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Parton shower event generators typically approximate evolution of QCD color so that only contributions
that are leading in the limit of an infinite number of colors are retained. Our parton shower generator,
DEDUCTOR, has used an “LC+” approximation that is better, but still quite limited. In this paper, we
introduce a new scheme for color in which the approximations can be systematically improved. That is, one
can choose the theoretical accuracy level, but the accuracy level that is practical is limited by the computer
resources available.
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I. INTRODUCTION

Parton shower event generators for hadron collisions,
such as HERWIG [1], PYTHIA [2], and SHERPA [3], are
essential for the analysis of experiments at the Large
Hadron Collider. They treat QCD color in the leading
color (LC) approximation, that is at leading order in an
expansion in powers of 1=N2

c , where Nc ¼ 3 is the number
of colors. Previous versions of our parton shower generator,
DEDUCTOR [4–13], use what we call the LC+ approxima-
tion [7], which includes some terms suppressed by powers
of 1=N2

c .
This paper concerns improvements in the color treatment

in DEDUCTOR that could be applicable to other parton
shower generators. The treatment of parton spin is also
important, but we simply ignore spin here.1 It is also of
interest to consider how color works in a parton shower at
an arbitrary order of perturbation theory for the splitting
functions that generate the shower [14]. However, we work
only to first order in αs for the splitting functions here.
One can define an evolution equation for a parton shower

with leading order splitting functions such that the evolu-
tion is exact in color. This is relatively straightforward [4],

as we explain briefly below. Once we understand the exact
evolution equation, we are faced with trying to implement it
as a computer program. This is, so far as we know,
impossible with any available computer. However, one
should not be discouraged. What we really need is not a
numerical answer that is exact with respect to color for the
calculation of a cross section σ of interest, but rather an
approximate answer that can be systematically improved.
What we seek is an algorithm for a parton shower that

depends on parameters that control the level of approxima-
tionwith respect to color.We can beginwith the cross section
calculated at the lowest level of approximation, call it σð0Þ.
Then we can change parameters in the calculation so that we
get successively better approximations, σð1Þ; σð2Þ;…. We
will find that the successive calculations use more and more
computer resources, so that there will be a practical limit to
how exact we can be. Note that jσðnÞ − σðn − 1Þj serves as
an error estimate for σðnÞ. If jσðnÞ − σðn − 1Þj is not as small
as we would like by the time that we run out of computer
resources, we will have to admit the limitations of the
calculation. However, even in that case, we obtain a
calculation with an error estimate. With just σð0Þ, we have
a less precise calculation with no error estimate.
There has been work on extending the accuracy of parton

shower algorithms beyond the leading order in an expan-
sion in powers of 1=N2

c [7,11,15–18]. To date, however,
what we see as the main obstacle to a systematically
improvable treatment of color has not been overcome. This
obstacle has been nicely stated in Ref. [18]: “To fully
include all subleading Nc terms in the soft and collinear
limits, virtual color rearranging terms associated with the
same singularity structure should also be kept. To accom-
plish this, a full resummation of virtual exchanges is
needed. Unfortunately, within the current event generator
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1In the implementation of the parton shower in DEDUCTOR, we
average over spins at each stage. This is evidently an approxi-
mation. We analyzed what to do with spin in Ref. [6], but this
strategy for spin is not implemented in DEDUCTOR.
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structure these contributions cannot be included, and we
postpone their inclusion for future work.” The aim of the
present paper is to provide an event generator structure that
does include these contributions in a systematically impro-
vable fashion.
Before we turn to approximate versions of color in a

parton shower, we briefly describe a shower evolution
equation that is exact in color, as in Ref. [4]. We view
shower evolution as an application of the renormalization
group. At any stage, we include hard interactions and
remain inclusive over softer interactions. Then the picture
changes when we change the definition of where “hard”
interactions end. We define t ¼ logðμ20=μ2Þ, where μ2 is a
measure of hardness2 in a splitting and μ20 is a reference
value of μ2. The shower develops with increasing t as the
interactions that are included become softer and softer.
At any stage of the shower we have m final state partons

plus two initial state partons, “a” and “b,” with momenta
and flavors fp; fgm ¼ fpa; fa; pb; fb; p1; f1;…; pm; fmg.
These partons carry QCD color, so we can describe them
using a quantum amplitude jMðfp; fgmÞi, which is a
vector in the color space of m final state partons plus
two initial state partons. In order to keep the notation
simple, we ignore spin in this paper, but if we were to
include spin, then jMðfp; fgmÞi would be a vector in the
color × spin space.
Shower evolution is probabilistic since, at any stage of

the shower, we are integrating over probabilities for
potential splittings that are too soft to be visible at that
stage. For this reason, we use the language of quantum
statistical mechanics to describe shower evolution. With
this language, we do not use pure color amplitudes but
rather a color density operator,

ρðfp; fgmÞ ¼
X
n

jMnðfp; fgmÞihMnðfp; fgmÞj: ð1Þ

We use the color density operator as the basis for parton
shower evolution. We note that it is sometimes also used
explicitly for analytical summations of large logarithms
[19–22].
We can expand ρðfp; fgmÞ in color basis states,

ρðfp; fgmÞ ¼
X

fc;c0gm
ρðfp; f; c; c0gmÞjfcgmihfc0gmj: ð2Þ

DEDUCTOR uses the trace basis (which might better be
called the color string basis) for color basis states fcgm [4].
The set of all functions ρðfp; f; c; c0gmÞ constitutes a

vector space, which we call the statistical space.3 We
represent the function ρ as a ket vector, jρÞ. The rounded
end of the ket is meant to distinguish a vector in the
statistical space from a vector in the quantum color space.
Note that jρÞ represents the whole function ρ, which

gives the distribution of simulated events as a function of
the number of partons and their momenta, flavors, and
colors. A parton shower event generator generates particu-
lar events by Monte Carlo sampling from this distribution.
In each event, there is, for instance, a certain choice for the
number of partons and their momenta.
We find it useful to use a notation in which linear

operators act on vectors jρÞ in the statistical space. Thus we
might write

jρ0Þ ¼ A3A2A1jρÞ: ð3Þ
Martínez, De Angelis, Forshaw, Plätzer, and Seymour [16]
have recently analyzed the influence of color on parton
evolution via soft gluon emission using the color density
operator, but with a different notation from ours. If the
operators Ai in Eq. (3) have a suitable product form, these
authors would write ρ and ρ0 as density operators as in
Eq. (2) and write

ρ0 ¼ AðLÞ
3 AðLÞ

2 AðLÞ
1 ρAðRÞ

1 AðRÞ
2 AðRÞ

3 : ð4Þ
There is no physics difference between these two notations.
We will use the notation of Eq. (3).

II. EVOLUTION EQUATION EXACT IN COLOR

We can now discuss the evolution equation that forms the
basis for the approximations used in DEDUCTOR [4,5,7].
The statistical state changes as the hardness resolution
varies, so that it is a function jρðtÞÞ of t. We can write

jρðtÞÞ ¼ Uðt; t0Þjρðt0ÞÞ ð5Þ
for any t and t0. There is also a threshold factor UV that
appears at the start of the shower [13,14]. See Eq. (83). We
return to this factor later.
The shower evolution equation operator Uðt; t0Þwith full

color obeys the evolution equation,

d
dt

Uðt; t0Þ ¼ ½HIðtÞ − VðtÞ�Uðt; t0Þ: ð6Þ
The operatorHIðtÞ creates a parton splitting, increasing the
number of partons by one. The new parton carries color and
the colors of the old partons change. The operator VðtÞ
leaves the number of partons unchanged. It does, however,

2As reviewed in Ref. [13], the default hardness measure in
DEDUCTOR is a variable Λ2 that is proportional to the virtuality of
the splitting. See Eq. (35). However, an alternative in DEDUCTOR

is an appropriately defined transverse momentum squared k2T in
the splitting.

3To be more precise, ρ is a function of m and fp; f; c; c0gm.
Additionally, ρ depends parameters x derived from prior states,
fp; f; c; c0gm0 withm0 < m. For example, ρ depends on the vector
Q0 equal to the total momentum of the final state partons at the
start of the shower, which is used to define the shower evolution
variable. Normally we suppress the dependence on other para-
meters x in statistical states and in functions.

ZOLTÁN NAGY and DAVISON E. SOPER PHYS. REV. D 99, 054009 (2019)

054009-2



change the color state of the partons. It carries the color
structure of virtual graphs.
These two operators are related by an identity,

ð1jHIðtÞ ¼ ð1jVðtÞ: ð7Þ
Here, for any parton state jρÞ, to calculate ð1jρÞ, we
integrate over all of the parton momenta in jρÞ, sum over
flavors, and take the trace over colors. This gives us the
total probability associated with jρÞ. Because of Eq. (7),
together with the initial condition Uðt0; t0Þ ¼ 1, we have

ð1jUðt; t0ÞjρÞ ¼ ð1jρÞ ð8Þ
for any statistical state jρÞ. This says that probability is
conserved in the evolution of the state.
The operator VðtÞ contains a term that we can call V iπðtÞ

that we calculate from the imaginary part of virtual graphs.
This operator has the form (assuming massless partons)
given in Eq. (10.14) of Ref. [7],

V iπðtÞ ¼ −4iπ
αs
2π

ð½ðTa · TbÞ ⊗ 1� − ½1 ⊗ ðTa · TbÞ�Þ: ð9Þ

Here Ta represents the insertion of a color matrix Tc on
incoming parton line “a,” Tb represents the insertion of a
color matrix Tc on incoming parton line “b,” and the dot in
ðTa · TbÞ represents a summation over the octet color index
c. In ½ðTa · TbÞ ⊗ 1� the color matrices act on the ket state,
while in ½1 ⊗ ðTa · TbÞ�, they act on the bra state. When we
take the color trace, we get ð1jV iπðtÞ ¼ 0.
The operator VðtÞ also contains terms with real co-

efficients that reflect the color structure of the real parts of
virtual graphs,

VlkðtÞ ∝ ð½ðTl · TkÞ ⊗ 1� þ ½1 ⊗ ðTl · TkÞ�Þ: ð10Þ
Here ½ðTl · TkÞ ⊗ 1� inserts color matrices on the color
lines of partons with indices l and k in the ket state, while
½1 ⊗ ðTl · TkÞ� inserts color matrices on the color lines of
partons with indices l and k in the bra state. Here l or k or
both can be the indices “a” and “b” of the initial state
partons and k can equal l.

III. EVOLUTION IN THE LC+ APPROXIMATION

We can use the LC+ approximation described in Ref. [7]:

d
dt

ULCþðt; t0Þ ¼ ½HLCþðtÞ − VLCþðtÞ�ULCþðt; t0Þ: ð11Þ

Reference [7] does not give an LC+ approximation for
V iπðtÞ.4 In this paper, we simply take5

VLCþ
iπ ðtÞ ¼ 0: ð12Þ

The LC+ operators HLCþðtÞ and VLCþðtÞ obey
ð1jHLCþðtÞ ¼ ð1jVLCþðtÞ: ð13Þ

This gives us

ð1jULCþðt; t0Þ ¼ ð1j; ð14Þ
so that probability is conserved in LC+ evolution.
The differential equation (11) can be solved in the form

ULCþðt; t0Þ

¼ N LCþðt; t0Þ þ
Z

t

t0

dτULCþðt; τÞHLCþðτÞN LCþðτ; t0Þ:

ð15Þ
Here N LCþðt2; t1Þ is the no-splitting operator,

N LCþðt2; t1Þ ¼ exp

�
−
Z

t2

t1

dτ VLCþðτÞ
�
: ð16Þ

It is well to recall here an essential point: the operator
VLCþðτÞ is diagonal in the color basis that we use, the trace
basis, so that it is practical to calculate its exponential.

IV. EVOLUTION BEYOND THE LC+
APPROXIMATION

Now, what if we want shower evolution with full color?
Then we need

d
dt

Uðt; t0Þ ¼ ½HLCþðtÞ − VLCþðtÞ
þ ΔHðtÞ − ΔVðtÞ�Uðt; t0Þ; ð17Þ

where

ΔHðtÞ ¼ HIðtÞ −HLCþðtÞ;
ΔVðtÞ ¼ VðtÞ − VLCþðtÞ: ð18Þ

Note that since we have set VLCþ
iπ ðtÞ ¼ 0, V iπðtÞ is included

in ΔVðtÞ:

ΔVðtÞ ¼ ΔVReðtÞ þ V iπðtÞ: ð19Þ

This differential equation can be solved in the form

Uðt;t0Þ¼N ðt;t0Þ

þ
Z

t

t0

dτUðt;τÞ½HLCþðτÞþΔHðτÞ�N ðτ;t0Þ: ð20Þ

Here N ðt2; t1Þ is the no-splitting operator,

4The suggestion in Ref. [7] that the first term in Eq. (10.8) of
that paper might be included in the LC+ approximation does not
work because Eq. (13) below would fail.

5One can, at least in principle, include V iπðtÞ in the LC+
approximation. We leave the exploration of this possibility to
future work.
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N ðt; t0Þ ¼ T exp

�
−
Z

t

t0

dτ ½VLCþðτÞ þ ΔVðτÞ�
�
; ð21Þ

where T denotes time ordering for the noncommuting
operators in the exponent, with latest times to the left.
Unfortunately, we cannot include ΔVðτÞ here in expo-

nentiated form because of its complicated color structure.
Thus we write the evolution equation for N ðt; t0Þ:

d
dt

N ðt; t0Þ ¼ −½VLCþðtÞ þ ΔVðtÞ�N ðt; t0Þ: ð22Þ

We can solve this in the form

N ðt; t0Þ ¼ N LCþðt; t0Þ −
Z

t

t0

dτN ðt; τÞΔVðτÞN LCþðτ; t0Þ:

ð23Þ

This can be solved iteratively. The first three terms are

N ðt; t0Þ ¼ N LCþðt; t0Þ

−
Z

t

t0

dτN LCþðt; τÞΔVðτÞN LCþðτ; t0Þ

þ
Z

t

t0

dτ2

Z
τ2

t0

dτ1N LCþðt; τ2ÞΔVðτ2Þ

×N LCþðτ2; τ1ÞΔVðτ1ÞN LCþðτ1; t0Þ þ � � � :
ð24Þ

It is convenient to write the solution as

N ðt; t0Þ ¼ Xðt; t0ÞN LCþðt; t0Þ; ð25Þ

where

Xðt; t0Þ ¼ 1 −
Z

t

t0

dτN LCþðt; τÞΔVðτÞN LCþðt; τÞ−1

þ
Z

t

t0

dτ2

Z
τ2

t0

dτ1N LCþðt; τ2ÞΔVðτ2Þ

×N LCþðτ2; τ1ÞΔVðτ1ÞN LCþðt; τ1Þ−1 þ � � � :
ð26Þ

When we use Xðt; t0Þ, we understand that it is expanded to
whatever order in ΔVðτÞ that we need.
Using the operator X, we write the evolution equation

Eq. (20) in the form

Uðt; t0Þ ¼ Xðt; t0ÞN LCþðt; t0Þ

þ
Z

t

t0

dτ Uðt; τÞ½HLCþðτÞ þ ΔHðτÞ�

× Xðτ; t0ÞN LCþðτ; t0Þ: ð27Þ

This generates a shower, at least in principle. At each step
in the shower the splitting operator is

OðτÞ ¼ ½HLCþðτÞ þ ΔHðτÞ�Xðτ; t0Þ: ð28Þ

Notice that Xðτ; t0Þ is an operator on the color space, but
does not create any new partons. Once the color is trans-
formed by Xðτ; t0Þ, the operator ½HLCþðτÞ þ ΔHðτÞ� cre-
ates a new parton and further modifies the color. The net
operator in Eq. (28) is then a splitting operator in the sense
that it creates a new parton. It is also a nontrivial operator
on the color state.
Our goal now is to treat the operator ΔHðτÞ and the

operatorΔVðτÞ in X perturbatively. To avoid confusion, we
note that expanding in powers of ΔHðτÞ and ΔVðτÞ is not
equivalent to expanding in powers of 1=N2

c .
In order to make the evolution equation (27) practical for

a computer program, we will need to rearrange it. To do
that, we first review the singularities that control the
evolution and analyze the different roles of soft and
collinear singularities.

V. SPLITTING VARIABLES AND SINGULARITIES

The splitting operator HIðtÞ is singular in the limit of
very large shower times t, corresponding to very small
splitting virtualities. In order to study this limit, it is
convenient to define a dimensionless virtuality variable
y. For a final state splitting in which a massless parton with
momentum pl splits into massless daughter partons with
momenta p̂l and p̂mþ1, we define [Ref. [4], Eq. (4.19)]

y ¼ ðp̂l þ p̂mþ1Þ2
2pl ·Q

; ð29Þ

where Q is the total momentum of the final state partons
before the splitting. For an initial state splitting in which a
massless initial state parton with momentum pl (l ¼ a or b)
splits in backward evolution into a new massless initial
state parton with momentum p̂l and a massless final state
parton with momentum p̂mþ1, we define [Ref. [10],
Eq. (4.1)]

y ¼ −
ðp̂l − p̂mþ1Þ2

2pl ·Q
: ð30Þ

In addition to y, the splitting functions in HIðtÞ depend
on a momentum fraction z [Ref. [13], Eqs. (7) and (9)].
Various definitions of z are possible. For a final state
splitting, DEDUCTOR uses

p̂mþ1 · ñl
p̂l · ñl

¼ 1 − z
z

; ð31Þ

where the auxiliary lightlike vector ñl is defined using the
total momentum Q of the final state partons:
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ñl ¼
2pl ·Q
Q2

Q − pl: ð32Þ

For the splitting of initial state parton “a” from hadron A, z
is the ratio of momentum fractions ηa before and η̂a after the
splitting:

z ¼ ηa
η̂a

¼ pa · pb

p̂a · pb
: ð33Þ

Here pb is the momentum of the initial state parton from
hadron B. There is a third splitting variable, the azimuthal
angle ϕ of p̂mþ1 about the direction of the mother parton, pl
in the rest frame of Q.
We will denote the splitting variables fy; z;ϕg collec-

tively by ζp and the flavor choice in the splitting by ζf. We
denote fζp; ζfg by ζ, as described in more detail in
Appendix A.
The default choice of the shower ordering variable in

DEDUCTOR is Λ2, defined by

Λ2 ¼ ðp̂l þ p̂mþ1Þ2
2pl ·Q0

Q2
0 final state;

Λ2 ¼ jðp̂l − p̂mþ1Þ2j
2pl ·Q0

Q2
0 initial state; ð34Þ

where Q0 is the total momentum of the final state particles
at the start of the shower. [See Ref. [13], Eq. (5)]. Then the
shower time t is the logarithmic variable [Ref. [13],
Eq. (A.6)],

t ¼ logðQ2
0=Λ2Þ ¼ log

�
1

y
pl ·Q0

pl ·Q

�
; ð35Þ

so that y → 0 implies t → ∞.

VI. SOFT VERSUS COLLINEAR CONTRIBUTIONS

The splitting functions in HIðtÞ are singular in the limit
y → 0. There are two kinds of singularities. There are
collinear singularities, corresponding to y → 0 at fixed z.
There are also fixed angle, soft singularities, corresponding
to emission of a soft gluon carrying momentum fraction
(1 − z): y → 0 and z → 1 with fixed y=ð1 − zÞ. There are
also collinear × soft singularities, in which y → 0, z → 1,
and y=ð1 − zÞ → 0. We recall [7] that the LC+ approxi-
mation is exact for collinear splittings and for collinear ×
soft splittings. It it approximate only for fixed angle soft
splittings.
In this section we explore the contribution of the

collinear and collinear × soft regions compared to the con-
tribution of the fixed angle soft contribution to the operators
ΔHðτÞ and Xðτ; t0Þ. We do this by decomposing the
operators involved into parts that get contributions only
from the fixed angle soft region and parts that get

contributions from everywhere else. The DEDUCTOR code
is not organized using this decomposition, but nevertheless
the analysis of this section can help us to understand the
behavior of the approximations that we use to go beyond
the LC+ approximation.
We can divide HIðtÞ into two contributions [4],

HIðtÞ ¼ HcollðtÞ þHsoftðtÞ: ð36Þ

The contributionHcollðtÞ contains the collinear and also the
collinear × soft singularities, while HsoftðtÞ contains only
the fixed angle, soft singularities. We review the definitions
for this decomposition in Appendix B. Here we state only a
few important properties of the two contributions.
The contribution HcollðtÞ comes from the square of a

Feynman graph in a physical gauge in which the new parton
mþ 1 is emitted from a given parton (e.g., l or a), as
illustrated in Fig. 1. This gives a function whose y → 0 limit
is a Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
splitting function PðzÞ, including its 1=ð1 − zÞ singularity.
The contributionHsoftðtÞ comes from interference of two

emissions: a soft gluon emitted from one parton in the ket
state and the same soft gluon emitted from a different
parton in the bra state, as illustrated in Fig. 2. As wewill see
in Appendix B, in a physical gauge, this contribution has at
most integrable singularities in the limit in which the
emitted gluon becomes collinear to either of the two
emitting partons [5].
In Eq. (18), we defined another decomposition of HIðtÞ,

HIðtÞ ¼ HLCþðtÞ þ ΔHðtÞ: ð37Þ

According to the definition of the LC+ approximation in
Ref. [7], the LC+ approximation is exact for splittings
corresponding to the square of a Feynman graph in a
physical gauge. We can divide Hcoll

I ðtÞ into its LC+
approximation and a remainder, as in Appendix B,

HcollðtÞ ¼ HLCþ
coll ðtÞ þ ΔHcollðtÞ: ð38Þ

We have

ΔHcollðtÞ ¼ 0: ð39Þ

FIG. 1. Collinear real emission from parton l. In this cut
diagram, the vertical line represents the final state.
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That is, ΔHðtÞ has only a fixed angle, soft contribution,
but has no collinear contribution. On the other hand, the
LC+ approximation is not exact for HsoftðtÞ, so that in the
decomposition

HsoftðtÞ ¼ HLCþ
soft ðtÞ þ ΔHsoftðtÞ; ð40Þ

both contributions are nonzero.
The Sudakov exponent VðtÞ can be decomposed in an

analogous manner,

VðtÞ ¼ VcollðtÞ þ VsoftðtÞ þ V iπðtÞ: ð41Þ

Here V iπðtÞ is the contribution from the imaginary part of
virtual graphs and is given in Eq. (9). The splitting
functions VcollðtÞ and VsoftðtÞ represent splittings that did
not happen. They are the same as those in HIðtÞ except for
their color structure and except that we now integrate over z
and ϕ. Thus if we write

VcollðtÞ ¼ VLCþ
coll ðtÞ þ ΔVcollðtÞ;

VsoftðtÞ ¼ VLCþ
soft ðtÞ þ ΔVsoftðtÞ; ð42Þ

we have

ΔVcollðtÞ ¼ 0: ð43Þ

In this paper, we do not introduce an LC+ approximation
for V iπðtÞ, so

V iπðtÞ ¼ ΔV iπðtÞ; ð44Þ

as in Eq. (19).
The corresponding color structures [7] are illustrated in

Fig. 3 for VcollðtÞ and Fig. 4 for VsoftðtÞ. The color structure
of VsoftðtÞ is nontrivial, so that we cannot exponentiate
VsoftðtÞ in any simple way. Fortunately, the color structure
of VcollðtÞ is very simple: for gluon emission from a quark,
it is proportional to a unit operator on the color space times
a factor CF, for gluon emission from a gluon, it is propo-
rtional to CA, and for a g → qþ q̄ splitting, it is propor-
tional to TR ¼ 1=2.

The simplicity of the color structure of VcollðtÞ has an
important consequence: even if the color state to which we
apply VcollðtÞ changes, applying VcollðtÞ to this state still
returns the state times CF, CA, or TR depending on the
flavor of the splitting parton. This means that VLCþ

coll ðtÞ com-
mutes with VLCþ

soft ðtÞ and the full ΔVðtÞ. Because VLCþ
coll ðtÞ

commutes with VLCþ
soft ðtÞ,N LCþðt2; t1Þ in Eq. (16) takes the

form

N LCþðt2; t1Þ ¼ exp

�
−
Z

t2

t1

dτ VLCþ
coll ðτÞ

�

× exp

�
−
Z

t2

t1

dτ VLCþ
soft ðτÞ

�
: ð45Þ

Additionally, in Eq. (26) for Xðt; t0Þ, all of the factors of
exponentials of VLCþ

coll ðτÞ commute with the other factors in
Xðt; t0Þ, giving

N LCþ
coll ðt; τnÞN LCþ

coll ðτn; τn−1Þ � � �
� � �N LCþ

coll ðτ2; τ1ÞN LCþ
coll ðt; τ1Þ−1 ¼ 1: ð46Þ

That is, only the soft contribution to VLCþðτÞ contributes to
Xðt; t0Þ. Furthermore, according to Eq. (43), only V iπðτÞ
and the soft contribution to VðτÞ contributes toΔVðτÞ. Thus
everywhere in Eq. (26) for Xðt; t0Þ, we can replace
VðτÞ → VsoftðτÞ þ V iπðτÞ, dropping VcollðτÞ. Thus the oper-
ator VcollðτÞ does not appear at all in Xðt; t0Þ. That is,

FIG. 2. Soft real emission from parton l interfering with
emission from parton k.

FIG. 3. Collinear virtual emission from parton l.

FIG. 4. Soft virtual exchange between partons l and k.
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Xðt; t0Þ

¼ 1−
Z

t

t0

dτN LCþ
soft ðt;τÞ½ΔVsoftðτÞþV iπðτÞ�N LCþ

soft ðt;τÞ−1

þ
Z

t

t0

dτ2

Z
τ2

t0

dτ1N
LCþ
soft ðt;τ2Þ½ΔVsoftðτ2ÞþV iπðτ2Þ�

×N LCþ
soft ðτ2;τ1Þ½ΔVsoftðτ1ÞþV iπðτ1Þ�N LCþ

soft ðt;τ1Þ−1þ�� � ;
ð47Þ

where

N LCþ
soft ðt2; t1Þ ¼ exp

�
−
Z

t2

t1

dτ VLCþ
soft ðτÞ

�
: ð48Þ

We note that in calculating Xðt; t0Þ according to Eq. (47),
we exponentiate VLCþ

soft ðτÞ and expand perturbatively in
powers of ΔVsoftðτÞ and V iπðτÞ. We also note that the
operator VcollðτÞ carries both collinear and collinear × soft
singularities and thus can contribute double large loga-
rithms for each power of αs for some observables. Since this
operator does not appear at all inXðt; t0Þ, the factorXðt; t0Þ
in Eq. (27) gives only single logarithms for each power
of αs.

VII. COLOR STATES

In the previous versions of DEDUCTOR, we always
evolved a single basis state and after every step of the
shower we always expanded the color state on basis states.
The corresponding sums over basis states were then
performed by Monte Carlo summation: picking one term
at random. This is useful in the implementation since it
keeps the code rather simple. However when we consider
the effect of the fixed angle soft radiation, we can have
serious numerical problems because performing all sums
over color basis states by Monte Carlo summation leads to
greater fluctuations than one wants. Instead, we can always
select a unique basis state in the momentum and flavor
space but in the color space we can use a linear combination
of the color basis states. For this purpose, we define a
statistical state with definite momentum and flavor choice
but a more general color state as

jfp; f;ψgmÞ ¼ jfp; fgmÞ ⊗
X

fc0;cgm
ψðfc0; cgmÞjfc0; cgmÞ:

ð49Þ

The state is labeled by the function ψ giving the coefficients
of the expansion of the color state in color basis states.

VIII. THE LC+ NO SPLITTING OPERATOR

From Eq. (27), we see that the no-splitting operator in the
LC+ approximation plays an important role in shower
evolution. The LC+ approximation is defined in such a way

that every basis state jfp; f; c0; cgmÞ is an eigenstate of
N LCþðt2; t1Þ [7],

N LCþðt2; t1Þjfp; f; c0; cgmÞ
¼ Δðt2; t1; fp; f; c0; cgmÞjfp; f; c0; cgmÞ: ð50Þ

When the LC+ no-splitting operator acts on a generic state
we have

N LCþðt2; t1Þjfp; f;ψgmÞ
¼ jfp; fgmÞ ⊗

X
fc0;cgm

Δðt2; t1; fp; f; c0; cgmÞ

× ψðfc0; cgmÞjfc0; cgmÞ: ð51Þ

The result is a linear combination of the basis vectors, as in
jfp; f;ψgmÞ, but the terms are weighted by the correspond-
ing Sudakov factor. In this section, we rewrite the LC+ no-
splitting operator as the product of an average Sudakov
factor Δðt2; t1; fp; f;ψgmÞ for the generic color state ψ and
a weight factor given by an operator Φ. We can use the
average Sudakov factor to select splitting variables.
The Sudakov factor Δðt2; t1; fp; f; c0; cgmÞ is an expo-

nential,6

Δðt2; t1; fp; f; c0; cgmÞ

¼ exp

�
−
Z

t2

t1

dτ λðfp; f; c0; cgm; τÞ
�
: ð52Þ

The Sudakov exponent has the form7

λðfp; f; c0; cgm; tÞ

¼
X
l

Z
dζδðt − Tlðζp; fpgmÞÞ

×
X
k

λlkðfp; fgm; ζÞχðk; l; fc0; cgmÞ: ð53Þ

Recall from Sec. V that ζ ¼ fζp; ζfg is a shorthand notation
for the splitting variables in momentum and flavor. Then dζ
stands for integrating over the momentum splitting varia-
bles and summing over the new flavors as in Eqs. (A16) and
(A17) below. The function T specifies the shower time
according to Eq. (35). The function λlkðfp; fgm; ζÞ is a
rather complicated non-negative color-independent func-
tion given in Eq. (A4). The function χðk; l; fc0; cgmÞ is a
simple momentum-independent function

6The function λðfp; f; c0; cgm; τÞ here was called λLCþðfp;
f; cgm; τÞ þ λLCþðfp; f; c0gm; τÞ in Eq. (7.4) of Ref. [7].

7The function λlkðfp; fgm; ζÞχðk; l; fc0; cgmÞ was called
λðfp; f; c0; cgm; l; k; fp̂; f̂gmþ1; ÞÞ in Eq. (7.6) of Ref. [7],
although the c0 argument seems to be missing in Ref. [7].
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χðk; l; fc0; cgmÞ ¼ χðk; l; fcgmÞ þ χðk; l; fc0gmÞ; ð54Þ

where

χðk; l; fcgmÞ

¼
8<
:

1 if k ¼ l

1 if k is color connected to l infcgm
0 otherwise

: ð55Þ

We want to define an averaged Sudakov exponent that is
simple in color and has all the soft-collinear and collinear
singularities. This can be done many ways but in this paper
we define this via an averaged characteristic function,
ξðk; l; fψgmÞ. In general it can depend on the fψgm state. In
order to recover the exact collinear and soft-collinear
singularities in the averaged Sudakov exponent we should
have

X
k≠l

ξðk; l; fψgmÞ ¼
X
k≠l

χðk; l; fc0; cgmÞ

¼ 2þ 2θðfl ¼ gÞ: ð56Þ

We also require

ξðl; l; fψgmÞ ¼ 2: ð57Þ

We give two possible definitions of the averaged character-
istic function ξðk; l; fψgmÞ below. Using whatever defini-
tion is chosen, we can define an averaged Sudakov
exponent

λðfp; f;ψgm; tÞ

¼
X
l

Z
dζδðt − Tlðζp; fpgmÞÞ

×
X
k

λlkðfp; fgm; ζÞξðk; l; fψgmÞ ð58Þ

and the corresponding Sudakov factor

Δðt2; t1; fp; f;ψgmÞ

¼ exp

�
−
Z

t2

t1

dτ λðfp; f;ψgm; τÞ
�
: ð59Þ

Now the no-splitting operator is the product of the new
Sudakov factor Δðt2; t1; fp; f;ψgmÞ and an operatorΦ that
supplies a correction factor:

N LCþðt2; t1Þjfp; f;ψgmÞ
¼ Δðt2; t1; fp; f;ψgmÞΦðt2; t1;ψÞjfp; f;ψgmÞ; ð60Þ

where the operator Φðt2; t1;ψÞ is defined as

Φðt2; t1;ψÞjfp; f; c0; cgmÞ

¼ Δðt2; t1; fp; f; c0; cgmÞ
Δðt2; t1; fp; f;ψgmÞ

jfp; f; c0; cgmÞ: ð61Þ

This definition gives us

Φðt2; t1;ψÞjfp; f;ψgmÞ
¼

X
fc0;cgm

ψðfc0; cgmÞjfp; f; c0; cgmÞ

× exp

�
−
Z

t2

t1

dτ ½λðfp; f; c0; cgm; τÞ

− λðfp; f;ψgm; τÞ�
�
: ð62Þ

Our expectation is that the difference between λðfp; f; c0;
cgm; τÞ and λðfp; f;ψgm; τÞ will be reasonably small, so
that the weight factor created byΦðt2; t1;ψÞwill be close to
1. The reason for this expectation is that splitting functions
in λðfp; f; c0; cgm; τÞ are independent of the color state
fc0; cgm in the limit of collinear and collinear × soft
splittings. This means that the difference between λðfp; f;
c0; cgm; τÞ and λðfp; f;ψgm; τÞ in Eq. (62) is sensitive only
to fixed-angle soft splittings, which we expect are not
numerically very important.
In designing DEDUCTOR 3.0.0, we considered and imple-

mented two versions of the averaged characteristic func-
tion. Define a function pðψ ; fc0; cgmÞ that assigns
probabilities to the basis states jfc0; cgmÞ. The probabilities
are positive and normalized to

X
fc0;cgm

pðψ ; fc0; cgmÞ ¼ 1: ð63Þ

The choice of the probabilities is largely arbitrary and the
physical quantities are independent of them. One choice
tries to emphasize the importance of the basis state,

pðψ ; fc0; cgmÞ ¼
jψðfc0; cgmÞjN−I0ðfc0;cgmÞ

cP
fc̃0;c̃gm jψðfc0; cgmÞjN

−I0ðfc̃0;c̃gmÞ
c

: ð64Þ

Here I0ðfc0; cgmÞ is defined using the color overlap of color
basis states using the UðNcÞ group instead of SUðNcÞ:

hfc̃0gmjfc̃gmiUðNcÞ ¼
const

NI0
c

�
1þO

�
1

Nc

��
: ð65Þ

This choice of the probability function emphasizes the
color basis states in ψ that do not have big I0.
Now, with these probabilities, the first averaged char-

acteristic function is defined as
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ξ1ðk;l;fψgmÞ¼
X

fc0;cgm
pðψ ;fc0;cgmÞχðk;l;fc0;cgmÞ: ð66Þ

Note that when k ¼ l then ξ1ðk; l; fψgmÞ ¼ 2.
The other choice is much simpler. It does not depend on

the color state at all but depends only on the flavor and
number of the partons. We define

ξ2ðk; l; fψgmÞ ¼ 2θðk ¼ lÞ þ 2θðk ≠ lÞ 1þ θðfl ¼ gÞ
mþ 1

:

ð67Þ

Both choices of the characteristic function have some
advantages and disadvantages. We will discuss them in the
next section.

IX. EVOLUTION

We are now in a position to rewrite the evolution
equation Eq. (27) in a computationally useful form. We
start by simply applying Eq. (27) to a state jfp; f;ψgmÞ:

Uðt; t0Þjfp;f;ψgmÞ
¼ Xðt; t0ÞN LCþðt; t0Þjfp;f;ψgmÞ

þ
Z

t

t0

dτ Uðt; τÞHIðτÞXðτ; t0ÞN LCþðτ; t0Þjfp;f;ψgmÞ:

ð68Þ

Next, we use Eq. (60) for N LCþ and, inside the integral,
we multiply and divide by the normalization factor
λðfp; f;ψgm; τÞ. This gives us

Uðt; t0Þjfp; f;ψgmÞ ¼ Δðt; t0; fp; f;ψgmÞXðt; t0ÞΦðt; t0;ψÞjfp; f;ψgmÞ

þ
Z

t

t0

dτ λðfp; f;ψgm; τÞΔðτ; t0; fp; f;ψgmÞ

× Uðt; τÞ HIðτÞ
λðfp; f;ψgm; τÞ

Xðτ; t0ÞΦðτ; t0;ψÞjfp; f;ψgmÞ: ð69Þ

In order to use this, we need to define the color coefficients of XΦjψÞ:
Xðτ; t0ÞΦðτ; t0;ψÞjfp; f;ψgmÞ ¼

X
fc0;cgm

Xðτ; t0; fp; f; c0; cgm;ψÞjfp; f; c0; cgmÞ: ð70Þ

Then

Uðt; t0Þjfp; f;ψgmÞ ¼ Δðt; t0; fp; f;ψgmÞ
X

fc0;cgm
jfp; f; c0; cgmÞXðt; t0; fp; f; c0; cgm;ψÞ

þ
Z

t

t0

dτ λðfp; fgm; τÞΔðτ; t0; fp; f;ψgmÞ

× Uðt; τÞ
X

fc0;cgm

HIðτÞjfp; f; c0; cgmÞ
λðfp; f;ψgm; τÞ

Xðτ; t0; fp; f; c0; cgm;ψÞ: ð71Þ

Now we examine what the splitting operator HIðτÞ ¼ HLCþðτÞ þ ΔHðτÞ does when applied to an arbitrary basis state,

HIðtÞjfp; f; c0; cgmÞ ¼
X
l

Z
dζδðt − Tlðζp; fpgmÞÞ

X
fĉ0;ĉgmþ1

jfp̂; f̂; ĉ0; ĉgmþ1Þ

×

�
λllðfp; fgm; ζÞGðl; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ

þ
X
k0≠l

λlk0 ðfp; fgm; ζÞGðk0; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ
�
: ð72Þ

Here ζ ¼ fζp; ζfg stands for the splitting variables and the function Tlðζp; fpgmÞ defines the shower time t as described in
Sec. V. Then the function λlkðfp; fgm; ζÞ is a rather complicated function that defines the splitting functions in HI. See
Eqs. (A4) and (A18). The first term under the square bracket represents the contributions of pure collinear radiation while
the second term represents the contributions of the collinear × soft and pure soft emissions. The function G, defined in
Eq. (A19), contains the color structure. It contains two parts, corresponding to the division of HIðtÞ into HLCþðτÞ and
ΔHðτÞ:
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Gðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ ¼ GLCþðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ þ ΔGðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ: ð73Þ

When k ¼ l, only the LC+ term is present:

Gðl; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ ¼ GLCþðl; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ: ð74Þ

Now we factor
P

k≠l λlkðfp; fgm; ζÞξðk; l; fψgmÞ from the second term. Then we have

HIðtÞjfp; f; c0; cgmÞ ¼
X
l

Z
dζδðt − Tlðζp; fpgmÞÞjfp̂; f̂gmþ1Þ ⊗

X
fĉ0;ĉgmþ1

jfĉ0; ĉgmþ1Þ
X
k

λlkðfp; fgm; ζÞξðk; l; fψgmÞ

×

�
θðk ¼ lÞGðl; l; ζf ; fĉ

0; ĉgmþ1; fc0; cgmÞ
ξðl; l; fψgmÞ

þ θðk ≠ lÞ
P

k0≠lλlk0 ðfp; fgm; ζÞGðk0; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞP
k̃≠lλlk̃ðfp; fgm; ζÞξðk̃; l; fψgmÞ

�
: ð75Þ

Inserting this into Eq. (71) and using ξðl; l; fψgmÞ ¼ 2, we obtain

Uðt; t0Þjfp; f;ψgmÞ ¼ Δðt; t0; fp; f;ψgmÞ
X

fc0;cgm
jfp; f; c0; cgmÞXðt; t0; fp; f; c0; cgm;ψÞ

þ
Z

t

t0

dτ λðfp; fgm; τÞΔðτ; t0; fp; f;ψgmÞ

×
X
l;k

Z
dζδðτ − Tlðζp; fpgmÞÞ

λlkðfp; fgm; ζÞξðk; l; fψgmÞ
λðfp; f;ψgm; τÞ

×
X

fĉ0;ĉgmþ1

Uðt; τÞjfp̂; f̂; ĉ0; ĉgmþ1Þ
X

fc0;cgm
Xðτ; t0; fp; f; c0; cgm;ψÞ

×

�
1

2
θðk ¼ lÞGðl; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ

þ θðk ≠ lÞ
P

k0≠lλlk0 ðfp; fgm; ζÞGðk0; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞP
k̃≠lλlk̃ðfp; fgm; ζÞξðk̃; l; fψgmÞ

�
: ð76Þ

The colormatrixX transforms the original color stateψ for
m partons to a linear combination of color basis states
fc0; cgm under the color transformation provided by the
operators X and Φ. Then the expression under the square
brackets is the color matrix that transforms the color state
fc0; cgm to fĉ0; ĉgmþ1. This matrix depends on the hard state
fp; fgm, the splitting variables ζ, and the parton labels l, k.
We now have a form that is useful for calculations. The

factors λΔdτ in the integral over τ say that we should pick a
next shower time τ with a probability

dPτ ¼ λðfp; fgm; τÞΔðτ; t0; fp; f;ψgmÞdτ

¼ −
d
dτ

Δðτ; t0; fp; f;ψgmÞdτ
¼ −dΔðτ; t0; fp; f;ψgmÞ ð77Þ

determined by the total color state ψ . This is different from
the probability that we would have with a single color basis

state fc0; cgm. However, we account for the probabilities for
each basis state in the factor Δðτ; t0; fp; f; c0; cgmÞ=
Δðτ; t0; fp; f;ψgmÞ in Φ, Eq. (61), and in the perturbative
factor X. Additionally, in Eq. (69) we have multiplied by
λðfp; f;ψgm; τÞ, but we have divided by this same factor.
These factors remain in Eq. (76).
Having fixed τ, we also need to pick l, k, and the splitting

variables ζ. We pick l, k, and ζ with probability

dPl;k;ζ ¼ dζδðt − Tðζ; fpgmÞÞ

×
λlkðfp; fgm; ζÞξðk; l; fψgmÞ

λðfp; f;ψgm; tÞ
: ð78Þ

According to Eq. (58), this gives us a properly normalized
probability,

P
lk

R
dPl;k;ζ ¼ 1.

We are left with a sum over colors fĉ0; ĉgmþ1 for the
mþ 1 partons after the splitting. To perform this sum, we
must chart a sensible course [23]. At one extreme is Scylla:
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we could perform this sum Monte Carlo style, picking one
color state fĉ0; ĉgmþ1 at random and accumulating a weight
factor given by the remaining factors in Eq. (76). This leads
to large fluctuations that render the calculation useless. At
the other extreme waits Charybdis: we could accumulate all
of the color states fĉ0; ĉgmþ1 into a new combined color
state ψ . This leads to color states ψ that contain so many
basis states fĉ0; ĉgmþ1 that the calculation crashes. We
choose a middle course. The algorithm can then be adjusted
to optimize performance. Its details are not important, at
least conceptually.
The algorithm described above is implemented in

DEDUCTOR with both ξ1ðk; l; fψgmÞ and ξ2ðk; l; fψgmÞ
averaged characteristic functions.

X. APPROXIMATIONS

We now need some approximations in order to have an
algorithm for color evolution that can be executed on a
finite size computer in a finite amount of time. The key
requirement is that one should be able to control the level of
approximation, so that one can obtain more nearly exact
results if one has greater computer resources available.
To start, we put a limit on the color suppression index I

in the shower evolution operator Uðt; t0Þ. As defined in
Ref. [7], the color suppression index is obtained from two
factors. The first is the number pE of explicit powers of
1=Nc that arise from choosing the color suppressed term in
the Fierz identity for g → qþ q̄ splittings that have
occurred in the shower history so far. The second is the
number of powers of 1=Nc in the overlap of the bra and ket
color states using UðNcÞ color:

1

NpE
c
hfc̃0gmjfc̃gmiUðNcÞ ¼

const
NI

c

�
1þO

�
1

Nc

��
: ð79Þ

The cross section at the end of the shower will be
suppressed by a color factor that is at least as small as
1=NI

c [7], so there is little point in keeping contributions
with large I. Thus we use the full SUðNcÞ evolution for
color states for which I − Ihard ≤ Imax, where Ihard is the
color suppression index of the hard scattering state at the
start of the shower and Imax is a parameter that we choose.
A sensible choice for Imax is Imax ¼ 4. We can improve

the approximation that results from limiting I by increasing
Imax, but there is a cost. Increasing Imax increases statistical
fluctuations in the results after a fixed amount of computer
time, so that we need more computer time to achieve the
same statistical accuracy.
If the shower operator reaches I − Ihard ≥ Imax, it

switches to an approximate shower based on the color
group UðNcÞ instead of SUðNcÞ. We also omit any further
contributions fromΔH andΔV. Thus contributions propor-
tional to 1=NI

c are calculated only approximately.

Next, we put a limit on the number of times,Nthr
Δ , that the

operator VRe defined in Eqs. (18) and (19) appears in the
threshold operator UV. This operator gives results as an
expansion in powers of ΔV and we retain only those terms
with no more than Nthr

Δ factors of ΔVRe.
Then, we put limits on the number of times that the

operatorsΔH,ΔVRe and V iπ appear in the shower evolution
operator Uðt2; t1Þ. As described in Sec. IX, Uðt2; t1Þ pro-
duces terms proportional to ½ΔH�A½ΔVRe�B½V iπ�C. We
choose parameters NΔ, NRe and Niπ . We retain only terms
with Aþ B ≤ NRe and C ≤ Niπ and Aþ Bþ C ≤ NΔ.
Increasing NRe, Niπ , NΔ, or Nthr

Δ gives more accurate
results in the limit of long computer running times and large
computer memory. However, it could use more memory
than is available and it increases statistical fluctuations in
the results after a fixed amount of computer time, so that we
need more computer time to achieve the same statistical
accuracy.
We can prescribe different accuracy parametersNRe,Niπ ,

NΔ and Imax to successive shower time intervals. One
would do this if one suspected that, for the observable being
measured, the first splitting steps of the shower are more
important than later steps, with softer splittings. In the
simplest application, we assign NRe, Niπ, NΔ, and Imax to
the interval tð0Þ < t < tð1Þ. Here tð0Þ is the starting time of
the shower as determined by the hard interaction that
initiates the shower and tð1Þ > tð0Þ, perhaps tð1Þ ¼ tð0Þ þ 5.
Then we can use an LC+ shower (NΔ ¼ 0) with the same
Imax until the shower ends. The shower ends because the
splitting kernel has a cutoff built into it that stops splittings
at a lower cutoff for the transverse momentum in a splitting.
We choose this cutoff to be kmin

T ¼ 5 GeV.
In a more elaborate calculation, one might have shower

time intervals tð0Þ < t < tð1Þ; tð1Þ < t < tð2Þ;…. Then we
would specify NRe, Niπ , NΔ, and Imax for each interval.
The DEDUCTOR 3.0.0 user interface also allows one to

specify accuracy parameters for successive shower inter-
vals determined by a fixed number of splitting steps.

XI. PROBABILITY CONSERVATION

Version 3.0.0 of DEDUCTOR implements the algorithm
outlined above. It is capable of producing cross sections, as
we will see below in Sec. XII. However, it is not so easy to
check whether it is producing correct cross sections
including nonleading color effects, as intended.
In this section, we present a test of the inner workings of

the program by testing the probability conservation prop-
erty (8),

ð1jUðt; t0Þjρðt0ÞÞ ¼ ð1jρðt0ÞÞ: ð80Þ

Here jρðt0ÞÞ is an arbitrary statistical state at shower time t0.
Then ð1jρðt0ÞÞ is the total cross section measured for that
state, obtained by integrating the differential cross section
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over all parton variables and taking the trace of the color
density matrix. After generating a shower with Uðt; t0Þ, we
have a much more complicated statistical state with
typically many more partons. We then measure the total
cross section associated with this state. The total cross
section should be the same.
Note that it is a simple consequence of the shower

evolution equation (17) that probability conservation,
Eq. (80), holds in the LC+ approximation and also with
the inclusion of contributions from the operators ΔH,
ΔVRe, and V iπ . The evolution equation (17) leads us to
the evolution equation (27). In this form of the evolution
equation, it is no longer self-evident that probability
conservation works, since ΔH and ΔV are treated very
differently now. With further manipulations, we arrive at
the algorithm implemented in DEDUCTOR, Eq. (76). Now,
probability conservation must still work but it is not a
property that one would guess from examining Eq. (76)
without knowledge of its derivation. Thus it can be a
powerful test of Eq. (76) and its implementation in code to
see whether probability conservation (80) works within the
statistical accuracy of the calculation.
We will check whether

ð1jUðt; t0Þjρðt0ÞÞ
ð1jρðt0ÞÞ

¼ 1 ð81Þ

for each value of t0. We will expand the left-hand side of
(81) in powers of ΔH, ΔVRe, and V iπ and examine the
terms proportional to ½ΔH�A½ΔVRe�B½V iπ�C. The term with
A ¼ B ¼ C ¼ 0 gives us the LC+ approximation to
Uðt; t0Þ, which obeys Eq. (81). Thus the term with A ¼
B ¼ C ¼ 0 gives us the 1 on the right-hand side of Eq. (81).
Consequently, the other times must combine to give zero.
Furthermore, if we were to replace ΔH − ΔVRe by
λReðΔH − ΔVReÞ and V iπ by λiπV iπ, the relations ð1jðΔH −
ΔVReÞ ¼ 0 and ð1jV iπ ¼ 0 tell us that Eq. (81) holds order
by order in λRe and λiπ. Thus all of the contributions with
fixed values of Aþ B and C, other than A ¼ B ¼ C ¼ 0,
must sum to zero.
In this test, the shower is limited to the shower time

interval t0 < t < t0 þ 5. We choose the maximum color
suppression index to be Imax ¼ 4. We also limit the number
of ΔH and ΔV operators as specified below.
In our test, jρðt0ÞÞ is the state produced by a 2 → 2 hard

scattering. The two final state partons have absolute value of
transverse momenta p1;T ¼ p2;T ¼ pT and c.m. energy
squared ðp1 þ p2Þ2 ¼ ŝ. With our shower time definition
and the choice of the starting time for the shower from
Ref. [13], the starting shower time is t0 ¼ logð4ŝ=ð9p2

TÞÞ.
Thus t0 ¼ logðð8=9Þð1þ coshðy1 − y2ÞÞ. We generate hard
scatterings with a wide range of transverse momenta, from
PT ¼ 20 GeV to PT ¼ 5 TeV. The smallest possible value
for t0 is about 0.6 and, with small values of PT, t0 can range
up tomore than 10.We generate a range of t0 values and plot
results in bins of t0, so that t0 has a definite value in Eq. (81).

By default, DEDUCTOR has an operator UV that comes
between the hard state jρðt0ÞÞ and the probability preserv-
ing shower operator Uðt; t0Þ. This operator sums threshold
logarithms and thereby changes the cross section. For this
test, we turn UV off.
We wish to test Eq. (81) in the presence of approxima-

tions with respect to color. However, we caution that exact
agreement with Eq. (81) is not to be expected, since there
are small systematic errors within the DEDUCTOR calcu-
lation that come from sources other than limits on the color
treatment. For instance, there are inevitably approximations
in our use of the parton distribution functions. Additionally,
there are some functions defined as integrals that are too
complicated to be performed analytically; for these, we use
gaussian numerical integration. We believe that these
systematic errors are smaller than 1%, but we have not
systematically checked their size.
We will test Eq. (81) in three ways. First, we turn off V iπ

and use only ΔH and ΔVRe. Then we turn off ΔH and
ΔVRe and use only V iπ. Finally, we use ΔH and ΔVRe and
V iπ together.
We now try the first test in which we turn off V iπ and

consider up to four insertions of ΔH and ΔVRe. That is, we
set NRe ¼ 4, Niπ ¼ 0, and NΔ ¼ 4.
In Fig. 5, we show the contributions to the left hand

side of Eq. (81) from contributions proportional to
½ΔH�A½ΔVRe�B with A ¼ B ¼ 0 as functions of t0. With
A ¼ B ¼ 0, we are looking at probability conservation
from the LC+ approximation. We see that this contribution
is 1 to within small statistical fluctuations.
Here and in later graphs,we plot error bands that represent

the estimated statistical error in the Monte Carlo data. We
can also assess the statistical errors by looking at the
fluctuations from one bin in the plot to the next. In
Fig. 5, the statistical errors are hardly visible, but they are
more visible in later plots.

FIG. 5. LC+ contribution to the left-hand side of Eq. (81).
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In Fig. 6, we look at the contribution to the left-hand side
of Eq. (81) from contributions with Aþ B ¼ 1. We plot
separately the contributions from ΔH and ΔVRe along with
their total. We see that these contributions are typically
between �1% and �4%. However, they cancel, giving a
total that is smaller than about�0.2%. It is remarkable to us
that these contributions cancel to the extent seen in the
figure since the methods of calculation for ΔH and ΔVRe
are very different.
In Fig. 7, we look at the contribution to the left-hand side

of Eq. (81) from contributions with Aþ B ¼ 2. We plot
separately the contributions from ΔH2, ΔHΔVRe, and
ΔV2

Re, along with their total. We see that the individual

contributions are typically �2%. However the total is
smaller than about �0.2%.
In Fig. 8, we look at the contributions with Aþ B ¼ 3.

We plot separately the contributions from ΔH3, ΔH2ΔVRe,
ΔHΔV2

Re, and ΔV3
Re, along with their total. The individual

contributions are small, of order �10−3. This small size is
understandable because each contribution is proportional to
α3s . The statistical fluctuations are almost as large as the
individual contributions. The total is smaller than about
�10−3, certainly smaller than the sum of the absolute
values of the individual contributions.
Finally, in Fig. 9, we look at the contributions with

Aþ B ¼ 4. We plot separately the contributions from

FIG. 6. Aþ B ¼ 1, C ¼ 0 contributions to the left-hand side of
Eq. (81) times 102.

FIG. 7. Aþ B ¼ 2, C ¼ 0 contributions to the left-hand side of
Eq. (81) times 102.

FIG. 8. Aþ B ¼ 3, C ¼ 0 contributions to the left-hand side of
Eq. (81) times 103.

FIG. 9. Aþ B ¼ 4, C ¼ 0 contributions to the left-hand side of
Eq. (81) times 104.
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ΔH4, ΔH3ΔVRe, ΔH2ΔV2
Re, ΔHΔV3

Re, and ΔV4
Re, along

with their total. The individual contributions are again
small, of order �5 × 10−4. The contributions with the most
factors of ΔH have fluctuations roughly as large as the
contributions. The total inherits the fluctuations of the
individual contributions but is consistent with zero within
its fluctuations.
We see that all contributions proportional to ½ΔH�A×

½ΔVRe�B with Aþ B ¼ 1, 2, 3, or 4 cancel to within their
statistical accuracy, confirming Eq. (81) for these contri-
butions.
We now try the second test of Eq. (81), in which we turn

off ΔH and ΔVRe and consider up to four insertions of V iπ .
That is, we set NRe ¼ 0, Niπ ¼ 4, and NΔ ¼ 4.
We divide the left-hand side of Eq. (81) into parts that we

can plot separately. The operator V iπ in Eq. (9) is the sum of
two terms, V iπ ¼ ṼL

iπ þ ṼR
iπ where in ṼL

iπ the color operator
Ta · Tb operates on ket color states and in ṼR

iπ the color
operator Ta · Tb operates on bra color states. Acting on a
color basis state jfĉgmi, Ta · Tb produces terms propor-
tional to new basis states jfĉgmi. When partons “a” and “b”
are color connected in jfcgmi, one of these new basis states
is a constant times the original basis state jfcgmi. Thus we
can write ṼL

iπ ¼ VL
iπ þ ILiπ , where I

L
iπ is the part of ṼL

iπ that
returns a constant times the original color basis state and
VL
iπ is the part of Ṽ

L
iπ that changes the color basis state. We

apply the same decomposition to ṼR
iπ . As a bookkeeping

measure, it is convenient to decompose V iπ as

V iπ ¼ VL
iπ þ VR

iπ þ Iiπ; ð82Þ
where Iiπ ¼ ILiπ þ IRiπ. That is, we label contributions
according to whether the ket color state was changed,
VL
iπ , or the bra color state was changed, VR

iπ , or the color
state was unchanged, Iiπ . In the figure legends, we
abbreviate these operators as L, R, and I.
In Fig. 10, we look at the contribution to the imaginary

part of the left-hand side of Eq. (81) from contributions
proportional to V iπ . We plot separately the contributions
from VL

iπ , V
R
iπ , and Iiπ along with their total. We see that the

individual contributions are of order �4% and that these
contributions cancel, giving a total that is smaller than
about �0.2%.
In Fig. 11, we look at the contribution to the real part of

the left-hand side of Eq. (81) from contributions propor-
tional to V2

iπ. We plot separately the contributions from
ðVL

iπÞ2 þ ðVR
iπÞ2, VL

iπV
R
iπ , I

2
iπ and IiπðVL

iπ þ VR
iπÞ along with

their total. We see that some of the individual contributions
are of order �1. It is to be expected that the contributions
from powers of V iπ are larger than those from the same
powers of ΔH and ΔVRe because αs in V iπ comes with a
factor 4π. The contributions from these terms in V2

iπ cancel,
giving a total that is smaller than about �0.2%.
In Fig. 12, we look at the contribution to the imaginary

part of the left-hand side of Eq. (81) from contributions

proportional to V3
iπ . We plot separately the contributions

from ðVL
iπÞ3, ðVL

iπÞ2VR
iπ , V

L
iπðVR

iπÞ2, ðVR
iπÞ3, I3iπ , I2iπVL

iπ, I
2
iπV

R
iπ ,

IiπðVL
iπÞ2, IiπðVR

iπÞ2, and IiπVL
iπV

R
iπ , along with their total.

We see that some of the individual contributions are of
order �0.3. Again, the contributions from these terms in
V3
iπ cancel, giving a total that is smaller than about �0.2%.
In Fig. 13, we look at the contribution to the real part of

the left-hand side of Eq. (81) from contributions propor-
tional to V4

iπ. We plot separately the contributions from
ðVL

iπÞ4 þ ðVR
iπÞ4, ðVL

iπÞ3VR
iπ þ VL

iπðVR
iπÞ3, ðVL

iπÞ2ðVR
iπÞ2, I4iπ ,

I3iπðVL
iπ þ VR

iπÞ, I2iπððVL
iπÞ2 þ ðVR

iπÞ2Þ, I2iπVL
iπV

R
iπ , IiπððVL

iπÞ3þ
ðVL

iπÞ3Þ, and IiπððVL
iπÞ2VR

iπ þ VL
iπðVR

iπÞ2Þ, along with their
total. We see that some of the individual contributions are

FIG. 10. Aþ B ¼ 0, C ¼ 1 contributions to the imaginary part
of the left-hand side of Eq. (81) times 102.

FIG. 11. Aþ B ¼ 0, C ¼ 2 contributions to the left-hand side
of Eq. (81).
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of order �0.4. Yet again, the contributions from these
terms in V4

iπ cancel, giving a total that is smaller than
about �0.2%.
We see that all contributions proportional to ðV iπÞC with

C ¼ 1, 2, 3, or 4 cancel to within their statistical accuracy,
confirming Eq. (81) for these contributions.
Finally, we consider up to four insertions of ΔH, ΔVRe

and V iπ together. That is, we set NRe ¼ 4, Niπ ¼ 4, and
NΔ ¼ 4. We examine the real part of the left-hand side of
Eq. (81), considering separately contributions proportional
to ½ΔH�A½ΔVRe�B½V iπ�C with values of Aþ Bþ C up to 4.
When we examine contributions to the real part of the

cross section with Aþ Bþ C ¼ 1, the contribution from
V iπ is not present because this contribution in imaginary.

Thus we obtain the graph shown in Fig. 6, in which the
needed cancellations work up to statistical fluctuations,
which are smaller than about �0.2%.
In Fig. 14, we look at contributions with Aþ Bþ C ¼ 2.

We plot separately the contributions from ΔH2, ΔHΔVRe,
ΔV2

Re, and V2
iπ along with their total. We do not break the

V2
iπ contribution into separate parts as we did in Fig. 11.

Recall from Fig. 11 that the separate parts of the V2
iπ

contribution are of order 1. We see that the total with
everything included vanishes up to statistical fluctuations,
which are smaller than about �1% and are dominated by
the statistical fluctuations in V2

iπ .

FIG. 12. Aþ B ¼ 0, C ¼ 3 contributions to the imaginary part
of the left-hand side of Eq. (81).

FIG. 13. Aþ B ¼ 0, C ¼ 4 contributions to the left-hand side
of Eq. (81).

FIG. 14. Aþ Bþ C ¼ 2 contributions to the left-hand side of
Eq. (81) times 102.

FIG. 15. Aþ Bþ C ¼ 3 contributions to the left-hand side of
Eq. (81) times 102.
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In Fig. 15, we look at contributions with Aþ Bþ C ¼ 3.
We plot separately the contributions from ΔH3, ΔH2ΔVRe,
ΔHΔV2

Re, ΔV3
Re, ΔHV2

iπ and ΔVReV2
iπ along with their

total. We see that the total vanishes up to statistical
fluctuations, which are smaller than about �1% and are
dominated by the statistical fluctuations in the terms that
contain V2

iπ .
Finally, in Fig. 16, we look at contributions with

Aþ Bþ C ¼ 4. We plot separately the contributions from
ΔH4, ΔH3ΔVRe, ΔH2ΔV2

Re, ΔHΔV3
Re, ΔV4

Re, ΔH2V2
iπ ,

ΔHΔVReV2
iπ , ΔV2

ReV
2
iπ, and V4

iπ , along with their total. In
this plot, the contributions with no powers of V iπ are small.
We see that the total vanishes up to statistical fluctuations,
which are smaller than about �1% and are dominated by
the statistical fluctuations in the terms that contain powers
of V iπ .
In summary, we have seen in some detail that probability

conservation, Eq. (81), works.

XII. A SAMPLE CROSS SECTION

Version 3.0.0 of DEDUCTOR, as described above, can be
used to calculate cross sections with color treated beyond
the LC+ approximation. We leave an examination of the
phenomenology of color corrections to a future work.
However, in this section we demonstrate at least that
DEDUCTOR with nonleading color effects can be used to
calculate a physical cross section. We choose a cross
section for which we expect that color effects beyond
the LC+ approximation will be small, namely the one jet
inclusive cross section dσ=dPT for jets with rapidities in
the range −2 < yJ < 2 as a function of the jet trans-
verse momentum PT for proton-proton collisions atffiffiffi
s

p ¼ 13 TeV. For the renormalization and factorization

scales in the Born cross section with which the shower
begins, we choose μR ¼ μF ¼ PBorn

T =
ffiffiffi
2

p
. The shower cross

section depends on the Λ-ordering starting scale for the
shower, which we choose to be μs ¼ ð3=2ÞPBorn

T , which
corresponds to a shower time t0 ¼ logð4ŝ=ð9½PBorn

T �2ÞÞ. We
have examined this cross section in some detail in Ref. [13]
in the LC+ approximation. Here we limit our investigation
to the effects of color beyond the LC+ approximation.
The shower stops when the transverse momentum in a

splitting reaches a cutoff kmin
T . In this section, we choose

kmin
T ¼ 5 GeV. In Ref. [13], we used kmin

T ¼ 1 GeV for
final state splittings and kmin

T ¼ 1.295 GeV for initial state
splittings. The 5 GeV choice has the advantage of making
the code run faster. If we wanted to correct to the choice in
Ref. [13], we would apply a correction factor that ranges
from about 0.93 at PT ¼ 300 GeV to 1.0 at PT ¼ 3.5 TeV.
We could also apply a correction factor of about 0.98 to
account for nonperturbative effects [13].
The formula that represents what DEDUCTOR does is the

following, taken from Eq. (134) of Ref. [14] with some
simplification of the notation:

σ½J� ¼ ð1jOJUðtf ; t0ÞUVðtf ; t0ÞjρhardÞ: ð83Þ

The statistical state jρhardÞ includes the scattering matrix
elements and a factor containing the parton distribution
functions for the two incoming partons for a range of
transverse momenta and rapidities in the hard scattering. In
principle, jρhardÞ should include next-to-leading order
(NLO) corrections with their accompanying subtractions,
as described in Ref. [14]. However, we have not imple-
mented the NLO corrections in DEDUCTOR 3.0.0. This limits
the accuracy in the calculation. The initial shower time t0 is
determined from the kinematics of the initial hard scatter-
ing: t0 ¼ logð4ŝ=ð9½PBorn

T �2ÞÞ. Thus t0 in Eq. (83) is really
an operator that gives logð4ŝ=ð9½PBorn

T �2ÞÞ as its eigenvalue
for a statistical basis state in the expansion of jρhardÞ.
The operator UVðtf ; t0Þ implements the approximate

summation of threshold logarithms, as described in
Refs. [13] and [14]. We have, however, dropped some
numerically unimportant terms from UVðtf ; t0Þ compared to
Ref. [13]. The next operator, Uðtf ; t0Þ, generates the
shower. The shower stops when the transverse momentum
in a splitting is smaller than a cutoff value kmin

T ¼ 5 GeV.
Then the operatorOJ specifies the jet measurement that we
want to make. Finally, the bra state ð1j is an instruction to
integrate and sum over all of the parton variables, including
taking the trace over the color variables.
Since dσ=dPT is a steeply falling cross section, we

display results for the ratio to the next-to-leading order
cross section [24],

KðPTÞ ¼
dσðshowerÞ=dPT

dσðNLOÞ=dPT
: ð84Þ

FIG. 16. Aþ Bþ C ¼ 4 contributions to the left-hand side of
Eq. (81) times 102.
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In the plots that follow, we choose the maximum color
suppression index to be Imax ¼ 4. This applies both within
the LC+ approximation and when operators ΔH and ΔV
are allowed.
In the upper red curve in Fig. 17, we plotKðPTÞwith two

units of color beyond the LC+ approximation in the shower
and one unit of extra color in the threshold factor: NΔ ¼
NRe ¼ Niπ ¼ 2 and Nthr

Δ ¼ 1. In the shower, the inclusion
of extra color applies in the first 5 units of shower time,
t0 < t < t0 þ 5. After that, we use an LC+ shower. The
upper blue curve is KðPTÞ in the LC+ approximation,
NΔ ¼ NRe ¼ Niπ ¼ 0 and Nthr

Δ ¼ 0. We label these as
“Full” calculations, indicating that they include the thresh-
old factor UV.
The threshold factor is quite important: in the lower,

dashed red and blue curves, we plot KðPTÞ with UV turned
off, so that we have only the standard (“Std.”), probability
preserving shower generated by Uðtf ; t0Þ. The dashed red
curve is calculated with NΔ ¼ NRe ¼ Niπ ¼ 2 in the first
5 units of shower time while the dashed blue curve is
calculated in the LC+ approximation, NΔ ¼ NRe ¼
Niπ ¼ 0.
We see that there is a small effect from going beyond the

LC+ approximation both with and without the threshold
factor. This approximately 3% effect appears both in the
Full calculation and the Std. calculation.
We find that the small effect from extra color comes from

the V iπ operators. To see this, we plot in Fig. 18 the same
curves as in Fig. 17 but without V iπ . Now there is no
difference, within statistical fluctuations, between the red
and blue curves.
It is understandable that V iπ affects the jet cross section.

We have seen that V iπ , with its factor of 4παs, is not a small
operator. Thus contributions from V2

iπ in Fig. 11 are of order

0.2. These contributions cancel when we use a completely
inclusive measurement operator, as we saw in Fig. 11.
However the different contributions have different color
states, so that we can radiate more or fewer gluons out of
the jet cone when we use a jet measurement operator. This
can change the jet cross section.
What happens if we add more powers of ΔH and ΔV?

We can double the amount of extra color by using Nthr
Δ ¼ 2

and by using NΔ ¼ NRe ¼ Niπ ¼ 4 in the first 5 units of
shower time. We have seen that having two powers of ΔH
and ΔV in Uðtf ; t0Þ changes the cross section by a factor of
only about 1.03. Thus we might expect that adding two
more powers of ΔH and ΔV will further change the cross
section by a factor of only 1þ ð0.03Þ2 ≈ 1.001. However,
this expectation could be wrong. Perhaps an unanticipated
effect will change the cross section by a much larger factor,
say 1.1. We can check by simply doing the calculation.
In Fig. 19, we plot results as in Fig. 17 but with NΔ ¼

NRe ¼ Niπ ¼ 4 and Nthr
Δ ¼ 2. The red curves show results

with the extra color insertions while the blue curves show
the results with just the LC+ approximation. The upper,
solid curves are for the Full calculation including the
threshold factor while the lower, dashed curves are for
the Std. calculation with only the probability preserving
parton shower. We see that the statistical fluctuations are
much larger than they were with just two units of extra
color.8 We now cannot see the approximately 3% change in

FIG. 17. Jet cross section ratios with Nthr
Δ ¼ 1 and with NΔ ¼

NRe ¼ Niπ ¼ 2 for t0 < t < t0 þ 5.
FIG. 18. Jet cross section ratios with Nthr

Δ ¼ 1 and with NΔ ¼
NRe ¼ 2 for t0 < t < t0 þ 5, as in Fig. 17, but with Niπ ¼ 0 so
that factors of V iπ do not appear.

8With twice as much added color, it takes about ten times more
computer time to generate the same number ofMonteCarlo events.
To produce Fig. 19, we used four times as much computer time as
Fig. 19, so we generated only about 1=3 as many points.
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the cross section that resulted from adding two units of
extra color. However, if four units of extra color added 10%
to the cross section, we could see that even with the greater
statistical fluctuations.

XIII. CONCLUSIONS

We can offer three arguments for pursuing corrections to
a leading order parton shower beyond the leading color
approximation.
When one uses an NLO calculation for the hard

scattering that initiates a shower, the hard scattering
calculation should be matched to the parton shower.
(DEDUCTOR does not currently include this matching.)
The NLO calculation naturally includes contributions
beyond the leading order in 1=N2

c . It is not impossible
to perform the matching when the shower lacks these
contributions. However, it is clearly best if the shower
includes the same color accuracy as the NLO hard
scattering calculation for the color density matrix.
One can also hope to eventually have a parton shower

algorithm in which the splitting kernels are correct to
order α2s instead of just αs. However, 1=N2

c is of roughly
the same size as αs. Thus it would seem as important to
include 1=N2

c corrections to the order αs splitting func-
tions as it is to include α2s contributions to the shower
splitting functions.
Perhaps most importantly, there may be processes in

which corrections beyond the leading order in 1=N2
c are

numerically important because these corrections multiply
large logarithms [16,25–35]. A parton shower is a prom-
ising way to investigate these effects, but evidently the
shower must incorporate ð1=N2

cÞk corrections.

Now, we briefly review the argument of this paper.
We view a parton shower as an application of the

renormalization group, proceeding from harder interactions
to softer interactions. We take the proper framework for the
shower to be quantum statistical mechanics. Simple
classical statistical mechanics is not sufficient for two
reasons. First, we need to account for quantum interference
between emission of a soft gluon from one parton and
emission from another gluon. Second, parton color is a
quantum degree of freedom. Using quantum statistical
mechanics for color requires one to consider the
jfcgmihfc0gmj density matrix in color. (The density matrix
in parton spin space is required also, but in this paper we
ignore spin.)
For a lowest order parton shower, we need two operators,

which we call HIðtÞ and VðtÞ. HIðtÞ describes parton
splittings, which increase the number of partons by one. It
has a certain color structure, which one simply reads off
from the Feynman rules for QCD. VðtÞ leaves the number
of partons unchanged. It represents an approximation to
one loop virtual graphs. It has a certain color structure,
which one simply reads off from the Feynman rules
for QCD.
The operatorsHIðtÞ and VðtÞ are related by the equation,

in the notation of this paper, ð1jHIðtÞ ¼ ð1jVðtÞ. This
means that the ideal shower based on HIðtÞ and VðtÞ
preserves probabilities. Fundamentally, this property arises
from the fact the infrared divergences of QCD cancel
between real and virtual graphs, which in turn follows from
the fact that the quantum evolution operator Uðt2; t1Þ is
unitary [36].
We know the color structure of HIðtÞ, so it is

straightforward to incorporate HIðtÞ into computer code,
as in Refs. [15,17,18]. However, we need also to
incorporate VðtÞ in order to be consistent with quantum
mechanics.
It is, unfortunately, not easy to incorporate VðtÞ into

computer code for a parton shower. The reason is that, in
the traditional formulation of a parton shower, one needs a
Sudakov factor consisting of the exponential of an integral
of VðtÞ, but this exponential is an operator on the
color space. As the number of partons increases, the
dimensionality of the color space becomes enormous, so
the exponential of an integral of VðtÞ becomes difficult to
calculate.
One commonly applies the leading color (LC) approxi-

mation in a practical parton shower. HereHIðtÞ is approxi-
mated by an operator HLCðtÞ and VðtÞ is approximated by
an operator VLCðtÞ. This approximation gets cross sections
right to leading power in 1=N2

c , where Nc ¼ 3 is the
number of colors. It has the property that VLCðtÞ is diagonal
in color, so that is easy to exponentiate.

FIG. 19. Jet cross section ratios with Nthr
Δ ¼ 2 and with NΔ ¼

NRe ¼ Niπ ¼ 4 for t0 < t < t0 þ 5.
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The LC approximation also has the crucial property
ð1jHLCðtÞ ¼ ð1jVLCðtÞ. For this reason the LC shower
preserves probabilities.
DEDUCTOR uses an improved approximation, the LC+

approximation, as its starting point for treating color.
This approximation retains some contributions that the
LC approximation drops. In this approximation HIðtÞ is
approximated by an operator HLCþðtÞ and VðtÞ is
approximated by an operator VLCþðtÞ. The approximation
has the property that VLCþðtÞ is diagonal in color, so that is
easy to exponentiate. It also has the property that
ð1jHLCþðtÞ ¼ ð1jVLCþðtÞ, so that the LC+ shower pre-
serves probabilities.
The LC+ approximation becomes exact in the limit of

collinear emissions or soft × collinear emissions. That is,
the only singular limit for emissions in which the LC+
approximation is not exact is the limit of fixed angle soft
emissions. This feature, which is not shared by the LC
approximation, is important for the working of the algo-
rithm described in this paper.
DEDUCTOR is organized as a dipole shower, in which

there is quantum interference between emission of a gluon
from a parton with label l and another parton with label k.
The symmetry between l and k is removed in such a way
that there is a singularity when the emitted gluon becomes
collinear with parton l but not with parton k. The momen-
tum mapping used in DEDUCTOR depends on the choice of l
but not the choice of k. This feature is important in the
algorithm used in this paper.
In this paper, we define ΔHðtÞ and ΔVðtÞ by HIðtÞ ¼

HLCþðtÞ þ ΔHðtÞ and VðtÞ ¼ VLCþðtÞ þ ΔVðtÞ, with
ΔVðtÞ ¼ ΔVReðtÞ þ V iπðtÞ. Then we work order by order
in ΔHðtÞ and ΔVðtÞ as advocated in Ref. [7].
We can retain terms with up to NΔ powers of ΔH and

ΔV in the first tΔ units of shower time and we can retain
Nthr

Δ powers of ΔV in the threshold operator UV. We also
impose a limit Imax on how large the color suppression
index I, Eq. (79), can grow. This limits the number of
powers of 1=Nc that we keep.
The resulting algorithm for a parton shower is approxi-

mate with respect to color but the approximation is
systematically improvable by making NΔ, Nthr

Δ , tΔ, and
Imax larger, at the cost of requiring more computer memory
or more computer time to reach the same level of
Monte Carlo statistical accuracy. This algorithm is imple-
mented in public computer code.9

We have tested whether the cancellations between ΔH
and ΔV actually work so as to produce a probability

preserving shower. Within the accuracy of the calculations,
these cancellations do work.
We have not used the new version of DEDUCTOR to

investigate cross sections in which color beyond the LC+
approximation might play an important role. We expect to
carry out such investigations in future work. However,
we have calculated the one jet inclusive cross
section beyond the LC+ approximation just to check
how well the program works in calculating a physical
cross section.
We now turn to the outlook for future work.
We expect that the algorithm presented here will not be

the last word in algorithms for this purpose. Surely it is
possible to do better. Indeed, Ángeles Martínez, De
Angelis, Forshaw, Plätzer, and Seymour [16] have provided
a formalism for the description of soft gluon emissions that
is similar in some ways to the general formalism [4,7] on
which this paper is based. If the approach of Ref. [16] can
be extended to include the collinear singularities of QCD,
then it will be of great interest to see if there can be a
practical implementation of the resulting formalism.
Perhaps such an implementation will be able to outperform
what this paper provides.
Our numerical investigations suggest that V iπ is effec-

tively a larger operator than VRe. For this reason, it may be
better to include V iπ in VLCþ instead ofΔV. This means that
one would need to numerically exponentiate V iπ. This will
cost computer resources, so it remains to be seen if this is a
better option.
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APPENDIX A: THE ACTION OF HI AND V

We need a convenient formula for HIðtÞ and for its LC+
version. We start with Eq. (5.7) of Ref. [7], and write this as

9Version 3.0.0 of the code, used in this paper, is available
at http://www.desy.de/∼znagy/deductor/ and
http://pages.uoregon.edu/soper/deductor/.
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ðfp̂; f̂; ĉ0; ĉgmþ1jHIðtÞjfp; f; c0; cgmÞ
¼

X
l;k

δðt − Tlðζp; fpgmÞÞðmþ 1Þðfp̂; f̂gmþ1jPljfp; fgmÞλlkðfp; fgm; ζÞ=Nðk; l; ζfÞ½θðk ¼ lÞ − θðk ≠ lÞ�

× ½ðfĉ0; ĉgmþ1jt†l ðfl → f̂l þ f̂mþ1Þ ⊗ tkðfk → f̂k þ f̂mþ1Þjfc0; cgmÞ
þ ðfĉ0; ĉgmþ1jt†kðfk → f̂k þ f̂mþ1Þ ⊗ tlðfl → f̂l þ f̂mþ1Þjfc0; cgmÞ�: ðA1Þ

Acting on a basis state jfp; f; c0; cgmÞ for m partons,
HIðtÞ produces a linear combination of basis states
jfp̂; f̂; ĉ0; ĉgmþ1Þ for mþ 1 partons. There is a sum over
the index l of the emitting parton and the index k of a parton
that participates in quantum interference in the splitting.
There is a new parton, labeled mþ 1. The function
ðfp̂; f̂gmþ1jPljfp; fgmÞ specifies the momentum mapping
for the splitting. It contains delta functions that, for given
initial state momenta fpgm, restrict the momenta fp̂gmþ1

after the splitting to a three dimensional surface in
momentum space. The points in this space can be labeled
by splitting variables ζp which can be chosen to be a
virtuality variable y [Eqs. (29) and (30)], a momentum
fraction z [Eqs. (31) and (33)], and an azimuthal angle ϕ.
Additionally, this function restricts the final state flavors
ff̂gmþ1. The splitting can then be characterized by flavor
splitting variables ζf (for instance u → uþ g). We denote
the momentum and flavor splitting variables collectively by
ζ. The function Tlðζp; fpgmÞ specifies our choice of the
shower time t (Eq. (35).
The last factor in Eq. (A1) contains color factors.

The notation is from Ref. [4]. For instance, the operator

t†l ðfl → f̂l þ f̂mþ1Þ in t†l ðfl → f̂l þ f̂mþ1Þ ⊗ tkðfk →
f̂k þ f̂mþ1Þ acts on the ket color state and supplies the
color matrices to split parton l into a new parton l and
parton mþ 1, with color representations according to the
specified flavors. For a g → gþ g splitting, we have (from
Eq. (7.24) of Ref. [4]),

t†l ðg → gþ gÞ ¼
ffiffiffiffiffiffi
CF

p
a†þðlÞ −

ffiffiffiffiffiffi
CF

p
a†−ðlÞ; ðA2Þ

where a†þðlÞ inserts the new gluon just to the right of parton
l on whatever string in the color basis state contains parton l
and a†−ðlÞ inserts the new gluon just to the left of parton l.
Here we define “left” to be the direction of the quark line in
the color string. For the emission of a gluon from a quark
line, we define (from Eq. (7.25) of Ref. [4]),

t†l ðq → qþ gÞ ¼
ffiffiffiffiffiffi
CF

p
a†þðlÞ; ðA3Þ

where a†þðlÞ inserts the gluon at the quark end of the string
to which the quark l belongs.
The functions λlkðfp; fgm; ζÞ are

λlkðfp; fgm; ζÞ ¼
ncðaÞncðbÞηaηb
ncðâÞncðb̂Þη̂aη̂b

fâ=Aðη̂a; μ2FÞfb̂=Bðη̂b; μ2FÞ
fa=Aðηa; μ2FÞfb=Bðηb; μ2FÞ

1

2
Nðk; l; ζfÞfθðk ¼ lÞθðf̂mþ1 ≠ gÞw̄llðfp̂; f̂gmþ1Þ

þ θðk ¼ lÞθðf̂mþ1 ¼ gÞ½w̄llðfp̂; f̂gmþ1Þ − w̄eikonal
ll ðfp̂; f̂gmþ1Þ�

þ θðk ≠ lÞθðf̂mþ1 ¼ gÞA0
lkðfp̂gmþ1Þw̄dipole

lk ðfp̂; f̂gmþ1Þg: ðA4Þ

The function w̄dipole
lk is the familiar eikonal splitting

function,

w̄dipole
lk ðfp̂; f̂gmþ1Þ ¼ 4παs

2p̂k · p̂l

p̂mþ1 · p̂kp̂mþ1 · p̂l
: ðA5Þ

(See Eq. (5.3) of Ref. [7]. Here and throughout this paper,
we assume massless partons.) The function A0

lk partitions
the dipole splitting function, which is symmetric under
k ↔ l, into a part considered to be a splitting of parton
l and a part considered to be associated with a splitting of
parton k. Our preferred choice is given in Eq. (7.12) of
Ref. [6],

A0
lkðfp̂gmþ1Þ¼

p̂mþ1 · p̂kp̂l ·Q̂

p̂mþ1 · p̂kp̂l ·Q̂þ p̂mþ1 · p̂lp̂k ·Q̂
: ðA6Þ

The function w̄eikonal
ll , from Eq. (2.10) of Ref. [5], is

w̄eikonal
ll ðfp̂; f̂gmþ1Þ ¼ 4παs

p̂l ·Dðp̂mþ1; Q̂Þ · p̂l

ðp̂mþ1 · p̂lÞ2
: ðA7Þ

Here the total momentum of all the partons before the
splitting is Q and after the splitting is Q̂. The tensor
Dðp̂mþ1; Q̂Þμν is
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Dμνðp̂mþ1; Q̂Þ ¼ −gμν þ p̂μ
mþ1Q̂

ν þ Q̂μp̂ν
mþ1

p̂mþ1 · Q̂

−
Q̂2p̂μ

mþ1p̂
ν
mþ1

ðp̂mþ1 · Q̂Þ2 ; ðA8Þ

which is the polarization sum for gluon mþ 1 in timelike
axial gauge, Q̂ · AðxÞ ¼ 0.
The function w̄ll is given in Refs. [4] and [5].

10 It is rather
complicated, but it is simple in the limit y → 0 with fixed z.
For example, for a final state q → qþ g splitting, we find
[See Ref. [5], Eq. (2.24)]

w̄ll ∼
4παs
ypl ·Q

1þ z2

1 − z
: ðA9Þ

Here we recognize that ð1þ z2Þ=ð1 − zÞ is the DGLAP
splitting function for this splitting. For a final state
g → gþ g splitting, we find [See Ref. [5], Eq. (2.52)]

w̄ll ∼
4παs
ypl ·Q

�
2z

1 − z
þ zð1 − zÞ

�
: ðA10Þ

If we add this quantity and the same quantity with
z ↔ ð1 − zÞ, corresponding to interchanging the two iden-
tical final state gluons with labels l and mþ 1, the sum of
the quantities in square brackets is the DGLAP splitting
function for finding a gluon in a gluon. For an initial state
q → qþ g splitting, we find [See Ref. [5], Eq. (2.38))]

w̄ll ∼
4παs

zypl ·Q
1þ z2

1 − z
: ðA11Þ

Again, w̄ll is proportional to the DGLAP kernel ð1þ z2Þ=
ð1 − zÞ for finding a quark in a quark. For an initial state
g → gþ g splitting, we find [See Ref. [5], Eq. (2.59)]

w̄ll ∼
4παs

zypl ·Q

�
2z

1 − z
þ 2ð1 − zÞ

z
þ 2zð1 − zÞ

�
: ðA12Þ

Thus, the limiting form of w̄ll is proportional to the DGLAP
kernel for finding a gluon in a gluon. Although w̄ll is
proportional to the relevant DGLAP kernel in the limit

y → 0 at fixed z, the full functions w̄ll are obtained directly
from the relevant Feynman diagrams and are markedly
different from the DGLAP kernels when y is not small, and
particularly when y is comparable to z or 1 − z.
We have multiplied and divided by a factor Nðk; l; ζfÞ

that depends on whether k ¼ l and on the flavors ζf in the
splitting:

Nðk; l; ζfÞ ¼

8>>>>>><
>>>>>>:

TR k ¼ l; g → qþ q̄

CF k ¼ l; q → qþ g or q̄ → q̄þ g

CA k ¼ l; g → gþ g

CF k ≠ l; q → qþ g or q̄ → q̄þ g

CA=2 k ≠ l; g → gþ g

:

ðA13Þ

This factor, from Eq. (6.12) of Ref. [7], plays a role when
we apply the LC+ approximation to the splitting.
We can rewrite Eq. (A1) by using the completeness

relation from Eq. (3.28) of Ref. [4] (with spin omitted),

1 ¼
X
m

X
fĉ0;ĉgmþ1

1

ðmþ 1Þ!
Z

½dfp̂; f̂gmþ1�

× jfp̂; f̂; ĉ0; ĉgmþ1Þðfp̂; f̂; ĉ0; ĉgmþ1j: ðA14Þ
Here we have an integration over the momenta of the
partons after the splitting along with sums over their flavors
and colors. The factor ðfp̂; f̂gmþ1jPljfp; fgmÞ in Eq. (A1)
contains delta functions, so that, using Eq. (12.2) of
Ref. [4], we are left with an integration over splitting
variables ζ, including a sum over the flavors in the splitting,

mþ 1

ðmþ 1Þ! ½dfp̂; f̂gmþ1�ðfp̂; f̂gmþ1jPljfp; fgmÞ ¼ dζ:

ðA15Þ

For a final state splitting, we have [from Ref. [12],
Eq. (B.11)]

Z
dζ � � � ¼ pl ·Q

8π2

Z
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ yÞ2 − 4Q2y

2pl ·Q

s Z
dz

Z
dϕ
2π

X
fmþ1

� � � : ðA16Þ

For an initial state splitting, we have [from Ref. [12], Eq. (B.41)]Z
dζ � � � ¼ Q2

16π2

Z
dy

Z
dz
z

Z
dϕ
2π

X
fmþ1

� � � : ðA17Þ

A sum over the new colors remains from Eq. (A14).

10The definitions of y and z in Ref. [5] are in some cases different from the definition that we use in this paper.
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This gives us a more compact version of Eq. (A1),

HIðtÞjfp; f; c0; cgmÞ ¼
X
l;k

X
fĉ0;ĉgmþ1

Z
dζδðt − Tlðζp; fpgmÞÞjfp̂; f̂; ĉ0; ĉgmþ1Þ

× λlkðfp; fgm; ζÞGðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ; ðA18Þ
where G is a color factor,

Gðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ ¼
θðk ¼ lÞ − θðk ≠ lÞ

Nðk; l; ζfÞ
½ðfĉ0; ĉgmþ1jt†l ðfl → f̂l þ f̂mþ1Þ ⊗ tkðfk → f̂k þ f̂mþ1Þjfc0; cgmÞ

þ ðfĉ0; ĉgmþ1jt†kðfk → f̂k þ f̂mþ1Þ ⊗ tlðfl → f̂l þ f̂mþ1Þjfc0; cgmÞ�: ðA19Þ

This was for the full splitting operator HIðtÞ. With the LC+ approximation, the color factor here is modified [7]:

HLCþðtÞjfp; f; c0; cgmÞ ¼
X
l;k

X
fĉ0;ĉgmþ1

Z
dζδðt − Tlðζp; fpgmÞÞjfp̂; f̂; ĉ0; ĉgmþ1Þ

× λlkðfp; fgm; ζÞGLCþðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ; ðA20Þ
where GLCþ is a color factor,

GLCþðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ ¼
θðk ¼ lÞ − θðk ≠ lÞ

Nðk; l; ζfÞ
× ½ðfĉ0; ĉgmþ1jt†l ðfl → f̂l þ f̂mþ1Þ ⊗ tkðfk → f̂k þ f̂mþ1ÞC†ðl; mþ 1Þjfc0; cgmÞ
þ ðfĉ0; ĉgmþ1jCðl; mþ 1Þt†kðfk → f̂k þ f̂mþ1Þ ⊗ tlðfl → f̂l þ f̂mþ1Þjfc0; cgmÞ�:

ðA21Þ
The added color operator Cðl; mþ 1Þ restricts the allowed states after the splitting to those in which partons l andmþ 1 are
color connected or in which they are a quark and the corresponding antiquark in a g → qþ q̄ splitting. See Eq. (6.4)
of Ref. [7].

In the case of gluon emission, f̂mþ1 ¼ g, the color factorGLCþ is nonzero only if parton k is color connected to parton l in
the ket state or the bra state or both. That is, the result is zero unless the function χðk; l; fc0; cgmÞ defined in Eq. (54) is
nonzero.
The factor Nðk; l; ζfÞ in Eq. (A13) is defined so that the total probability associated with the color factor GLCþ is just

χðk; l; fc0; cgmÞ times the probability associated with the starting color state:X
fĉ0;ĉgmþ1

hfĉ0gmþ1jfĉgmþ1iGLCþðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ ¼ hfc0gmjfcgmiχðk; l; fc0; cgmÞ: ðA22Þ

We define ΔHðtÞ as ΔHðtÞ ¼ HIðtÞ −HLCþðtÞ. Then

ΔHðtÞjfp; f; c0; cgmÞ ¼
X
l

X
k≠l

X
fĉ0;ĉgmþ1

Z
dζδðt − Tlðζp; fpgmÞÞjfp̂; f̂; ĉ0; ĉgmþ1Þ

× λlkðfp; fgm; ζÞΔGðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ; ðA23Þ

where

ΔGðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ ¼ Gðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ − GLCþðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ: ðA24Þ

We have noted that ΔGðk; l; ζf ; fĉ0; ĉgmþ1; fc0; cgmÞ is nonzero only for k ≠ l.
We need also the operator VðtÞ, which does not change the number of partons, their momenta, or their flavors and is

related to HIðtÞ by ð1jHIðtÞ ¼ ð1jVðtÞ. Following Ref. [7] we define
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VðtÞjfp; f; c0; cgmÞ ¼
X
l;k

X
fĉ0;ĉgm

jfp; f; ĉ0; ĉgmÞ
Z

dζδðt − Tlðζp; fpgmÞÞ
λlkðfp; fgm; ζÞ
Nðk; l; ζfÞ

½θðk ¼ lÞ − θðk ≠ lÞ�

× ½ðfĉ0; ĉgmj1 ⊗ tkðfk → f̂k þ f̂mþ1Þt†l ðfl → f̂l þ f̂mþ1Þjfc0; cgmÞ
þ ðfĉ0; ĉgmjtlðfl → f̂l þ f̂mþ1Þt†kðfk → f̂k þ f̂mþ1Þ ⊗ 1jfc0; cgmÞ�: ðA25Þ

This creates a practical problem because the color operators are not diagonal in the basis that we use, so that it is not
practical to calculate matrix elements of an exponential of VðtÞ.
With the LC+ approximation, we define VLCþðtÞ, using ð1jHLCþðtÞ ¼ ð1jVLCþðtÞ. This gives us

VLCþðtÞjfp; f; c0; cgmÞ ¼
X
l;k

X
fĉ0;ĉgm

Z
dζδðt − Tlðζp; fpgmÞÞjfp; f; c0; cgmÞ

λlkðfp; fgm; ζÞ
Nðk; l; ζfÞ

½θðk ¼ lÞ − θðk ≠ lÞ�

× ½ðfĉ0; ĉgmj1 ⊗ tkðfk → f̂k þ f̂mþ1ÞC†ðl; mþ 1Þt†l ðfl → f̂l þ f̂mþ1Þjfc0; cgmÞ
þ ðfĉ0; ĉgmjtlðfl → f̂l þ f̂mþ1ÞCðl; mþ 1Þt†kðfk → f̂k þ f̂mþ1Þ ⊗ 1jfc0; cgmÞ�: ðA26Þ

Now the color factors are much simpler. For instance for k ≠ l, for the case in which all of the partons k, l and mþ 1 are
gluons, in the term

ðfĉ0; ĉgmjtlðfl → f̂l þ f̂mþ1ÞCðl; mþ 1Þt†kðfk → f̂k þ f̂mþ1Þ ⊗ 1jfc0; cgmÞ;

parton k splits into two gluons in the ket state jfcgmi. When we expand the result into basis states (now withmþ 1 partons),
the new gluon can go in two places. The operator Cðl; mþ 1Þ selects one of these choices as long as l was color connected
to k in jfcgmi. Otherwise no choice survives. Thus the result is proportional to χðk; l; fcgmÞ. The added gluon then also
attaches to parton l. The color algebra then gives us a factor CA=2 times jfcgmi. Continuing with this analysis as in Ref. [7],
we find that the entire color factor in the last three lines of Eq. (A26) is an eigenvalue χðk; l; fc0; cgmÞNðk; l; ζfÞ. This gives
us a very simple result,

VLCþðtÞjfp; f; c0; cgmÞ ¼ jfp; f; c0; cgmÞ
X
l;k

Z
dζδðt − Tlðζp; fpgmÞÞλlkðfp; fgm; ζÞχðk; l; fc0; cgmÞ: ðA27Þ

APPENDIX B: THE SOFT SPLITTING FUNCTIONS

In this Appendix, we work out just what the soft splitting functions are. We can start with Eq. (5.7) of Ref. [7]:

ðfp̂;f̂; ĉ0; ĉgmþ1jHIðtÞjfp;f;c0;cgmÞ

¼
X
l;k

δðt−Tlðζp;fpgmÞÞÞðmþ1Þðfp̂;f̂gmþ1jPljfp;fgmÞ
ncðaÞncðbÞηaηb
ncðâÞncðb̂Þη̂aη̂b

fâ=Aðη̂a;μ2FÞfb̂=Bðη̂b;μ2FÞ
fa=Aðηa;μ2FÞfb=Bðηb;μ2FÞ

×
1

2
½θðk¼ lÞθðf̂mþ1≠gÞw̄llðfp̂;f̂gmþ1Þþθðk¼ lÞθðf̂mþ1¼ gÞ½w̄llðfp̂;f̂gmþ1Þ− w̄eikonal

ll ðfp̂;f̂gmþ1Þ�
−θðk≠ lÞθðf̂mþ1¼gÞA0

lkðfp̂gmþ1Þw̄dipole
lk ðfp̂;f̂gmþ1Þ�½ðfĉ0; ĉgmþ1jt†l ðfl→ f̂lþ f̂mþ1Þ⊗ tkðfk→ f̂kþ f̂mþ1Þjfc0;cgmÞ

þðfĉ0; ĉgmþ1jt†kðfk→ f̂kþ f̂mþ1Þ⊗ tlðfl→ f̂lþ f̂mþ1Þjfc0;cgmÞ�: ðB1Þ

This corresponds to the way that we actually compute, but it is not suited for our present investigations. Instead, we replace

− w̄eikonal
ll ðfp̂; f̂gmþ1Þ2½t†l ðfl → f̂l þ gÞ ⊗ tlðfl → f̂l þ gÞ�

¼
X
k≠l

w̄eikonal
ll ðfp̂; f̂gmþ1Þ½t†l ðfl → f̂l þ gÞ ⊗ tkðfk → f̂k þ gÞ þ t†kðfl → f̂l þ gÞ ⊗ tlðfl → f̂k þ gÞ�: ðB2Þ

This gives us
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ðfp̂; f̂; ĉ0; ĉgmþ1jHIðtÞjfp; f; c0; cgmÞ

¼
X
l;k

δðt − Tlðζp; fpgmÞÞÞðmþ 1Þðfp̂; f̂gmþ1jPljfp; fgmÞ
ncðaÞncðbÞηaηb
ncðâÞncðb̂Þη̂aη̂b

fâ=Aðη̂a; μ2FÞfb̂=Bðη̂b; μ2FÞ
fa=Aðηa; μ2FÞfb=Bðηb; μ2FÞ

×
1

2
½θðk ¼ lÞθðf̂mþ1 ≠ gÞw̄llðfp̂; f̂gmþ1Þ þ θðk ¼ lÞθðf̂mþ1 ¼ gÞw̄llðfp̂; f̂gmþ1Þ

− θðk ≠ lÞθðf̂mþ1 ¼ gÞfA0
lkðfp̂gmþ1Þw̄dipole

lk ðfp̂; f̂gmþ1Þ − w̄eikonal
ll ðfp̂; f̂gmþ1Þg�

× ½ðfĉ0; ĉgmþ1jt†l ðfl → f̂l þ f̂mþ1Þ ⊗ tkðfk → f̂k þ f̂mþ1Þjfc0; cgmÞ
þ ðfĉ0; ĉgmþ1jt†kðfk → f̂k þ f̂mþ1Þ ⊗ tlðfl → f̂l þ f̂mþ1Þjfc0; cgmÞ�: ðB3Þ

The combination

w̄soft
lk ðfp̂; f̂gmþ1Þ ¼ A0

lkðfp̂gmþ1Þw̄dipole
lk ðfp̂; f̂gmþ1Þ − w̄eikonal

ll ðfp̂; f̂gmþ1Þ ðB4Þ

is the soft splitting function describing the emission of a soft gluon from parton l with interference from emitting the gluon
from parton k. The function w̄dipole

lk was given in Eq. (A5). The function A0
lk was given in Eq. (A6). The function w

eikonal
ll was

given in Eqs. (A7) and (A8). Hatted vectors represent momenta of the partons after the splitting and Q̂ is the total
momentum of the final state partons after the splitting.
We can assemble this expression:

w̄soft
lk ðfp̂; f̂gmþ1Þ ¼

4παs
p̂mþ1 · p̂l

�
2p̂k · p̂lp̂l · Q̂

p̂mþ1 · p̂kp̂l · Q̂þ p̂mþ1 · p̂lp̂k · Q̂
−

2p̂l · Q̂

p̂mþ1 · Q̂
þ Q̂2p̂mþ1 · p̂l

ðp̂mþ1 · Q̂Þ2
�
: ðB5Þ

An instructive way to examine the collinear limit is to write

w̄soft
lk ðfp̂; f̂gmþ1Þ ¼

4παs
2p̂mþ1 · p̂lQ̂

2

ðp̂l · Q̂Þ2p̂k · Q̂

p̂mþ1 · p̂kp̂l · Q̂þ p̂mþ1 · p̂lp̂k · Q̂
hlk; ðB6Þ

where

hlk ¼
4p̂k · p̂lQ̂

2

p̂l · Q̂p̂k · Q̂
−

4Q̂2

p̂mþ1 · Q̂p̂l · Q̂p̂k · Q̂
ðp̂mþ1 · p̂kp̂l · Q̂þ p̂mþ1 · p̂lp̂k · Q̂Þ

þ 2ðQ̂2Þ2p̂mþ1 · p̂l

ðp̂l · Q̂Þ2ðp̂mþ1 · Q̂Þ2p̂k · Q̂
ðp̂mþ1 · p̂kp̂l · Q̂þ p̂mþ1 · p̂lp̂k · Q̂Þ: ðB7Þ

We look at this in the rest frame of Q̂. Writing p̂l ¼ ðEl; Elu⃗lÞ, where u⃗2l ¼ 1, and similarly for the other vectors, this is

w̄soft
lk ðfp̂; f̂gmþ1Þ ¼

4παs
2E2

mþ1ð1 − u⃗mþ1 · u⃗lÞ
hlk

ð1 − u⃗mþ1 · u⃗kÞ þ ð1 − u⃗mþ1 · u⃗lÞ
; ðB8Þ

with

hlk ¼ 4ð1 − u⃗k · u⃗lÞ − 4ð1 − u⃗mþ1 · u⃗kÞ − 4ð1 − u⃗mþ1 · u⃗lÞ þ 2ð1 − u⃗mþ1 · u⃗lÞ½ð1 − u⃗mþ1 · u⃗kÞ þ ð1 − u⃗mþ1 · u⃗lÞ�: ðB9Þ

With a little manipulation, this becomes

w̄soft
lk ðfp̂; f̂gmþ1Þ ¼

4παs
E2
mþ1ðu⃗mþ1 − u⃗lÞ2

hlk
ð1 − u⃗mþ1 · u⃗kÞ þ ð1 − u⃗mþ1 · u⃗lÞ

;

ðB10Þ

with
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hlk ¼ 4ðu⃗mþ1 − u⃗lÞ · ðu⃗k − u⃗lÞ − ðu⃗mþ1 − u⃗lÞ2½ð1þ u⃗mþ1 · u⃗kÞ þ ð1þ u⃗mþ1 · u⃗lÞ�: ðB11Þ

There is an overall factor 1=E2
mþ1, so that there is a singularity

in the soft limit. There is also an overall factor 1=ðu⃗mþ1−
u⃗lÞ2, so that there would be a singularity in the collinear limit
u⃗mþ1 → u⃗l if this factor were not cancelled. The first term in
hlk has a linear zero as u⃗mþ1 → u⃗l,while the second termhas a
quadratic zero. This leaves an integrable collinear singularity,
which disappears if one averages over the direction of
ðu⃗mþ1 − u⃗lÞ. Also, note that hlk can have either sign.

We could, if we liked, take the soft limit in
w̄soft
lk ðfp̂; f̂gmþ1Þ by setting p̂l → pl and p̂k → pk. For

an initial state emission, we can also set Q̂ → Q and
we can replace η̂ → η in the parton distribution functions
that multiply w̄soft

lk ðfp̂; f̂gmþ1Þ in Eq. (B3). This does not
help in the DEDUCTOR code, but it may be useful for
analyses.
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