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We study the single longitudinal-spin asymmetry of dihadron production in semi-inclusive deep inelastic
scattering process. We consider the collinear picture in which the transverse momentum of the final-state
hadron pair is integrated out, such that the sinϕR azimuthal asymmetry arises from the coupling hLH

∢
1 as

well as the coupling g1G̃
∢. We calculate the unknown twist-3 dihadron fragmentation function G̃∢ using a

spectator model which is successful in describing the dihadron production in the unpolarized process.
Using the spectator model results for the quark distributions and dihadron fragmentation functions, we
estimate the sinϕR asymmetry of dihadron production in semi-inclusive deep inelastic scattering at the
kinematics of COMPASS and compare it with the COMPASS preliminary data. In addition, the prediction
on the sinϕR asymmetry at the typical kinematics of the future Electron Ion Collider is also presented. In
order to test the reliability of the spectator model estimate, we compare the model result for the distribution
hL with the Wandzura-Wilczek approximation for that distribution, and compare H∢

1 with the existing
parametrization. Although the asymmetry is dominated by the hLH

∢
1 term, we find that the contribution

from the g1G̃
∢ term should also be taken into account in certain kinematical region.

DOI: 10.1103/PhysRevD.99.054003

I. INTRODUCTION

Understanding the partonic structure of the nucleon and
the fragmentation mechanism of hadrons are the main tasks
in QCD and hadronic physics. The azimuthal asymmetries
in semi-inclusive deep inelastic scattering (SIDIS) process
have been recognized as useful tools for these quests. The
full description of SIDIS includes a set of parton distribution
functions (PDFs) and fragmentation functions (FFs) [1–3].
In recent years, the study of hadron pair production in SIDIS
has received a lot of attention. The dihadron FF (DiFF),
which describes the probability that a quark fragmented into
two hadrons: q → H1H2X, appears in this process.
The unpolarized DiFFs were introduced in Ref. [4],

and their evolution equations have been investigated
in Refs. [5–7]. The study of DiFFs was extended to
the polarized cases in Refs. [8–10] in order to explore
the transverse spin phenomena of the nucleon. Particularly,
the chiral-odd DiFF H∢

1 [11–13] plays an important role in
accessing transversity distribution, as it couples with h1 at
the leading-twist level in the collinear factorization.

In Refs. [14–18], the authors applied this approach to
extract h1 from SIDIS and proton-proton collision data with
the parametrized result for H∢

1 [19]. Recently, there is also
proposal [20,21] to probe the quark helicity through the
helicity-dependent DiFF G⊥

1 appearing in eþe− annihila-
tion. Meanwhile, the calculations of the DiFF were carried
out by the spectator model [12,22–24] and by the Nambu-
Jona-Lasinio (NJL) quark model [25–27].
The leading-twist differential cross-section in polarized

SIDIS, containing different azimuthal modulations involv-
ing dihadron fragmentation, was presented in Ref. [12]. The
study was then extended to the subleading twist in Ref. [28],
where the issue of gauge invariance of the DiFFs was also
discussed. In this formalism, the structure functions are
expressed as the convolution of the distribution function and
the DiFF. Experimentally, hadron pair productions off both
the unpolarized target and the transversely polarized target
have beenmeasured by theHERMES collaboration [29] and
the COMPASS collaboration [30,31]. Very recently, pre-
liminary results on the azimuthal spin asymmetries in
hadron pair production off the longitudinally polarized
proton target were also obtained by the COMPASS col-
laboration [32]. When the transverse momentum of the
hadron pair is integrated out and the incident lepton beam is
unpolarized, only one modulation—the sinϕR azimuthal
angle dependence—remains. Here ϕR is the angle between
the lepton plan and the two-hadron plane. The preliminary
COMPASS measurement showed a clearly positive sinϕR
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asymmetry within experimental precision. In the parton
model, two sources [28] contribute to this asymmetry, one is
the coupling of the twist-3 distribution hL and the twist-2
DiFF H∢

1 , the other is the twist-3 DiFF G̃∢ combined with
the helicity distribution g1.
In this work, we study the sinϕR asymmetry by adopting

the spectator model results for the distribution functions
and fragmentation functions. We not only take into account
the coupling hLH

∢
1 , but also investigate the role of the

T-odd DiFF G̃∢, which encodes the quark-gluon-quark
correlation and has not been considered in previous studies.
It was suggested in Ref. [33] that the fragmentation
contribution in the twist-3 collinear framework may be
also important for the single spin asymmetry in pp
collision. Later phenomenological analysis [34] showed
that, besides the contribution of the twist-3 collinear
distribution functions, twist-3 fragmentation functions
are also necessary for describing the single spin asymmetry
data in both SIDIS and pp collision [35–38] in a consistent
manner [39]. To calculate G̃∢, we apply a spectator model
in Ref. [23] where the parameters of the model is tuned to
the output of the PYTHIA event generator. A similar model
has also been applied to calculate the single hadron
fragmentation functions [40]. We adopt the approach in
Refs. [41,42] in order to generate the gluon rescattering
effect needed for nonzero T-odd fragmentation functions.
Using the model results for the distributions and DiFFs, we
estimate the sinϕR asymmetry at COMPASS kinematics
and compare it with the COMPASS preliminary data.
This paper is organized in the following way. In Sec. II,

we review the theoretical framework of the sinϕR azimu-
thal asymmetry of dihadron production in unpolarized
lepton beam scattered off a longitudinally polarized proton
target. In Sec. III, we use a spectator model to calculate the
twist-3 dihadron fragmentation function G̃∢. In Sec. IV, we
make the numerical estimate of the sinϕR azimuthal
asymmetry at the kinematics of COMPASS as well as
the Electron Ion Collider (EIC). We summarize this work
in Sec. V.

II. FORMALISM OF THE sinϕR ASYMMETRY
OF DIHADRON PRODUCTION IN SIDIS

As displayed in Fig. 1, the process under study is the
dihadron production in SIDIS off a longitudinally polarized
proton target:

μðlÞ þ p→ðPÞ → μðl0Þ þ hþðP1Þ þ h−ðP2Þ þ X; ð1Þ

where the four-momenta of the incoming and the outgoing
leptons are denoted by l and l0, P is the momentum of the
target with mass M. In this process, the active quark with
momentum p is struck by the virtual photon with momen-
tum q ¼ l − l0. The final-state quark with momentum k ¼
pþ q then fragments into two final-state hadrons, hþ and

h−, plus unobserved state X. The momenta of the pair are
denoted by P1, P2, respectively. In order to express the
differential cross section as well as to calculate the DiFFs,
we adopt the following kinematical variables

x ¼ kþ

Pþ ; y ¼ P · q
P · l

; zi ¼
P−
i

k−
; ð2Þ

z¼ P−
h

k−
¼ z1 þ z2; Q2 ¼ −q2; s¼ ðPþ lÞ2; ð3Þ

Ph ¼ P1 þ P2; R ¼ ðP1 − P2Þ=2; Mh ¼
ffiffiffiffiffiffi
P2
h

q
:

ð4Þ
Here, we have used the light-cone coordinates aμ ¼
ðaþ; a−; aTÞ, where a� ¼ ða0 � a3Þ= ffiffiffi

2
p

and aT is the
transverse component of the vector. Therefore, x represents
the longitudinal momentum fraction of the initial quark, zi
is the longitudinal momentum fraction of hadron hi found
in the fragmented quark. Furthermore, Mh, Ph, and R are
the invariant mass, the total momentum, and the relative
momentum of the hadron pair, respectively.
The momenta Pμ

h, k
μ, and Rμ thus can be written as [23]

Pμ
h ¼

�
P−
h ;

M2
h

2P−
h
; 0⃗

�
;

kμ ¼
�
P−
h

z
;
zðk2 þ k⃗2TÞ

2P−
h

; k⃗T

�
;

Rμ ¼
�jR⃗jP−

h

Mh
cos θ;−

jR⃗jMh

2P−
h

cos θ; jR⃗j sin θ cosϕR;

jR⃗j sin θ sinϕR

�

¼
�jR⃗jP−

h

Mh
cos θ;−

jR⃗jMh

2P−
h

cos θ; R⃗x
T; R⃗

y
T

�
; ð5Þ

where θ is defined as the polar angle between the direction
of P1 in the center of mass frame of the hadron pair and the

FIG. 1. Angle definitions involved in the measurement of the
single longitudinal-spin asymmetry in deep-inelastic production
of two hadrons in the current region.
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direction of Ph in the lab frame [43], jR⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

h=4 −m2
π

p
and ϕR is the angle between the lepton plan and the two-
hadron plane, as shown in Fig. 1. There are several useful
expression of the scalar products as follows

Ph · R ¼ 0; ð6Þ

Ph · k ¼ M2
h

2z
þ z

k2 þ jk⃗T j2
2

; ð7Þ

R · k ¼
�
Mh

2z
− z

k2 þ jk⃗T j2
2Mh

�
jR⃗j cos θ − k⃗T · R⃗T: ð8Þ

In the following wewill consider the condition the lepton
beam is unpolarized and the nucleon target is longitudinally
polarized. In this case, if the transverse momentum of the
dihadron is integrated out, the differential cross section for
an unpolarized (spin-averaged) target and a longitudinally
polarized target can be cast to

d6σUU

d cos θdM2
hdϕRdzdxdy

¼ α2

Q2y

�
1 − yþ y2

2

�X
q

e2afa1ðxÞDa
1ðz;M2

hh; cos θÞ; ð9Þ

d6σUL

d cos θdM2
hdϕRdzdxdy

¼ −
α2

Q2y
SL2ð1 − yÞ

ffiffiffiffiffiffiffiffiffiffiffi
2 − y

p X
a

e2a
M
Q

jRj
Mh

sin θ sinϕR

×

�
xhaLðxÞH∢;a

1 ðz;M2
h; cos θÞ þ

Mh

Mz
g1ðxÞG̃∢;aðz;M2

h; cos θÞ
�
: ð10Þ

Here, the first subscript and the second subscript in σXY denote the polarization states of the beam and the target,
respectively. In Eq. (9), fa1ðxÞ and Da

1ðz;M2
hh; cos θÞ are the unpolarized PDF and unpolarized DiFF for flavor a; while in

Eq. (10), haLðxÞ is the twist-3 distribution coupled with the chiral-odd DiFF H∢;a
1 ðz;M2

h; cos θÞ, ga1ðxÞ is the helicity
distribution coupled with the twist-3 T-odd DiFF G̃∢;aðz;M2

h; cos θÞ. As shown in Eq. (10), both of these couplings
contribute to the sinϕR azimuthal asymmetry in SIDIS.
The DiFFs Da

1 and H∢;a
1 are encoded in the integrated quark-quark correlator Δðz; RÞ for fragmentation [28]:

Δðz; RÞ ¼ z2
XZ

X

Z
dξþ

2π
eik·ξh0jUþ

½0;ξ�ψðξÞjPh; R;XihX;Ph; Rjψ̄ð0Þj0ijξ−¼ξ⃗T¼0

¼ 1

16π

�
D1=nþH∢

1

i
Mh½=RT; =n−�

�
; ð11Þ

where Ua
½b;c� is the gauge-link running from b to c along a to ensure the gauge invariance of the operator.

The twist-3 DiFF G̃∢ arises from the multiparton correlation during the quark fragmentation, described by the quark-
gluon-quark correlator [28,41]:

Δ̃α
Aðz; kT; RÞ ¼

1

2z

X
X

Z
dξþd2ξT
ð2πÞ3 eik·ξh0j

Z
ξþ

�∞þ
dηþUξT

ð∞þ;ξþÞ

× gF−α⊥ UξT
ðηþ;ξþÞψðξÞjPh; R;XihPh; R;Xjψ̄ð0ÞU0T

ð0þ;∞þÞU
∞þ
ð0T ;ξTÞj0ijηþ¼ξþ¼0;ηT¼ξT

: ð12Þ

Here, F−α⊥ is the field strength tensor of the gluon. After
integrating out k⃗T , one obtains

Δ̃α
Aðz; cos θ;M2

h;ϕRÞ ¼
z2jR⃗j
8Mh

Z
d2k⃗TΔ̃α

Aðz; kT; RÞ: ð13Þ

The DiFF G̃∢ thus can be extracted from Δ̃α
Aðz; kT; RÞ by

the trace

ϵαβT RTβ

z
G̃∢ðz;cosθ;M2

hÞ ¼ 4πTr½Δ̃α
Aðz;cosθ;M2

h;ϕRÞγ−γ5�:
ð14Þ

As shown in Ref. [23], The DiFFs D1 and H∢
1 can be

expanded in the relative partial waves of the hadron pair
system:

Da
1ðz; cos θ;M2

hÞ
¼ Da

1;ooðz;M2
hÞ þDa

1;olðz;M2
hÞ cos θ

þDa
1;llðz;M2

hÞð3cos2θ − 1Þ; ð15Þ

H∢a
1 ðz; cos θ;M2

hÞ ¼ H∢a
1;otðz;M2

hÞ þH∢a
1;ltðz;M2

hÞ cos θ;
ð16Þ
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in which the expansion is truncated at the p-wave level.
Similarly to H∢

1 , we can also expand the twist-3 DiFF G̃∢
up to the p-wave level as

G̃∢ðz; cos θ;M2
hÞ ¼ G̃∢

otðz;M2
hÞ þ G̃∢

lt ðz;M2
hÞ cos θ: ð17Þ

Here, G̃∢
ot originates from the interference of s and pwaves,

and G̃∢
lt comes from the interference of two p waves with

different polarization.
In this work, following the similar procedure in

Ref. [13], we will not consider the cos θ-dependent terms

in the expansion of DiFFs because of two reasons.
First, cos θ-dependent terms correspond to the higher
order contribution in the partial wave expansion and can
only be significant when the two hadrons produce via a
spin-1 resonance. Second, when integrating out the
angular θ in the interval ½−π; π� which is our case,
the cos θ-dependent terms should vanish. Therefore,
we focus on the functions Da

1;oo, H
∢
1;ot, and G̃∢

ot. In this
scenario, the sinϕR asymmetry of dihadron production in
the single longitudinally polarized SIDIS may be
expressed as [32],

AsinϕR
UL ðx; z;M2

hÞ ¼ −

P
ae

2
a
jR⃗j
Q

�
jMj
Mh

xhaLðxÞH∢;a
1;otðz;M2

hÞ þ 1
z g1ðxÞG̃∢

otðz;M2
hÞ�P

ae
2
afa1ðxÞDa

1;ooðz;M2
hÞ

: ð18Þ

Following the COMPASS convention, the depolari-
zation factors are not included in the numerator and
denominator.

III. MODEL CALCULATION OF G̃∢
ot

Before actually calculating the unknown DiFF G̃∢
ot in the

spectator model, we briefly review the calculation of twist-
2 DiFFs D1;oo and H∢

1;ot in the same model in Ref. [23]. In
that paper, the twist-2 DiFFs D1 and H∢

1 were expanded in
terms of the relative partial waves of the hadron pair system
up to the p-wave level, similar to the expressions in
Eqs. (15), (16). The DiFF D1;oo receives the pure s-wave
contribution (terms with vertex jFsj2) and the pure p-wave
contribution (terms with vertex jFpj2), For H∢

1;ot the gauge
link (gluon exchange) would not contribute and therefore
one needs vertex factors (Fs and Fp) that are complex.
Thus the DiFFH∢

1;ot was calculated from the interference of
s and p waves which is proportional to ImðFs�FpÞ or
ImðFsFp�Þ [23]. Here, the interference of Fs and Fp

generates the necessary phase for the nonzero H∢
1;ot.

Furthermore, in the model the background of s wave
was assumed to be free of the resonances which means

the vertex Fs is real while the p-wave amplitude contains
the contributions from the ρ and the ω mesons. By fitting
the output of the PYTHIA Monte Carlo generator for the
dihadron count in SIDIS, the parameters of the spectator
model were fixed and the numerical results of the twist-2
DiFFs D1;oo and H∢

1;ot were given.
In the following, we present the calculation of the

DiFF G̃∢
ot in the same spectator model. The DiFF G̃∢

ot
comes from the quark-gluon-quark correlation at the
twist-3 level. Here, different from the calculation of the
twist-2 T-odd distribution H∢

1;ot in Ref. [23], the gluon
degree of freedom shows up explicitly, as given in the
operator definition (12). The corresponding diagram for
the calculation in the spectator model is shown in Fig. 2.
The left-hand side of Fig. 2 corresponds to the quark-
hadron vertex hPh;Xjψ̄ð0Þj0i, while the right-hand side
corresponds to the vertex containing gluon rescattering
h0jigF−α⊥ ðηþÞψðξþÞjPh;Xi. Here, we apply the Feynman
gauge, in which the transverse gauge links UξT and U0T can
be neglected [44,45].
Therefore, the s- and p-wave contributions to the quark-

gluon-quark correlator for dihadron fragmentation in the
spectator model can be written as

Δ̃α
Aðk; Ph; RÞ ¼ i

CFαs
2ð2πÞ2ð1 − zÞP−

h

1

k2 −m2

Z
d4l
ð2πÞ4 ðl

−gαμT − lαTg
−μÞ

×
ð=k − =lþmÞðFs⋆e

−k2

Λ2s þ Fp⋆e
− k2

Λ2p=RÞð=k − =Ph − =lþmsÞγμð=k − =Ph þmsÞðFse
−k2

Λ2s þ Fpe
− k2

Λ2p=RÞð=kþmÞ
ð−l− � iϵÞððk − lÞ2 −m2 − iϵÞððk − Ph − lÞ2 −m2

s − iϵÞðl2 − iϵÞ ;

ð19Þ
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where m and ms are the masses of the fragmenting quark
and the spectator, and where the factor ðl−gαμT − lαTg

−μÞ
comes from the Feynman rule corresponding to the gluon
field strength tensor, as denoted by the open circle in Fig. 2.
Fs, Fp are the vertices refer to the s-wave contribution and
p-wave contribution [23] and have the following forms:

Fs ¼ fs; ð20Þ

Fp ¼ fρ
ðM2

h −M2
ρÞ − iΓρMρ

ðM2
h −M2

ρÞ þ Γ2
ρM2

ρ
þ fω

ðM2
h −M2

ωÞ − iΓωMω

ðM2
h −M2

ρÞ þ Γ2
ωM2

ω

− if0ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̂ðM2

ω;M2
h; m

2
πÞ

q
ΘðMω −mπ −MhÞ

4πΓ2
ω½4M2

ωm2
π þ λ̂ðM2

ω;M2
h;m

2
πÞ�14

: ð21Þ

Here, λ̂ðM2
ω; M2

h; m
2
πÞ ¼ ðM2

ω − ðMh þ mπÞ2ÞðM2
ω−

ðMh − mπÞ2Þ, and Θ denotes the unit step function. The
first two terms of Fp can be identified with the contribu-
tions of the ρ and theω resonances decaying into two pions.
The masses and widths of the two resonances are adopted
from the particle data group [46]: Mρ ¼ 0.776 GeV,
Γρ ¼ 0.150 GeV, Mω ¼ 0.783 GeV, Γω ¼ 0.008 GeV.
In Eq. (19), in principle one of the exponential form

factors should depend on the loop momentum l. Here we
follow the choice in Ref. [40] to replace ðk − lÞ2 in the form
factor to k2. The reason for this choice is that the form
factor is introduced to the purpose of cutting off the high-kT
region. Maintaining the form factor depending only on k2

can pull the form factor out of the integral and simplify the
calculation.
Expanding Eq. (19), we arrive at

Δ̃α
Aðz; cos θ;M2

h;ϕRÞ ¼ i
CFαsz2jR⃗j

16ð2πÞ5ð1 − zÞMhP−
h

Z
djk⃗T j2

Z
d4l

l−gαμT − lαTg
−μ

k2 −m2

×

�
jFsj2e−

2k2

Λ2s
ð=k − =lþmÞð=k − =Ph − =lþmsÞγμð=k − =Ph þmsÞð=kþmÞ

ð−l− � iϵÞððk − lÞ2 −m2 − iϵÞððk − Ph − lÞ2 −m2
s − iϵÞðl2 − iϵÞ

þ jFpj2e−
2k2

Λ2p
ð=k − =lþmÞ=Rð=k − =Ph − =lþmsÞγμð=k − =Ph þmsÞ=Rð=kþmÞ

ð−l− � iϵÞððk − lÞ2 −m2 − iϵÞððk − Ph − lÞ2 −m2
s − iϵÞðl2 − iϵÞ

þ ðFs⋆FpÞe−
2k2

Λ2sp
ð=k − =lþmÞð=k − =Ph − =lþmsÞγμð=k − =Ph þmsÞ=Rð=kþmÞ

ð−l− � iϵÞððk − lÞ2 −m2 − iϵÞððk − Ph − lÞ2 −m2
s − iϵÞðl2 − iϵÞ

þ ðFsFp⋆Þe−
2k2

Λ2sp
ð=k − =lþmÞ=Rð=k − =Ph − =lþmsÞγμð=k − =Ph þmsÞð=kþmÞ

ð−l− � iϵÞððk − lÞ2 −m2 − iϵÞððk − Ph − lÞ2 −m2
s − iϵÞðl2 − iϵÞ

�
; ð22Þ

where Λs and Λp are the z-dependent Λ-cutoffs having the
form [23]

Λs;p ¼ αs;pzβs;pð1 − zÞγs;p ; ð23Þ

and 2=Λ2
sp ¼ 1=Λ2

s þ 1=Λ2
p. The on-shell condition of the

spectator gives the relation between k2 and the transverse
momentum k⃗T : [22],

k2 ¼ z
1 − z

jk⃗T j2 þ
M2

s

1 − z
þM2

h

z
: ð24Þ

The first and second lines of Eq. (22) provide the pure
s-wave and p-wave contributions, respectively. Therefore,
they will not contribute to the interference of s and p-waves
functions G̃∢

ot, only the third and fourth lines have contri-
bution. At one loop level, in principle there are two sources
for nonzero G̃∢

ot. One is the imaginary part of the loop
integral over l, combined with the real part of Fs�Fp. The
other is the imaginary part of Fs�Fp, combined with the real
part of the loop integral over l. For the imaginary part of the
integral, we apply the Cutkosky cutting rules; while for the
real part of the integral, we adopt the Feynman parametriza-
tion. Thus, the final result for G̃∢

otðz;M2
hÞ has the form

FIG. 2. Diagrammatic representation of the correlation function
Δ̃α

A in the spectator model.
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G̃∢
otðz;M2

hÞ ¼
αsCFz2jR⃗j

8ð2πÞ4ð1 − zÞMh

1

k2 −m2

×
Z

djk⃗T j2e
−2k2

Λ2spfImðFs�FpÞC

þ ReðFs�FpÞðk2 −m2Þms½ðAþ zBÞ − I2�g:
ð25Þ

Here, the coefficients A and B come from the decomposition
of the integral [41,42],

Z
d4l

lμδðl2Þδððk − lÞ2 −m2Þ
ðk − Ph − lÞ2 −m2

s
¼ Akμ þ BPμ

h; ð26Þ

and have the expressions

A¼ I1
λðMh;msÞ

�
2k2ðk2−m2

s−M2
hÞ
I2
π
þðk2þM2

h−m2
sÞ
�
;

ð27Þ

B ¼ −
2k2

λðMh;msÞ
I1

�
1þ k2 þm2

s −M2
h

π
I2

�
: ð28Þ

The functions Ii appearing in the above equations are
defined as [47]

I1 ¼
Z

d4lδðl2Þδððk − lÞ2 −m2Þ ¼ π

2k2
ðk2 −m2Þ; ð29Þ

I2¼
Z

d4l
δðl2Þδððk− lÞ2−m2Þ
ðk−Ph− lÞ2−m2

s

¼ π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðMh;msÞ

p ln

�
1−

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðMh;msÞ

p
k2−M2

hþm2
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðMh;msÞ

p
�
;

ð30Þ

where λðMh;msÞ¼ðk2−ðMhþmsÞ2Þðk2−ðMh−msÞ2Þ.
The coefficient C in Eq. (25) has the form

C ¼ m
Z

1

0

dx
Z

1−x

0

dy

×
−2½ðxþ yÞk · Ph − yM2

h� þ ðk2 −m2Þ
xð1 − xÞk2 þ 2k · ðk − PhÞxyþ xm2 þ y2m2

s
;

ð31Þ

which is proportional to the fragmenting quark mass m.

IV. NUMERICAL ESTIMATE

In order to obtain the numerical result for G̃∢
otðz;M2

hÞ, we
choose the values for the parameters m, ms, αs;p, βs;p, and
γs;p from Ref. [23], where the model parameters were tuned
to the output of the PYTHIA event generator for dihadron
production in SIDIS:

αs ¼ 2.60 GeV; βs ¼ −0.751; γs ¼ −0.193;

αp ¼ 7.07 GeV; βp ¼ −0.038; γp ¼ −0.085;

fs ¼ 1197 GeV−1; fρ ¼ 93.5; fω ¼ 0.63;

f0ω ¼ 75.2; Ms ¼ 2.97Mh; m ¼ 0.0 GeVðfixedÞ:
ð32Þ

FIG. 3. The twist-3 DiFF G̃∢
ot as the functions of z (left panel) and Mh (right panel) in the spectator model, normalized by the

unpolarized DiFF D1;oo.
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Particularly, in Ref. [23] the quark mass m is fixed as
0 GeV. Therefore, in this model, only the ReðFs�FpÞ term
in Eq. (25) contributes to G̃∢

ot numerically, since the
ImðFs�FpÞ term is proportional to the quark mass m. As
for the strong coupling, we choose αs ≈ 0.3.
In the left panel of Fig. 3, we plot the DiFF G̃∢

ot
(normalized by D1;oo) as a function of z withMh integrated
over the region 0.3 GeV < Mh < 1.6 GeV. In the right
panel of Fig. 3, we plot G̃∢

ot (normalized by D1;oo) as a
function of Mh with z integrated over the region
0.2 < z < 0.9. We find that G̃∢

ot is negative in the entire

z region when Mh is integrated out, while it is positive in
the region Mh < 0.8 GeV and negative in the region
Mh > 0.8 GeV. The size of G̃∢

ot is less than one percent
compared to the leading-twist DiFF D1;oo.
In the following, we numerically estimate the sinϕR

azimuthal asymmetry in the dihadron production off a
longitudinally polarized proton by considering both the
hLH

∢;a
1;ot term and the g1G̃

∢
ot term. Using Eq. (18), we can

obtain the expressions of the x-dependent, z-dependent,
and Mh-dependent sinϕR asymmetry as follows

AsinϕR
UL ðxÞ ¼ −

R
dz

R
dMh2Mh

jR⃗j
Q

�
jMj
Mh

ð4huLðxÞ þ hdLðxÞÞxH∢
1;otðz;M2

hÞ þ 1
z ð4gu1ðxÞ þ gd1ðxÞÞG̃∢

otðz;M2
hÞ�R

dz
R
dMh2Mhð4fu1ðxÞ þ fd1ðxÞÞD1;ooðz;M2

hÞ
; ð33Þ

AsinϕR
UL ðzÞ ¼ −

R
dx

R
dMh2Mh

jR⃗j
Q

�
jMj
Mh

ð4huLðxÞ þ hdLðxÞÞxH∢
1;otðz;M2

hÞ þ 1
z ð4gu1ðxÞ þ gd1ðxÞÞG̃∢

otðz;M2
hÞ�R

dx
R
dMh2Mhð4fu1ðxÞ þ fd1ðxÞÞD1;ooðz;M2

hÞ
; ð34Þ

AsinϕR
UL ðMhÞ ¼ −

R
dx

R
dz jR⃗j

Q

�
jMj
Mh

ð4huLðxÞ þ hdLðxÞÞxH∢
1;otðz;M2

hÞ þ 1
z ð4gu1ðxÞ þ gd1ðxÞÞG̃∢

otðz;M2
hÞ�R

dx
R
dzð4fu1ðxÞ þ fd1ðxÞÞD1;ooðz;M2

hÞ
: ð35Þ

For the other DiFFs H∢;a
1;otðz;M2

hÞ and D1;ooðz;M2
hÞ

needed in the calculation, we apply the same spectator
model results from Ref. [23]. For the twist-3 distribution
hL, we choose the result in Ref. [48], as for the twist-2
PDFs f1 and g1, we adopt the results calculated from the
same model [49] for consistency.
As there are several model inputs in the expression of the

sinϕR asymmetry, it is necessary to check the reliability of
the model calculations of the distributions and DiFFs. For
the twist-3 distribution function hLðxÞ, we compare the
spectator model result in Ref. [48] with that from the
Wandzura-Wilczek approximation [50]

hLðxÞ ≈ 2x
Z

1

x

dy
y2

h1ðyÞ: ð36Þ

Here, h1ðxÞ is the transversity distribution function and has
been extracted [51] phenomenologically. It is known that
for the twist-3 distribution gTðxÞ the Wandzura-Wilczek
approximation works reasonably well [52]. In Fig. 4, we
plot the numerical results of ðhuL þ hdL=4Þ=ðfu1 þ fd1=4Þ
which is the relevant one appearing in the expression for
the sinϕR asymmetry. The solid line denotes the model
result, while the dashed line corresponds to the result from
the Wandzura-Wilczek approximation. The comparison

shows that the former one qualitatively agrees with the
latter one.
Second, in order to check the model input for the DiFFs,

we also compare the spectator model result of the DiFF
H∢;a

1 with the parametrized result extracted in Ref. [19]. In
Fig. 5, we compare the ratio jRj=MhH

∢;u
1 =Du

1 from the

FIG. 4. The twist-3 distribution function normalized by the
unpolarized distribution ðhuL þ 1=4hdLÞ=ðfu1 þ 1=4fd1Þ as a func-
tion of x. The solid curve corresponds to the spectator model
result, while the dashed curve denotes the result from the
Wandzura-Wilczek for hL.
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model (solid lines) and from the parametrization (dashed
lines) as functions of z (left panel) and Mh (right panel),
respectively. For the z-dependent result we have integrated
over Mh in the region 0.3 GeV < Mh < 1.6 GeV, while
the Mh-dependent result we have integrated over z in the
region 0.2 < z < 0.9. A better agreement is found in the
z-dependent result.
To compare our estimate with the sinϕR asymmetry in

SIDIS at COMPASS, we adopt the following kinematical
cuts [32]

0.003<x<0.4; 0.1<y<0.9; 0.2<z<0.9;

0.3GeV<Mh<1.6GeV; Q2>1GeV2; W>5GeV:

ð37Þ

Here, W is invariant mass of the virtual photon-nucleon
system andW2 ¼ ðPþ qÞ2 ≈ 1−x

x Q2. We note that we have
not considered the evolution effect of the distribution
functions and DiFFs, as the evolution of the twist-3
functions hL and G̃∢

ot remain unknown.

In Fig. 6, we plot the sinϕR asymmetry in dihadron
production off the longitudinally polarized proton at the
kinematics of COMPASS. The x-, z-, and Mh-dependent
asymmetries are depicted in the left panel, central, and right
panels of the figure, respectively. The dashed lines represent
the contribution from the hLH

∢;a
1;ot term and the dot-dashed

lines depict the contribution from the g1G̃
∢ term. The

solid lines display the sum of the two contributions. The
full circles with error bars show the preliminary measure-
ment by the COMPASS collaboration for comparison. We
find that in the large x region and in the smallMh region, the
contribution from the hLH

∢;a
1;ot term dominates the asymme-

try. The g1G̃
∢ becomes important in the small x region and

large Mh region. Combining the contributions from the
two terms, our calculation agrees with the COMPASS
preliminary data on the sinϕR asymmetry. Particularly, in
the region Mh > 1 GeV, the contribution from the hLH

∢;a
1;ot

underestimates the asymmetry, whereas the inclusion of the
g1G̃

∢ term can yield a better description of the COMPASS
preliminary data.

FIG. 5. The ratio of the DiFFs H∢;u
1 and Du

1 as the functions of z (left panel) and Mh (right panel). The dashed curves correspond to
result from parametrizations for DiFFs, and the solid curve corresponds to the spectator model result.

FIG. 6. The sinϕR azimuthal asymmetry in dihadron production off the longitudinally polarized proton as functions of x (left panel),
z (central panel), and Mh (right panel) at COMPASS. The full circles show the COMPASS preliminary data [32] for comparison.
The dashed curves denote the contribution from the hLH

∢
1;ot term, the dashed-dotted curves represent the contribution from the g1G̃

∢
term, and the solid lines display the sum of two contributions.
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In addition, we also make the prediction on the sinϕR
asymmetry in the single-longitudinally polarized SIDIS at the
future EIC. Such a facility would be ideal to study this
observable.We adopt the followingEIC kinematical cuts [53]

ffiffiffi
s

p ¼45GeV; 0.001<x<0.4;

0.01<y<0.95; 0.2<z<0.8;

0.3GeV<Mh<1.6GeV; Q2>1GeV2; W>5GeV:

ð38Þ

The x-, z-, andMh-dependent asymmetries are plotted in the
left, central, and right panels of Fig. 7.We find that the overall
tendency of the asymmetry at the EIC is similar to that at
COMPASS. Although the size of the asymmetry is smaller
due to the higher-twist nature of the asymmetry, it is still
measurable at the kinematics of EIC.

V. CONCLUSION

In this work, we have studied the single longitudinal-spin
asymmetry with a sinϕR modulation of dihadron pro-
duction in SIDIS. We not only considered the contribu-
tions from the coupling of the twist-3 distributions hL and
the DiFF H∢

1;ot, but we also took into account the coupling
of the helicity distribution g1 and the twist-3 DiFF G̃∢.
Using the same spectator model which has been adopted
to calculate DiFFs D1;oo and H∢

1;ot, we calculated the
twist-3 T-odd DiFF G̃∢

ot by considering the gluon rescatter-
ing effect. We found that the contribution to G̃∢

ot comes

from the interference of the s and p waves. We also test the
reliability of the spectator model by comparing the model
results of the dihadron fragmentation function H∢

1 with the
existed parametrization as well as the model results of
the twist-3 distribution function hL with the Wandzura-
Wilczek approximation. Using the numerical results of the
DiFFs, we estimated the sinϕR asymmetry and compared it
with the COMPASS measurement. Our calculation shows
that the hLH

∢
1;ot term dominates in the most of the

kinematical region. However, the inclusion of the g1G
∢
ot

contribution yields a better description of the COMPASS
data, especially in the largeMh region. In addition, we also
made a prediction on the sinϕR asymmetry in SIDIS at the
typical kinematics of a future EIC. Our study shows that the
twist-3 DiFF G̃∢ should be considered in phenomenologi-
cal analysis in order to provide a better understanding of the
sinϕR asymmetry in dihadron production in SIDIS.
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