .pir +P20)T(P1s P23 Y2, 31), (18)

d O(Y-y,p,. Y - ¥,.p, )y,

where K (pr, kr) is the BFKL kernel which is equal to [33]

K(pr.kr;q7)
_ 1 {(PT—%QT)2+(PT+%¢IT)2}
(PT - kT)2 (kT - %‘IT)2 (kT + %‘IT)2
2
qT

(kr + %‘IT)Z(kT - %QT)Z

1 1
- {CUG (PT + 5‘17) + g <PT - 5‘1T> }5(2) (pr —k)

(19)
1 A’k 1
a)G(pT) = 2p%/ zﬂ,T (pT —kT)2k%~ (20)
2 7
K(pTa kT;CIT = 0) = (pT _kT)Zk_;
T
- ZwG(pT)5<2) (pr —kr). (21)

The nonhomogeneous term takes into account the possi-
bility to produce two gluons from a single gluon cascade.
The expression for these terms is written directly from the
second diagram of Fig. 2. Function I'(p7,pa7r; 1, y2) has
to be found. It is clear that for @g|y, — y;| > 1 two emitted
gluons in Fig. 2 with rapidities y; and y, can emit gluons,
and the observed gluons will be amongst them. Therefore,
the general diagram which determines the nonhomogene-
ous term is the triple BFKL Pomeron diagram of Fig. 3(a).

This diagram can be written in the following general
form:

D3p(Y, y1. Y2sP1.1-P2.1> qr)
Y
= ag / dy' & prop(Y =y, pr)larp(pr)
Y22y

XY =yi.pr-Pr7ar)0(Y = 2P P21 1) (22)

where ['5;p denotes the triple BFKL Pomeron vertex which
we will discuss below. The single gluon densities in
Eq. (22) ¢y, and ¢ are different, since ¢, is the density
of the gluons in the projectile (hadron), while ¢ is the
density of the gluons in the cascade of the single gluon with
rapidity Y — y'. This term in the evolution was considered
for the first time in Ref. [34]. We refer our readers to this
paper for more detail.

FIG. 2. The graphical representation of the evolution equation [see Eqs. (17) and (18)].
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(a) The graphical representation of the triple BFKL Pomeron diagrams. For simplicity we show the evolution at g7 = 0.

(b) The structure of the partonic wave function in the light-cone perturbative approach for the production of two gluons from the single
parton cascade at x; = x, (y; = y,). We denote by D,, the dominator of the propagator for the state that has n-gluons.

The contributions of this diagram to the evolution equation have the following form for y, > y;:

1 aq)SIP(Y»yl’YZ;PI,T»P2,T7QT) _ =
Oy,

28¢31P(Y7y17y2;p1,T»p2,T7QT> _
A%

+aS/szT¢pr(Y_yvaT)F3IP(pT)¢<y2_yl,pTvpl,Ta‘IT)¢(OapT7P2,TvQT)'

From Eqgs. (17) and (18) one can see that the first term in
both equations is included in the first terms of the evolution
equations since

D, (Y = yipr.P2rq1)

= _(_ZS/dszK(pi,TJ{T;QT)Qb(y/_yi’PT7p2,T7QT>'
(24)
We also see that Eq. (23) does not generate the

nonhomogeneous term in Eq. (17) if y; < y,, in the case
|

8N(Y;x12, b) o

2 2
d°x; X1,
oY

- N<Y;X]3,b
z x%x% {

Y o
as/ dy d*prp(Y -y, pT)F31P(PT)ay ' =y1.pr:P17:97) P = Y2.P7 P2 T2 97)3
Y22y

Y I
=0ag dy/dsz(ﬁpr(Y_y/va)FBIP(pT)¢<y —Y1.P1:P1 T7QT) (y —Y2.PT1:P2, T7QT)
Oy,
Ya2yi

(23)

|

which we consider here: y, > y;. We need to specify the
triple BFKL Pomeron vertex and ¢(0.pr.p>r,gr) in
Eq. (23). Actually

¢(0,PT7P2,T7 QT) = 5(2)(I’T _P2,T)‘ (25)

In the diagram of Fig. 3(a) the triple Pomeron vertex enters
with the momentum transferred along the upper Pomeron
being equal to zero. We believe that we can find this vertex
directly from the nonlinear Balitsky-Kovchegov evolution
equation [65] for the scattering dipole amplitude:

1 1
—2x23> + N(Y;x23,b —2x13> — N(Y;x15.D)

1 1
- N<Y;X13,b - §x23>N(Y; Xp3.b — §x13) }

(26)

where x;; = x; —x;, and b denotes the impact factor. Equation (26) in the momentum representation, which we define as

N(Y;x1,,b) = xlz/
has the following form:

Op(Yikr,qr = 0)
oY

2z

dszd qr lx]z
2 27

_ d*k! _ d*q
s / T K(ky. Ky: g7 = O)p(Y. Ky gy = 0) — s / r

krtibar (Y kr, qr), (27)

&Y kr,qr)d(Y; kr, —qr). (28)

2w

054015-6



ENERGY EVOLUTION AND THE BOSE-EINSTEIN ...

PHYS. REV. D 99, 054015 (2019)

We can build the diagram of Fig. 3(a) by iterating Eq. (28)

, using the nonlinear term as the first iteration. Returning to

Eq. (23), we see that the nonhomogeneous term has the form

as / dsz‘ﬁpr(Y - Y2 PT)F31P(PT)¢()’2 = Y1,.Pr:P17T> QT)¢(0aPT7p2,T7 C]T)

= aS¢pr(Y - )’27172.T)¢()’2 = Yu,P21:P1.1> CIT)- (29)
Finally, the set of evolution equations can be rewritten in the following form for ag|y, — y,| > I:
OO(Y =y, pi7:Y =2, Doy qr) /dsz
. 3 = K ks qr)@(Y =y, ks Y — ya, ;
a(Y — ) as o (P11 k3 qr) @Y =y kr Y2. P23 47)
+ aS¢pr(Y —)’27P2,T)¢()’1 _y2’p2,T’P1,T’QT>8(.VI —Y2); (30)
OO(Y — yi, prr; Y = ¥, pariqr) /deT
‘ ‘ =a K(por kriqr)@(Y =y, prosY — yo krs
a(Y —y,) as o (P21 k13 qr)®(Y = yi. pir 2. kriqr)
+ &S¢pr(y = Y2, P21)P(V2 = Y1:P2.1 P17 47) (V2 = V1)s (31)

where 9(y;,) is the step function. Comparing Egs. (30) and
(31) with Egs. (17) and (18), we see that we have found
the exact form of the function T'(p,r,por;yi,y.) for
aslyr = yof > 1.

Recall that ¢(y, — y1,P27.P1.7. q7) denotes the multi-
plicity of gluons with rapidities y; and transverse momenta
p1r in the gluon with rapidity y, and transverse momen-
tum Par.

These equations are written for y, > y; > 1. For y, ~
y1 we can replace ¢(y, — y1.Pao7.P1.7-97) by the DGLAP
single parton density. However, we discuss the Bose-
Einstein correlation which is essential at y; = y,. In the

Y({xi i} &, P X1 prrs Xas par) = T5°(p = " + pa)es (p2)e” o(p")0(p"*)0(p3

|
kinematic region ag|y, — y;| < 1 we need to rewrite the
nonhomogeneous term.

B. Equations for agly, —y;| < 1

In the framework of the LLA, the gluon with the fraction
of energy x can produce two gluons with x; % x, < x in the
subsequent decay g(x, pr) = g(xX', p) + g(x1, p1.r) and
9(x',ph) = g(x", p)+9(xy, pr7) as is shown in Fig. 3(b).
We calculate the contributions of these decays to the
partonic wave function using light-cone perturbative theory
(see Refs. [46,63,66]). The wave function of Fig. 3(b) can
be written in the following form:

1
Dn+2

+

)

< (p = !+ p)S (e ()0 )0p]) Wi pirbe i)
(32)
where polarization vectors €4 (p) are defined as
ehp) = <0, 26}}?,%); n=(0.1,0,0) and e* :\%(il,i). (33)
The light-cone denominators are defined as
n—1 R n—1 f—ner P p?
Dy =pT+ 0"+ p7 —P"—>xl%; D,r=pi+p;+p~+ ;p,-‘ - p— xl}ﬂ +x2;i . (34)

i=1

where P~ is the light-cone energy of the incoming hadron.

In Eq. (32) we have omitted the color indices.

%P7 (ky — ky + k) is the triple gluon vertex for the decay g(x3, k3) — g(x1, ki) + g(x,, k) which takes the following

form (see Table 2 of Ref. [66]):
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. ki, k; ki k;
[ =2igxsvy; T =2igx vs,; T2~ =2igx,0];, with vij—ej-< bL_TEL). v =€7 - EL_TEL)(35)
’ Xio X Xio X

Plugging Eq. (32) into Eq. (2) and summing over all polarizations and colors, we obtain

Y
‘I)sp(Y =y, i Y = Y2, Pars QT> = 5{29 / dy/V(Pl,T,Pz,r ‘IT)¢(Y - ylaPI,T +P2,T)

Y2

(36)

where
(Pt 2qr) - (P17 —34qr) Por +347) - Por —347) (37)

V(Pl,T,Pz,T,QT) = .
P17+ %QT)Z(PLT - %qr)z (por + %QT)Z(I’M - %‘IT)2

It should be noted that we obtain Eq. (37) by adding the diagram with a different order of emission for gluons with (x;, p; 7)

and (x, Py 7)-
Bearing in mind that Eq. (36) generates the nonhomogeneous term for y, = y;, we note that Eqs. (17) and (18) can be

rewritten as one equation which has the following form:

OO(Y =y, pr1sY =y, Pariq _ [ d%
( el 2ridr) _ as/—T{K(pl.r,kr;rn)@(f’—y,kr;Y—y,pz.r;qr)

Y -y) 2r
+ K(pars ks qr)®(Y =y, pris Y =y, ks qr)}

+ &V (prr:P21-97)P(Y = y. P11 +Pa)- (38)
C. Solution in the region of agly, —y;| < 1
We solve Eq. (38) at gy = 0, considering its Mellin transform:
(39)

e . [&pirdp _ _
D(w.y1,72) :A d(Y —y)e?¥ y)/zﬂl,T 2;'T (Pip)™" (P%,T) (Y -y, p1r;Y =y, parigr =0).

For ®(w,y;,7,) Eq. (38) can be rewritten in the form
0@ (w.71.72) = as(x(r1) +x(r2))@(@.71.72) + H(r1.72)9(r1 +72) (40)

where [33,46]
=3 1\2 14 e o
x@)=2w(1)—w(y)—ywy(l—y) —wy+D|y- 3 +0|(y- 3 « diffusion approximation (41)
where y(z) = dInT'(z)/dz is the Euler psi-function [see formula (8.36) of Ref. [67]], wy = 41In2, and D = 14{(3), where
z(x) is Riemann zeta function [see formulas (9.51)—(9.53) of Ref. [67]].
Function H(y;,y,) is equal to
d’p, 7 dp
S (P (p%,T)_hV(pl,T»pZ,T»pT =0)((p1r +p2r)?) . (42)

H(Vl,yz)é(}'—h—rz)Z/ rr on \PL.

Equation (42) can be rewritten after taking the integrals over the angle and p, ; as

1
H(y1,72) = A dx (x> =1 4 ¥
! 4x 1 4
L=xPrteh Py (S —n = b= 1 ) Fil =, =y =y l,——— | ). (43
(0= om0 G —n )@
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We illustrate the behavior of this function in Fig. 4. Note that H(y;,y,) is symmetric with respect to the change

v = v2 [H(ri.r2) = H(ra.71)1-
The particular solution to Eq. (40) has a simple form:

_H(y, 7)o, 7y +12) H(y1,72)pin(r1 +72)
Pl11:12) = ) () @ asGrn) +2(r2))) (@ — aszlrs 7 72) (44)

where ¢;, can be found from the initial conditions for the single gluon density.
From Eq. (44) we obtain the particular solution for ®(Y —y, py 73 Y —y, par: qr):

exico dy, [etico dy, a5H(r1,72) (1 +12)
® Y — v, Y — v, : — 1 212 oriéitrnés S m
Y =3, P13 Y =, P dr) /m 27 Jeioo 201 asGe(n) + 2(r2) —x(r1 +72))
X {gﬁvsW(yl)w(yz))(Y—y) — e&s)((yl+72)(Y—Y)} (45)

where &; = In( p%‘T) and &, = In( pg,T). The general solution will be a sum of the particular solution and the solution to the
homogeneous equation, and it has the following form:

(Y =y, p113Y =y, P2r3qr) = Poan(Y =y, P13 Y =¥, P13 q7)

+ /eﬂ'oo % e % enéitna g, (71, yz)eas()((h)ﬂ((h))()/—)’)
€—ico 2mi €—ico 2mi

e+ico e+ico
= / % % eréitné
€—ico 2mi €—ico 2mi

{ [o{?fﬂ} (y;;)d)f)(:(‘;fy)z)) @, (71, 72)} o) 1202 (V=)
_ aH(r1,172)Pin(r1 +12) as)((yl+72)(y_y)} 46
G) +202) =2 +12) € ' (46)

The integrals over y; and y, in the first term of Eq. (46) can be evaluated using the method of steepest descent with the
saddle point for both y’s close to %, where we can use the diffusion approximation [see Eq. (41)] for y(y). The values of y’s at

the saddle point are the following:

1 51 1 62
sP_ 1 _ 51 . sP___ 52 47
N T T ap(y -y " T2 2ap(y —y) (47)

After integration over y; and y, in the vicinities of these saddle points we obtain the contribution:

1 1 ag+8

O =y.pi7: Y =y.pariqr) = Em [---]y1=y§f‘;y2:y§l’ €xp (2515600(1/ -y) - m) . (48)

This contribution is proportional to ¢(Y —y,&;)p(Y —y,&,) Lar
and in agreement with Eq. (1). ’ =01
In the second term the integration over y; + y, can be 12 =03
taken using the method of steepest descent, leading to g 1.0 7,=0.6 P
5 0.8 -’
T
1 S +& Q
(1 +72)%" = 2 2asD(Y —y) (49) 3
This integration generates the contribution which is pro-
portional to exp (aswo (Y —y) = (£ +&,)*/ (4asD(Y —y))).
Comparing this contribution with Eq. (95), one can see that
it is suppressed at large values of (Y — y). FIG. 4. The behavior of function H(y,,7,).
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FIG.5. The interference diagram. (a) For gluons with rapidities larger than y’, the z-channel gluons, which are shown by the same color
helical lines, are in a colorless state in the 7-channel. The gluons with y; and with y, are in colorless states as indicated by arrows in
Fig. 1. The black circles denote the Lipatov vertex I',,. (b) The diagram of Fig. 1(a) redrawn with the BFKL Pomerons denoted by wavy
lines. Their colors in the figure indicate the gluons that constitute the Pomerons. The gluons with yy, p; 7 as well as gluons with y,, p, 7
are in colorless states. Q7 =k —p, 7. V denotes the vertices of gluon-Pomeron interaction. (c) The Born approximation of the diagram

of Fig. 5(b) in the case of an onium target. This diagram is in accord with Eq. (1).

IV. THE INTERFERENCE DIAGRAM IN THE
BFKL EVOLUTION

The interference diagram is shown in Fig. 5(a). In this
diagram the 7-channel gluons with the same color and with
rapidities larger than y’ are in colorless states. For rapidities
that are less than y’, -channel gluons with rapidities y, and
with y, are in a colorless state. The arguments for such a
color structure of this diagram stem from the first diagram
with the exchange of two identical gluons, shown in
Fig. 5(b). In this diagram all emitted gluons with rapidities
larger than y' can be absorbed in the solution of the
evolution equation without the Bose-Einstein enhancement
and can be used as a solution of Eq. (1). In this solution the
double gluon density can be viewed as the exchange of two
BFKL Pomerons, shown in Fig. 5(b).

These Pomerons carry transferred momenta Q7 and
—Q, respectively, where Q% =k —p, ;. Therefore, we
first need to deal with the BFKL Pomeron with nonzero

J

dz

1
¢, pir) IA m/dszT|‘P(1)(¢IT,Z;Pl.T7y1)|2 =

transfer momentum. However, before discussing this prob-
lem we calculate the diagram of Fig. 5(c), which is the
diagram of Fig. 5(b) in the Born approximation. We denote
the wave function of the colorless dipole (the onium state of
a heavy quark and antiquark) by ¥(g7, z), where g7 is the
transverse momentum of the quark and z its fraction of the
energy. We obtain that the component of the gluonic wave
function with one emitted gluon with transverse momen-
tum p, 7 and rapidity y; is equal to [46,64]

y)

oPrr €
TU)(QT»Z;Pl,T,yl):Q/I 1T2 !
Pir

x (¥(qr.z) —¥(qr +pi1,2)) (50)

where A¢ denotes the Gell-Mann matrix and €* is the
polarization vector of the gluon with the helicity A. The
single gluon density has the form

sl 1

2
T Pir

(G(0) - G(4p7)). (51)

In the integral over z, the lower limit is =¥, but we assumed that this integral is convergent and we can safely take this

limit equal to zero:

dz
G(pr)z/z(l_z

. d
/dzre’pT"|‘I’(r, 2 where /dzr/z|‘{‘(r,z)|2 = 1.
) z(1-2)

The emission of the second gluon with y, and p, r leads to the wave function

‘P(l’l)(‘IT, Z§P1,T1)’1;P2,T,yz) = 92/1“/117

(52)
A A
D1 -€1Pr7 €
] Tz 1 Lz 2 (Y(qr.2) —¥(gr +p17.2)
Lt Par
- ¥(qr +por.2) +¥(@r +Pi7 + P27, 7)) (53)
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Using the expression for the Lipatov vertex I, which has
the form [33,46]

k/2
0 =207 (e, =) (59
where [, = k7, — kg, is the momentum of the emitted

gluon, as well as Eq. (53), we obtain for Fig. 5(c) the
following contribution:

AlFig. 5(c)]
(kr-p> T)Z k%P%T 1
« [ &krl(pyrr.kr) : S —
/ ! e (P%,rk%)z (kr —Pl,T)ZP?,T
r,r,
k%l’%j

- / dkrl(par.kr) ks -par)” =
w (P%,Tk%)z (kr —par — Ap1o7)* Pl

1

4

L,
(55)
where Apj, 7 =pir —par and (pyr.kr) is equal to (see
Ref. [59])

I(pyr.kr) =2+ GQ2(kr +por)) + G2kr —par))
— G(2kr) — G(=2k7)

- G(2pyr) — G(=2par). (56)

In Eq. (53) for simplicity, we have omitted all color
coefficients and coupling constants.

We see that the largest contribution stems from the
region |p, 7 — k7| « 1/r, where r is the size of the dipoles.
Assuming that p; 7 and p, 7 are larger than 1/r this region
leads to the contribution which is equal to

AlFig. 5(c)] ! / k
. X
P%,TP%.T (kT —DPar— AI’12,T)

1 / 1
~——7 | dg* ———71(q)
P%,TP%_T |q2 - |AP12,T’2|

with ¢ = kr —p, 7. Equation (57) generates |g| ~ 1/r <
pir and shows that the Bose-Einstein enhancement is
essential for |Ap, 7| < p;r and the value of |Ap, 7| is
determined by the scale of the initial conditions for the
double gluon density.

In other words we conclude that the first diagram leads to
the double gluon density, which can be written in the form

2 I(pz,T’kT>

(57)

o Const  for |Apy, 7|r < 1;

<1>im0<¢(y1,p1.r)¢(yz,pz,r){ | :
’ W for |Ap12$7~|r2 1,

¢ P1r)d(V2, PaT)
~POL ) _ (58)
r*|Apa |t +1

In other words, the Bose-Einstein enhancement increases
the double gluon densities for p; r — p, 7, as is expected
and has been demonstrated in the correlation functions
[55-60].

Returning to the diagram of Fig. 5(b) we see that
generally the integration over kp enters the integration
over the momentum transfer of the BFKL Pomeron:

'» = P21 — k7, and the integration over k7 that character-
izes the size of the dipole in the Pomeron vertices. The
typical transverse momentum in the BFKL Pomeron
vertices is about p; r(p,.7) or about that of the saturation
scale, at the rapidity of the vertex. On the other hand, the
typical Q% ~ 1/r where r is the size of the largest dipole of
the two interacting dipoles, which constitute the exchange
of the BFKL Pomeron. For the diagram of Fig. 5(b) this
largest dipole has the size of the hadron, whose double
parton density we discuss.

The Green function of the BFKL Pomeron G(r,R;Q7;Y)
is known in the mixed representation, where r and R are the
sizes of two interacting dipoles, Q7 denotes the momentum
transferred by the Pomeron, and Y the rapidity between
the two dipoles. This Green function has the following
form [68,69]:

1 & [w
G(r,R;QT;Y):1—62/ dv

n=—oo

1

% W +5(n—1)%)(? —I—;IL(n +1))

X Vz/,n (r7 QT)V;n (R’ QT)EW(DJ[)Y (59)
where
_ 1 1
o(v,n) = ZaSRe<l// <§ +5 |n| + 1/) - 1//(1)) and
_ |
o(v,0) = agy (5 + w) , (60)

with n =0, 1,3... and y(y) from Eq. (41).

Each term in Eq. (59) has a very simple structure, being
the typical contribution of a Regge pole exchange: the
product of two vertices, which depend on the size of the
dipole and Q7, and the Regge-pole propagator e®®")Y,
From Eq. (60) one can see that at large Y the main
contribution comes from the term with n = 0, and in what
follows we will concentrate on this particular term.

The vertices with n =0 have been determined in
Refs. [68,69], and they have a simple form in the complex
number representation for the point on the two-dimensional
plane, viz.,

forr(x,y): p=x+iy; p*=x-1iy,

for QT(Qx’ Qy): q=0,+ iQy; g =0,- lQ) (61)
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Using this notation the vertices have the following
structure:

sz(r’ QT) = r(Q%")iUFZ(l - il/){"—iv <% q*p> J—iu <% flﬂ*)

~Ju C—‘ q*/)) Ju G qp*> } (62)

At Q7 — 0 this vertex takes the form

QT>QT—’<f‘r{ (;-2) "oy (Q;r 2) } (63)

Using that

1 1 2 /1
J_i(2) 2 sin -z 4 z+42im \/:\/: (64)
4 2 TV z

at v < 1 we obtain for Q312 > 1

V,(r,

4iv
Or

Q7r>>1

Vv(r’ QT) (65)

(Q3)MT(1 - i) cos ( 0 )

Returning to Eq. (59), one can see that the exchange of
the BFKL Pomeron turns out to be small for RQ; > 1,
J

OP™(Y =y, pir.por) g /'i”"" dv,
8(Y—y) 7N3_1 —ie—00 2r

dzk/ de// d2 /
« / TIDEL 14 ka)Y,, (K )V, (K OF) / : i

(2m)*
d2 Q/

—ietoo Jy,
72 eas()(<

—ie—c0 2r

where R is the size of the larger of the two interacting
dipoles. In the diagram of Fig. 5(b), the size of the smallest
dipole is about r < 1/p, 7, while R is the dipole in the
hadron which has a size of the order 1/us g, Where pgg
denotes the soft scale. In other words, we expect that Q7 of
the BFKL Pomerons is rather small, Q7 < uyn. Since
|0%| = |kr — pax| < psort < po.r We safely use for vertex
V,(r,Qr) Eq. (63) which gives for the vertex in the
momentum representation

Vulkr.0r) = 7 [ dre v, 0r)  (66)
the following expression:

Valhr, 0r) = 2n (L)t

I(—iv)
r¢+iv)

(@GP (@)

Actually, the second term does not contribute to the
scattering amplitude at small Q7 (see Refs. [68,70]), and
therefore the diagram of Fig. 5(b) gives the following
contribution:

v)+x () (Y=y) (68)

= (2k2)—1+ivl+iy2
Apiar — Q/T)2 !

_ O / T
N%—l (AP12,T—

where @,;p denotes the double gluon density due to the
exchange of two BFKL Pomerons. All other notations are
shown in Fig. 5(b). The second line of the equation is
written assuming that v; < 1 and v, < 1 at high energies,
in accord with the diffusion approximation [see Eq. (41)]. It
is easy to see that this contribution is the Fourier transform
of the emission term with p(® in Eq. (16) in momentum
representation. We need to add the gluon Reggeization term
to Eq. (68) which is the Fourier transform of the second
term with p in Eq. (16). Therefore, we do not see any
other contribution except the Bose-Einstein enhancement
in the first diagrams. In the last line of the equation we
consider Q' < p,r and replace k7 by p, 7. From Eq. (69)
one can see that the double parton density with g7 = 0O [see
Eq. (3)] can be obtained only if we know the double parton
density for g7 # 0. For g7 # 0 the diagram of Fig. 5(b) can
be rewritten in the form

; )2 q)ZIP(Y — Y. ParsP2.15 Q/T) (69)
T

OD™(Y =y, pi7. Pari qr)

oY —y)
JZQ’
N2 -1 / (Apiog = OF — qr)?
X @yp(Y =y, a1 Pars Q/T) (70)

V. BFKL EVOLUTION WITH BOSE-EINSTEIN
ENHANCEMENT

We need to change Eq. (38) by adding the interference
diagram. To do this we have to change Eq. (68), replacing
@yp(Y =y, k. por; QF) by @(Y =y, kg, por; OF) and
taking into account the complete BFKL kernel of
Eq. (19). Therefore, the contribution of the interference
diagram to the evolution equation takes the form
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int _ .
adi 3?{/17_1.;3172%%) = /koTK(plT —qr.kr: Q7)O(Y = y. kr. po 73 OF) (71)

where K denotes the kernel of Eq. (19). In Eq. (72) we have taken into account that gy # 0. Substituting this kernel we
reduce Eq. (72) to the form

0D (Y — y, py.1, Poriqr)

oY —y)
S L oY = vk pari O)) — w(par — ar) (Y b
- - ’ 5 — @ - - ) ’ 5 .
N1 "y P —ar) Yo k1, Po1s &7 RG 2.7 qul Y. P21> Parsdr
— eggeization kerne

emission kernel

As we have discussed in the previous section, the typical Q% is determined by the soft scale from the initial condition, as
in Fig. 5(b), or by the saturation scale at rapidity y’ > y. Both are much smaller than p;z, or the saturation momentum at
rapidity y. Hence, we can neglect Q% = k; —p;7, as it is much smaller than p, 7. Finally, Eq. (72) takes the form

OO™(Y =y, pr1. Pariqr) _ O / Q)
oY —y) N%— 1 (APIZ,T_Q/T_qT)

e (Pz,T>q)(Y =Y, P21, P21 QT>}‘ (73)

2 {(D(Y — Y. P21 P21 Q/T)

The second term in {...} stems from the gluon Reggeization, in which we neglect g, in comparison with p; 7. Bearing
Eq. (73) in mind, Eq. (38) takes the form

0R(Y —y.piriY = y.Pariqr) _ &s/dsz

(Y =) o {K(prr kriqr)®@(Y =y, kr;Y =y, parigr) + (1 < 2)}

&g d*Q 1
+ Y -y.pirY =y, pi1: O
NZ-1 {/ 2z (Apiar —QF —qr)? Y=y pir yPrri Or)

- a’G(Pz,T)‘I’(Y — Y. P21, P2T> C]T) + (1 <~ 2)}
+a3V(p17.P27- 7)Y =Y P17 +Por). (74)

We simplify the equation by first neglecting the g dependence of the BFKL kernel in the first two terms of the rhs of the
equation, since as has been discussed, gr < k7(p; 7). As the second step we go to the impact parameter representation:

QY -y.pi7:Y=y.pariqr) = /dzbe"‘”'l’@(Y—y,pl,T;Y—y,pz.r;b)- (75)

Equation (74) then has the form

OD(Y —vy,prrY=v.parib) d*k
( T 21ib) _ as/ AR (pr7 k) ®(Y =y, k3 Y =y, pags b)

oY —y) 2r
+ K(par kr)®(Y =y, p173Y =y, kr; b)}

a .
+N2 i 1 {(S(bpl,r)elb'Ap'z‘T -S0)PY -y, pr:Y =y, pirb)+ (1 < 2)}
+ a§V@1,Tvp2,T7 b)p(Y —y.pir+Pp2r) (76)

We need to rewrite the kernel 1/(Ap, 7 — QF — qr)? to regularize the infrared singularity and to take into account that
|Q| < p;r. The last constraint was used in deriving the equation. We now replace the kernel by the expression
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1 1 1
- - . (77)
(Apior — 07 —qr)*  (Bpor—0Qr—qr)* +1* (Dprr—0r—aqr)*+piy

One can see that the term with y? regularizes the infrared divergency, and the second term guarantees that only Q% and g
less than p, 7, contribute to the integral. Calculating the Fourier transform of Eq. (77) we obtain

S(bpl,T) = Ko(ﬂb) - KO(Pl,Tb)- (78)

Since at b — 0 (bp;r) — In(p},/u*), the Reggeization term with wg(py,) = In(p%/u*) cancels the infrared
divergency in the difference (S(bp; r)e®2Prr — §(0)).
We first find the solution to the homogeneous equation by rewriting it in the Mellin transform of Eq. (39). It has the form

_ e+ico Jy" etico dy!
(Uq)(a”}’l’}’z;b):aS(Z(Vl)+)((72))(D(607}’17}’2§b)+5{/‘ Z—”'iK(yz,h—y’l;b)/, 2 Q@771 =7'5b)
e+ico d}/’l e+ico d}//
——K(y(, 72 =75 b —D(w,y. v, -7y b 79
s [ kG- [ S - pi0) (79)

where § = ag/(N? = 1). K(y5,71 — 7} b) is equal to
K(r2.r1 = 71:b) = K(yo.v1 = 74:b) = K(r2. 71 = 7))
K(yp.71 = 713b) = /pl.pol.TPZ,TdPZ,T(P%,T)_y] (P37)72Jo(bpi7)Jo(bpar)S(bpy ) (phy)i~!

K(raori — ) = /p1,pol,sz,poz,T(p%,T)_ﬁ(p%,T)_hwG(pl,T)(p%,T)y/l_l' (80)

For K(y,,71 —v);b = 0) we have

11 1
41-p(h—-n)*

K(ys,71 =736 =0) = - (81)

Integrating over 7/ (y5) we get the following equation:

o®(w,71,7235b) = as(x(r1) +x(r2))®(@, 71,725 b)

) 1 e+ico d},l 1 etico d},’
I —d)/ , /’ _ /’b _@/ , /’ _ ,’b ]
4 {1 ) 1—1'00 2mi nl@rn =yib)+ =7 L—ioo 2mi @7y =1 b)

We solve this equation using the iteration procedure with respect to the small parameter 6, assuming that the solution
without the interference term is equal to

1

(@, y),72) = = '
PP = o S T )

(82)

Plugging this solution into Eq. (79), we obtain the following equation for the spectrum of the homogeneous equation:

b 1 e+ico d]/ 0y 1 e+ico d}/ oy
12‘1{1%/4 i @r = [ s ned sy ) (®3)
€—100 €—100

In general for the BFKL kernel [see Eq. (19)] we cannot integrate the integral analytically. Instead, we use the diffusion
approximation to obtain the analytical result:
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e+ico (Jy’ etico (ly’ 1
/_ —zzid)((’)(w,yﬁy—y’):/_ —23;. 2 2
o o o—as(200+0((r-3) + (r-7-3) )

diffusion approximation

1 1 1 1

=5 =3 (84)
: \/2&5D(a) — 2as(wy + D(5 - %)2)) 2 \/Z&SD(CU — 2y gifr app(%y))
where ygifr opp 1S the BFKL kernel in the diffusion approximation of Eq. (41).
Plugging Eq. (84) into Eq. (83), we reduce this equation to the form for y; = y,
0 1
1 =——=+/asD - . (85)
42 (@ = 2a5(wg + D(E~3)%))*?

Searching for the solution with the new intercept @ — 2agmwy = a)(l)(yl ,72), we obtain the solution for y; =y, — 1:

o - 2/3 ag D\ /3 ag )
oDy, 72) = <m vV OCSD> = W <3—2> ~ O.SW =02ay for N.=3. (86)

Therefore, we see that the value of the intercept for the double parton density (Y — y) dependence is larger than that for
the product of single parton densities [see Eq. (1)], which is equal to

, . _ a D\'/3
(Y =y, prri¥Y =Y. pariqr) e with Ay = 2a50 + W (ﬁ) : (87)
Therefore, the difference A, — 2@, turns out to be proportional to 1/(N2 — 1)*/3, which is a small number at large N..
However, for N. = 3 [see Eq. (87)] A, — 2agwy =~ 0.2ag ~ 0.07asw,. This value of the correction leads to an effect of the
order of 1 at Y ~ 20.
We can calculate the corrections of the order of & to the intercept, using for the iteration ®()(w,y,,7,) the form

1
(@, y1,72) = :
w —2w0 = D((r1 = 3)* + (2 —3)?) — 0V (r1.72)

However, we expect negligible values for this correction, and we proceed to find the solution of Eq. (74) using Eq. (88),
as the solution for the homogeneous equation.

(88)

VI. HIGH ENERGY BEHAVIOR OF THE DOUBLE GLUON DENSITIES
Using the result of Eq. (88) we can write Eq. (40) in the following form:

o®(w.71,72) = as(x(r1) + x(r2) + @V (r1,72))®(@.71,72) + Hri.12)b(r1 + 72). (89)

Equation (89) generates the following particular solution, which is a direct generalization of Eq. (45):

e+ico e+ico a-H , .
®pu(Y = v pry:¥ =y, paridr) = / drt 42 néints asH(r, yzf(ﬁm(h +7)
' e—ico 2mi e—ioo 2mi w(Yl) + a)(72) + C()( )(7/1’ 7/2) - C0(}/1 =+ }/2)

X {e(w(y1)+w(y2)+w(‘)(71,72))(Y—y) - 655)((71+J’2)(Y—Y>}' (90)

The general solution can be written in the same form as Eq. (46), leading to the following expression:

€+im% etieo dy, 71é1+126 5’?91‘1(71772)45111(714‘72)
€—ico 27” €—ico 27” ( (]/1)

O —y.pi7:Y =y, pariqr) = / e
' +a(yy) + 0V (r1,72) —o(r1 +12))

+ @, (715 7/2)} e@(r)Fo(r2)+o" (r1.72))(Y-y)

_ aH(y1.72) ¢ (11 + 12) easz(yﬁrn)(Y—y)}_ (91)

(0(r1) + o(r2) + 0V (r1.72) — 0(y1 +12))
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As has been discussed previously, we can use the method
of steepest descent to evaluate the integrals over y; and y, in
the first term of Eq. (91). To do this we need to know the
dependence of w!)(y,,y,) in y; and y,. Solving Eq. (85)
we see that

3 2
oV (y,7) = ol - 5 @sDr (V - §> (92)

where w(()l) is given by Eq. (87).
The values of the saddle point turn out to be close to % for
both y’s. In the vicinity y; — 1 and y, — 1 we have the

following expansion:

o(r) + o(r2) + o (r1,72)
_ asD
= 2a50 +0f + S (1= +(1=72)2). (93)

From Eq. (93) we obtain that the values of y’s at the saddle
point are the following:

2, .
asD(Y —y)’

SP 1 _ 252
CE N T s 54)

e o=1-
After integration over y; and y, in vicinities of these
saddle points we obtain the contribution:

O(Y -y.pir:Y =Y. pariqr)
_ 2
= ImaD(V —y) I

)
X exp <2&5A2(Y -y)— 2%). (95)

One can see that this contribution is not proportional to
P(Y —v,E)p(Y — y, &) and contradicts Eq. (1). It should
be stressed that Eq. (1) violates both the ¥ — y dependence
due to the intercept A, > 25wy, and the &(&,) depend-
ence [compare this equation with Eq. (95)]. Note that the
change in the ¢ shape of the distribution has no suppression
of 1/(N2—-1).

VII. CONCLUSIONS

In this paper we found that in the BFKL evolution, the
Bose-Einstein enhancement leads to a faster increase of the
double parton densities than the product of two single
parton distributions. This effect has been discussed by us
for the DGLAP evolution in the region of low x [61]. On
the qualitative level, the DGLAP and BFKL evolution lead
to large correlations at high energies, due to the correlations
of the identical gluons. It should be noted thatall 1/(N? — 1)
corrections in the double gluon densities stem from the
Bose-Einstein enhancement.

The BFKL evolution generates the power dependence on x
(@ o (1/x)%2) with A, — 2w, > 0, where wy is the intercept
of the BFKL Pomeron; this difference turns out to be
numerically small, since it is proportional to &g/ (N2 — 1)*/3.

In particular, these correlations clarify the physical mean-
ing of the increase of the anomalous dimension of the twist
four operator that has been discussed in Refs. [10,11,48—
50,71]. It should be stressed that we obtain the intercept for
the double gluon density as proportional to 1/(N2 — 1)%/3,
which is quite different from that of the twist four intercept,
which is proportional to 1/(N? — 1). However, in the case
of the anomalous dimensions, corrections other than the
Bose-Einstein enhancement, of the order of 1/(N2 —1),
contribute, making the calculation of the energy behavior of
the twist four operator a different problem.

We view this paper as the next step in understanding the
role of the identical parton correlations in the parton
evolution. The next project that we plan to consider is to
include the identical parton correlations in the DGLAP
evolution at finite x. We believe that the most interesting
question in his part of the program is to include the Pauli
blocking for quarks and antiquarks (see Ref. [72]).
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