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We construct the quasiparton distributions of mesons for two-dimensional QCD with either scalar or
spinor quarks using the 1=Nc expansion. We show that in the infinite momentum limit, the parton
distribution function is recovered in both leading and subleading order in 1=Nc.
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I. INTRODUCTION

Light-cone distribution amplitudes are central to the
description of hard exclusive processes with large momen-
tum transfer. They account for the nonperturbative quark
and gluon content of a hadron in the infinite momentum
frame. Using factorization, hard cross sections can be split
into soft partonic distributions convoluted with perturba-
tivly calculable processes. The partonic distributions are
inherently nonperturbative. They are currently estimated
using experiments, lattice simulations, or models.
Recently, one of us [1] has suggested that the light-cone

hadronic wave functions can be recovered from Euclidean
correlators in hadronic states using instead quasiparton
distribution functions through pertinent renormalization in
the infinite momentum limit. Preliminary lattice simula-
tions have proven very promising [2,3]. The purpose of this
letter is to explore this construct in two-dimensional scalar
and spinor QCD in the nonperturbative 1=Nc expansion.
Two-dimensional scalar QCD has a smooth large Nc

limit with a confining spectrum [4–6]. In this model,
the current correlators exhibits many features of four-
dimensional QCD in contrast to two-dimensional spinor
QCD [7]. In the deep inelastic regime, the results exhibit
expected scaling laws, and are overall in support of the
Feynman partonic picture and the light-cone expansion. In
this paper, these two models will be used interchangeably
to test the concept of the quasidistributions in a

nonperturbative context, as they differ by a minor
change in the algebra of the pertinent bosonic operators.
Specifically, we construct the quasiparton distributions for
both scalar and spinor QCD in leading and subleading
order in 1=Nc and show that they merge with the expected
light-cone distributions in the infinite momentum limit
without additional renormalization. Our leading conclusion
for two-dimensional spinor QCD is in agreement with a
recent study [8].
This paper consists of several new results: (i) a boso-

nization of two-dimensional scalar and spinor QCD in the
axial gauge, based on a closed form algebra valid to all
orders in 1=Nc; (ii) a derivation of the parton quasidis-
tribution function for two-dimensional scalar QCD in
leading order in 1=Nc with both leading and subleading
order in 1=P2; (iii) a smooth reduction of the parton
quasidistribution function to the distribution function in
the infinite momentum frame except at x ¼ 0, 1; (iv) a
derivation of the parton distribution and quasidistribution
functions in spinor QCD at subleading order in 1=Nc.
The organization of the paper is as follows: in Sec. II, we

discuss a canonical quantization of two-dimensional scalar
QCD in the axial gauge. We make explicit the Hamiltonian
of the model in leading order in 1=Nc using bosonized
fields. Some renormalization issues are also discussed. In
Sec. III, we make explicit the wave function for scalar QCD
in the light-cone limit. In Sec. IV, we construct the
quasiparton distribution function in leading order in
1=Nc, and show that it reduces to the light-cone wave
function in the infinite momentum limit. We also discuss
the leading correction in 1=P. In Sec. V, we show how to
generalize the bosonization scheme algebraically for both
scalar and spinor QCD, and use it for a systematic
organization of the operators in 1=Nc. This scheme is
used in Secs. VI and VII to correct the light-cone
parton distribution and quasidistribution in spinor two-
dimensional QCD through standard perturbation theory.
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We show that the subleading corrections to the quasiparton
distribution function merges with the parton distribu-
tion function in the infinite momentum limit without
renormalization. Our conclusions are in Sec. VIII. In the
Appendix, we summarized some elements of two-
dimensional spinor QCD pertinent for our canonical
analysis both in light-cone and axial gauge.

II. QUANTIZATION OF SCALAR QCD
IN AXIAL GAUGE

We first discuss the general structure of the Hamiltonian
in two dimensions for scalar SUðNcÞ QCD in the axial
gauge A1 ¼ 0. The same discussion for two-dimensional
spinor QCD in both the light-cone and axial gauge is
summarized briefly in the Appendix. The starting
Lagrangian is

L ¼ 1

2
TrF2

01 þ ðDμϕÞ†Dμϕ −m2ϕ†ϕ; ð1Þ

where ϕαðxÞ with α ¼ 1;…; Nc is a charged scalar field in
the fundamental representation of SU(Nc). In terms of the
canonical momenta π† ¼Πϕ¼ðD0ϕÞ† and π ¼Πϕ† ¼D0ϕ,
the corresponding Hamiltonian reads

H ¼
Z

dx

�
π†π þ j∂1ϕj2 þm2jϕj2

þ igTrA0ðπϕ† − ϕπ†Þ − 1

2
Trð∂1A0Þ2

�
: ð2Þ

The equation of motion for A0 is a constraint equation that
can be solved in terms of ϕ, π to yield the canonical
Hamiltonian

H ¼ H0 þHint

¼
Z

dxðπ†π þ j∂1ϕj2 þm2jϕj2Þ

þ g2

2

Z
dx

�
Ja

−1
∂2
1

Ja
�
; ð3Þ

with the current Ja ¼ iðϕ†Taπ − π†TaϕÞ. To proceed
further, we will use a freelike representation for the charged
field and its conjugate

ϕα ¼
Z

dkffiffiffiffiffiffiffiffiffiffiffi
4πEk

p e−ikxðak þ b†−kÞα

ðπ†Þα ¼ i
Z

dkffiffiffiffiffiffiffiffiffiffiffi
4πEk

p eikxEkða†k − b−kÞα; ð4Þ

with α ¼ 1;…; Nc the color index. Instead of the free
dispersion law Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, we will use an arbitary

EðkÞ that will be fixed self-consistently below in the

large Nc limit (planar approximation), with Ek → jkj
asymptotically.

A. Hamiltonian to order 1=
ffiffiffiffiffiffi
Nc

p

The Hamiltonian (3) is up to quartic in ak, a
†
k, bk, b

†
k. To

analyze it we use the bosonization method as developed in
the context of nonrelativistic many-body systems [9], and
adapted to relativistic QCD in 1þ 1 dimensions [10] to
which we refer for more details. More specifically, we
define the bilocal and color-singlet operators

Mðk1; k2Þ ¼
1ffiffiffiffiffiffi
Nc

p
X
α

aαðk1Þbαðk2Þ

Nðk1; k2Þ ¼
X
α

a†αðk1Þaαðk2Þ

N̄ðk1; k2Þ ¼
X
α

b†αðk1Þbαðk2Þ; ð5Þ

which are readily shown to form a closed algebra,

½M12;M
†
34� ¼ δ13δ24 þ

s
Nc

ðδ13N̄42 þ δ42N31Þ

½M12; N34� ¼ δ13M42 ½M12; N̄34� ¼ δ23M14

½M12;M34� ¼ ½N12; N̄34� ¼ 0

½N12; N34� ¼ δ23N14 − δ14N32; ð6Þ

with N†
12 ¼ N21, and the short hand notation M12 ≡

Mðk1; k2Þ and so on. The sign assignment for the bosoni-
zation of scalar QCD is s ¼ þ1 as all underlying operators
are bosonic. It is s ¼ −1 for the bosonization of spinor
QCD.M† creates a mesonlike state composed of a pair of a
charged scalar quark and its conjugate in the color-singlet
representation, while M annihilates the corresponding pair.
Using (5) and the identity

X
a

ðTaÞijðTaÞkl ¼ δilδkj −
1

Nc
δijδkl; ð7Þ

the Hamiltonian (3) now reads to order 1=
ffiffiffiffiffiffi
Nc

p
as

H ≈H2 þH4

H2 ¼
Z

dkΠþðkÞðNðkÞ þ N̄ðkÞÞ

þ
ffiffiffiffiffiffi
Nc

p Z
dkΠ−ðkÞðMðkÞ þM†ðkÞÞ

H4 ¼
λ

16π

Z
dk1dk2dk3dk4

δðk1 þ k2 þ k3 þ k4Þ
ðk1 þ k2Þ2

× ð−2fþðk1; k2Þfþðk3; k4ÞM†ðk1; k4ÞMð−k2;−k3Þ
þ f−ðk1; k2Þf−ðk3; k4ÞM†ðk1; k4ÞM†ðk3; k2Þ
þ f−ðk1; k2Þf−ðk3; k4ÞMðk1; k4ÞMðk3; k2ÞÞ: ð8Þ
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Here, λ ¼ g2Nc is the standard t0 Hooft coupling. We
have made use of the notation MðkÞ≡Mðk;−kÞ,
NðkÞ≡ Nðk; kÞ, and defined

Π�ðkÞ ¼ 1

2

�
k2 þm2

Ek
� Ek

�
þ λ

Z
dk1
8π

Ek1
Ek

� Ek
Ek1

ðkþ k1Þ2

f�ðk1; k2Þ ¼
ffiffiffiffiffiffi
E2

E1

s
�

ffiffiffiffiffiffi
E1

E2

s
: ð9Þ

For a consistent expansion in 1=Nc, we can eliminate theffiffiffiffiffiffi
Nc

p
term in (8) by setting Π−ðkÞ ¼ 0. The result is an

integral equation for EðkÞ

k2þm2

Ek
−Ekþ

λ

4π

Z
dk1

�
Ek1

Ek
−
Ek

Ek1

�
1

jkþk1j2
¼ 0: ð10Þ

We now follow [10] and note that the bilocal and color
singlet operators N, N† can be recast in terms of the bilocal
mesonic and color singlet operators M, M†

Nðk; pÞ ¼
Z

dqM†ðk; qÞMðp; qÞ

N̄ðk; pÞ ¼
Z

dqM†ðq; kÞMðq; pÞ; ð11Þ

without affecting the commutation rules (6) in leading
order in 1=Nc. This replacement is justified in the confined
sector. Confinement implies that the creation of a charged
scalar through a†αðk1Þ has to be always stringed to a meson
creation, sayM†ðk1; qÞ, and its annihilation through aαðk2Þ
stringed to a meson annihilation, say Mðq; k2Þ. In non-
relativistic many-body physics, the representation (11) is
known as the Holstein-Primakoff representation [9].
Inserting (11) into (8) and using the gap equation (9)
yields the leading Hamiltonian to order 1=

ffiffiffiffiffiffi
Nc

p

H ≈
Z

dpdqðΠþðpÞ þ ΠþðqÞÞM†ðp; qÞMðp; qÞ

þ λ

16π

Z
dk1dk2dk3dk4

δðk1 þ k2 þ k3 þ k4Þ
ðk1 þ k2Þ2

× ð−2fþðk1; k2Þfþðk3; k4ÞM†ðk1; k4ÞMð−k2;−k3Þ
þ f−ðk1; k2Þf−ðk3; k4ÞM†ðk1; k4ÞM†ðk3; k2Þ
þ f−ðk1; k2Þf−ðk3; k4ÞMðk1; k4ÞMðk3; k2ÞÞ: ð12Þ

B. Renormalization

The integral in (10) and subsequently the Hamiltonian
contain a divergence and require regularization. For that,
we regularize 1

ðkþk1Þ2 using the standard principal value (PV)
prescription

Z
dx

fðxÞ
ðx − yÞ2 → PV

Z
dx

fðxÞ − fðyÞ
ðx − yÞ2 þ 2fðyÞ

ϵ
: ð13Þ

It is readily seen that Π− is finite but Πþ diverges as

Πþ ¼ Πþ
r þ λ

2πϵ
; ð14Þ

withΠr finite. We have checked that, for physical states (on
mass shell), the ϵ contributions cancel out (see below).
The solution to (10) that asymptotesEk → jkj still suffers

from a logarithmic divergence even after the PV prescrip-
tion, namely,

λ

8πEk

Z
dk1

Ek1

k21
: ð15Þ

This is actually related to the mass divergence for the scalar
one-loop self energy and renormalizes the scalar mass

m2
r ¼ m2 þ λ

4π

Z
dk1

Ek1

k21
: ð16Þ

From here on, we will refer to Πþ as the renormalized
momentum operator, and m as the renormalized mass, and
omit the r-label for convenience. With this in mind, the
renormalized integral equation (10) now reads

k2þm2

Ek
−Ek

þ λ

4π

Z
dk1

��
Ek1

Ek
−
Ek

Ek1

�
PV

jkþk1j2
−
Ek1

Ek

1

k21

�
¼ 0: ð17Þ

III. WAVE-FUNCTION AND
LIGHT-CONE LIMIT

To construct the light-cone wave function of the scalar
quarks, it is useful to recast the leading-order Hamiltonian
in (12) in the form

H ≈
Z

dpdqðΠþðpÞ þ ΠþðqÞÞM†ðp; qÞMðp; qÞ

−
λ

16π

Z
dP

Z
dkdp

Aþ B
ðp − kÞ2 ; ð18Þ

using the compact notation

A¼ 2Sþðp;k;PÞM†ðp−P;pÞMðk−P;kÞ
B¼ S−ðp;k;PÞðM†ðp;p−PÞM†ðk−P;kÞþ c:cÞ
S�ðp;k;PÞ ¼ f�ðp−P;k−PÞf�ðp;kÞ: ð19Þ

The bilocal mesonic operator Mðp; qÞ can be decomposed
in suitably normalized modes
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Mðp − P; pÞ ¼ 1ffiffiffiffiffiffijPjp X
n

ðmnðPÞϕþ
n ðp;PÞ

−m†
nð−PÞϕ−

n ðp − P;−PÞÞ; ð20Þ

The first contribution refers to the light-cone wave function
describing a pair of scalar quarks moving forward in the
light front, while the second contribution refers to a pair
moving backward in the light front. The pair is charac-
terized by a relative momentum p and a center of mass
momentum P.
Here mn, m†

n are canonical bosonic annihilation and
creation operators that satisfy the standard commutation
rules, e.g.,

½mnðPÞ; m†
l ðP0Þ� ¼ δnlδðP − P0Þ; ð21Þ

and when applied to the ground state creates a meson state

jPi≡ jEnðPÞ; Pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnðPÞ

p
m†

nðPÞj0i; ð22Þ

on mass shell EnðPÞ ¼ ðP2 þM2
nÞ12. Equation (21) is seen

to follow from the leading 1=Nc commutation rules (6)
provided that the wave functions ϕ�

n satisfy pertinent orto-
normality conditions, e.g.,

Z
dpðϕþ

n ðp; PÞϕþ
l ðp; PÞ − ϕ−

n ðp;PÞϕ−
l ðp;PÞÞ ¼ δnljPj:

ð23Þ

The Heisenberg equation of motion follows by
commutation

i∂tM†ðp − P; pÞj0i ¼ ½M†ðp − P; pÞ; H�j0i; ð24Þ

which mode-by-mode translates to

ðΠþðpÞþΠþðP−pÞ∓P0
nÞϕ�

n ðp;PÞ

¼ λ

8π

Z
dk

ðp−kÞ2
× ðSþðp;k;PÞϕ�

n ðk;PÞ−S−ðp;k;PÞϕ∓
n ðk;PÞÞ: ð25Þ

We checked that the ϵ-dependent divergences noted in the
momentum operator cancel out. Indeed, using (14) the LHS
in (25) produces λ

πϵ ϕ
�, while the RHS in (25) produces

λ
4πϵ S

þðk; kÞϕ� ¼ λ
πϵ ϕ

�, both of which cancel out. This
checks the consistency of the renormalization procedure
for scalar QCD. No such renormalization is needed for
spinor QCD.
In the large momentum limit P, the equation simplifies.

For that we set p ¼ xP, k ¼ yP, and take P → ∞ on both
sides of (25). In this limit, the backward wave function
vanishes ϕ− → 0. Since

ΠþðPxÞ þ Πþðð1 − xÞPÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

n

q
¼ 1

2P

�
m2

x
þ m2

1 − x
−M2

n

�
þO

�
1

P2

�
; ð26Þ

and

SþðxP; yP; PÞ ¼
ð2 − x − yÞðxþ yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞyð1 − yÞp ; ð27Þ

the equation of motion (25) involves only the forward wave
function in the form

�
m2

x
þ m2

1 − x
−M2

n

�
ϕnðxÞ

¼ λ

4π
PV

Z
dy

ðx − yÞ2
ð2 − x − yÞðxþ yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞyð1 − yÞp ϕnðyÞ; ð28Þ

where we have defined ϕþ
n ðxP; PÞ ¼ ϕnðxÞ, and PV refers

to the principal value of the integral. (28) was obtained
initially in the light-cone gauge in [5] using different
arguments.

IV. QUASI-PARTON DISTRIBUTION FUNCTION

The light-cone distribution for scalar quarks is just
jϕþ

n ðxÞj2 in leading order in 1=Nc. We now show that to
the same order, the light-cone distribution function and the
quasidistribution function as defined in [1] are in agreement
without further normalization. For that, we define the
quasidistribution function

q̃ðx;PÞ¼þi
Z

dz
4π

eiPxzhPjð∂1ϕðzÞÞ†W½z;0�ϕð0ÞjPi

− i
Z

dz
4π

eiPxzhPjðϕðzÞÞ†W½z;0�∂1ϕð0ÞjPi; ð29Þ

where jPi refers to the meson state. In the axial gauge, the
Wilson line W½z; 0� ¼ 1. Using the mode decomposition
(4) and the relations (11) we obtain for the quasidistribution

q̃ðx; PÞ ¼ EnðPÞ
P

xP
EðxPÞ

× ðjϕþ
n ðxP; PÞj2 þ jϕþ

n ð−xP; PÞj2
þ jϕ−

n ððxP; PÞj2 þ jϕ−
n ð−xP; PÞj2Þ: ð30Þ

For P → ∞, we have EnðPÞ → P and EðxPÞ → xP and all
ϕ− vanish. The quasiparton distribution function reduces
identically to the parton distribution function jϕþ

n ðxÞj2.
For finite P, (30) shows that the backward moving

pair in ϕ− contributes. To assess this quantitatively, we now
expand in 1

P the contributions ϕ� in (30). For that, we go
back to (25) and expand in 1

P, namely
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Πþ ¼ jPj þ m2

2jPj þ
β1

2jPj3 þO
�

1

jPj4
�

EðPÞ ¼ jPj þ β2
jPj þO

�
1

jPj2
�
: ð31Þ

The coefficients β1 is fixed through a straightforward
Taylor expansion of Πþ, while β2 is fixed by the integral
equation (10). Their explicit form is not needed for the
general arguments to follow. With this in mind, the leading
correction to ϕ− is

ϕ−
1 ¼P2ϕ−

n ðxÞ¼
λ

24π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞp Z

1

0

dy
ϕnðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1−yÞp ; ð32Þ

and the subleading correction for ϕþ ¼ ϕðxÞ þ 1
P2 ϕ

þ
1 ðxÞ

formally solves

ϕ̃≡ ðK0 −H0Þϕþ
1 ¼ −K1ϕþH1ϕ −H−

0ϕ
−
1 : ð33Þ

Here we have defined

K0ðxÞ ¼
m2

x
þm2

x̄
−M2

n

H0ðx; yÞ ¼
λ

4π

ðx̄þ ȳÞðxþ yÞffiffiffiffiffiffiffiffiffiffiffi
xyx̄ ȳ

p 1

ðx − yÞ2

K1ðxÞ ¼
β1
x3

þ β1
x̄3

H−
0 ðx; yÞ ¼ −

λ

4π
ffiffiffiffiffiffiffiffiffiffiffi
xyx̄ ȳ

p

H1ðx; yÞ ¼
1

ðx − yÞ2 ffiffiffiffiffiffiffiffiffiffi
xx̄yȳ

p þ β2ðx2 − y2Þ
�
1

ȳ2
−

1

x̄2

�

þ β2ðx̄2 − ȳ2Þ
�
1

y2
−

1

x2

�
; ð34Þ

with x̄ ¼ 1 − x and ȳ ¼ 1 − y. In general, this equation is
solved in the same Hilbert space that definesK0 −H0, if we
note that K0 −H0 is hermitian in the space defined with the
measure

R
ϕ†ϕ where the set of ϕn forms a complete basis

set. The formal solution to (34) is

ϕþ
1 ðxÞ ¼

X
m≠n

ϕmðxÞ
R
1
0 dyϕ

†
mðyÞϕ̃ðyÞ

M2
m −M2

n
: ð35Þ

The 1
P expansion now clearly shows that the rate at which

the quasidistribution (30) approaches the asymptotic light-
cone distribution jϕnðxÞj2 is smooth for all x ≠ 0, 1. It is
singular for x ¼ 0, 1 through the contribution of the
backward moving pair ϕ− in (32). So the large P limit
should be taken before the x → 0, 1 limits at the edges.

V. ALGEBRAIC STRUCTURE

The algebraic framework (6) allows us to go beyond the
leading order in 1=Nc, and therefore check the proposal in
[1] beyond the leading order we have so far established.
A solution to the algebraically closed set (6) can be found
by organizing the bilocal operator in 1=Nc,

M ¼ M0 þ 1

Nc
M1 þO

�
1

N2
c

�

N ¼ N0 þ 1

Nc
N1 þO

�
1

N2
c

�
; ð36Þ

where M0 satisfies the commutation relation

½M0ðk1; k2Þ;M0†ðk3; k4Þ� ¼ δðk1 − k3Þδðk2 − k4Þ; ð37Þ

in the large Nc limit. In terms of (36)–(37), the solution to
(6) can be found by inspection in leading and next to
leading order

N0
12 ¼

Z
d3M0†

13M
0
23

N̄0
12 ¼

Z
d3M0†

31M
0
32

M1
12 ¼ ∓ 1

2

Z
d3d4M0†

34M
0
14M

0
32

N1 ¼ 0: ð38Þ

Here, we are using the short-hand notations d3; 4≡ dk3;4,
M13 ≡Mðk1; k3Þ and so on. It is important to note that the
expansion of the N’s starts at second order. From now on to
avoid cluttering, we omit the 0 for the large Nc asymptotic
operator.
When the operators in (38) are inserted back into the

Hamiltonian, we obtain a complete expression for the first
three terms of the 1=Nc expanded Hamiltonian in terms of
the large Nc asymptotic operators that define the Hilbert
space. Specifically and to order 1

N2
c
, the various contribu-

tions to the Hamiltonian can be schematically written as

H ≈ K00
MMM

†M

þ 1

Nc
K01

MMðM†1M þM†M1Þ þ 1

N2
c
K11

MMM
1†M1

þ K00
NMffiffiffiffiffiffi
Nc

p NM þ K01
NM

Nc
ffiffiffiffiffiffi
Nc

p NM1 þ K00
NN

Nc
NN; ð39Þ

with the K0s referring to pertinent coefficients (integrals of
the wave functions). Thus, up to order 1=N2

c we encounter
six M interactions, but up to oder 1=Nc

ffiffiffiffiffiffi
Nc

p
we are still

dealing with more tractable quartic and qubic terms. Our
algebraic treatment differs notably from the one presented
in [11] in that in ours the algebra is corrected which is
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required for a consistent expansion. The resulting effective
hadronic Hamiltonian is different.

VI. CORRECTION TO THE PDF
IN SPINOR QCD

Thus far, our discussion has concentrated on two-
dimensional scalar QCD, where we have established that
the quasiparton distribution function reduces to the parton
distribution function in leading order in 1=Nc. We have
checked that this is also the case for two-dimensional
spinor QCD, in agreement with a recent study [8]. In the
Appendix, we have briefly summarized the key changes
from scalar to spinor in the light-cone and axial gauge.
Since in the spinor version, the underlying fields are

fermionic and not bosonic, the algebraic structure (6)
differs from scalar to spinor QCD only in the sign
switch s ¼ þ1 → −1, with exactly the same bosonized
Hamiltonian (39). Also, to avoid unecessary long formula
we will only discuss the 1=Nc corrections to the parton
distribution function in two-dimensional spinor instead of
scalar QCD. The arguments for both models are similar, but
the formula for scalar QCD are laboriously long as we have
checked, with exactly the same conclusion.
Using the definitions for spinor QCD in the Appendix,

the pertinent bilocal mesonic operator M in the light-cone
gauge takes now the form

MðxP; ð1 − xÞPÞ ¼ 1ffiffiffiffiffiffijPjp X
n

mnðPÞϕnðxÞ ð40Þ

which satisfies (6) with s ¼ −1. To order 1=Nc, the
Hamiltonian for two-dimensional spinor QCD is the same
as in (39), which after inserting (40) yields the first two
leading contributions to the interaction of the form

λ

4π
ffiffiffiffiffiffi
Nc

p
Z

dPdP1

P
3
2

×

�
m†

i ðP1Þm†
jðP − P1ÞmkðPÞfijk

�
P1

P

�
þ c:c

�

þ 1

Nc
m†m†mm: ð41Þ

The quartic contribution in (41) is only shown schemati-
cally. It is of order 1=Nc, and apparently relevant for the
1=Nc correction to the parton distribution function.
However, by simple inspection it gives zero contribution
when acting on a free and leading meson contribution to the
state, i.e., �

1

Nc
m†m†mm

�
m†j0i ¼ 0: ð42Þ

It will be dropped. Therefore, the leading correction to the
parton distribution function is given by

X
kl

Z
dkdq
2π

ϕk

�
xP

xPþ q

�
ϕl

�
k

kþ q

�

×1 hPij
�
m†

kðxPþ qÞmlðkþ qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxPþ qÞðkþ qÞp �
jPii1: ð43Þ

Here, jPi1 is the first-order perturbation of the meson state
m†

i ðPÞj0i, which by standard perturbation theory reads

jPi1 ¼ λ

2
ffiffiffiffiffiffiffiffiffiffiffi
2πNc

p
Z

dP1

×
X
kl

�
fkliðP1

P Þm†
kðP1Þm†

l ðP − P1Þ
m2

k
x þ m2

l
1−x −m2

i

�
j0i: ð44Þ

Inserting (44) into (43) and carrying out the contractions
yields

δqiðxÞ ¼
λ2

π2Nc

Z
1−x

0

dy
X
kk0l

Fkliðx; yÞFk0liðx; yÞ
xþ y

ð45Þ

as a correction to the leading parton distribution function
qiðxÞ ¼ jϕþ

i ðxÞj2, with

Fkliðx; yÞ ¼
fkliðxþ yÞϕkð x

xþyÞ
m2

k
xþy þ

m2
l

1−x−y −m2
i

; ð46Þ

and

fijkðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞp ¼

Z
dx1dx2

ϕiðx1Þϕjðx2Þϕkðxþx2−xx2Þ
ðxx1þxx2−x−x2Þ2

−
Z

dx1dx2
ϕiðx1Þϕjðx2Þϕkðx2−xx2Þ
ðxx1þxx2−x−x2Þ2

: ð47Þ

VII. CORRECTION TO THE QUASI-PDF
IN SPINOR QCD

In this section, we derive the 1=Nc correction to the
quasiparton distribution function for two-dimensional
spinor QCD and show that it is in agreement with the
1=Nc correction to the parton distribution we just estab-
lished in the large momentum limit. For that, we switch to
the description of two-dimensional spinor QCD in the axial
gauge using the changes in the Appendix.
In the axial gauge, the Hamiltonian is written in terms of

mnðPÞ and ϕ�. The structure of the Hamiltonian is still of
the form (39). We now note that the contributions to the first
order shift of the state jPi1 of the form m†m†m† always
carries ϕ−. In the large momentum limit, these terms drop
out as we have shown earlier, so they will be ignored.
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The only surviving terms in the Hamiltonian at large
momentum are also of the form m†m†mþ c:c.
With the above in mind and to be more specific, the parts

of the Hamiltonian (39) that will contribute to the quasi-
parton distribution function in leading order in perturbation
theory are of the form

H1 ¼
1ffiffiffiffiffiffi
Nc

p
X
123

f123m
†
1m

†
2m3

H2 ¼
1

Nc

X
1234

f1234m
†
1m

†
2m

†
3m4: ð48Þ

The ensuing shifts caused by (48) on the mesonic state to
first order in 1

Nc
are, respectively, of the form

jii1¼ 1ffiffiffiffiffiffi
Nc

p
X
12

j12iα12i jii2¼ 1

Nc

X
123

j123iα123i; ð49Þ

with

α12i ¼
f12i

E1 þ E2 − Ei

α123i ¼
f123i

E1 þ E2 þ E3 − Ei

þ
X
4

f123f34i
ðE1 þ E2 þ E3 − EiÞðE3 þ E4 − EiÞ

; ð50Þ

and the coefficients fijk and fijkl are

fijkðP1; P2; P3Þ ¼
λ

4π

Z
dk1dk2dk3dk4dqδðk1 þ k2 þ k3 − k4Þδðk1 þ k2 − P1Þδðk3 þ q− P2Þδðk4 þ q− P3Þ

×

�
ϕþ
i ðk1; P1Þϕþ

j ðk3; P2Þϕþ
k ðk4; P3ÞSðk1; k2; k3; k4Þ

ðk1 − k4Þ2
−
ϕþ
i ðk1; P1Þϕþ

j ðq;P2Þϕþ
k ðq;P3ÞSðk2; k1; k3; k4Þ

ðk1 þ k3Þ2
�

þ f−ijk; ð51Þ

where we have set

Sðk1;k2;k3;k4Þ¼ cos

�
θðk1Þ−θðk4Þ

2

�
sin

�
θðk2Þþθðk3Þ

2

�
:

ð52Þ

The last contribution f−ijk involves at least one ϕ− and
therefore drops out in the large momentum limit, so it will
not be quoted.
All contributions of the form fijkl involve at least one ϕ−

and also drop out in the large momentum limit. More
specifically, in the large momentum limit, we set Pi ¼
P → þ∞, and we change our variables to P1 ¼ xP,
P2 ¼ yP, and P3 ¼ zP, then any term which contains
ϕ−ðx1P; x2PÞ vanishes in this limit, an example is the
f1234 term.
The parton fractions are constrained kinematically. For

instance, the energy denominator

1

ExP þ EyP þ Ez − Ep

implies 0 < x; y; z < 1 in leading order in 1=P, otherwise
the contribution is subleading. In this case, the only term in
H1 which contains only ϕþ [first contribution in (39)] will
reduce to the light-cone gauge term if one identifies the
creation operators in both cases using

ϕþ
n ðxP; PÞ → ϕnðxÞ

1

ExP þ Eð1−xÞP − EP
→

2P
m2

1

x þ m2
2

1−x −m2
i

: ð53Þ

More specifically, the first order correction to the quasi-
parton distribution function is proportional to

hPj
Z

dpdq sin

�
θðxPÞ þ θðpÞ

2

�
M†ðxP; qÞMðp; qÞjPi

þ hPj
Z

dpdq sin

�
θðxPÞ þ θðpÞ

2

�
×M†ðq;−pÞMðq;−xPÞjPi; ð54Þ

with jPi corrected to first order. There are two type of
contributions in (54) as we now discuss.
First, the m†m term. For this only the jii1 in the shift of

the state contributes, and the specific contribution with only
ϕþ is

2 sin
θðxPÞ
2

X
kk0l

αkliαk0li
jkj ϕþ

k ðxP; pkÞϕþ
k0 ðxP; pkÞ

þ 2 sin
θðxPÞ
2

X
kk0l

αkliαk0li
jkj

× ϕþ
k ðxPþ pk; pkÞϕþ

k0 ðxPþ pk; pkÞ: ð55Þ

In the large momentum limit, we have pk ¼ yP, and pl ¼
ð1 − yÞP as discussed above. The first term is nonzero if
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0 < x < y, and the second term is always zero for
0 < x < 1 since ðxþyÞ>y. Thus by shifting y → yþ x
with 0 < y < 1 − x, and taking care of factors of P, this
contribution matches the correction to the parton distribu-
tion function in the light-cone gauge (45).
Second, the mmþm†m† term comes with at least one

ϕ−, and is always zero in the large P limit as discussed
above. It follows, that the order 1=Nc contribution to the
quasiparton distribution matches the parton distribution in
the large momentum limit without renormalization in two-
dimensional spinor QCD. We have explicitly checked that
the same holds for two-dimensional scalar QCD.

VIII. CONCLUSIONS

Using a bosonized form of two-dimensional scalar and
spinor QCD, we have analyzed the quasiparton distribution
of a meson state. In the infinite momentum limit, the
quasidistribution matches the parton distribution on the
light cone both in leading and subleading order without
further renormalization, but the limit is subtle at the parton
fractions x ¼ 0, 1. This provides a nonperturbative check
on the proposal put forth by one of us [1] for extracting the
QCD light-cone partonic distributions from their quasidis-
tribution counterparts using pertinent equal-time Euclidean
correlators through suitable matching at large momentum.
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APPENDIX: TWO-DIMENSIONAL SPINOR QCD
IN THE LIGHT-CONE AND AXIAL GAUGE

Here and for convenience we briefly summarize some of
the changes needed to recover spinor QCD from scalar

QCD as developed in the main text. Both in the light-cone
and axial gauge, the mesonic operators M and N are
defined as in Sec. II Awith s ¼ −1. The fermionic fields in
terms of creation-annihilation operators are defined as

ψðxÞ ¼
Z

∞

0

dpþ

2π
ðaðpþÞe−ipþx− þ b†ðpþÞe−ipþx−Þ

ψðxÞ ¼
Z

dp
2π

eipxðaðpÞuðpÞ þ b†ð−pÞvð−pÞÞ; ðA1Þ

in the light-cone and axial gauge, respectively, with the
two-dimensional spinors

uðpÞ ¼ e−
1
2
θðpÞγ1ð1; 0ÞT

vð−pÞ ¼ e−
1
2
θðpÞγ1ð0; 1ÞT: ðA2Þ

The angle θðpÞ solves the transcendental equation [12]

pcosðθðpÞÞ−m sinðθðpÞÞ ¼ λ

2
PV

Z
dk

sinðθðpÞ− θðkÞÞ
ðp− kÞ2 :

ðA3Þ

The mode decomposition in the light-cone gauge is given in
(40), and in the axial gauge it is

Mðk1;P−k1Þ¼
1ffiffiffiffiffiffijPjp

×
X
n

ðϕþ
n ðk1;PÞmnðPÞ−ϕ−

n ð−k2;−PÞm†
nð−PÞÞ: ðA4Þ

The bosonized Hamiltonian is still of the form (39), with
the relevant M†MM term given in the main text.
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