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We study the thermodynamics and phase diagrams of two-flavor quantum chromodynamics using
the Polyakov-loop extended quark-meson (PQM) model and the Pisarski-Skokov chiral matrix (yM)
model [1]. At temperatures up to 7 = 2T, and baryon chemical potentials up to upz = 400 MeV, both
models show reasonable agreement with the pressure, energy density, and interaction measure as calculated
on the lattice. The Polyakov loop is found to rise significantly faster with temperature in models than on the
lattice. In the low-temperature and high baryon density regime, the two models predict different states of
matter; The PQM model predicts a confined and chirally restored phase, while the yM model predicts a
deconfined and chirally restored phase. At finite isospin density and zero baryon density, the onset of pion
condensation at 7 = O is at y; = %m,,, and the transition is second order at all temperatures. The transition
temperature for pion condensation coincides with that of the chiral transition for values of the isospin
chemical potential larger than approximately 110 MeV. In the yM model, they also coincide with the
transition temperature for deconfinement. The results are in good overall agreement with recent lattice

simulations of the u;—T phase diagram.
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I. INTRODUCTION

The first phase diagram of QCD appeared in the 1970s,
and at the time it was thought that it consists of two phases:
A hadronic low-temperature phase and a high-temperature
phase of deconfined quarks and gluons. Today, the con-
jectured phase diagram in the ug-7 plane is far more
complicated. In particular, it is believed that the deconfined
quark phase at high density and low temperature consists of
various color-superconducting phases, with different pat-
terns of spontaneous symmetry breaking. Some of these
phases may even be inhomogeneous; see Refs. [2-4] for
reviews. However, only a few exact results are known: due
to asymptotic freedom, we know that at asymptotically
high temperature, QCD is in a plasma phase of weakly
interacting quark and gluons. Similarly, due to asymptotic
freedom and the existence of an attractive interaction
via one-gluon exchange, we have a superconducting
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color-flavor locked phase at asymptotically high densities.
A severe problem in the efforts to map out the QCD phase
diagram between these asymptotic regions is that one
cannot use lattice simulations at finite baryon density due
to the so-called sign problem. The fermion determinant is
complex and one cannot apply standard Monte-Carlo
techniques based on importance sampling. Thus, one
typically has to resort to low-energy effective models
such as the quark-meson (QM) model, the Nambu-Jona-
Lasinio (NJL) model, and their Polyakov-loop extended
versions [5].

There are other external parameters that one can intro-
duce in addition to the temperature and the baryon chemical
potential. For example, one can add a (strong) magnetic
background field B. QCD in strong magnetic fields is
relevant in e.g., heavy-ion collisions [6-8] and compact
stars [9]. One can also use an independent chemical
potential y, for each quark flavor. In two-flavor QCD,
this implies that one uses y, and u, or, equivalently, up in
addition to the isospin chemical potential p;. Isospin
asymmetry and the possibility of Bose condensation of
charged pions may also be relevant to compact stars. An
advantage of QCD in a magnetic field or at finite isospin
density (but at zero pp) is that there is no sign problem, and
therefore one can use standard Monte-Carlo techniques to
study the phase diagram of these systems. This opens up
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the possibility to confront results from model calculations
with those of the first-principle method of lattice QCD.

In this paper, we study the thermodynamics of two-flavor
QCD using the Polyakov-loop extended quark-meson
(PQM) model and the Pisarski-Skokov chiral matrix model
(yM) [1] adapted for two flavors in the mean-field
approximation. In this approximation, the mesonic fields
are treated at tree level while the fermion fields are
integrated over in the Gaussian approximation. At one
loop, dropping the mesonic fluctuations is equivalent to
working in the large-N, limit. Sometimes the no-sea
approximation is made, which simply means that one
discards the fermionic quantum fluctuations. However,
one should keep vacuum fluctuations since there is no
a priori reason to omit them, not even in low-energy
models of an underlying theory. Secondly, it turns out that
the inclusion of quantum fluctuations change the order of a
phase transition in some cases; in the two-flavor QM model
the chiral transition changes from first order to second in
the chiral limit, showing the importance of keeping them.
Moreover, in almost all mean-field calculations to date, the
parameters of the Lagrangian are determined at tree level.
This is inconsistent since the effective potential has been
determined in the one-loop large-N,. approximation. The
parameters should always be determined at the same level
of accuracy as the effective potential; otherwise, erroneous
results may occur. For example, the onset of pion con-
densation at 7' = 0 takes place when the isospin chemical
potential equals half the pion mass. This exact result is only
reproduced if the matching of the parameters is done in a
consistent manner.

The paper is organized as follows. In Sec. II, we discuss
various aspects of the Polyakov loop and its properties. In
Sec. III, the gluonic sector of the PQM and yM models is
reviewed, while in Sec. I'V their chiral sectors are discussed.
Complications related to minimizing the effective potential
at nonzero baryon chemical potential are discussed in
Sec. V. In Sec. VI, we present the main result of the paper,
namely the thermodynamic functions and the phase dia-
gram in the p-T and y;-T planes. Our results are compared
with lattice results. In Sec. VII, we summarize and
conclude. Four Appendixes are devoted to technical details.

II. CENTER SYMMETRY AND
THE POLYAKOV LOOP

Let 7% be the generators of SU(N..) in the fundamental
representation. A gauge transformation of the QCD gluon
field A, = A;T“ is of the form

i

Au(x) = Q(x)A, (x)Q (x) g[aﬂQ(X)]Q*(X) (1)

for any Q(x) in the fundamental representation of SU(N..).
This transformation leaves the gluonic Lagrangian invari-
ant, and is thus a symmetry of the action of the pure gauge

theory. However, when studying QCD at finite temperature
T = 7! in the imaginary time formalism, choosing a
generic Q(x, 7) ruins the periodicity of A,(x,7) in imagi-
nary time z, as required for the field configurations summed
over in the partition function Z." Restricting ourselves to
transformations that satisfy

Q(x,7) = Q(x, 7+ f) (2)

avoids the problem, but there is a larger group of sym-
metries that preserves the imaginary time periodicity of A,,.
Consider instead a generic gauge transformation that
satisfies

Q(x,7+ ) = G(x,7)Q(x,7) (3)

for some G(x,7) € SU(N,.). Let A}, be the transformed
field. We then get

AL (x, 7+ p) = G(x,7)A},(x,7)G'(x,7)

—é[aﬂa(x,f)]cf(x,f). (4)
If G(x,7) is constant in space and imaginary time and
commutes with A;, for all (x,7), then the gauge field is
periodic. Since Q(x,7) is a matrix in the fundamental
representation of SU(N.), which is irreducible, G is
proportional to the identity matrix by Schur’s lemma.
Let G = Aly_, where Iy _is the N, x N identity matrix
and 4 € C. Since we know that G € SU(N,.), we have that
A =4, is one of the N th roots of unity, and all possible
matrices G are given by

G, = j'nIN(. = g~ 2min/N. INL.a

Clearly, {G, } forms a finite group that is isomorphic to Z ,
and it is the center group of SU(N,.). We refer to aperiodic
gauge transformations, characterized by G,, # I , as twisted
gauge transformations or center transformations.

In pure gauge theory, the expectation of the Polyakov
loop operator is an order parameter for deconfinement
[10-12]. For QCD with dynamical quarks, it is an approxi-
mate order parameter, similar to the chiral condensate. The
thermal Wilson line is given by

L(x) =T, exp [igAﬂ dTAZ(X,T)T“], (6)

where T', denotes time ordering. Here A{ is the Euclidean
temporal gauge field that replaces the Minkowski temporal

'"When working with imaginary time 7 = —iz, we redefine
fields as A, (x, —it) = A,(x, 7).
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gauge field in the Euclidean QCD action through the
replacement A, — iA,, with A, Hermitian [13].

The Wilson line is not invariant under (periodic) gauge
transformations Q(x,7), but transforms as L(x) —
Q(x, f)L(x)Q7(x,0). Taking the trace over color indices,
however, yields a gauge-invariant operator, which is the
definition of the Polyakov loop operator,

O(x) = %trcL(x).

c

(7)

Under twisted gauge transformations, the Polyakov
loop operator transforms nontrivially, ®(x) — @'(x) =
- Tr{2,2(0,x)L(x)Q7(0,x)] = 2,®(x). Thus, we see
that the Polyakov loop is gauge invariant (n = 0), but
not center symmetric. Therefore, the thermal expectation
value of the Polyakov loop operator transforms as

(@) = 2,(D). (8)
Thus, if (®) # 0, the center symmetry is spontaneously
broken.

While @ is related to the free energy of a heavy quark,
the conjugate Polyakov loop ® is the analogue of @
for antiquarks, and it is obtained from ® by replacing
T¢ - —(T%)* = —(T*)7, i.e., by switching to the complex
conjugate representation. This is shown in Appendix D.
After using that trX = trX T for any matrix X, we find

—_ 1 . 4 a a
= -t [T ]!

Cc

1
= —tr,Li(x) = O
ALLY

Cc

©)

if the fields A{(x, 7) are real. More generally, if A§(x, ) are
complex, we find

b — itrT o ﬂ’ deA? (x,7)
N, T

1 -
=—tr.L(X),
- rL ()

(10)
where 7', denotes antitime ordering. In full QCD one would
not have to worry about complex A{ fields, since any
particular A§ configuration occurring in the path integral
should be real. Thus, when averaging over all field con-
figurations in full QCD one has (®') = (®). However, the
Ag background fields we will deal with in the effective
models should be thought of as mean fields (A§), which in
QCD with pp # 0 are obtained by averaging real field
configurations with potentially complex weights e 5. The
distinction between ®' and ® matters only when dealing
with @((A4)) and ®((A,)), i.e., the loops evaluated at the
mean field (A,), rather than the expectation values of the

loops themselves. In summary, ®((A4)) # ®'((A,)) even
though (®) = (®7). In the effective models, the former
occurs. We will return to this in the following when we
discuss minimization of the effective potential at up # 0.
Using the expression for ® is anyway always correct. If we
use ®' in place of ® without an expectation value, it is
implied that A{ is real.

In the original paper by McLerran and Svetitsky [10], it
was argued that

PN ) = ([, B(,) (1) (7).
(1)

where F' is the color-averaged free energy of a configura-
tion of quarks located at x,, ...x,, and antiquarks located at
Yi,...Yi- We can thus interpret —7 In(®(0)) as the free
energy of a single quark and —7 In(®7(x)) as the free
energy of a single antiquark. If (®) = 0, this implies that
the free energy of a quark is infinite, or that quarks are
confined.

Another way to think of confinement is in terms of the
quark propagator. The Polyakov loop is proportional to the
expectation value of the traced propagator of a heavy quark
analytically continued to imaginary time. In Appendix D,
we show that

<C]a(X, 0)|qa(x’ _lﬂ» = [G(Xv _iﬁ; X, 0)]aa

= Ve [L(X)] g (12)
where V is the volume and with no sum over the color index
a. One can take the vanishing of the propagator and
therefore the Polyakov loop as a sign of confinement.

In the context of the PQM and yM models, it is
convenient to choose a gauge which simplifies the
Polyakov loop as much as possible. The Weyl gauge
A, = 0 would make the Polyakov loop trivial; however
this gauge is not compatible with the periodicity require-
ment of the gauge field in the imaginary time formalism
[14,15]. Instead one can choose the so-called static gauge
[16], where

0;A;, = 0. (13)
Furthermore, one can rotate the gauge fields so that A, is in
the Cartan subalgebra of the Lie algebra of SU(N,.) [13]. In
the case of N. = 3, the gauge field in the Polyakov gauge
can be written as

Ay = = (lA] + A4A3), (14)

M| —

where 43 and Ag are the two diagonal Gell-Mann matrices.
Defining
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3 V3

— = gpA3, = Y2 A8, 15
q=7_9p r=—9 (15)

we can express the background gauge field as

2 .
gpA, = ?ﬂdlag(q +r,—q+r,=2r). (16)

The thermal Wilson line can then be written as

e 3la(x)+r(x)] 0 0
L(x)= 0 e Zl-a(x)+r(x)] 0 . (17
0 0 ¢ %1-2r(x)]

Taking the trace to obtain the Polyakov loop and its
conjugate yields

27ir/3 ) 2
o="° 3 [e‘z’”’ +2cos (g)} , (18)
_ —2rir/3 ) 2
b=° 3 [ez’”’ —I—2cos($>} (19)

When A, is constant in space, and thus also r and g, we see
that

g=1,r=0

07
@:{ (20)
I, g=0,r=0,

at the classical level. Thus we conclude that a state with
q = 1, r = 0is adeconfined state, while a state with ¢ = 0,
r =0 is a confined state.

In QCD we must have that (®)* = (®") for 4 = 0, while
for 4#0 it turns out that (®)* # (®) [13,17-19].
Furthermore, it is found that (®) and (®') are both real,
but with (®7) # (®) for u # 0 [13,19,20]. Why this must
be the case is shown nonperturbatively in Ref. [13].

III. GLUONIC SECTOR

In this section, we discuss the gluonic sector of the grand
potential Q of the PQM and yM models, which is the main
difference between the two models. They are somewhat
different, but they both involve a phenomenological pure-
glue potential with a few parameters that are determined
such that several physical quantities from pure glue lattice
simulations are reproduced.

A. PQM model

It is known from lattice simulations that a first-order
phase transition, corresponding to gluonic deconfinement,
happens at 7y = 270 MeV in pure SU(3) gauge theory
[21]. A first-order transition is what is expected on the basis
of universality, as argued by Svetitsky and Yaffe in
Refs. [11,12]. In addition to the knowledge of the location

of the phase transition, various thermodynamical properties
such as the pressure and internal energy as function of
temperature have been established [22-24]. Finally, one
also has simulations of the value of Polyakov loop as
function of temperature [25].

With the knowledge of for example T,, P(T) and
®(T) = ®(T) from lattice simulations, one can write down
a phenomenological potential Uy, (®, @, T) that reprodu-
ces these three quantities. The first requirement necessitates
that the form of the effective potential admits a first-order
transition in the first place. For the second criterion, we
can find the pressure from the effective potential as P =
~Ugye(@(T), D(T), T) with ® and @ evaluated at the
minimum of Ug,.. Regarding the form of the potential,
several things can be said on general grounds. It must be
symmetric under center transformations since the gluonic
action is center symmetric. Remembering the transforma-
tion rule for @ and ® under center transformations, we see
that the potential can be a function the terms ®®, ®* and
®3 only. Additionally, there is no reason for any asymmetry
between ® and ® in a pure gluonic system, and we thus
require that the potential is symmetric under ® <> ®. Finally,
we should demand that the minimum of U, at low
temperatures is at ® = ® = 0, while at high temperatures
it should equal or asymptotically approach @ = ® = 1.

Several potentials have been suggested in the literature
[26-29], and some of the more frequently used are
compared in Ref. [30]. The number of fit parameters vary
from two [27] to seven [28]. One of the models by Ratti,
RoBner, Thaler and Weise [29], which is the one we use for
the PQM model, takes the form

u _ 3
R;IW = b(T) In[l — 60D + 4(P* + &) — 3(dD)?|

- %a(T)q)(i), (21)

with the temperature-dependent coefficients

a(T) = a, + a, <%) + as (%)2 (22)

Ty

(2 -

We take all the parameters except Ty as given in the original
paper, meaning
ap = 351, a, = —247,

as = 152, bl =-1.75.

(24)
We note that the potential presented above does not take

into account the backreaction of quarks onto the gluonic
sector. However, from the fact that the running coupling
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in QCD depends on the number of quark flavors, as evident
from the one-loop expression

2w 1
= , (25)
(11 - %Nf) ln(ﬁ)

(A Ny)
47

it is natural to let Ty = T(N ), so that the behavior in the
gluonic sector also depends on Ny, since g determines
the strength of the interactions between the gauge fields.
The authors of Ref. [31] parametrize this dependence as

To(Ny) = Femw1=3N)

(26)
where the constants are 7 = 1.77 GeV and ap = 0.304.
This expression is heuristically obtained by assuming that
the temperature dependence of g is governed by (25) with
A =T and that the deconfinement phase transition occurs
at a specific coupling, so that we can solve

9(To(Ny), Ny) = 9(T4(0),0) (27)
for To(Ny). With To(N;=0) =270 MeV we get

B. Chiral matrix model

The gluonic part of the chiral matrix model was
developed as an effective model for pure SU(3) gauge
theory in Refs. [32,33], where the degrees of freedom are r
and ¢g only. The potential consists of two terms; one is
obtained by integrating out a fluctuating gauge field in a
background gauge field A, to one loop. The other term
models a nonperturbative contribution and is added by hand.

The one-loop perturbative contribution to the effective
potential of pure SU(3) Yang-Mills theory reads

8§ 4
Vula.r) =T =+ Vilan] . 9

where

Va(q.r) = B, <23—q> +B, <% + r) + B, <g - r> (29)

and

Bi(x) = |x[0a1 (1 = [X|moa1)"- (30)
The second term in Eq. (28) is the Weiss potential, first
calculated by Weiss [14,34] and Gross, Pisarski, and Yaffe
[35]. To drive the system to confinement at low temper-
atures, one adds a phenomenological potential, which is

chosen to be of the form

872

Vnonpt(q’ r) - 45

2

T°T; ﬁVl(q’r) +eVa(g,r) =3,
5 15

(31)

where

Vi(g.r) = B, <23—q> +B,<%+ r) +B, (g—r>, (32)

with four fit parameters ¢y, ¢,, ¢3 and 7';. At temperatures
below roughly T ~ T, the ~T? term will dominate over the
~T* perturbative term, and it can thus drive the system to
confinement with an appropriate choice of the fit param-
eters. The 7?2 behavior is chosen since it has been observed
in lattice data that the subleading contribution to the
pressure goes as ~T2 [36,37]. The parameters ¢; and c;
are chosen so that the pressure in the confined phase of the
pure gauge theory is zero and so that a phase transition
happens at T,;. The former is an approximation, but it is
reasonable since the pressure of the confined phase in
SU(3) gauge theory is very low compared to the decon-
fined phase, as lattice data show [22]. Furthermore, we
choose T,; = 270 MeV, which is roughly the deconfine-
ment temperature in SU(3) gauge theory [22]. Then only ¢,
remains as a fit parameter. It is determined by fitting the
interaction measure (€ —3P)/T* predicted by the full
gluonic potential,

u;(M = th + Vnonptv (33)

to lattice data, and the result is ¢, = 0.830 [1], which gives

c; = 0.315, ¢, = 0.830, c3 = 1.13. (34)

In Fig. 1, we show contour plots of the perturbative (left
panel) and the nonperturbative (right panel) contributions
to the gluonic potential in the chiral matrix model. The per-
turbative contribution V(q, r) has minima at ¢ = r = 0,
qg=0 and r =1 etc.,, and maxima at ¢ =1, r =0 and
q=r= % etc. The potential reflects the center symmetry of
SU(3). The nonperturbative potential V), (¢, ) behaves
the opposite way; it has minima where the perturbative
potential has maxima and vice versa. This potential also
reflects the center symmetry. The full gluonic potential is
then the sum of the two contributions, and the latter has
been constructed so that the two terms are competing. At
high temperatures V,; dominates while for low temper-

atures V,onp, dominates.

IV. CHIRAL SECTOR

In this section, we will discuss the chiral sector of the two
models. In Ref. [1], Pisarski and Skokov add a phenom-
enological quark term to the yM model which is not present
in the QM model, but apart from this the chiral sector in
the yM model corresponds to the QM model. Adding this
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phenomenological term to the PQM as well, their chiral
sectors are identical. Note however that while Ref. [1]
includes the strange quark, we treat only the two light quark
flavors.

A. Quark-meson model

To obtain the two-flavor quark-meson model we couple
two N .-plets of fermionic fields via Yukawa interactions to
the linear sigma model with an approximate SU(2), x
SU(2), symmetry. The fieldsy | and y, are taken to represent
up and down quarks, respectively. The Lagrangian of the two-
flavor quark-meson model in Minkowski space is

1 NP
L =51(0,8)(05) + (9,m3)(0"m3)]
+ (0, + 2ips80) (0" = 2ip; )™
1 A
—ym (@ 42 ) = (B A 2 )
+ hé + wlid + uy® — g(6 + iy’t - =)y, (35)
where y is the flavor doublet
= <l’” ) (36)
)

and 7 is the isospin triplet (7,7, 73)7, with 7% =

(my & imy)/+/2. & is a scalar isospin singlet that will attain
a vacuum expectation value that corresponds to the chiral
condensate. The 7, are the Pauli matrices acting in flavor space
and y° = iy y1y2y3 u; is the isospin chemical potential and
u= %,u g the quark chemical potential.

Let us identify the symmetries of the QM model. In the

chiral limit, meaning & = 0, the QM Lagrangian has a
|

global SU(N.) x SU(2), x SU(2)g x U(1)p symmetry,
while at the physical point (h # 0) the symmetry is
SU(N,.) x SU(2)y x U(1)g. The U(1)p symmetry gives
rise to conservation of baryon number, with the associated
baryon chemical potential yp = %(,uu + uy) = 3u, where
u, and p, are the up and down quark chemical potentials,
respectively. The isospin chemical potential y; is given by
pr =5 (= pta). When p; #0, ie., when g, # pg, the
SU(2)y is reduced to U(1),, x U(1);x for h =0 and
U(l),, if h #0.

The full chiral sector of the PQM and yM models is
obtained by coupling the quarks to a temporal gauge field
in the Euclidean Lagrangian,

70, = 7(0, — igym8As). (37)
where 7, = y* and 7; = —iy’ are the Euclidean gamma
matrices, 5#!/ the Euclidean metric, and u € {1,2,3,4}.

We take m? < 0 so that & attains a vacuum expectation
value v, and define 6 = v+ 0. Here v is the chiral
condensate. To obtain the effective potential U .y, We
work to one-loop order and neglect bosonic fluctuations.
As mentioned, the latter approximation is equivalent to
taking the large-N . limit. The contribution to the thermo-
dynamic potential from the Lagrangian (35) coupled to the
background gauge field then consists of two terms; a
vacuum term arising from the tree-level mesonic potential
and the fermion determinant, and a thermal piece coming
from the same fermion determinant.

For y; = 0 and with A = gv, we write

uchiral(A’ q,7, Tv ﬂ) = UVaC(A) + uq,T(A’ q,7, Tv ﬂ)v

where we have, to one-loop order after renormalization and
consistent parameter fixing,

3 4N, A? 2N, 3. AN\ AY
toal8) =322 1= 2 ,,>}— 2 (—— ne) o
4 (4r)f2 m?  (4n)* \2 mg ) my
afz{ AN mj [( 3) 2 2 4mg] | A
- ) mﬂF/(mﬂ) + )
4 4n)*f7 mg mg | J my
m2f 4N m A4
SRt (G ) )= mir )] |
1, o .
4N, 4N, A
L ;" 2P (mg) b2 - ,,f{ L ()| 2 (38)
fﬂ mq ( ) f ml]
d? _
Uyr(A T p,q. 1) = —4T/ 2 1)73 {tr,In[1 + Le™# @] 4 tr, In[1 + Le P tm]}
y
d3p B, — 5 »—2P(w,— —3p(wp—
= —AT SIn [1 + 3De @) + 3Pe=@p—n) 4 g=3hlwp=h)]
(27)
d? -
—4T / B ’)’3 In[1 + 3®e @) 4 3de 2P @pth) 4 e=3P(pn)], (39)
)

054006-6



THERMODYNAMICS AND PHASE DIAGRAMS OF ...

PHYS. REV. D 99, 054006 (2019)
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—0.4
~ 0 -
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-1 ‘ -1.6
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—30 —15 0.0 1.5 3.0

FIG. 1.

Here m,, m, and m, are the physical quark, pion and
sigma masses at 7' = 0, respectively, while f, is the pion
decay constant. The quantity A is, in addition to the rescaled
chiral condensate, the constituent quark mass, and satisfies
A(T = u = 0) = m,. The derivation of Eq. (38) can be
found in Appendixes A and B, and the definition of the
functions F(m?) and F'(m?) are given in Egs. (C5) and (C6).
Equation (39) is obtained in the same way as one would
calculate the free fermion partition function, except one now
has a complex effective chemical potential ji; that differs for
each quark color j, with

fij = p+iglAy] ;. (40)

with [A];; the j-th diagonal element. This derivation requires
using the Polyakov gauge, where A, is diagonal.

The thermal quark potential U,  as function of g and r
at u =0, T =100 MeV, and A =300 MeV is shown in
Fig. 2. We see that this potential, whose qualitative shape is
mostly unchanged for other values of A or T, drives (g, r)
towards ¢ = r = 0, which corresponds to deconfinement.
Thus, it is expected that the addition of quarks to the
gluonic potential lowers the deconfinement temperature.

We finally note that for u # 0, Eq. (39) can become
complex. This will be discussed in Sec. V.

Uyr/T*

1
= 0
-1

-3.0 —-15 0.0 1.5 3.0
q

FIG. 2. Contour plot of U, 7(g,r) for =0, A =300 MeV,
and 7 = 100 MeV.

Vnonpt / 71]2T2

2.0
1.6
1.2
0 0.8
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0.0
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—_

Contour plots of the perturbative (left) and nonperturbative (right) contributions to the gluonic potential in the yM model.

B. A phenomenological quark term

In addition to the (partly) phenomenological gluonic
sector, Pisarski and Skokov add to the yM model a
phenomenological quark term. In the two-flavor case, it
is given by

s 2
mCLlI‘aA

where m,, is the current quark mass. This term is added in
order to achieve that A — my, in the high-temperature
limit. Let us show how this works: In the high-temperature
limit we expect ¢ =r =0, and we can thus set the
Polyakov loop to be ® = ® = 1. Let us furthermore
assume that 4 =0 and 7> A. We can expand U, for

_ D=1 A
p=0,®=0®=1 in powers of 7 as

uq,cur(A7 q, 7, T’ ﬂ) = uq,T» (41)

un d3p
L a7 [ SP 14 e
Nch /(2ﬂ>3n[ e ]
12, T2A? A
~— T A= ). (42
80 12 +O< HT) (42)

Thus, to leading order, we find

1
uq,cur/Nch = _7mcurT2A-

. 43)

As we assume high temperatures, we consider the potential
only up to subleading temperature dependence ~72.
Furthermore, we assume that A is small, which we expect
in the high-temperature phase where chiral symmetry is
approximately restored. Using this we keep only leading
and subleading terms in A. Thus, in the high temperature
limit we find that the effective potential goes as

Q ., TA 1 A
~ T e T*A + O A*In 2 ).
NN~ 7180 2 g AT < 8 T)

(44)

Minimizing this potential with respect to A, we immedi-
ately find
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A= Meyrs (45)

and we expect A — myg,, in the high-temperature limit.

When we later in this section investigate the thermody-
namics of the PQM and yM models, we will assess the
effects of Uy o, on the thermodynamic functions. Due to its
ad hoc nature it should preferably affect the thermody-
namics minimally while still achieving its purpose of
ensuring the quark mass to approach the current quark
mass in the approximately chirally restored phase.

V. MINIMIZING Q AT p #0

There is one more problem we must face. For the case of
u = 0, the quark effective potential is real for any ¢, r € R
since the two terms in Eq. (39) are complex conjugates of
each other. However, upon introducing of y # 0 this breaks
down, and the potential becomes complex in general.

The solution suggested in Refs. [1,38,39] is, when u # 0,
to let the background A, field become non-Hermitian by
setting ¢ € R and r = iR with R € R. As discussed in
Sec. II, this is not as unreasonable as it first seems, since A,
in the PQM and yM models represents the mean field of a
quantum field, A, = (A7"), and when x # 0 in full QCD
the Euclidean action becomes complex. Because of this,
even if each field configuration is real, when carrying out
the path integral where we weight each field configuration
with e=5%, we might get that (AJ") is complex.

Inserting » = iR into Egs. (18) and (19), we find

—27R/3 2
o =F e?™R 1 2 cos 9 , (46)
3 3
B 27R/3 2
d="° 3 |:€_2”R + 2 cos <%q>} , (47)

which gives that both are real, but with different values. For
the RRTW potential, which is a function of ® and D, it is
clear that the Polyakov-loop potential becomes real, and
thus the full potential is also real for all (¢, R) € R?. For the
xM model this is also the case, since the only potentially
complex terms in Eqgs. (29) and (32) are

B, <§+ iR) +B (g— iR) = 20B, <§— iR>, (48)

and

B, <g + ,-R> + B, <§ - iR) = 2%B, <§ - iR>. (49)

However, the problem is that the full effective potential
€2, is unbounded as a function of R for low temperatures,
and that Qpqy is unbounded as a function of R for all

temperatures. The part of the potential that depends on R in

FIG. 3. Normalized R-dependent part of the effective potential
in the yM model at 7 =y = 200 MeV, and A = 150 MeV.

the yM model, V =U,r +U,y, is shown in Fig. 3 as
function of (g, R). We see that there is no minimum for
|R| < 1. This behavior persists for any R. In Refs. [38,39]
the authors deal with this by suggesting to choose the
physically realized state to be the lowest saddle point of
Q(q, R). This recipe gives ® # ® with both being real, thus
giving a real effective potential. That we obtain ® # ® is
desirable, since we do not expect the free energy of single a
quark to be equal to that of a single antiquark when p # 0.
However, choosing a saddle point is arbitrary and does not
follow from any known principle of thermodynamics. It
also is pointed out in Ref. [40] that interface tensions
cannot be calculated within this scheme.

An alternative approach, which is the one used in the
following, is to keep ¢, r € R and minimize RQ under the
constraint IQ = 0. If we interpret a complex Q as signaling
an unstable state, this might be reasonable. It turns out that
a global minimum of HQ can always be found at r = 0, and
with r = 0 we always have JQ = 0. This means that we
can set r = 0 and minimize Q freely with respect to g only.
However, this scheme gives ® = ® e R, which is not what
we expect from the quark/antiquark free energy interpre-
tation of ® and ®. However, the equality of the two can be
seen as a result of the fact that we are doing a mean-field
treatment of A, instead of a mean-field treatment of the
actual Polyakov loops. The quantities we are calling @ and
® in the PQM model are, in the Polyakov gauge,

O = L) oLyl (s0)
c ’ N C k)

c c

which are not equivalent to the expectation value of the
Polyakov loop quantum operators. Thus, the free energy
interpretation should not be taken too seriously.

VI. THERMODYNAMICS

We now have all the ingredients needed to investigate the
thermodynamics of the PQM and yM models at one loop in
the large-N, limit. For a given temperature and chemical
potential we numerically solve
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00 _
oqg

0Q
— =0, 51
9A (51)
with r = 0 and require that we have a global minimum,
where the full effective potential Q for the two models reads

Q)(M = uvac(A) + uq.T(A’ r. g, T, ﬂ) + uq,cur(A’ r.q, T, ﬂ)
+Um(r.q.T) = Poyus (52)

QPQM :uvaC(A> +uq,T(A7 r.q, Tvﬂ) +Z’{q.cur(A7 r.q, Tvﬂ)

+Urrtw (7,4, T) = Po pou- (53)

We also add the term U, ., to the PQM model, for the
same reason that it is added to the yM model. The
parameters P, and Py pqy are constants that we subtract
from the effective potential so that the condition

P(T=u=0)=0, (54)

is satisfied for each of the two models. This constant will turn
out to be small and has a negligible effect on the thermo-
dynamics. However, it makes thermodynamic quantities
divided by T* better behaved at temperatures close to zero.

Once A and g are determined as functions of 7" and y, we
can determine Q as a function of 7" and u only. We can then
calculate the pressure P, quark density n, = (N)/V, energy
density £ and interaction measure / = (£ — 3P) as func-
tions of x4 and T via the relations

P(T) = @A) q(T)V). (59)
n(T) = (56)
S(T,/,t):/mq—P—l-T%. (57)

To determine the one-loop couplings we use the following
values for the masses and the pion decay constant

m, = 300 MeV, (58)

m, = 140 MeV, (59)

mg, = 500 MeV, (60)

f==93 MeV, (61)

which yields the parameters

Ao = 61.5, (62)

m} = —(449 MeV)?, (63)

go = 3.22, (64)

hy = (121 MeV)?, (65)
which are the one-loop values of the running couplings in
the MS scheme at the renormalization scale

A} = mkexp [-RF(m2) — m2RF' (m3)]

= (289 MeV)2. (66)
This is the scale that is consistent with (¢) = 0 in the on-
shell scheme.

The sigma particle is a broad resonance whose mass is
usually taken to be in the 400 to 800 MeV range, and the
most recent estimated mass range is 400 to 550 MeV [41].
We have chosen a value of 500 MeV, but we vary it to
gauge the sensitivity of our results.

A. Order parameters

In Fig. 4, we show the order parameters - and (7).

We point out that A does not go to zeroAzg{ hoi)gh temper-
atures, but rather approaches A = m,,, as expected from
the discussion in Sec. IV B. We find that the yM model
reaches full deconfinement at 7 ~ 250 MeV, while the
PQM model reaches @ = 1 more slowly, and it is in a
“semi-deconfined” state between roughly 200 and
400 MeV. Like in Ref. [1] we find that the Polyakov loop
in both models rises faster than on the lattice, which can be
seen from Fig. 5 where the models are compared to lattice
data from Refs. [42,43].

One can define the pseudo-critical temperature for
example by the temperature at which the order parameter
has dropped to half its zero-temperature value. Another
definition is the temperature at which the derivative of the
order parameter has its peak. In this paper, we will stick to
the latter. In Fig. 6, we show the derivatives of the order
parameters A(T)/A(T = 0) and ®(T). From the figure, we
see that the pseudocritical temperatures for the chiral and
deconfinement transitions coincide for both models, with
the inflection points of A being located at

1.0 1 m—_——————=—=——=——-—
4
I,
z 0.81 !
=t ]
206‘ [/ — XALA/AU
g0 } —— M, D
g PQM, A/Ay
5 0.4 1 | PQM, @
S o]
0.0 1 : ' ' :
0 200 400 600
T [MeV]

FIG. 4. Order parameters % and ®(T) in the yM and PQM
models as function of temperature for y = 0.
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1.00 4
0.75
= 0,50
— PQM
xM
095 1 %jcin%arek & Zantow,
)2 4 Wuppertal-Budapest,
Ny=2+1
0.00 E£2°__ , :
100 200 300 400 500
T [Me\/]

FIG. 5. Comparison of the Polyakov loop given by effective
models and lattice calculations from Refs. [42,43].

M = 18178 MeV, M — 16913 Mev.  (67)

The uncertainty is given by varying o from 400 to
550 MeV, with the lowest sigma mass corresponding to
the lowest 7', and vice versa.

B. Pressure, energy density and interaction measure

Let us now turn to the thermodynamic functions.
Figure 7 shows the comparison between the Stefan-
Boltzmann (SB) normalized pressure as calculated on
the lattice [44—46] and in the two chiral models, with each
data set plotted against 7'/ T . for its respective T, (this also
applies to plots in the following). For the (2 + 1)-flavor
lattice data we normalize with 7. = 155 MeV [43.,44],
while for the model data the 7'.s are given by (67). The two-
flavor lattice data from Ref. [46] are obtained directly as
function of T/T . without knowledge of T'... The pressure in
the model data and (2 + 1)-flavor lattice data is normalized
with

XM, A |dA/dT|
—== XM, |d®/dT)|

0.02 4 PQM, £[dA/dT|
PQM, |d®/dT|

0.01

//
0.00{ ——m =2 m LT —— -
0 200 400 600

T MeV]

FIG. 6. Absolute value of the differentiated order parameters as
function of T for 4 = 0. The peak locations correspond to the
pseudocritical transition temperatures.

1.0
0.8 1
T 06
=, ;
T A — M
iy PQM
0.2 1 ——- DBorsanyi et al., Ny =2+1
: HotQCD, N; =2+ 1
-42 CP-PACS,N; =2, N, = 6
0.0 +—== : : : ‘
0.5 1.0 1.5 2.0 2.5 3.0

/T,

FIG.7. Boltzmann-normalized pressure as function of T/ T for
1 = 01in the yM and RRTW model compared to lattice data from
[44-46].

(Ny=2) 2(N% - 1) 7 24
P — (e T o N, L) 22T
sB ( 90 NNr3gn)”

8 7

while the two-flavor lattice data, which are not continuum
extrapolated, are normalized with the relevant Stefan-
Boltzmann pressure for a discretized spacetime (see
Ref. [46] for details). The uncertainty bands in the
HotQCD data correspond to uncertainty in the continuum
extrapolation. The uncertainty bands in the models are
obtained by varying the sigma mass within the uncertainty
range given in Ref [41], which as mentioned is 400 to
550 MeV. The lowest m, corresponds to the lowest
temperature, and vice versa.

Both the PQM and yM models show reasonable agree-
ment with lattice data above T =T, although with a
slightly lower pressure. Below and around 7' = T, the PQM
model appears to have a pressure that is significantly lower
than what lattice data show. However, below and around T,
we expect mesons to exist and contribute to the pressure,
and by neglecting mesonic fluctuations in the model, we
have underestimated the pressure. Since the pions have
masses of ~140 MeV below T. while the quarks have
masses of ~300 MeV, we expect that the mesons would
provide a significant contribution to the pressure in this
range. For temperatures below T ., the agreement with the y M
model is worse, since there is a small but nonzero pressure
causing P/Pgg to blow up for low temperatures due to the
T*-dependence of Pgg. However, this does not mean that the
pressure diverges or that it is large. It only means that a small
nonzero pressure exists for 7 > (0. This pressure is insig-
nificant, as we see if we compare the pressure of the yM and
the RRTW models without SB-normalizing, which is done
in Fig. 8.

The energy density £ and the interaction measure /, both
normalized with ng =2 — SP(SII\Q =) are shown in Fig. 9
(with error bars are obtained in the same way as for the
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—— SB-limit
6000 %’QM /
<& 4000 1
-~
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2000 1
O 1 T T T T
0 200 400 600
T [MeV]
FIG. 8. Pressure normalized by f% at u = 0 in the yM and PQM

models compared to the SB-limit.

IR > Tl
08
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~
w04 M
PQM
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FIG. 9. SB-normalized energy density (upper panel) and
interaction measure (lower panel) at 4 = 0 in the effective models
compared to lattice data from [44-46].

pressure). We find fairly good agreement between the PQM
model and two-flavor lattice dataup to 7 ~ 1.5T .. The peak
of the interaction measure in the yM model is shifted to
higher values than what is seen in the PQM model and two-
flavor lattice data. The yM model also has an interaction
measure that is negative for low temperatures and a peak
that is too low.

In Fig. 10, we plot the Boltzmann-normalized version of
the quantities

—— XM, pp =200 MeV
— xM, pp =400 MeV
PQM, pp =200 MeV

PQM, pp =400 MeV

v lattice, pug, = 200 MeV
¢ lattice, py, =400 MeV

2 3
T/T.

0.00 ==

/‘ 4
@) gremy *
Z Nti‘"“'-lv—x.v_x_
1

0.3
—— XM, pp =200 MeV
— XM, pp =400 MeV

PQM, pp =200 MeV

PQM, pp =400 MeV
0.2 1 v lattice, pr = 200 MeV
: ¢ lattice, pg = 400 MeV

2)

A/ ggf

T/T,

FIG. 10. SB-normalized increase in pressure (upper panel) and
interaction measure (lower panel) at nonzero baryon chemical
potential compared to lattice data from [47]. See main text for
details.

AP(u,T) = P(u.T) = P(0.T), (69)

Al(u.T) = I(u. T) = 1(0.T), (70)

at up = 3u = 200 and uz = 400 MeV. The model data are
compared with (2 + 1)-flavor lattice data from Ref. [47].
We compare with lattice data where the chemical potentials
for the light flavors are p; = 3pu, = 3u, = 200 and y; =
400 MeV, while the strange chemical potential is chosen so
that the net strangeness density is zero. Since p; # g = Wy,
we use the notation from Ref. [47] and denote 3u,; = 3pu,
as y; instead of up in the (2 4 1)-flavor simulation. We
compare with lattice data where net strangeness density is
zero, since this scenario should resemble the two-flavor
situation more than when u, = p; = u,, for which the
strangeness is nonzero.

We see that the pressure, which increases as function of
temperature at nonzero baryon chemical potential, agrees
fairly well with lattice data for both models. For the
interaction measure, we find that the PQM model has a
significantly higher peak than lattice data at uz = 400 MeV,
while the yM model is in better agreement.
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FIG. 11. Phase diagram for the yM model in the u-T plane.

C. Phase diagram

In this subsection, we present various phase diagrams of
the two models. We first discuss the different phases in the
u-T plane. Then we move on to the phase diagram in the
u;-T plane, where we include the possibility of condensa-
tion of charged pions. In calculating the phase diagrams, we
have dropped the U, term, since its effect on thermo-
dynamics and critical temperatures is found to be entirely
negligible.

Figures 11 and 12 display the phase diagrams for the two
models, where the pseudocritical temperatures corresponding
to the inflection points of A and @ are indicated, in addition to
the temperature where ® = %

We see that the chiral and deconfinement phase tran-
sitions happen roughly simultaneously also for nonzero
chemical potentials. Note however that referring to the
inflection point of the Polyakov loop as “deconfinement” in
the regime of high chemical potential is misleading. It is
correct that the chiral symmetry in the models is approx-
imately restored above the orange lines in Figs. 11 and 12,
since we can see from Figs. 13 and 14 that A — 0 quickly
for temperatures higher than the crossover temperature 7.
However, it is not correct to assume that quarks are
deconfined everywhere outside the phase boundaries, since
the inflection point of the Polyakov loop can be relatively
far away from the region where center Symmetry is
approximately restored (® =~ 1). This is visible from
Figs. 15 and 16, which show the value of the Polyakov
loop in the u-T plane. We see in the PQM model that the
Polyakov loop is close to the confining value of ® = 0 also
for 4 > 300 MeV, given low temperatures. Interestingly,

d=1/2
—— & crossover

A crossover

A first order

0 100 200 300 400 500
i [MeV]

FIG. 12. Phase diagram for the PQM model in the u-T plane.

300
200
A

100

0 0

200 500 100
V] 400 300 T

FIG. 13. The chiral condensate as function of (u,T) in the
chiral matrix model. Units of A, y and T are MeV.

0
400 200 0
“ 300 T

FIG. 14. The chiral condensate as function of (u, T') in the PQM
model. Units of A, u and T are MeV.

LRy
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FIG. 15. The Polyakov loop as function of (u, T) in the chiral
matrix model. Units of x and T are MeV.

FIG. 16. The Polyakov loop as function of (u, T) in the PQM
model. Units of ¢ and T are MeV.
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FIG. 17.

we see that we approach deconfinement in the yM model
in the high-density limit, which is not the case in the PQM
model. This is a major difference between the two
models. The difference stems from the fact that at low
temperatures the value of the gluon potential as function
of ® away from its minimum grows significantly faster in
the PQM model than in the yM model, so at low
temperatures the gluonic potential strongly dominates
in the PQM model. The free energy gained from the quark
potential by deconfining is negligible compared to the
gluon energy cost. This is however not the case of the yM
model. This is clear from Fig. 17, where we see that the
M gluon potential is much flatter around its minimum
than the PQM model. The flatness of the gluonic potential
of the yM model causes the deconfinement transition to
track the chiral transition to a larger degree. It is hard to
assess which behavior best reflects QCD due to the lack
of lattice data in that region.

We also note that at sufficiently large temperatures,
some of the crossovers become first order phase tran-
sitions, with the transition from crossover to first order
marked by a critical point. In the yM model the critical
points of the two transition lines coincide, while for the
PQM model only the line of chiral transition has a critical
point. This is another qualitative difference between the
two models.

D. Pion condensation

We now move on to discuss the phase diagram in the
u;-T plane, which requires a treatment of Bose condensa-
tion of charged pions. For simplicity, we set the baryon
chemical potential to zero in the remainder of this section.

In addition to an expectation value of & we now allow for
a nonzero expectation value of \/m denoted by .

Introducing p = gny, in analogy with A, the tree-level
potential can be written as

0.8 1.0

T =50 MeV
125
2 uglucr X]w
100 1 Ugine, PQM
Uyt
751
50
251
0 4
725 4
750 4
0.0 0.2 0.4 0.6 0.8 1.0
0]

The gluonic and quark potentials as function of the Polyakov loop at 4 = 400 MeV, A =400 MeV and r = 0.

L Uit SN
246 g

z/{tree = E? ) 92

(71)

The quark energies can be read off from the zeros of the
quark determinant and read

E, = E(_ﬂl)’ E;= E(/“’I)’ (72)
E; = E(ﬂl), E; = E(—Hl)- (73)
where we have defined
AT
E(u) = K\/ p° +A° +m> +p2] . (74)

The effective potential at 7 = 0 then is
Uyac _utree_Nc/ (Eu +E;+ E; +EZJ)’ (75)
P

where the last term is the one-loop contribution. It cannot
be evaluated analytically for nonzero p. In Ref. [48], it was
evaluated by isolating the divergent pieces and writing
Uyae = Vaiy + V- The divergent term Vg, was then
evaluated using dimensional regularization, and the poles
in € (evaluating integrals in d = 3 — 2¢ dimensions) were
removed by renormalization using the MS scheme in the
usual way. The running parameters were finally eliminated
in favor of the physical masses and the pion-decay constant.
The final result is
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where the finite contribution Vy, is
2 A2, 2 pip®
Vin = =N, E,+E;+E; +Ej +4NC/ + A"+ p+ 1
=N [ Eor B BB v [ o ate e ()

which must be evaluated numerically. Equation (76) reduces to Eq. (38) for p = 0O; this can be easily seen by noting that

Vin = 0 in this case.

The medium-dependent part of the one-loop effective potential at yz = 0 is

d*p
= 2T
uflsT / (271')3

+ log[1 4 3(® + ®ePEe)ePEa + e=3Ed] +log[l + 3(D + PePEa)e PEi 4 ¢=3Eal},

Note that this term vanishes at 7= 0. As discussed
previously, we see that two and two terms are complex
conjugates of each other, and U,  is thus real, reflecting
that there is no sign problem when up = 0.

In Ref. [48], it was shown that the zero-temperature
effective potential (76) exhibits a second-order phase
transition at exactly uj = m . This was done by expand—
ing U,,. in powers of p, Uvac =y + axp* + agp” evalu-
ating it at A =m, (i.e., in the vacuum). The critical
chemical potential is defined by a, = 0. The transition is
second order at y; = u§ since a, was found to be positive
for this value of the isospin chemical potential.

FIG. 18. Chiral condensate A as function of y; and T for the yM
model. Units of A, u; and T are MeV.

{log[1 + 3(® + DePEu)e PEu 4 e=3FEu] + log[1 + 3(D + DePEn)e~PEu 4 ¢=3PEx]

(78)

Figures 18 and 19 show the solutions A(T,y;) and
p(T,p;) for the yM model (note the different axis ori-
entations in the two plots). These plots are similar for the
PQM model. We clearly see that no pion condensation
occurs for low ;.

In Figs. 20 and 21 we show the phase diagram in the y;-T
plane obtained in the PQM model and in the yM model,
respectively. As mentioned above, the onset of charged
pion Bose Einstein condensation (BEC) at T =0 is at
uy = m . The orange line shows the critical line for BEC,
wh1ch is fairly steep before it levels off. The corresponding

" il
' “\\\\\\

FIG. 19. Pion condensate p as function of y; and T for the yM
model. Units of p, y; and T are MeV.
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FIG. 20. Phase diagram in the y;-T plane for ypz = 0 for the
PQM model. See main text for details.
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FIG. 21. Phase diagram in the y;-T plane for yp = O for the yM

model. See main text for details.

transition is second order everywhere with mean-field
critical exponents for the O(2) model. The transition line
for the chiral transition (blue line) merges with the BEC
line at (u;, T) =~ (75 MeV, 166 MeV) for the PQM model
and (u;,T) ~ (90 MeV, 173 MeV) for the yM model. In
the yM model, the transition line for deconfinement is
coinciding with that of the chiral transition for nearly all 7,
and consequently, it too merges with the BEC transition
line. Finally, we have drawn a black dashed line within
the O(2)-symmetry broken phase. This line is defined by
u; = A and starts at (u; = 113 MeV, T = 0) for both
models. At this value of u;, a Fermi surface appears
[49]. Furthermore, to the right of this line we have
u; > A, and the energies for the u and d quarks (72)
and (73) are no longer minimized by |p| = 0, but rather by

Ip| = \/u? — A%, This can been seen as a signal of a
transition to a BCS state [49-51]. However, we do not have
a thermodynamic phase transition, since the same O(2)
symmetry is broken on both sides of the dashed line.

In Refs. [52-54], the phase diagram in the y;-T plane is
mapped out using lattice methods for 2 + 1 flavors. The
phase diagram in Fig. 20 is in especially good agreement
with that obtained from the lattice: The chiral and decon-
finement transition lines coincide for small values of the

chemical potential and meet the BEC transition line at
(pireet, T™<"). For chemical potentials larger than pj"*', the
BEC and chiral lines coincide. Finally, the deconfinement
line penetrates smoothly into the BEC phase. The authors
of Refs. [52-54] identify this line inside the O(2)-broken
phase as the BEC-BCS transition line. Again, the same
O(2) symmetry is broken on either side of that line.

We finally note that the phase diagram in Fig. 20 (and
also Fig. 21 with the exception of the deconfinement line)
seems to agree well with the qualitative phase diagram
sketched in Ref. [55] based on a large—N . analysis. They
identify the region below the deconfinement line at large
u; as a “quarksonic” phase where the pressure goes as
O(N!). This phase is argued to be separated by a cross-
over from the BEC phase where the pressure scales as
O(N?). For a more complete study of this phase with the
yM and PQM models, it would be useful to include
mesonic fluctuations.

VII. SUMMARY

In this paper, we extended the chiral matrix model of
Pisarski and Skokov [1] to finite baryon and isospin
chemical potential. For temperatures up to approximately
up to 27, and baryon chemical potentials up to
up = 400 MeV, this model and the PQM model show
reasonable agreement with lattice results for a number of
thermodynamic functions. However, the Polyakov loop
rises faster with temperature than on the lattice. A signifi-
cant difference between the models was found in the
deconfinement phase diagram. In the yM model the
deconfinement transition also goes from a crossover to a
first order transition, with the critical point located at the
same point as the critical point for the chiral transition. This
is not the case in the PQM model, where the deconfinement
transition is a crossover for all x. Furthermore, the chiral
matrix model predicts deconfinement in the low-T, large-u
regime, while the PQM model predicts a quarkyonic phase.
Thus, the two models predict different phases of matter in
the low-temperature, high-density regime, which is the
most significant difference between the two models.

Regarding pion condensation at finite temperature, the
two models predict essentially the same phase diagram;
the only difference is that the deconfinement transition
merges with the other lines at large chemical potentials in
the y M model, while in the PQM model the deconfinement
line penetrates into the BEC/BCS phase. The phase
diagram is in overall good agreement with the lattice
results of [52-54].

ACKNOWLEDGMENTS

The authors would like to thank R. D. Pisarski for helpful
discussions and the CP-PACS Collaboration for providing
their lattice data.

054006-15



ASMUND FOLKESTAD and JENS O. ANDERSEN

PHYS. REV. D 99, 054006 (2019)

APPENDIX A: THERMODYNAMIC POTENTIAL
AT ONE LOOP IN THE LARGE-N, LIMIT

The tree-level mesonic potential is after symmetry
breaking

1 m? p h
m A2+—A4——A

=__ Al
utree 2 92 D) 49 ( )

where we have introduced A = gw.
The one-loop contribution to the thermodynamic poten-
tial is

logZ &
_loez 4y / P3 o,
Vp (2rx)

d3
)

+ tre log[1 + Le Pl@rt]},

(A2)

where w, = /p? + A%. The first integral on the right-hand
side is the quark one-loop contribution to the vacuum
potential U,,. and is divergent for large momenta. Using
Eq. (C7), we can write

2N A* 1 3 A?
uq,vac - |:

n)? +5+In —2—1—(’)( )} (A3)

The divergence is eliminated by renormalizing the param-
eters in the Lagrangian. This amounts to making the
substitutions  m* — Z,.m*, ¢* = Zg%, A — ZA/I and
h — Z,h in the tree-level mesonic potential, where?

e[} bt o
o) ) w

After renormalization, we find the one-loop potential

uvac:lmLAz—z Eﬁ—él—hM—SA
2 MSgee 24 gi VS
2N, A4 A2 3
< log— +=|, A6
 ny? {"gAz*z} (A6)

where the subscript is a reminder that the renormalized
parameters are in the MS scheme. In Appendix B, we show
how one can relate the running parameters in the MS scheme
to the parameters in the OS scheme and hence the physical
masses and the pion-decay constant. Substituting the param-
eters (B23)—(B26) into Eq. (A6). we obtain Eq. (38).

’In Appendix B, we show that A = gv is not renormalized.

APPENDIX B: PARAMETER FIXING

In this Appendix, we discuss the parameter fixing in the
quark-meson model using the on-shell scheme. This was
first done in Ref. [56]. At tree level, the parameters of the
Lagrangian can be expressed in terms of the phsyical
masses and the pion decay constant as

mzz—%(m?,—3m,2,), (B1)
/1 _ 3 (mg]; mzzr) , (B2)

g ’;Z— (B3)

h = mif,. (B4)

Beyond tree level, these parameters become running
parameters in the MS scheme and the relations (B1)-
(B4) no longer hold. The counterterms in this scheme are
chosen such that they exactly cancel the ultraviolet diver-
gences coming from the loops. In the on-shell scheme, the
counterterms are chosen such that they exactly cancel
the loop corrections that appear in the calculations and
the parameters therefore still satisfy the above tree-level
relations and are not running. Using that the bare param-
eters in the two renormalization schemes are the same, we
can relate the corresponding renormalized parameters.

The first renormalization condition we impose is that
(o) =0, ie., that the loop correction to the one-point
function vanishes and that the minimum of the renormal-
ized effective potential coincides with that of the classical
mesonic potential. The classical one-point function is
denoted by I'") = it = i(h — m2v) and the classical mini-
mum is then given by the equation of motion # = 0. Let
sT"1) be the one-loop large-N,. correction to the one-point
function. The renormalization condition (¢) = 0 is then

o' + ist = 0. (B5)

The first on-shell renormalization condition on the two-
point function is that the counterterms exactly cancel the
loop corrections that have not been eliminated by the
renormalization condition (¢) = 0. This gives the mass
counterterms

1
om2 = i¥,(m2) = 8ig’N. [A(mf,) — E(m,% — 4m§,)B(m,2;)} ,

(B6)

1
om2 = ix,(m2) = 8ig’N, {A(m%) —Em%}, (B7)
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where the four-dimensional integrals A(m?) and B(m?)
have been defined in Eqgs. (C2) and (C3). In the on-shell
scheme one also takes as a renormalization condition that
the residue of the propagator at the pole mass equals unity.
This implies

dZO'Jl' (Pz)

P +0Z,, =0,

P2,m2

—on

(B8)

where Z,, is the wavefunction renormalization counter-
term. One finds

0Z, = 4ig’N [B(m3) + (m3 — 4mg)B'(m7)].  (BY)

6Z, = 4ig>N.[B(m2) + m2B'(m?]. (B10)

Let us now return to the renormalization condition (B5),
which reads

0 = —8¢°N .vA(m2) + ist. (B11)
The relation ¢= (h—m2)v implies upon variation a
relation among the counterterms,

ot = 5hos - 5m,2,1) - m,zlé’ljos. (BlZ)
In order to find dhqgg, we need to compute 51}%5. The one-
loop correction to the quark-pion vertex is of order N and
so is the one-loop correction to the quark field, implying

Z, = 1. Consequently, /Z,\/Z 9" = 1, or‘sg‘iz2 +6Z, =0.
A similar argument now applies to m, = gv; since the

quark mass correction at one-loop is of order N, we find
ogv + gév = 0. Combining these relations, we can write
Eq. (B12) as

1
Shos = 6t + vém2 + 3 vm27Z98
= —2ig®N .m2v[B(m2) — B'(m2)].  (B13)

We finally use Eqgs. (B1) and (B2) to find relations among
the corresponding counterterms

1
Smbg = ~3 (6m2 — 36m2), (B14)
om2 — Sm?>
Sos = 3(’""72’"”) — 25795, (B15)
v
This yields
2 ) L 2 2 _Spi2
dmeg =—8ig”N . |A(my) +Z(m" —4mq)B(m,,)—ZB(m,,) ,
(B16)
12ig’N.

dhos = — 2 [(m¢27 - 4m3/)B(m(27> - B(mzzz)]

—4iAg?N [B(m,) + m2B(m2)). (B17)

The bare parameters in the Lagrangian are independent of
the renormalization scheme. This implies the following
relations among the renormalized parameters in the two
schemes

ma = m* + dmpg — dm2 . (B18)
B = A+ 60 = Sk, (B19)
Gois = T + 0905 — 0. (B20)
i = h + Shos — Shy, (B21)
Vi = U7+ 80hg — Sv3. (B22)

where we have used that m*> = m etc. The counterterms
in the on-shell scheme consist of a pole in € plus finite
terms. The former is exactly the counterterm in the MS
scheme. Moreover, the parameters in the on-shell scheme
are expressed in terms of the physical masses and the pion
decay constant. We can then express the running param-
eters in the MS scheme as

2 L, 2 2Ncm%/ 2 2 A? 2 2 2 2 2 2
mes = -3 (m2 =3m2) + 7 s (ms —3m3) logm—3 + 4my + (mz — 4mq)F(m,,) —3mzF(mz)|, (B23)
3(m2—m2) 12N .m? A?
M = 7 4 (471')2f%q 2(m2 —m% —2m2) logm—?] + (mZ — 4m2)F (m?)
2= 200 (02) + (2= o+ /() (B24)
2 2 2
2 my 4N myg { 2 2pr(, 2
G =+ ——= |log— + m2 + miF' (m2) |, (B25)
MS 2 (dr)fa T mg
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FIG. 22. Comparison of the effective one-loop potential in the
large-N, limit for ¢ = r =0, T = u = 0 with tree-level (dashed
orange line) and one-loop at large N, (solid blue line) determi-
nation of the couplings.

2 cmé A? 2 2 2
/’lm = mﬂfﬂ. +W |:]0g? + my — m”F/(m,,)} s
7 q
(B26)
4N .mg A?
1%/[_5 =f2- )2 { 2 + m2 + m2F'(m2 )} (B27)

We note from Eqgs. (B25) and (B27) that the product
A = gv = gysUns» 1-€-» it does not run with the renorm-
alization scale.

Substituting Eqgs. (B23)—(B27) into the effective poten-
tial (A6), we obtain Eq. (38). We have emphasized the
importance of matching the parameters in the one-loop
large-N . approximation for consistency. For example, the
onset of pion condensation at 7 = 0 takes place only at
Uy = %m,, if the parameters are determined in the same
approximation as the effective potential itself. Moreover, to
show the effects of renormalization, we show in Fig. 22 the
one-loop effective potential, with couplings determined at
tree level (dashed orange line) and one loop at large-N,
(solid blue line) with a sigma mass of 500 MeV. Due to the

term oc —A* logﬁl—i in Eq. (38), the potential will always be
q

unbounded from below for large values of A. However,
only in the case where the parameters consistently have
been determined at the same accuracy of the effective
potential, is there a local minimum such that we actually
can study the phase transition at finite 7" and y. Using tree-
level matching for m, = 500 MeV, leads to a vacuum
effective potential that cannot be used.

APPENDIX C: INTEGRALS

In order to renormalize the PQM and yM models, we
need to evaluate some vacuum integrals in four dimensions.
These integrals are divergent in the ultraviolet and we
regularize them using dimensional regularization in d =
4 — 2¢ dimension and the MS scheme. We define

N e’EN 2e ddQ
L= () e ()
The integrals needed are
2 /A2 1
=i o ) 1)@
1
2 o
BP) = [ o
] A2\ €1
) e @
/(p2\ 1 /(D2
B'(P*) = —(471)2 F'(P%), (C4)
where the functions are
F(P?) =2 —2qarctan (%) (C3)
2
F'(P?) = %arotan (%) - #, (Ce6)

4m?
and s = 4/ h .

We also need some three-dimensional integrals. In this
case the integrals are defined as in Eq. (C1) but now with
d =3 —2¢ instead of d =4 —2¢. We also use ¢ instead
of O as integration variable to distinguish the two cases.

The integrals are
m4 AP\e[1 3
(B e 2vow].

Jrem == 6

/p (p? +1m2)% N (4?;)2 (%) E+ 0(6)] . (C8)

APPENDIX D: PROPAGATOR
AND POLYAKOV LOOP

In this Appendix, we show the relation between the
fermion propagator and the Polyakov loop in the non-
relativistic limit, i.e., for heavy quark masses. We follow
Lowell and Weisberger [57] to construct the nonrelativistic
limit of the fermion sector in QCD. We first define the
operator U as

U:exp[—inyj], (D1)

where the sum over latin indices is only over spatial
components. We also define a new fermion field ¥ via
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w = UY. (D2)

It can be easily shown that the operator U is unitary. The
quark part of the Lagrangian can then be expanded in
powers of m~! as

‘cq = ll_l[l]/”D” - m]l//
=YUNY[iy’Dy — iy’ D; — mlUY

i . )
=y {1 —l-%y/Dj + - ] P°liy’Dy — iy/D; — m]

i )
X [1 —%y/Dj—ku}‘PvL(’)(m D)

=¥ m + iDy|¥ + O(m™"). (D3)

We next define

w = ( 4 ) , (D4)
q

where ¢ and §' are column N,_-plets and the upper

and lower two-component spinors of W. If we use the

Dirac representation of the gamma matrices in which

y? = diag(1,1,—1,—1), the Lagrangian (D3) can be writ-

ten as

L, =q"(=m+i0, + gA§T*)q + g(m + i, + gA§T*)g".
(D5)

In the Dirac representation, the upper and lower compo-
nents of the Dirac spinors can be interpreted as the particle
and antiparticle, and Eq. (D5) shows that the quark and
antiquark degrees of freedom decouple in this limit. To get
the Lagrangian into the final form, we use §7¢G' =
Z]iT?jZ]; = —q;T?jZ]i = (g")TT*G", where we have defined
T¢ = —(T*)T. A vpartial integration yields §0,§~
—(0,)3" = (g")70,4", and redefining §' to be a row
object and G a column object, ie. (§7)" — ¢ and g7 — g,
the Lagrangian becomes

L, =q"(-m+i0, + gAiT*)q + ' (—m + i, + gA{T*)q

=q'Dg+3'Dg, (D6)
where we have defined the operators

D = —m + 10, + gA§T*, (D7)

D = —m+id, + gAST". (D8)

Finally, the Hamiltonian density is given by

H,=iq'0,q+i3'0,q- L,

= q'(m— gA§T")q + ' (m — gAGT*)g. (DY)
The quark Hamiltonian thus is
H, = / d*xH,. (D10)

We now want to evaluate the quantity (q,(x,0)]
q.(x, —if)), which is the zero-temperature Green’s function,

(G(x. 1:%.0)] 1y = (g (x.0)|e""1]q,(x.0)).  (D11)

analytically continued to imaginary time t = —iz withz = f§
for a quark state evolving under H,. Furthermore, A,
contained in H,, is a classical background field. Since £,
is quadratic in the quark fields, the propagator is in practice
given by a free quantum field theory. The propagator for a
quadratic Lagrangian £ = ¢'Dgq is the solution to the
equation

DG(x,1;x',0) = i5(x — x")5(1). (D12)

With D as defined in (D7), we find

[i0, + gAg(x, )T — m]G(x,1;x',0) = i6(x — x")8(1).
(D13)

When the delta functions are zero, this is just the Schrodinger
equation, which for a time-dependent Hamiltonian H(r) has
the well known solution

Te—iﬁ)’dtH(t) _ e_,'mtTeing’thg(x,t)T“’ (D14)

where T is the time ordering operator. With the delta
functions included we see by insertion that a solution is
given by

G(x, %, 0) = O()5(x = x')e=m T [ O™ (p15)

where 6(t) is the Heaviside step function. This is the retarded
propagator, which we have chosen since we work in the
nonrelativistic limit.

In analytically continuing this formula to imaginary
times, we will have that G(—ir, x;x’,0) = 0 for imaginary
times 7 < 0. This is because we should analytically con-
tinue to imaginary time before carrying out the path integral
implicit in (D11) to get an analogue of (D12) in imaginary
time. We find
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G(x,—if:x',0) =6(x - x’)e‘ﬁ”’T,eiQﬁ;[/}d’AS(X»’)T“’

ﬁ a 7 a
=5(x— x’)e‘ﬁ’”T,egﬁJ dA =0T (D16)

where we used that f > 0 and defined the imaginary time
ordering operator T,. Defining the Polyakov loop to be

L(x) =T, exp [igAﬂ drAf{(x,r)T“}, (D17)

and introducing the Euclidean gauge field, A§(x,7) =
—iA§(x, —it), we obtain

<Q¢1(X’ O) |qa(x’ _lﬁ» = [G(X’ _iﬁ; X, O)]aa

= V-le M [L(x)] (D18)

aa’

where we have used that §(x =0) = V~!. Thus the
fermion propagator analytically continued to imaginary
times is proportional to the Polyakov loop. The vanishing
of the latter implies the vanishing of the former and is taken
as a definition of confinement.
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