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We revisit the scale evolution of the quark and gluon spin contributions to the proton spin, 1
2
ΔΣ and ΔG,

using the three-loop results for the spin-dependent evolution kernels available in the literature. We argue
that the evolution of the quark spin contribution may actually be extended to the four-loop order, and that to
all orders a single anomalous dimension governs the evolution of both ΔΣ and ΔG. We present analytical
solutions of the evolution equations forΔΣ andΔG and investigate their scale dependence both to large and
down to lower “hadronic” scales. We find that the solutions remain perturbatively stable even to low scales,
where they come closer to simple quark model expectations. We discuss a curious scenario for the proton
spin, in which even the gluon spin contribution is essentially scale independent and has a finite asymptotic
value as the scale becomes large. We finally also show that perturbative three-loop evolution leads to a
larger spin contribution of strange antiquarks than of strange quarks.
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I. INTRODUCTION

The decomposition of the proton spin in terms of the
contributions by quarks and antiquarks, gluons, and orbital
motion is a key focus of modern nuclear and particle
physics. As has become well-known [1–3], in a gauge
theory the decomposition is not unique. The two physically
most relevant spin sum rules for the proton are the Ji
decomposition [2], which ascribes the proton spin to gauge-
invariant contributions by quark spins and orbital angular
momenta, and total gluon angular momentum, and the
Jaffe-Manohar decomposition [1], in which there are four
separate pieces corresponding to quark and gluon spin and
orbital contributions, respectively. The two sum rules have
in common only the quark spin piece, and there is no
relation among the other pieces. In particular, in the gauge-
invariant definition of Ref. [2] only the total gluon angular
momentum is well defined and cannot be split in a
physically meaningful way into helicity and orbital angular
momentum contributions.
The Jaffe-Manohar sum rule corresponds to the canoni-

cal decomposition of the proton’s angular momentum.
It may be regarded as a “partonic” spin sum rule, since
both the quark and gluon spin pieces are related to parton

distributions measurable in inelastic lp or pp scattering
processes. The sum rule reads

1

2
¼ 1

2
ΔΣðQ2Þ þ ΔGðQ2Þ þ LqðQ2Þ þ LgðQ2Þ; ð1Þ

where 1
2
ΔΣ and ΔG are the quark and gluon spin

contributions and Lq and Lg the orbital ones. ΔΣ and
ΔG may be obtained from the first moments of the
helicity parton distributions Δqðx;Q2Þ, Δq̄ðx;Q2Þ (where
q ¼ u; d; s;…) and Δgðx;Q2Þ of the proton:

ΔΣðQ2Þ ¼
XNf

q

Z
1

0

dxðΔqðx;Q2Þ þ Δq̄ðx;Q2ÞÞ;

ΔGðQ2Þ ¼
Z

1

0

dxΔgðx;Q2Þ; ð2Þ

where in the first line the sum runs over all active quark
flavors whose number we denote by Nf. In the following
we will mostly use the simplified notation

ΔqðQ2Þ≡
Z

1

0

dxΔqðx;Q2Þ; ð3Þ

and likewise for the antiquarks. We note that although the
parton distribution Δgðx;Q2Þ and hence its first moment
are gauge-invariant, the identification with the gluon spin
contribution is only valid in the light-cone gauge. The same
is true for the orbital angular momentum pieces.
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As indicated in Eq. (1), the contributions to the proton
spin are all scale dependent, although the dependence
cancels in their sum. The dependence on Q2 is given by
spin-dependent QCD evolution equations. The kernels
relevant for the evolution of the first moments ΔqðQ2Þ,
Δq̄ðQ2Þ, ΔGðQ2Þ have been derived to lowest order
(LO) in Refs. [4,5], to next-to-leading order (NLO) in
Refs. [6–9], and recently to next-to-next-to-leading order
(NNLO) in Refs. [10–12]. The kernels for the separate
evolution of Lq and Lg in the Jaffe-Manohar decomposition
are known only to LO [13–15], although the evolution of
their sum is known from Eq. (1) to the same order as that of
1
2
ΔΣþ ΔG, that is, to NNLO.
In this paper, we will discuss some features of the higher-

order scale evolution of the first moments, starting from the
NNLO results of Refs. [10–12] for the evolution kernels.
We will first study the singlet evolution, where we will
extend previous arguments by Altarelli and Lampe [16] to
show that the evolution of ΔΣ may actually be determined
even to next-to-next-to-next-to-leading order (N3LO). The
evolution equations for ΔΣ and ΔG may straightforwardly
be decoupled and solved in closed form. We present the
solutions in analytical form and show numerical results
for their evolution at various perturbative orders. We note
that studies along these lines were first presented to LO
in Refs. [17–20]. The paper [22] considered the NNLO
evolution of ΔΣ. In our paper we go beyond the previous
work by extending the results for the evolution of ΔΣ to
N3LO and that of ΔG to NNLO. Apart from the intrinsic
value of this, we believe that our results could also have
interesting applications in comparisons to models and in
studies of nucleon spin structure in lattice QCD [23]:
although nowadays renormalization on the lattice is typ-
ically performed at nonperturbative level, comparison to
high-order perturbative evolution should be valuable as a
benchmark.
As is well-known [16,24,25] the gluon spin contribution

ΔGðQ2Þ in general evolves as the inverse of the strong
coupling constant and thus rises logarithmically with
growing scale, either to large positive or negative values,
depending on the inputΔGðQ2

0Þ;ΔΣðQ2
0Þ at some scaleQ0.

However, in between there is a unique solution for which
the gluon spin contribution remains almost flat in Q2 and
tends to a finite asymptotic value. Such a “static” solution
in fact occurs [26] in the early NLO DSSVanalysis [27,28].
We show that static solutions may be found at every order
in perturbation theory and determine the asymptotic values
for the gluon spin contribution at LO, NLO, and NNLO.
We will finally also study the evolution in the flavor

nonsinglet sector. Higher-order evolution is known to
generate interesting patterns of flavor- or charge-symmetry
breaking in the nucleon sea. It was shown a long time ago
[29–31] that NLO evolution leads to an asymmetry ū ≠ d̄
both in the unpolarized and the helicity parton distributions.

At NNLO, a new type of valence splitting function emerges
[12,32,33], which gives rise to a difference in the strange
and antistrange parton distributions in the nucleon [34], just
from the fact that the nucleon carries net up and down
valence distributions. In Ref. [34] estimates for the spin-
averaged sðx;Q2Þ − s̄ðx;Q2Þ were given that showed that
the asymmetry resulting from evolution is not as small as
might be expected from a three-loop effect. Of course, non-
perturbative physics may well be the dominant source of
the strangeness asymmetry in the nucleon [35,36]. In the
present paper we will extend the perturbative study in
Ref. [34] to the spin-dependent case. An interesting differ-
ence with respect to the spin-averaged asymmetry is that
the first moment

R
1
0 dxðΔsðx;Q2Þ − Δs̄ðx;Q2ÞÞ does not

have to vanish, whereas
R
1
0 dxðsðx;Q2Þ − s̄ðx;Q2ÞÞ ¼ 0

due to the fact that the nucleon does not carry net
strangeness. As a result, strange quarks and antiquarks
may make different contributions to the proton spin.
Indeed, as will be a result of this paper, such a net
strangeness helicity asymmetry arises from NNLO
evolution.

II. EVOLUTION EQUATIONS

We start by considering the generic evolution equation
for the first moment of a spin-dependent parton distribution
a; b≡ u; ū; d; d̄; s; s̄;…; G:

dΔaðQ2Þ
d lnQ2

¼
X
b

ΔPabðasðQ2ÞÞΔbðQ2Þ; ð4Þ

where ΔPab describes the splitting b → a (it is the first
moment of the usual x-dependent splitting function). The
ΔPab are perturbative in the strong coupling αS; their
perturbative series starts at OðαSÞ:

ΔPab ¼ asΔP
ð0Þ
ab þ a2sΔP

ð1Þ
ab þ a3sΔP

ð2Þ
ab þOða4sÞ: ð5Þ

with as ≡ αS=ð4πÞ. The running coupling obeys the
renormalization group equation

d lnasðQ2Þ
d lnQ2

≡βðasÞ
as

¼−β0as−β1a2s −β2a3s þOða4sÞ; ð6Þ

where

β0 ¼
11

3
CA −

2

3
Nf;

β1 ¼
34

3
C2
A −

10

3
CANf − 2CFNf;

β2 ¼
2857

54
C3
A −

1415

54
C2
ANf −

205

18
CFCANf þ C2

FNf

þ 79

54
CAN2

f þ
11

9
CFN2

f; ð7Þ
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with CF ¼ 4=3 and CA ¼ 3. Keeping just the first term in
each of Eqs. (5) and (6) yields the leading order (LO)
evolution of the parton distributions. Taking into account
also the second, or the second and third, terms corresponds
to next-to-leading order (NLO) and next-to-next-to-leading
order (NNLO) evolution, respectively.
The evolution equations may be simplified by introduc-

ing non-singlet and singlet combinations of the quark and
antiquark distributions; see e.g., Ref. [30]. Following the
notation of Ref. [32] and using charge conjugation invari-
ance and flavor symmetry of QCD, we first write the
evolution kernels ΔPab as

ΔPqiqk ¼ ΔPq̄iq̄k ≡ δikΔPV
qq þ ΔPS

qq;

ΔPqiq̄k ¼ ΔPq̄iqk ≡ δikΔPV
qq̄ þ ΔPS

qq̄: ð8Þ

The splitting functions ΔPS
qq and ΔPS

qq̄ thus describe
splittings in which the flavor of the quark changes.
Starting from NNLO, ΔPS

qq and ΔPS
qq̄ differ [12,30,34].

We now introduce three types of flavor nonsinglet
combinations of parton densities:

ΔqðVÞ ≡X
q

ðΔq − Δq̄Þ;

Δqð�Þ ≡ Δq� Δq̄ −
1

Nf

X
q0
ðΔq0 � Δq̄0Þ; ð9Þ

which turn out to diagonalize the evolution equations in
the nonsinglet sector. (Up to NLO it would be sufficient
to consider only two nonsinglet combinations; owing to
ΔPS

qq ≠ ΔPS
qq̄, it becomes necessary to introduce a third

combination at NNLO and beyond.) Each of the three
combinations evolves in a simple closed form:

dΔqðAÞðQ2Þ
d lnQ2

¼ ΔPðAÞðαSðQ2ÞÞΔqðAÞðQ2Þ; ðA ¼ V;�Þ;

ð10Þ

where the corresponding evolution kernels are

ΔPðVÞ ¼ ΔPV
qq − ΔPV

qq̄ þ NfðΔPS
qq − ΔPS

qq̄Þ;
ΔPð�Þ ¼ ΔPV

qq � ΔPV
qq̄: ð11Þ

The decoupled nonsinglet equations are trivial to solve; we
will present the solutions later.
In the singlet sector defined by Eq. (2) we have coupled

evolution equations for ΔΣ and ΔG:

d
d lnQ2

�
ΔΣðQ2Þ
ΔGðQ2Þ

�

¼
�ΔPΣΣðasðQ2ÞÞ 2NfΔPqGðasðQ2ÞÞ
ΔPGqðasðQ2ÞÞ ΔPGGðasðQ2ÞÞ

��
ΔΣðQ2Þ
ΔGðQ2Þ

�
;

ð12Þ

where

ΔPΣΣ ≡ ΔPV
qq þ ΔPV

qq̄ þ NfðΔPS
qq þ ΔPS

qq̄Þ; ð13Þ

and with the first moments of the splitting functions
involving gluons, ΔPqG, ΔPGq, ΔPGG. As we shall discuss
below, thanks to the simplicity of the evolution kernels in
the spin-dependent case the singlet equation may also be
solved analytically in a simple way.
The evolution of the helicity parton distributions is in itself

closed and not affected by contributions from orbital angular
momentum. On the other hand, Lq and Lg in Eq. (1) are both
scale dependent and have their own evolution equations. As
it turns out, their evolution is not closed but is partly driven
by ΔΣðQ2Þ and ΔGðQ2Þ. This has to be the case since the
left-hand side of Eq. (1) needs to remain independent of the
scale. Presently, the evolution of Lq and Lg is known only to
lowest order [13–15].1 Beyond LO, we therefore cannot
separate the evolution of the two orbital components.
However, we can still consider the evolution of the total
orbital angular momentum L≡ Lq þ Lg by simply taking
the derivative of Eq. (1):

dLðQ2Þ
d lnQ2

¼ −
1

2

dΔΣðQ2Þ
d lnQ2

−
dΔGðQ2Þ
d lnQ2

¼ −
�
1

2
ΔPΣΣ þ ΔPGq

�
ΔΣðQ2Þ

− ðNfΔPqG þ ΔPGGÞΔGðQ2Þ: ð14Þ

This relation will serve as an important cross-check for
future calculations of the separate evolution of Lq and Lg at
higher orders. We note that, like for the helicity quark and
antiquark distributions, there will be a separate angular
momentum piece Lqi for each flavor, and full evolution
equations will require introduction of nonsinglet and singlet
combinations. Lq as appearing in the spin sum rule is the
singlet.

1We note that the evolution for the total quark and gluon
angular momenta in the Ji decomposition may be derived by
profiting from the relation between the total angular momentum
operators and the quark and gluon energy momentum tensors [2]
and is actually known up to NNLO accuracy [37,38]. Unfortu-
nately, since there is no direct connection between the Ji and
Jaffe-Manohar spin decompositions (except for the quark spin
piece), it is not possible to use these results to obtain the higher-
order evolutions of Lq and Lg.

SPIN BUDGET OF THE PROTON AT NNLO AND BEYOND PHYS. REV. D 99, 054001 (2019)

054001-3



III. FIRST MOMENTS OF THE SPLITTING
FUNCTIONS

We now collect the various ΔPab as available from the
literature. At lowest order we have [4,5]

ΔPð0Þ� ¼ ΔPð0ÞS
qq ¼ ΔPð0ÞS

qq̄ ¼ 0;

ΔPð0Þ
qG ¼ 0;

ΔPð0Þ
Gq ¼ 3CF;

ΔPð0Þ
GG ¼ β0: ð15Þ

The second-order results in the MS scheme may be found
in Refs. [7–9]:

ΔPð1Þþ ¼ 0;

ΔPð1Þ− ¼CFðCA − 2CFÞð−13þ 12ζ2 − 8ζ3Þ;
NfðΔPð1ÞS

qq þΔPð1ÞS
qq̄ Þ ¼−2NfΔP

ð0Þ
Gq;

NfðΔPð1ÞS
qq −ΔPð1ÞS

qq̄ Þ ¼ 0;

ΔPð1Þ
qG ¼ 0;

ΔPð1Þ
Gq ¼

71

3
CFCA − 9C2

F −
2

3
CFNf;

ΔPð1Þ
GG ¼ β1; ð16Þ

with ζi ≡ ζðiÞ the respective value of Riemann’s zeta
function. Finally, at NNLO we have from Refs. [6,11,12]:

ΔPð2Þþ ¼ 0;

ΔPð2Þ− ¼
�
CF

�
145

2
− 62ζ2 þ 164ζ3 − 372ζ4 þ 48ζ2ζ3 þ 208ζ5

�
þ CA

�
1081

36
þ 245

3
ζ2 −

3214

9
ζ3 þ

1058

3
ζ4

− 48ζ2ζ3 − 112ζ5

�
− Nf

�
76

9
þ 44

3
ζ2 −

448

9
ζ3 þ

68

3
ζ4

��
CFðCA − 2CFÞ;

NfðΔPð2ÞS
qq þ ΔPð2ÞS

qq̄ Þ ¼ −2NfΔP
ð1Þ
Gq;

NfðΔPð2ÞS
qq − ΔPð2ÞS

qq̄ Þ ¼ 8Nf

CA
dabcdabcð23 − 12ζ2 − 16ζ3Þ;

ΔPð2Þ
qG ¼ 0;

ΔPð2Þ
Gq ¼

1607

12
CFC2

A −
461

4
C2
FCA þ 63

2
C3
F þ

�
41

3
− 72ζ3

�
CFCANf −

�
107

2
− 72ζ3

�
C2
FNf −

13

3
CFN2

f;

ΔPð2Þ
GG ¼ β2: ð17Þ

In the above equations, CF ¼ 4=3, CA ¼ 3, Nf is the
number of flavors, and dabcdabc=CA ¼ 5=18.
There are systematic patterns among the above results

which may be understood from general arguments. First of
all, ΔPþ has to vanish to all orders in the strong coupling.
As follows from Eqs. (9) and (10), ΔPþ governs the
evolution of combinations such as Δuþ Δū − ðΔdþ Δd̄Þ,
which correspond to matrix elements of flavor nonsinglet
axial currents. Such matrix elements are not renormalized
and are hence scale independent [39] to all orders, con-
sistent with the Bjorken sum rule [40].2

As is well known [see Eqs. (12) and (13)], the vanishing
of ΔPþ immediately implies that the evolution of the
singlet ΔΣ is to all orders driven by the “pure-singlet”

anomalous dimension NfðΔPS
qq þ ΔPS

qq̄Þ. The explicit
results shown in the above equations suggest that

Nf

�
ΔPðjþ1ÞS

qq þ ΔPðjþ1ÞS
qq̄

�
¼ −2NfΔP

ðjÞ
Gq; ð18Þ

or, generalized to all orders,

ΔPΣΣ ¼ −2NfasΔPGq: ð19Þ

Furthermore, we deduce from Eqs. (16) and (17)

ΔPqG ¼ 0;

ΔPGG ¼ −
βðasÞ
as

: ð20Þ

The all-order results just given may in fact be understood
by an argument given in Ref. [16]. The quark singlet

2Evidently, in a perturbative calculation, one could in
principle choose a factorization scheme in which ΔPþ becomes
nonzero at NLO or beyond. However, such a scheme would be
unphysical [31].
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combination ΔΣ corresponds to the proton matrix element
of the flavor-singlet axial current,

SμΔΣ ¼ hP; Sjψ̄γμγ5ψ jP; Si≡ hP; Sjjμ5jP; Si; ð21Þ
where S is the proton’s polarization vector. Because of the
axial anomaly, the singlet axial current is not conserved:

∂μj
μ
5 ¼ 2NfasTr½FμνF̃μν�

¼ 2Nfas∂μ

�
εμνρσTr

�
Aν

�
Fρσ −

2

3
AρAσ

�	�
≡ 2Nfas∂μKμ: ð22Þ

In the first line, Fμν is the gluonic field strength tensor and
F̃μν its dual. In the second line we have used that Tr½FF̃�
may be written as the divergence of the “anomalous
current” that we denote by K. From Eq. (22) we conclude
that jμ5 − 2NfasKμ is conserved:

∂μðjμ5 − 2NfasKμÞ ¼ 0: ð23Þ

The relation ∂μj
μ
5 ¼ 2NfasTr½FF̃� holds to all orders in

perturbation theory. As a result, Eq. (23) holds to all orders
as well. As was discussed in Ref. [16], in perturbation
theory we may relate matrix elements of Kμ to the gluon
spin contribution: SμΔG ¼ −hP; SjKμjP; Si. Although K
depends on the choice of gauge, its forward proton matrix
element is gauge invariant, except for topologically non-
trivial gauge transformations that change the winding
number. (The latter feature makes the identification of
ΔG with the matrix element of K impossible beyond
perturbation theory [1].) From the conservation law in
Eq. (23) we may thus conclude

d
d lnQ2

ðΔΣðQ2Þ þ 2NfasðQ2ÞΔGðQ2ÞÞ ¼ 0: ð24Þ

Inserting the general evolution equations for ΔΣ and ΔG in
Eq. (12), as well as the renormalization group equation for
asðQ2Þ in Eq. (6), we find, on the other hand,

d
d lnQ2

ðΔΣþ 2NfasΔGÞ

¼ ðΔPΣΣ þ 2NfasΔPGqÞΔΣ

þ
�
2NfΔPqG þ ΔPGG þ βðasÞ

as

�
2NfasΔG: ð25Þ

The right-hand side vanishes when the all-order relations
given in Eqs. (19) and (20) are satisfied. Equivalent results
are found when studying the renormalization of the axial
anomaly in dimensional regularization in Ref. [41]. One
may object that Eqs. (20) do not follow from Eq. (25) in a
strict mathematical sense; however, there is little (if any)
freedom physically to obtain results other than Eq. (20) from

the last term in Eq. (25). In particular, the CA parts in PGG
can only be canceled by those in the β-function. The explicit
verification to three loops by the results of Refs. [11,12] is of
course a strong argument for the all-order validity of
Eq. (20). In addition, the vanishing of ΔPqG in any physical
scheme is a consequence of helicity conservation.
We note that as seen in Refs. [11,12,31] relations like

ΔPþ ¼ 0 and Eqs. (19) and (20) may not emerge auto-
matically in an actual higher-loop calculation of the
splitting functions, where dimensional regularization and
a prescription for γ5 and the Levi-Cività tensor have to be
adopted. They may then be reinstated by a factorization
scheme transformation, so that the correct physical splitting
functions are obtained.
It is now clear that in the MS scheme a single anomalous

dimension, ΔPΣΣ, resulting from the axial anomaly, gov-
erns the evolution of the quark and gluon spin contributions
and [via Eq. (14)] of the total orbital angular momentum.
Inserting our findings into Eq. (12), we obtain

d
d lnQ2

� ΔΣ
ΔG

�
¼
 

ΔPΣΣðasÞ 0

− 1
2Nfas

ΔPΣΣðasÞ − βðasÞ
as

!� ΔΣ
ΔG

�
;

ð26Þ

where we have dropped the ubiquitous argument Q2. We
may further simplify this equation by defining [16]

ΔΓðQ2Þ≡ asðQ2ÞΔGðQ2Þ: ð27Þ

From Eq. (26) we then have

d
d lnQ2

�ΔΣ
ΔΓ

�
¼
 

ΔPΣΣðasÞ 0

− 1
2Nf

ΔPΣΣðasÞ 0

!�ΔΣ
ΔΓ

�
: ð28Þ

The lower right entry of the evolution matrix now vanishes
since in the product asðQ2ÞΔGðQ2Þ the evolution of the
strong coupling exactly cancels the ΔPGG part of the
evolution of ΔG. Clearly, Eq. (28) is straightforward to
solve, and we will return to the equation shortly.
Thanks to Eq. (19) we may now determine the four-loop

(N3LO) contribution to the anomalous dimension ΔPΣΣ

from the three-loop value ΔPð2Þ
Gq computed in Ref. [12]:

ΔPð3Þ
ΣΣ ¼ −2NfΔP

ð2Þ
Gq

¼ −2NfCF

�
1607

12
C2
A −

461

4
CFCA þ 63

2
C2
F

þ
�
41

3
− 72ζ3

�
CANf

−
�
107

2
− 72ζ3

�
CFNf −

13

3
N2

f

	
: ð29Þ
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IV. HIGHER-ORDER SOLUTIONS IN THE
SINGLET SECTOR

We now proceed to solve the singlet evolution equa-
tion (28). Changing d lnQ2 to das via Eq. (6), we have for
the evolution of ΔΣ, up to N3LO:

d lnΔΣðQ2Þ
dasðQ2Þ ¼ −

ΔPð0Þ
ΣΣ þ asΔP

ð1Þ
ΣΣ þ a2sΔP

ð2Þ
ΣΣ þ a3sΔP

ð3Þ
ΣΣ

asβ0 þ a2sβ1 þ a3sβ2

¼ −
ΔPð1Þ

ΣΣ þ asΔP
ð2Þ
ΣΣ þ a2sΔP

ð3Þ
ΣΣ

β0 þ asβ1 þ a2sβ2
; ð30Þ

where in the second line we have used that ΔPð0Þ
ΣΣ ¼ 0,

since the evolution of ΔΣ starts only at NLO. Expanding

the right-hand side of Eq. (30) up to second order it
becomes

d lnΣðQ2Þ
dasðQ2Þ ¼

�
−
ΔPð1Þ

ΣΣ
β0

þ as
β20

ðβ1ΔPð1Þ
ΣΣ − β0ΔP

ð2Þ
ΣΣÞ

þ a2s
β30

ð−β21ΔPð1Þ
ΣΣ þ β0β2ΔP

ð1Þ
ΣΣ

þ β0β1ΔP
ð2Þ
ΣΣ − β20ΔP

ð3Þ
ΣΣÞ
	
: ð31Þ

This equation is readily solved analytically. The solution
gives the first moment of the singlet at scale Q in terms of
its boundary value at the “input” scale Q0:

ΔΣðQ2Þ
ΔΣðQ2

0Þ
¼ exp½0� × exp

�
−
aQ − a0

β0
ΔPð1Þ

ΣΣ

	
× exp

�
a2Q − a20
2β20

ðβ1ΔPð1Þ
ΣΣ − β0ΔP

ð2Þ
ΣΣÞ
	

× exp

�
a3Q − a30
3β30

ð−β21ΔPð1Þ
ΣΣ þ β0β2ΔP

ð1Þ
ΣΣ þ β0β1ΔP

ð2Þ
ΣΣ − β20ΔP

ð3Þ
ΣΣÞ
	

≡ KðLOÞ × KðNLOÞ × KðNNLOÞ × KðN3LOÞ; ð32Þ

where aQ ≡ asðQ2Þ and a0 ≡ asðQ2
0Þ. For completeness,

we have included the LO term, which predicts a
constant ΔΣ.
Figure 1 shows the quark singlet evolution factor on

the right-hand side of Eq. (32), assuming a fixed number
Nf ¼ 3 in the anomalous dimensions and the beta function,
and using the full NNLO evolution of the coupling
constant.3 We choose a relatively low input scale
Q0 ¼ 1, with a value αsðQ0Þ ¼ 0.404.4 One can see that
the NLO evolution affects the quark spin content of the
proton by up to 7% while NNLO evolution adds an extra
∼1–2% effect. The numerical impact of the four-loop term

ΔPð3Þ
ΣΣ reaches only Oð0.2%Þ at the highest scale.
Ultimately, as discussed in Refs. [22,42], one may want

to compare helicity parton distribution functions extracted
from experiment or computed on the lattice [23] with

calculations performed in QCD-inspired models of nucleon
structure. The latter typically are formulated at rather low
momentum scales of order of a few hundred MeV. Given
the high order of perturbation theory now available for
evolution, it is therefore interesting to evolve the singlet
spin contributions not only to large perturbative scales, but
also “backward” towards the limit of validity of perturba-
tion theory [22]. In Fig. 2 we show the evolution of ΔΣ
at LO, NLO, NNLO and N3LO down to Q ∼ 0.35 GeV,
starting from the initial scale Q0 ¼ 2 GeV. Since at low

FIG. 1. Evolution of the first moment of the polarized singlet
distributions at LO, NLO, NNLO and N3LO, starting from the
initial scale Q0 ¼ 1 GeV.

3Alternatively, one could use at each order a coupling constant
defined by truncating the QCD β-function to that order. This
approach would mostly affect the LO results, since the coupling
constant at this order is larger. It would also slightly limit the
range of applicability of the LO calculation in the backward
evolution since the nonperturbative regime would be reached
already at higher scales. Nevertheless, the main results of this
paper would remain basically unchanged since the values of the
coupling constant are quite similar at NLO, NNLO and beyond.

4That value corresponds to the conventional αsðMZÞ ¼ 0.1181
for Nf ¼ 5. In this paper we always use the NNLO expression for
the coupling constant, independently of the order considered, as a
way of isolating the effect of the higher order splitting functions
in the corresponding evolution.
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scales the approximate analytical expressions for the
running of the coupling constant αs start to deviate from
the exact result, we rely on the accurate numerical solution
of Eq. (6) to NNLO accuracy. As can be observed, and as is
expected, the higher order terms affect the evolution of the
singlet in a significant way, much more strongly than what
we found for the evolution to larger scales. On the other
hand, a striking feature is that the evolution remains
relatively stable even down to such low scales as considered
here: At the lower end of Fig. 2 the N3LO contribution
enhances the singlet by a modest 8% compared to the
previously known NNLO result, despite the fact that atQ ¼
0.35 GeV the coupling constant becomes αs ∼ 1.3, pre-
cariously past the boundaries of the perturbative domain. In
addition, all higher orders (NLO, NNLO, N3LO) go in the
same direction. We note that the upturn of ΔΣ toward small
scales—in the direction of large quark and antiquark spin
contributions to the proton spin—was already observed to
NLO and NNLO in Refs. [22,42], respectively. We also
remark that results on high-loop evolution may be useful
for lattice-QCD studies of nucleon structure, possibly
allowing cross-checks of the nonperturbative renormaliza-
tion carried out on the lattice.
The solution of the evolution equation for the gluon spin

contribution now follows directly. From the lower row in
Eq. (28) we have by simple integration and using again
d lnQ2 ¼ das=βðasÞ

ΔΓðQ2Þ ¼ ΔΓðQ2
0Þ −

Z
aQ

a0

das
ΔPΣΣðasÞ
2NfβðasÞ

ΔΣðQ2Þ

¼ ΔΓðQ2
0Þ þ

Z
aQ

a0

das
βðasÞ

asΔPGqðasÞΔΣðQ2Þ;

ð33Þ

where again aQ ≡ asðQ2Þ and a0 ≡ asðQ2
0Þ, and where in

the second line we have used Eq. (19) to replace ΔPΣΣ by
ΔPGq, which is more natural in the case of the gluon
distribution.
An immediate observation is that the integral on the right-

hand side of Eq. (33) starts at order asðQ2Þ and asðQ2
0Þ.

Therefore, we arrive at the well-known result [17,18,24] that
the leading term in ΔΓ is a constant in Q2, so that the first
moment of the gluon spin contribution evolves as the inverse
of the strong coupling. Inserting the solution for ΔΣðQ2Þ
from Eq. (32) into Eq. (33) and carrying out the integration,
we find the full NNLO analytical solution

ΔGðQ2Þ ¼ asðQ2
0Þ

asðQ2ÞΔGðQ
2
0Þ þ ΔΣðQ2

0ÞFðasðQ2Þ; asðQ2
0ÞÞ;

ð34Þ

where

FðaQ; a0Þ ¼ FLO

�
a0
aQ

�
þ aQFNLO

�
a0
aQ

�

þ a2QF
NNLO

�
a0
aQ

�
; ð35Þ

with

FLOðrÞ ¼ −ð1 − rÞΔP
ð0Þ
Gq

β0
;

FNLOðrÞ ¼ 1 − r2

2β20
ðβ1ΔPð0Þ

Gq − β0ΔP
ð1Þ
GqÞ þ

ð1 − rÞ2
2β20

ΔPð0Þ
GqΔP

ð1Þ
ΣΣ;

FNNLOðrÞ ¼ 1 − r3

3β30

�
β0β2ΔP

ð0Þ
Gq − β21ΔP

ð0Þ
Gq þ β0β1ΔP

ð1Þ
Gq − β20ΔP

ð2Þ
Gq

�

þ ð1 − rÞ2
6β30

h
−3ð1þ rÞβ1ΔPð0Þ

GqΔP
ð1Þ
ΣΣ þ ð2þ rÞβ0ΔPð1Þ

GqΔP
ð1Þ
ΣΣþð1þ 2rÞβ0ΔPð0Þ

GqΔP
ð2Þ
ΣΣ

i
− ð1−rÞ3

6β3
0

ΔPð0Þ
GqðΔPð1Þ

ΣΣÞ2:

ð36Þ

FIG. 2. Backward evolution of the first moment of the polarized
singlet distributions at LO, NLO, NNLO, and N3LO, starting
from the initial scale Q0 ¼ 2 GeV.
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We note that in contrast to ΔΣ, we can only give the NNLO
evolution of ΔG here. This is due to the fact that ΔΓ is
shifted by one power of as relative toΔG. In order to obtain
the N3LO solution for ΔG one would need the four-loop
splitting kernel ΔPð3Þ

Gq which is presently still unavailable.
Figure 3 shows the NNLO evolution of the gluon spin

contribution to the proton spin, starting from the values
ΔG ¼ 0.102 and ΔΣ ¼ 0.254 at Q0 ¼ 1 as realized in the
global analysis [43]. We also show the evolution of 1

2
ΔΣ

and the evolution of the total orbital angular momentum L
resulting from Eq. (14). Notice that both ΔG and L have a
divergent behavior at large scales, resulting in a rather
unphysical cancellation of two very large contributions to
fulfill the spin sum rule.
As we discussed above for the singlet contribution, it is

also interesting to analyze the behavior of the gluonic spin
contribution at lower scales. In Fig. 4 we show the
backward evolution of ΔG at LO (dashes), NLO (dots)
and NNLO (solid line) for three different scenarios,
corresponding to setting ΔGðQ0Þ ¼ þ1; 0.1;−1 at the
initial scale Q0 ¼ 1 GeV.5 For each scenario, we observe
a striking convergence of the fixed order results down to
very low scales, always towards small gluonic contribu-
tions. Even though the “F” term in Eq. (34) contains
corrections proportional to positive powers of αs that could
spoil the convergence of the expansion in the nonpertur-
bative region, the evolution of the gluonic contribution is
completely dominated by the leading 1=as term in Eq. (34),
as can be observed in Fig. 4 where we also present this term
separately for each scenario. Our findings set a strong
constraint on the proton spin content carried by gluons at

hadronic scales. Within the rather extreme scenarios
analyzed here (for which the gluon contribution accounts
for as much as twice the spin of the proton at Q0¼
1GeV!), we obtain the requirement jΔGðQ∼0.35GeVÞj≲
0.3. Indeed, the few available model estimates of ΔG
suggest values of the order 0.2–0.3 [44–48] at a low
hadronic scale.

V. “STATIC” VALUE OF ΔG

As we have discussed, ΔGðQ2Þ in general evolves as
1=asðQ2Þ for large scales. As inspection of Eq. (34) shows,
depending on the input values of ΔGðQ2

0Þ and ΔΣðQ2
0Þ the

evolution can be towards large positive or negative values.
This implies that there is a specific input, a “critical point,”
for which ΔGðQ2Þ actually remains almost constant [27]
and tends to a finite asymptotic value as Q2 → ∞. This
“static” value of ΔG is expected to change from order to
order in perturbation theory. To determine it at a given
order, we only need to tune the input such that the 1=asðQ2Þ
term in the solution for ΔGðQ2Þ is canceled. Starting from
Eq. (34) we demand

asðQ2
0ÞΔGðQ2

0Þ þ asðQ2ÞΔΣðQ2
0ÞFðasðQ2Þ; asðQ2

0ÞÞ
¼ OðasðQ2ÞÞ: ð37Þ

To LO, using Eq. (36), this condition becomes

ΔGLO
statðQ2

0Þ ¼ −ΔΣðQ2
0Þ
ΔPð0Þ

Gq

β0
¼ −

4

9
ΔΣðQ2

0Þ ≃ −0.113;

ð38Þ

FIG. 4. Backward evolution of the gluon spin contribution ΔG
at LO (dashes), NLO (dots) and NNLO (solid line), starting from
three different scenarios at the initial scale Q0 ¼ 1 GeV:
ΔGðQ0Þ ¼ þ1; 0.1;−1. The blue solid line corresponds to the
leading 1=as term in Eq. (34).

FIG. 3. Evolution of the quark and gluon spin contributions
1
2
ΔΣ andΔG at NNLO, starting from the inital scaleQ0 ¼ 1 GeV.

We also show the evolution of L following from Eq. (14).

5ΔGðQ0Þ ¼ 0.1 corresponds to the result of the DSSV fit
in [43].
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where we have used Nf ¼ 3 flavors and again
ΔΣðQ2

0 ¼ 1 GeV2Þ ¼ 0.254. The gluon spin contribution
then remains constant at the value ΔGLO

statðQ2
0Þ.

At NLO, the necessary input value for the static solution
becomes

ΔGNLO
stat ðQ2

0Þ ¼ −ΔΣðQ2
0Þ
"
ΔPð0Þ

Gq

β0

þ a0
−β1ΔP

ð0Þ
Gq þ β0ΔP

ð1Þ
Gq þ ΔPð0Þ

GqΔP
ð1Þ
ΣΣ

2β20

#

¼ −
�
4

9
þ 166

81
a0

	
ΔΣðQ2

0Þ ≃ −0.13: ð39Þ

The NLO “static” solution is no longer completely constant
in Q2. However, by construction it does converge asymp-
totically to a finite value, given by

ΔGNLO
stat ð∞Þ ¼ −ΔΣðQ2

0Þ
"
ΔPð0Þ

Gq

β0
þ a0

ΔPð0Þ
GqΔP

ð1Þ
ΣΣ

β20

#

¼ −
�
4

9
−
32

27
a0

	
ΔΣðQ2

0Þ ≃ −0.103: ð40Þ

We note that a value of similar size was in fact found in the
early NLO DSSV analysis [26–28].
Finally, at NNLO, the corresponding values are

ΔGNNLO
stat ðQ2

0Þ ¼ −ΔΣðQ2
0Þ
"
ΔPð0Þ

Gq

β0
þ a0

−β1ΔP
ð0Þ
Gq þ β0ΔP

ð1Þ
Gq þ ΔPð0Þ

GqΔP
ð1Þ
ΣΣ

2β20

þ a20
6β30

ð2β21ΔPð0Þ
Gq − 2β0β2ΔP

ð0Þ
Gq − 2β0β1ΔP

ð1Þ
Gq þ 2β20ΔP

ð2Þ
Gq

þ 2β0ΔP
ð0Þ
GqΔP

ð2Þ
ΣΣ − 3β1ΔP

ð0Þ
GqΔP

ð1Þ
ΣΣ þ β0ΔP

ð1Þ
GqΔP

ð1Þ
ΣΣ þ ΔPð0Þ

GqðΔPð1Þ
ΣΣÞ2Þ

#

¼ −
�
4

9
þ 166

81
a0 −

�
7561

2187
−
160

9
ζ3

�
a20

	
ΔΣðQ2

0Þ ≃ −0.125; ð41Þ

with an asymptotic value given by

ΔGNNLO
stat ð∞Þ¼−ΔΣðQ2

0Þ
"
ΔPð0Þ

Gq

β0
þa0

ΔPð0Þ
GqΔP

ð1Þ
ΣΣ

β20

þa20ΔP
ð0Þ
Gq

−β1ΔP
ð1Þ
ΣΣþðΔPð1Þ

ΣΣÞ2þβ0ΔP
ð2Þ
ΣΣ

2β30

#

¼−
�
4

9
−
32

27
a0−

1328

243
a20

	
ΔΣðQ2

0Þ≃−0.102:

ð42Þ

Numerical results for the “static” solutions for ΔG are
shown in Fig. 5.
At NNLO the sum of the contributions by quarks and

gluons starts atΔΣðQ2
0Þ=2þ GNNLO

stat ðQ2
0Þ ¼ 0.0025with an

asymptotic result of ΔΣð∞Þ=2þ GNNLO
stat ð∞Þ ¼ 0.01335.

In that particular scenario the total orbital angular momen-
tum almost accounts for the entire proton spin,
Lq þ Lg ≃ 1=2, and is almost constant in Q2 (from Q2

0 ¼
1 to ∞ it varies by less than 3%).
As mentioned above, in our study of the “static” ΔG we

have for simplicity chosen a fixed number of flavors,
Nf ¼ 3. This will not be entirely adequate when

considering the limit of large Q2, and a matching to
Nf¼4 and Nf¼5 should be performed at the charm and
bottom mass scales, respectively. For the inputs ΔGstatðQ2

0Þ
given explicitly above, each matching would slightly upset
the cancelation of the 1=as term in the solution for ΔG, so

FIG. 5. Evolution of the “static” gluon solutions, starting from
the initial scale Q0 ¼ 1 GeV.
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that the resulting gluon spin contribution would not be
entirely “static” anymore. However, this is expected to be a
small effect. We have checked that using a fixed number of
Nf throughout changes the asymptotic value of the static
ΔG by less than 10%. In any case, it is clear that a static
solution for ΔG exists even if one performs a full matching
to Nf ¼ 4 and Nf ¼ 5: One could always start with an
input at the bottom mass, Q2

0 ¼ m2
b, that creates a static

solution for all higher Q2 with Nf ¼ 5. This solution could
then be evolved backward to any lower Q2 one desires,
even to Q2 ¼ 1 GeV2 where Nf ¼ 3. This result at Q2 ¼
1 GeV2 would then be the input to be used to obtain a static
solution with full matching.
We believe these solutions, especially because of the fact

that they have a well behaved asymptotic limit at large
scales, deserve further attention since they arise as strong
boundaries on non-perturbative physics from almost purely
perturbative considerations.

VI. NONSINGLET EVOLUTION OF THE
VALENCE QUARK SPIN CONTRIBUTION

We finally turn to the evolution in the nonsinglet sector.
As discussed in the Introduction, we focus here on the
strangeness “valence” spin contribution ðΔs − Δs̄ÞðQ2Þ
generated by three-loop evolution.
Each of the nonsinglet evolution equations in Eq. (10)

has the solution

ΔqðAÞðQ2Þ ¼ UðAÞðQ;Q0ÞΔqðAÞðQ2
0Þ; ðA ¼ V;�Þ;

ð43Þ

where ΔqðAÞðQ2
0Þ is the corresponding input nonsinglet

combination and the evolution operator UðAÞ is given by

UðAÞðQ;Q0Þ ¼ exp

�Z
Q2

Q2
0

dq2

q2
ΔPðAÞðasðq2ÞÞ

�
: ð44Þ

We may readily use (43) with A ¼ − and A ¼ V to obtain
the solution for a valence quark contribution Δq − Δq̄,
resulting in [34]

ðΔq − Δq̄ÞðQ2Þ ¼ Uð−ÞðQ;Q0Þ
�
ðΔq − Δq̄ÞðQ2

0Þ

þ 1

Nf

�
UðVÞðQ;Q0Þ
Uð−ÞðQ;Q0Þ

− 1

�
ΔqðVÞðQ2

0Þ
	
;

ð45Þ

where ΔqðVÞðQ2
0Þ ¼

P
qðΔq − Δq̄ÞðQ2

0Þ is the total spin-
dependent valence distribution in the nucleon as defined in
Eq. (9), at the initial scale. The first term on the right
represents the homogenous component of the evolution of
the valence distribution, which starts at NLO; its explicit
expression is identical to the one in Eq. (32) with the change
ΔPΣΣ→ΔPð−Þ. As follows from Eq. (11), ΔPðVÞ−ΔPð−Þ ¼
NfðΔPS

qq−ΔPS
qq̄Þ, which [see Eqs. (15)–(17)] becomes

nonzero starting from NNLO. Therefore, the second term
on the right of Eq. (45) will in general be nonvanishing as
well, as long as ΔqðVÞðQ2

0Þ ≠ 0, which of course is the case.
We conclude that NNLO evolution generates an asymmetry
Δs ≠ Δs̄ in the contribution by strange and anti-strange
quarks to the proton spin, even ifΔs ¼ Δs̄ at the initial scale
Q0. This is at variance with the spin-averaged case where the
first moment of s − s̄ is protected by the fact that there can be
no net valence strangeness in the proton and remains zero to
all orders.
To NNLO accuracy, the evolution factor in the second

term in Eq. (45) reduces to

UðVÞðQ;Q0Þ
Uð−ÞðQ;Q0Þ

−1¼−
NfðΔPð2ÞS

qq −ΔPð2ÞS
qq̄ Þ

2β0
ða2Q−a20Þ; ð46Þ

where, as before aQ ¼ asðQ2Þ and a0 ¼ asðQ2
0Þ.

Therefore, assuming ΔsðQ2
0Þ ¼ Δs̄ðQ2

0Þ in order to esti-
mate the purely perturbative effect, we have, to NNLO

ðΔs − Δs̄ÞpertðQ2Þ ¼ −
ΔPð2ÞS

qq − ΔPð2ÞS
qq̄

2β0
ða2Q − a20ÞðΔu − Δūþ Δd − Δd̄ÞðQ2

0Þ

¼ −
5ð23 − 12ζ2 − 16ζ3Þ

72β0π
2

ðαsðQ2Þ − αsðQ2
0ÞÞðΔu − Δūþ Δd − Δd̄ÞðQ2

0Þ; ð47Þ

where in the second line we have inserted the explicit value
of ðΔPð2ÞS

qq − ΔPð2ÞS
qq̄ Þ from Eq. (17). The last factor on the

right is of course just the total valence spin contribution at
the initial scale.
We estimate the polarized strange asymmetry generated

perturbatively by assuming, e.g.,Q0¼1GeV with αsðQ2
0Þ¼

0.404, and [27,28,43] ðΔu − Δūþ Δd − Δd̄ÞðQ2
0Þ ∼ 0.5,

for which

ðΔs − Δs̄ÞpertðQ2 ¼ 10 GeV2Þ ≈ −6 × 10−4: ð48Þ

Figure 6 shows ΔsV ≡ Δs − Δs̄ as a function of Q. The
difference reaches −0.001 at Q ¼ MZ. As expected for
a three-loop effect, it is small. On the other hand, for the
latest extractions of ðΔsþ Δs̄Þ [49] the relative asymmetry
jΔs − Δs̄j=jΔsþ Δs̄j would be of order 1%. Evidently,
nonperturbative contributions [35,36] may well be the
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dominant source of the polarized strangeness asymmetry.
However, the effect we describe here would certainly need to
be taken into account in a full analysis. We emphasize that
the perturbative asymmetry is robustly predicted to be
negative, so that Δs̄ > Δs.

VII. CONCLUSIONS

We have presented a set of studies of the evolution of the
quark and gluon spin contributions to the proton spin at
higher orders in perturbation theory, motivated by the
recent calculations of the helicity splitting functions at full
NNLO [10–12]. We have argued that the evolution ofΔΣ is
known even to four loops, which may prove valuable for

lattice studies, as well as for comparisons to models
residing at lower “hadronic” scales. The anomalous dimen-
sion relevant for the evolution ofΔΣ and related to the axial
anomaly also turns out to generate the evolution of ΔG.
The same must then be true for the total orbital angular
momentum Lq þ Lg in the Jaffe-Manohar sum rule,
although the separate evolutions of Lq and Lg are presently
only known to LO.
We have obtained analytical higher-order solutions for

ΔΣ and ΔG and presented numerical results for their
evolution. These show a stable upturn of ΔΣ toward low
scales, bringing it actually closer to quark model expect-
ations that favor a large quark spin contribution to the
proton spin. The gluon spin ΔG, when evolved backwards,
shows a remarkable focus towards low values, again in line
with quark model assumptions, setting a strong constraint
on the gluon contribution at hadronic scales. We have also
shown that at every order of the perturbative evolution,
there is a unique solution for which ΔG tends to a finite
asymptotic value as the scale becomes large. We have
estimated the values of ΔG in such a scenario.
We have finally also examined the size of the new effect

arising from three-loop evolution in the flavor nonsinglet
sector, the generation of an asymmetry in the strange and
antistrange contributions to the proton spin. We have found
that perturbative evolution predicts Δs − Δs̄ to be negative,
with a magnitude of order 1% of the total Δsþ Δs̄.
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