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(Received 17 January 2019; published 8 March 2019)

Following Caron-Huot and combining results for the thermal dependence of spectral functions at large
timelike momenta, we write an explicit expression for the thermal width of the Higgs boson to OðαsÞ for
T ≪ MH . It is an Oðαsð T

MH
Þ4Þ correction for H → gg and H → qq̄. We also compile corresponding results

for the thermal width of the Z-boson, and we recall which generic structures of the field theory, accessible
via the operator product expansion, fix the T

M-dependence of the decay of heavy particles.

DOI: 10.1103/PhysRevD.99.054002

I. INTRODUCTION

In this paper we derive the thermal correction δΓH of the
width of the Higgs boson to first order in the strong
coupling constant αs and for temperatures T of the QCD
plasma that are parametrically lower than the Higgs mass,
MH ≫ T. We do so since we could not find an explicit
expression for δΓH in the literature when discussing the
(im)possibility of observing thermal corrections to Higgs
branching ratios at future multi-TeV heavy ion collider
experiments [1–3]. As we explain below, δΓH can be
obtained essentially from combining limiting cases of
several spectral functions whose derivation has been
described in detail [4–6]. We believe this to be known to
a small group of experts in thermal field theory, and the
novelty of the present work thus resides mainly in making
this expert knowledge explicit.
For thermal corrections to the Higgs width in a QCD

plasma, the branching into final states without color charge
(such as H → ZZ → 4l) is clearly unimportant. The decay
processes relevant for the following are therefore deter-
mined by the electroweak interaction of the Higgs to
quarks,

LHq ¼ −S
H
v
; S≡mqψ̄qψq; ð1Þ

and by the corresponding coupling of the Higgs to gluons.
Here, v ≅ 246 GeV denotes the Higgs vacuum expectation
value. The dominant contribution toH → gg proceeds via a

top quark loop. We work in the limit mt ≫ MH in which
this interaction is given by the Higgs effective field theory
Lagrangian [7]

Leff
Hg ¼ −CHg

H
v
OHg; ð2Þ

OHg ≡ −
1

4
Fa
μνFaμν; ð3Þ

CHg ¼
αs
3π

þOðα2s Þ: ð4Þ

For a particle that does not carry charges of the plasma
and that couples to currents J, the decay widths can be
expressed in terms of the corresponding spectral functions

ρJðKÞ≡
Z

d4xeiK·Xh½JðXÞ; Jð0Þ�i; ð5Þ

where Kμ ¼ ðk0; k⃗Þ in the rest frame of the QCD plasma.
The metric is mostly minus. In particular, the partial decay
widths of the Higgs boson relevant for our study are
given by

ΓH→qq̄ ¼
1

v2
1

2k0
ρSðKÞ; ð6Þ

ΓH→gg ¼
α2s

ð3πÞ2v2
1

2k0
ρOHg

ðKÞ; ð7Þ

where 1
2k0

is the usual kinematical flux factor and the factors
1
v2,

α2s
ð3πÞ2v2 denote the squares of the couplings of the Higgs

boson to the corresponding currents. The widths (6), (7) are
thus first order in the electroweak couplings, but the
spectral functions ρJ are all orders in αs.
The calculation of thermal corrections to ΓH→qq̄, ΓH→gg

then amounts to determining thermal corrections δρSðKÞ
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and δρOHg
ðKÞ to the vacuum spectral functions ρvacS ðK2Þ

and ρvacOHg
ðK2Þ. Lorentz invariance of the vacuum implies

that the latter can depend only on the scalar K2 ¼ KμKμ. In
contrast, any finite temperature system singles out a rest
frame, and the thermal corrections δρS and δρOHg

can

therefore depend separately on k0 and k≡ jk⃗j. In the
present paper, we focus on the case of a Higgs boson at
rest in the plasma, except for a short discussion of boosted
Higgs bosons in Sec. II C.
In a QCD plasma, the vacuum branchings H → gg and

H → qq̄ are modified already to zeroth order in αs, since
emission of each final state gluon or final state quark of
momentum kg=q is enhanced by a thermal Bose-Einstein
ð1þ fBðkgÞÞ or suppressed by a Fermi-Dirac ð1 − fFðkqÞÞ
distribution factor, respectively. However, the partons
emerging from this two-body decay carry momenta kq=g ¼
MH
2

much above the thermal scale. As a consequence, the
effects of stimulated emission for the decay into gluons and
of Pauli-blocking for the decay into quarks are negligible.
To zeroth order in αs, thermal corrections to ΓH→gg and
ΓH→qq̄ are kinematically suppressed by multiplicative

factors exp ½− kg=q
T � ¼ exp ½−MH

2T �.
Processes to first order in αs open up a region of phase

space in which thermal corrections are not suppressed in
this way. First, to OðαsÞ, there are real emission contri-
butions, such as H → ggg or H → qq̄g. In these three-body
decays, one of the three final state partons can carry a
momentum kg=q ≲ T, for which effects of stimulated gluon
emission∝ ð1þ fBðkgÞÞ and Pauli-blocked quark emission
∝ ð1 − fFðkqÞÞ are not suppressed. Second, there are real
absorption contributions in which quarks and gluons from
the QCD plasma interact with the vacuum branching pro-
cess, such as gH → gg, gH → qq̄, qH → qg or q̄H → gq̄.
Third, there are thermal virtual contribution that arise from
branching processes which interact on the amplitude level
to OðαsÞ with partons in the medium, and which interfere
with the vacuum contribution in the complex conjugate
amplitude. In general, calculations of thermal widths to
OðαsÞ amount to determining these three classes of con-
tributions consistently in finite temperature field theory.
There are two conceptually different approaches for
achieving this:
(1) Explicit perturbative calculation of δΓ in finite

temperature QCD. This standard approach is well
documented e.g., for calculations of the thermal
production of vector bosons [8–13]. It is typically
formulated in terms of the two-loop self-energy
correction of the propagator of the particle excitation
in whose width one is interested. By the optical
theorem, the imaginary part of this self-energy cor-
responds to a sum over different cut contributions that
can be identified with the three above-mentioned
classes of thermal corrections, namely real emission,

real absorption and virtual correction. In practice, all
three classes of thermal corrections yield infrared
singular expressions, while thermal corrections to the
sum of the three contributions are infrared and
collinear safe observables [14]. This makes explicit
perturbative calculations of δΓ relatively complex and
lengthy.

(2) Calculating δΓ via the operator product expansion
(OPE) of the relevant spectral functions. In general,
the OPE relies on a systematic separation of infrared
and ultraviolet contributions. As first pointed out by
Caron-Huot [4], this approach allows one to deter-
mine thermal corrections to spectral functions in the
high-energy timelike region k0 ≫ T. For the thermal
width of particles whose mass is parametrically
larger than the plasma temperature, this allows for
a much simplified calculation.

A particularly simple and instructive example is the case
of a heavy fermion decaying to a lighter fermion and a
scalar in a QED plasma. This process was studied in an
explicit perturbative calculation in Ref. [15], presenting
explicit IR-regulated results for the real emission, real
absorption and virtual correction contributions, and dem-
onstrating the IR-finiteness of the physical width in detail.
The same process was studied in Ref. [16] with OPE
techniques. (As the decaying particle in this toy model is
charged under the gauge group, the techniques of Ref. [4]
do not apply directly to this case.)
OPE techniques have been applied also to study the

thermal corrections to the decay width of hypothetical
heavy right-handed neutrinos in [17] (see also [18] for the
same calculation with the explicit method). Furthermore, in
the case of heavy right-handed neutrinos an effective field
theory approach has been introduced in [19], where the
M ≫ T expansion is introduced at the Lagrangian level,
making the separation of IR and UV extremely transparent
(see [20] for a review of these calculations in their physical
context).
In the present work, we utilize the OPE approach of

Ref. [4] to arrive at an expression for the thermal width of
the Higgs boson. In Appendix A, we comment shortly on
how these results are connected to results obtained from an
explicit perturbative calculation. In Appendix B, we also
summarize results for the thermal width of the Z-boson.

II. HIGGS BRANCHING RATIOS FROM KNOWN
SPECTRAL FUNCTIONS OF Tμν

For the reader who wants to get to the final result for the
thermal width δΓH without spending too much time on
technical details, we compile in this section what is known
about the spectral functions ρOHg

ðKÞ and ρSðKÞ in the
asymptotic limit of large K2, and we insert this information
for K2 ¼ M2

H into Eqs. (6) and (7) to obtain δΓH. A more
thorough discussion of the theoretical basis of this sche-
matic derivation is deferred to the subsequent section.
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A. H → gg

To determine ρOHg
ðKÞ, we exploit that the operator

OHg appears in the trace of the QCD energy-momentum
tensor [4]

Tμ
μ ¼ −b0αs

2π
OHg þ ½fermionic terms�; ð8Þ

where b0 ¼ ð11
3
CA − 4

3
nfTFÞ is the leading coefficient of

the β-function, with CA ¼ Nc ¼ 3 the quadratic Casimir
of the adjoint representation and TF ¼ 1

2
. The spectral

function of the trace anomaly (8) is the spectral function
ρζ of the bulk viscous channel of Tμν. In general, due to the
fermionic mass contributions, ρζ differs from ρOHg

not only

by a trivial prefactor b2
0
α2s

ð2πÞ2, but also by additional fermionic

terms. However, in the OPE of ρζ, these fermionic terms are
suppressed by additional powers of m2

q=K2 which render
them negligible for our problem. From the result for
ρvacζ ðK2Þ in Ref. [4], one thus finds

ρvacOHg
ðK2Þ ¼ ð2πÞ2

b20α
2
s

�
ρvacζ ðK2Þ þO

�
m2

q

K2

��

¼ dAðK2Þ2
32π

þOðαsÞ þO
�
m2

q

K2

�
; ð9Þ

where dA ¼ N2
c − 1 is the dimension of the adjoint

representation.
The leading (dimension-four) thermal correction to ρζ

was derived in the same Ref. [4] up to an unknown
coefficient in front of the trace anomaly that has been
determined in Refs. [5,6]. Accounting again for the fact that

δρζðKÞ and δρOHg
ðKÞ differ by the prefactor b2

0
α2s

ð2πÞ2, these
results translate into

δρOHg
ðKÞ ¼ 2αs

3

KμKν

K2

�
2CFT

μν
f −

�
nfTF þ 3

2
b0

�
Tμν
g

�
− πTμ

μ; ð10Þ

where Tμν
g and Tμν

f denote the traceless parts of the gluonic
and fermionic contributions to Tμν, respectively, and
CF ¼ ðN2

c − 1Þ=ð2NcÞ is the quadratic Casimir of the
fundamental representation. The temperature dependence
of δρOHg

ðKÞ thus enters via the temperature dependence of
the energy-momentum tensor.

1. Vacuum width from spectral function

Before turning to a discussion of the thermal corrections,
we check the consistency of our starting point by determin-
ing the corresponding partial width in vacuum. Plugging
Eq. (9) into Eq. (7), we find

Γvac
H→gg ¼

α2sM3
H

72π3v2
þOðα3s Þ; ð11Þ

which agrees with the expression in the literature [7].
This argument can be extended to next-to-leading-order

(NLO). Higher order corrections to the Wilson coefficient
CHg can be found in [7,21–24]

CHg ¼
αs
3π

�
1þ

�
5

4
CA −

3

4
CF

�
αs
π

�
: ð12Þ

The vacuum pure glue part of the bulk channel spectral
function ρζ at NLO can be found e.g., in Ref. [25].

Multiplying this with the prefactor b2
0
α2s

ð2πÞ2 of Eq. (8) yields

ρvac;NLOOHg
ðK2Þ ¼ ρvacOHg

ðK2Þ
�
1þ αsNc

4π

73

3

�
: ð13Þ

Combining these expressions, one finds for the NLO
correction to Γvac

H→gg

Γvac;NLO
H→ggðgÞ;H→gqq̄

¼ Γvac
H→gg

�
1þ αs

4π

�
2ð5Nc − 3CFÞ þ Nc

73

3

��
: ð14Þ

This is consistent with the NLO correction factor for the
pure glue part, ð1þ 95

4
αs
π Þ [7,26]. Equation (13) contains to

OðαsÞ also a logarithmic term that can be traced back to the
RG evolution of the LO result and that is consistent with
[7,26]. Indeed, we are following here essentially the logic
of Ref. [7]. Our reason for repeating this result is that we
take in the following thermal corrections to (13) from
published results in which also the vacuum contribution to
the spectral function is given. The rederivation of (11) and
(14) thus serves as a check that these thermal corrections
are used with proper normalization.

2. Thermal corrections to H → gg

Paralleling the discussion in Sec. II A 1, we obtain the
thermal correction to Γvac

H→gg from the thermal contribution
to the quark and gluon condensates that appear in the OPE
of the bulk channel spectral function Eq. (10),

δΓH→gg ¼
α3s

81π2v2k0
3k20 þ k2

M2
H

"
2CF

 X
q∈udsc

hT00
fqi
!

−
�
11

2
CA − nfTF

�
hT00

g i
#
þOðα4s Þ: ð15Þ

Here, we have used that in an isotropic medium, the trace-
less operators Tμν

f;g satisfy T
ij
f;g¼ 1

3
δijT00

f;g and T
oj
f;g ¼ 0. The
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resulting prefactor ð3k20 þ k2Þ breaks Lorentz invariance
since the QCD plasma specifies a thermal rest frame.
In close analogy to the NLO vacuum correction (14) to

Γvac
H→gg, also the OðαsÞ thermal correction δΓH→gg contains

contributions with a gqq̄-vertex. On the one hand, these are
the processes gH → qq̄ andH → gqq̄ with a thermal gluon
and a hard quark-antiquark pair, which give rise to the term
∝ nfTFhT00

g i in (15). On the other hand, there are the
processes qH → qg and H → gqq̄ with a thermal quark
which contribute to the term proportional to hT00

fqi. In
addition, the virtual quark-loop correction to H → gg is
also proportional to hT00

fqi.
The physical picture behind obtaining (15) from the

trivial insertion of (10) into (7) is that the hierarchy
MH ≫ T allows for a separation of short and long distance
physics. The Higgs gluon coupling CHg describes physics
which takes place on length and timescales much shorter
than 1=T and which is therefore not affected by the
presence of the QCD plasma. The long-distance physics
is given by the OPE of the bulk channel spectral function
whose temperature dependence is parametrized by the
thermal expectation values of the quark and gluon con-
densates, hT00

fqi and hT00
g i, respectively. To leading order in

αs, these are given by the free (Stefan-Boltzmann) limits

hT00
g i ¼ π2T4

15
dA; ð16Þ

hT00
fqijmq¼0 ¼

7π2T4

60
dF; ð17Þ

where dA ¼ N2
c − 1 and dF ¼ Nc are the dimensions of the

adjoint and the fundamental representation, respectively.
If a quark has mass mq ≲ T one would need the explicit
evaluation of the massive Stefan-Boltzmann integral instead
of (17), while for mb ≫ T, hT00

fbi is exponentially sup-
pressed. The sum

P
q∈udsc in (15) thus goes over the flavors

that can be thermally excited. To arrive at a more compact
expression, one may approximate this sum by an effective
number nTf of approximately massless flavors, using 3 <
nTf < 4 for temperatures well above the strange quark mass
and well below the bottom charm mass. For the number of
flavors entering the leading coefficient b0 of the β-function,
we use nfTF ¼ 5

2
in (15). With this input, we obtain

δΓH→gg ¼ −Γvac
H→ggαs

T4

M4
H

112π3

45
ð8 − nTf Þ;

for H-decay in the plasma rest frame: ð18Þ

B. H → q̄q

The decay of the Higgs boson into a qq̄ pair proceeds via
coupling to the scalar operator S. For mq ≪ MH, the

leading order vacuum contribution to the corresponding
spectral function ρS is

ρvacS ðK2Þ ¼ dFnfm2
qK2

4π
; ð19Þ

and its leading (dimension-four) thermal correction
reads [4]

δρSðKÞ ¼ 8αsm2
q

3K2

KμKν

K2

�
13

2
CFT

μν
f − nfTFT

μν
g

�

−
9αsm2

qCF

K2
S: ð20Þ

Inserting the vacuum contribution (19) into (6), we repro-
duce for each mass state (nf ¼ 1) the LO vacuum branch-
ing ratio

Γvac
H→qq̄ ¼

dFm2
qMH

8πv2
; ð21Þ

which agrees with the literature [27]. [Full accounting
of the massive kinematics amounts to a multiplicative
factor ð1 − 4m2

q=M2
HÞ3=2.]

Having checked in this way the consistency of the nor-
malization of ρS and (6), one can proceed to determining in
the same way the thermal correction to Γvac

H→qq̄ from δρSðKÞ
in Eq. (20). In general, the evaluation of the operator (20) in
the QCD plasma requires the LO thermal (Stefan-
Boltzmann) expectation value of the chiral condensate

hSi ¼ 4dFm2
q

Z
d3p
ð2πÞ3

nFðEpÞ
Ep

; ð22Þ

which becomes 1
6
dFm2

qT2 for mq ≪ T. However, for the
thermal corrections to H → bb̄ at temperature T ≪ mb,
the contributions hSi and hT00

f i in (20) are exponentially
suppressed by the quark mass, and

δΓH→bb̄ ¼ −
4αsTFm2

b

v2k0

3k20 þ k2

9M4
H

hT00
g i þ…; ð23Þ

where the dots stand for Oðexp ½−mb=T�Þ terms. Inserting
the LO expression (16) for the gluon condensate, we find
(for T ≪ mb)

δΓH→bb̄ ¼ −Γvac
H→bb̄

αs
T4

M4
H

128π3

135
;

for H-decay in the plasma rest frame: ð24Þ

For temperatures T ≳OðmbÞ or for the calculation of the
partial thermal width into lighter quarks, the contributions
hSi and hT00

f i in (20) need to be included. In general, the
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thermal corrections stemming from the coupling to lighter
quarks are reduced by a factor m2

q=m2
b compared to (24).

For all partial decay widths into qq̄-pairs, the thermal
correction is an Oðαs T4

M4
H
Þ correction to the vacuum width.

C. Thermal corrections to spectral functions:
Range of validity

Here, we shortly recall the derivation of thermal correc-
tions to ρJðKÞ in the OPE approach [4], and we comment
on its range of validity. The starting point is the Euclidean
current-current correlator GEðqÞ ¼

R
d4xe−iq:xhJðxÞJð0Þi,

where we set q ¼ ð0; 0; 0; qEÞ for simplicity. The dis-
persion relation GEðqEÞ ¼ PðqEÞ þ

Rþ∞
−∞

dω
2πðω−iqEÞ ρJðωÞ

relates GE to the spectral function ρJ, with PðqEÞ a
polynomial in qE. As explained in detail in Ref. [4], this
dispersion relation implies that the asymptotic expansion
of ρJðKÞ for large timelike K can be obtained from
matching term-by-term to the operator product expansion
of GEðqEÞ for large spacelike qE,

GEðqEÞ ∼
X
n

hOni
cn
qdnE

⟺

ρJðk0Þ ∼
X
n

hOni2Im
�

cn
ð−ik0Þdn

�
: ð25Þ

In practice, one proceeds as follows: First, expand the
operator product JJ in GEðqÞ up to order 1=q2 in the
Euclidean four-momentum squared. This results in explicit
expressions such as Gζ

EðqÞ ∼ 4b20α
2
s ðqμqνq2 hTμν

g i þ 1
g2 hOHgiÞ

for the bulk viscous channel. Then take into account that
the local operators in this expansion are scale dependent,

for instance, Tμν
g ðqEÞ∼Tμν

g ðμ0Þþ αs
3π log

h
μ2
0

q2E

i
ðnfTFT

μν
g ðμ0Þ−

2nfT
μν
f ðμ0ÞÞ. This renormalization group flow is of central

importance, since the branch cuts of the analytically con-

tinued logarithms log
h

μ2
0

ð−iKÞ2
i
contribute to ImGEð−iKÞ and

thus to ρJ at large timelike momenta. Without this RG flow,
the expansion of GEðqÞ would contain only powers of the
type 1=qn times local operators. The analytic continuation
of these 1=qn-terms to Minkowksi space can only generate
discontinuities on the light cone. The only contribution to
ρJðKÞ at large timelike K thus comes from these analyti-
cally continued logarithms.
The OPE of GE in (25) implements a physical scale

separation. For a highly energetic, short-distance probe that
tests distances of size 1=qE much smaller than any other
scale in the problem, 1=qE ≪ 1=T, Eq. (25) systematically
expands in powers of that small scale times local operators.
For the corresponding spectral function ρJðKÞ to be valid, it
is thus a necessary condition that

K2 ¼ 4kþk− ¼ M2 ≫ T2; ð26Þ

where we have introduced the light-cone momenta
kþ ¼ 1

2
ðk0 þ kÞ, k− ¼ 1

2
ðk0 − kÞ. In a thermal medium

and for a very massive probe, kþ ≫ T is always satisfied.
However, to a boosted probe, the medium appears Lorentz-
contracted, and the scale separation between the long-
distance physics of the medium and the short-distance
physics of the probe becomes questionable when the
coherence length ∼1=k− of the probe becomes comparable
to the medium scale 1=T. One should therefore distinguish
the following kinematic regimes:
(1) k− ≫ T: ρJ can be determined from OPE.
(2) k− ∼ T: ρJðKÞ cannot be determined from OPE, but

unresummed perturbative techniques such as those
used in Refs. [25,28–30] apply for ‘hard’ momenta
k− ∼OðTÞ.

(3) k− ≪ T: Resummed finite temperature perturbation
theory or nonperturbative methods would be needed
to determine ρJðKÞ in this regime, as in [31–33].

For the Higgs boson decay discussed in this section, k− ≫
T applies as long as the three-momentum k in the medium

satisfies k ≪ M2
H

4T . For temperature T ≤ 1 GeV that may be
reached in heavy ion collisions at present or future
colliders, the OPE and the results for the partial thermal
widths (15) and (23) of the Higgs boson that we derived
from it are thus valid over a transverse momentum range
that extends to multiples of the Higgs mass. Over this range
of validity of the OPE, thermal corrections to ΓH are seen to

increase by a factor 3k2
0
þk2

3M2
H

with the Higgs three-momentum

k. Finally, we note that the unresummed perturbative
calculations of spectral functions of the kind being con-
sidered here for M ≳ T find that the OPE regime sets in
when M is approximately an order of magnitude larger
than T [25,28–30]. As MH is two orders of magnitude
larger than the temperatures of QCD plasmas, the appli-
cability of the OPE expansion is thus certain.

III. CONCLUSIONS

For a Higgs boson at rest in a QGP of temperature
T ≪ MH, explicit expressions for the thermal corrections to
the partial decay widths Γvac

H→gg and Γvac
H→qq̄ are given in

Eqs. (18) and (24). These corrections are Oðαsð T
MH

Þ4Þ times
the vacuum branching ratios.
For a Higgs boson propagating with finite three-

momentum k through the QGP, the thermal width increases
with k like δΓk¼0 × ð1þ 4

3
k2

M2
H
Þ. This applies for k− ¼

1
2
ðk0 − kÞ ≫ T, a range of validity which includes for

temperatures T < 1 GeV even moderately relativistic
Higgs bosons in the QGP.
In general, the OðαsðTMÞ4Þ leading thermal corrections to

the decay width of neutral massive particles is caused by
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the absence of lower-dimension gauge-invariant local
operators in QCD. For the thermal width of the Higgs,
the T4-dependence arises from the Stefan-Boltzmann limits
of the quark (17) and gluon (16) condensates that enter
thermal corrections of the spectral functions (10) and (20)
of the bulk viscous and scalar operator, respectively.
Similarly, thermal corrections to the width of the Z-boson
are Oðαsð T

MZ
Þ4Þ, since the spectral functions of the vector

and axial vector currents receive the dominant thermal
corrections from the same quark and gluon condensates,
see Ref. [4] and Appendix B.
We note that the leading T-dependence can be larger in

theories with lower-dimension gauge-invariant local oper-
ators. In the heavy sterile neutrino case mentioned before,
the zero-temperature decay into a Higgs scalar and a SM
lepton receives anOðλðTMÞ2Þ correction [17–19]. This is due
to the dimension-two ϕ†ϕ condensate of the Higgs field,
with its self-coupling λ.
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APPENDIX A: NON-OPE RESULTS FOR THE
H → gg COUPLING AT NLO

As mentioned in the Introduction, explicit perturbative
calculations of thermal widths proceed by calculating IR-
regulated thermal corrections to real emission, real absorp-
tion and virtual terms in the branching process. It is only the
sum of these three contributions that is physically mean-
ingful and IR-safe. The present Appendix provides tech-
nical details of how δρOHg

ðKÞ, used to calculate δΓH→gg in
(15), can be understood as arising from the sum of these
three IR-sensitive contribution. These details are not
needed to follow our derivation of thermal widths. We
include them solely since they may help to understand the
relation between the OPE approach followed here, and
explicit perturbative calculations of thermal widths. The
following discussion is limited to the pure glue part of
δρOHg

ðKÞ, and to k ¼ 0. It starts from the detailed

calculation of the NLO bulk viscous spectral function,
given in Ref. [25] for pure Yang-Mills theory for k0 ≳ T. Its
applicability is hence wider than the k0 ≫ T region, and it
provides a derivation of thermal corrections to the spectral
function that is logically independent of the OPE and that
verifies the results of the OPE.
Reference [25] calculates ρOHg

ðKÞ at NLO in the
imaginary-time formalism of thermal perturbation theory.
To this end, the contributions to the Tμ

μTν
ν correlator are

written without performing the sum integrals, and the sum
of the amplitudes is reduced to a set of master two-loop
amplitudes. One then performs first the Matsubara sums,
then one analytically continues the external Euclidean
frequency kn to the Minkowskian k0 þ iϵ, and one finally
takes the imaginary part to obtain the spectral function.
Taking this imaginary part corresponds to taking the

sum over all possible cuts. At this stage, identifying the
different real and virtual cut contributions to the spectral
function requires introducing an IR-regulator for the soft
and collinear divergences in the cuts. Different regulari-
zation schemes are possible. In Ref. [25], the authors
supplement one of the propagators in the master ampli-
tudes with a regulating mass term λ. Once the regulator
has been introduced, each cut of each master amplitude is
reduced to a set of one- or two-dimensional integrals.
Upon summing the cuts, the λ-dependence disappears
and the integrals are evaluated numerically. The final
physical result is scheme independent, and thus finite,
for λ → 0.
Here, we reverse-engineer the last step of this calcu-

lation. In the Appendices A and B of Ref. [25], the real cuts
are called “phase-space integrals” and the virtual ones
“factorized integrals.” For each cut, they can be evaluated
after subtraction of the vacuum contribution for k0 ≫
T ≫ λ. In this limit, many terms become exponentially
suppressed (expð−k0=TÞ ≈ 0). In particular, all two-dimen-
sional integrals are exponentially suppressed, and one has
to deal only with the easier one-dimensional ones, which
we can integrate analytically for k0 ≫ T ≫ λ.
For the virtual contribution, one obtains in this way in the

scheme of [25] and taking the normalization of OHg into
account

δρOHg
ðk0; λÞjvirt ¼

dAg2Nc

32π

�
−

k40
2π2

�
2πT
λ

− ln2
�
πT
λ

�
þ 2ðlnð4Þ − γEÞ ln

�
λ

4πT

�
þ 2γ1 −

π2

6
− ln2ð4Þ

�

−
k30T
8

−
k20T

2

6

�
−144 lnðAÞ þ 4 ln

�
64π3k0T3

λ4

�
þ 11

�

þ 16T4

45π2

�
π4
�
−3 ln

�
k0T
λ2

�
þ 3γE − 5 − lnð8Þ

�
− 270ζ0ð4Þ

�
þO

�
T5

k0

��
; ðA1Þ

where γE is the Euler-Mascheroni constant, γ1 is the first Stieltjes constant and lnðAÞ ¼ 1=12 − ζ0ð−1Þ is the logarithm of
Glaisher’s constant.
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The real emission contribution (H → ggg) is instead

δρOHg
ðk0; λÞjemi ¼

dAg2Nc

32π

�
k40
4π2

�
2πT
λ

− ln2
�
πT
λ

�
þ 2ðlnð4Þ − γEÞ ln

�
λ

4πT

�
þ 2γ1 −

π2

6
− ln2ð4Þ

�

þ k30T
8π2

�
ln2
�
2k0T
λ2

�
− 10 ln

�
T
λ

�
ln

�
4T
λ

�
þ 18γ1 −

π2

3
þ 9γ2E − 10ln2ð2Þ

�

þ k20T
2

12

�
−144 lnðAÞ þ 4 ln

�
64π3k0T3

λ4

�
þ 11

�

þ k0T3

π2

�
ζð3Þ

�
ln

�
k40

16T4

�
þ 4γE − 15

�
− 4ζ0ð3Þ

�

þ 8T4

45π2

�
π4
�
3 ln

�
k0T
λ2

�
− 3γE −

1

2
þ lnð8Þ

�
þ 270ζ0ð4Þ

�
þO

�
T5

k0

��
: ðA2Þ

Finally, the absorption contribution (gH → gg) reads

δρOHg
ðk0; λÞjabs ¼

dAg2Nc

32π

�
k40
4π2

�
2πT
λ

− ln2
�
πT
λ

�
þ 2ðlnð4Þ − γEÞ ln

�
λ

4πT

�
þ 2γ1 −

π2

6
− ln2ð4Þ

�

−
k30T
8π2

�
ln2
�
2k0T
λ2

�
− 10 ln

�
T
λ

�
ln

�
4T
λ

�
þ 18γ1 −

4π2

3
þ 9γ2E − 10ln2ð2Þ

�

þ k20T
2

12

�
−144 lnðAÞ þ 4 ln

�
64π3k0T3

λ4

�
þ 11

�

−
k0T3

π2

�
ζð3Þ

�
ln

�
k40

16T4

�
þ 4γE − 15

�
− 4ζ0ð3Þ

�

þ 8T4

45π2

�
π4
�
3 ln

�
k0T
λ2

�
− 3γE −

1

2
þ lnð8Þ

�
þ 270ζ0ð4Þ

�
þO

�
T5

k0

��
: ðA3Þ

Upon summing the three contributions all divergent
terms, as well as all terms larger than OðT4Þ, cancel out,
yielding

δρOHg
ðk0Þjtot ¼ δρOHg

ðk0; λÞjvirt þ δρOHg
ðk0; λÞjemi

þ δρOHg
ðk0; λÞjabs

¼ −
11π2dANcαsT4

45
: ðA4Þ

If we take Eq. (10) and set nf ¼ 0, k ¼ 0 we have

δρOHg
ðk0Þjnf¼0 ¼ −αsb0hT00

g i ¼ −
11π2dANcαsT4

45
; ðA5Þ

which agrees as expected. The material in this Appendix
further illustrates the complexity of perturbative calcula-
tions compared to the relative simplicity of deducing
thermal corrections to the width from the OPE approach.
The three contributions (A1), (A2) and (A3) depend, of
course, on the IR regularization scheme. They illustrate,
however, how the different scheme-dependent IR-singular

cut contributions in a perturbative calculation sum up to a
physical result that is free of any IR regulator.

APPENDIX B: Z-BOSON THERMAL WIDTHS

In between the lines of Ref. [4], one reads that it was one
motivation for Caron-Huot’s study of the asymptotic
behavior of spectral function to clarify in a logically
independent way the ð T

MZ
Þ-dependence of the thermal width

δΓZ of the Z-boson for which different explicit perturbative
calculations had obtained different power laws. However,
despite this motivation, and despite stating clearly that the
leading thermal correction in this case is Oðαsð T

MZ
Þ4Þ, the

results of Ref. [4] have never been used to write an explicit
expression for δΓZ. This Appendix aims at filling this small
gap in the existing literature.
The Z-boson decay to qq̄-pairs is mediated by coupling

to the vector and axial vector currents

ΓZ→qq̄ ¼
g21 þ g22
6k0

�
−gμν þ

kμkν
M2

Z

�
× ½g2VρμνV ðKÞ þ g2Aρ

μν
A ðKÞ� þOðαsÞ: ðB1Þ
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Here, the vector and axial vector spectral functions ρV
and ρA couple with gV ¼ 1=2T3 −Q sin2 θW , gA ¼ T3=2,
respectively, where T3 ¼ �1=2 for up/down-type quarks
and Q ¼ þ2=3 for up-type, Q ¼ −1=3 for down type. The
factor of 1=ð6k0Þ is a combination of the usual flux factor
1=ð2k0Þ times the average over the 3 polarization states of
the Z boson.
For the conserved vector current we can assume k to

point in the z direction and define ρT ≡ ρxx ¼ ρyy,
ρL ≡ K2

k2
0

ρzz ¼ K2

k2 ρ
00. Hence

ΓZ→qq̄ ¼
g21 þ g22
6k0

�
g2Vð2ρTðKÞ þ ρLðKÞÞ

þ g2A

�
2ρxxA ðKÞ þ k20

M2
z
ρzzA ðKÞ þ k2

M2
z
ρ00A ðKÞ

− 2
k0k
M2

z
ρ0zA ðKÞ

��
þOðαsÞ: ðB2Þ

At vanishing quark mass the axial vector current becomes
also (classically) conserved, so that we can use

ρvacT ðKÞ ¼ ρvacL ðKÞ ¼ nfdFK2

6π
þOðαsÞ ðB3Þ

for vector and axial current alike. This yields

Γvac
Z→qq̄ ¼

ðg21 þ g22ÞnfdFM2
Z

12πk0
ðg2V þ g2AÞ þOðαsÞ; ðB4Þ

which is a limit of the well-known expression for a non-
negligible mass

Γvac
Z→qq̄ ¼

ðg21 þ g22ÞdF
12πk0

½ðg2V þ g2AÞM2
Z þ 2ðg2V − 2g2AÞm2

q�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
q

M2
Z

s
þOðαsÞ: ðB5Þ

For the thermal width, we need the thermal corrections
to the longitudinal and transverse pieces of the vector
current [4]

δρTðKÞ ¼ 16αs
9K2

k20 þ k2

K2
½2CFT00

f − nfTFT00
g �; ðB6Þ

δρLðKÞ ¼
16αs
9K2

½2CFT00
f − nfTFT00

g �: ðB7Þ

To also obtain the corresponding thermal correction to
the spectral function of the axial vector current, one can
parallel for JA the analysis of the Euclidean JVJV operator
product in Eqs. (3.3) and (3.4) of Ref. [4]. One finds that up
to dimension four, this OPE is expressed in terms of two
local operators T44

f and Om, where the index 4 denotes the

Euclidean time. Since T44
f is the operator that survives in

the chiral limit, it has the same Wilson coefficient in the
OPE of JAJA and JVJV . The operator Om occurs with
different Wilson coefficients in both current products, and
the terms that violate current conservation are found to be
proportional to it. But Om does not matter because it is
RGE invariant and does not generate cuts, so the thermal
corrections to ρA have to agree with those of ρV even at
nonzero mq (as long as mq ≪ MZ). Hence the thermal
correction to the Z width into a quark of a particular flavor
(nf ¼ 1) can be written as

δΓZ→qq̄ ¼
g21 þ g22
3k0

8αsð3k20 þ k2Þ
9M4

Z
ðg2Vq þ g2AqÞ

× ð2CFhT00
fqi − TFhT00

g iÞ þOðα2s Þ

¼ Γvac
Z→qq̄αs

32π

27

3k20 þ k2

M2
Z

2CFhT00
fqi − TFhT00

g i
M4

Z
:

ðB8Þ

For the light uds quarks in the QGP one can assume
mq ¼ 0 and take the massless expressions in Eqs. (16) and
(17). One then finds 2CFhT00

fqi − TFhT00
g i ¼ 2

3
π2T4, which

yields e.g.,

δΓZ→uū ¼ Γvac
Z→qq̄αs

64π3

81

3k20 þ k2

M2
Z

T4

M4
Z
; ðB9Þ

and is identical for the branching into d- and s-quarks. The
thermal correction is again an effect of Oðαsð T

MZ
Þ4Þ, but in

contrast to the standard model Higgs boson, it comes for
light quarks with a positive sign.
We note that for the closely related case of dilepton

production at T
Mll̄

≪ 1, the correct Oðαsð T
Mll̄

Þ4Þ was found

already in Ref. [9].
For the branching of the Z-boson into bb̄ or cc̄ quark

pairs and for temperatures relevant for heavy-ion collision
experiments, the fermion condensate in (B8) should be
evaluated for massive quarks, i.e.,

hT00
f i ¼ 4dF

Z
d3p
ð2πÞ3 EpnFðEpÞ − dF

Z
d3p
ð2πÞ3

m2

Ep
nFðEpÞ:

ðB10Þ

For a sufficiently large ratio of quark mass over temper-
ature, the contribution hT00

fQi in (B8) becomes exponen-
tially suppressed and can be neglected. While the
suppression factor ∝ αsð T

MZ
Þ4 will render all these effects

unobservable in practice, it is still curious to note that the
thermal correction δΓZ→QQ̄ to sufficiently heavy quarks
will be dominated by the gluon condensate and therefore
have a negative sign, in contrast to (B9).
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