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A.N. Ivanov,l’* R. Ht')llwieser,l’z’+ N.L Troitskaya,l‘i M. We:llenzohn,l’3’§ and Ya. A. Berdnikov*/

'Atominstitut, Technische Universitiit Wien, Stadionallee 2, A-1020 Wien, Austria
2Department of Physics, Bergische Universitit Wuppertal, Gaussstr. 20, D-42119 Wuppertal, Germany
‘FH Campus Wien, University of Applied Sciences, Favoritenstraf3e 226, 1100 Wien, Austria
*Peter the Great St. Petersburg Polytechnic University,

Polytechnicheskaya 29, 195251, Russian Federation

® (Received 12 November 2018; published 20 March 2019)

We calculate the correlation coefficients of the electron—energy and electron—antineutrino angular
distribution of the neutron S~ -decay with polarized electron and unpolarised neutron and proton. The
calculation is carried out within the standard model (SM) with the contributions, caused by the weak
magnetism, proton recoil and radiative corrections of order of 10~3, Wilkinson’s corrections of order 107
[Wilkinson, Nucl. Phys. A377, 474 (1982) and Ivanov et al., Phys. Rev. C 95, 055502 (2017)] and the
contributions of interactions beyond the SM. The obtained results can be used for the analysis of

experimental data on searches of interactions beyond the SM at the level of 10~* [Abele, Hyperfine Interact.
237, 155 (2016)]. The contributions of G—odd correlations are calculated and found at the level of 1073 in
agreement with the results obtained by Gardner and Plaster [Phys. Rev. C 87, 065504 (2013)] and

Ivanov et al. [Phys. Rev. C 98, 035503 (2018)].
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I. INTRODUCTION

In Refs. [1-3] we have calculated the neutron lifetime and
correlation coefficients of the electron—energy and angular
distributions of the neutron #~-decay with polarized neutron
and unpolarized electron and proton, and polarized neutron
and electron and an unpolarized proton, respectively. The
neutron lifetime and correlation coefficients are calculated at
the level of 1073 of contributions of the weak magnetism and
proton recoil of order O(E,/M), where E, is the electron
energy and M is an averaged nucleon mass, and radiative
corrections of order O(a/x), where a is the fine—structure
constant [4]. The radiative corrections of order O(a/x) to
the neutron lifetime and correlation coefficients of the
neutron S~ -decay with polarized neutron and unpolarized
electron and proton have been calculated by Sirlin [5] and
Shann [6] (for details of these calculations we relegate a
reader to [7] and [1]). In turn, the radiative corrections of
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order O(a/x) to the correlation coefficients of the neutron
p~-decay with polarized neutron and electron, and unpo-
larized proton have been calculated in [2]. Then, in [1,3] we
have taken into account the contributions of interactions
beyond the standard model (SM) to the neutron ~-decay
with polarized neutron and unpolarized electron and proton,
and polarized neutron and electron, and unpolarized proton,
respectively.

This paper is addressed to the calculation of the corre-
lation coefficients of the electron—energy and electron—
antineutrino angular distribution of the neutron S~ -decay
with polarized electron and unpolarized neutron and proton.
We calculate a complete set of corrections of order 1073
defined by the corrections of order O(E, /M), caused by the
weak magnetism and proton recoil and calculated to next—
to—leading order in the large nucleon mass expansion, and
radiative corrections of order O(a/x), calculated to leading
order in the large nucleon mass expansion. We discuss also
Wilkinson’s corrections of order 10~ [8], which have been
adapted to the neutron f~-decay with polarized neutron and
electron and unpolarized proton in Ref. [2]. In addition we
take into account the contributions of interactions beyond
the SM [9-20] (see also [1,3]) including the contributions
of the second class currents (or the G—odd correlations)
[19,20]) (see also [3]).

The paper is organized as follows. In Sec. II we write
down the general expression for the electron—energy and
electron—antineutrino angular distribution of the neutron
p~-decay with polarized electron and unpolarized neutron

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.053004&domain=pdf&date_stamp=2019-03-20
https://doi.org/10.1016/0375-9474(82)90051-3
https://doi.org/10.1103/PhysRevC.95.055502
https://doi.org/10.1007/s10751-016-1352-z
https://doi.org/10.1007/s10751-016-1352-z
https://doi.org/10.1103/PhysRevC.87.065504
https://doi.org/10.1103/PhysRevC.98.035503
https://doi.org/10.1103/PhysRevD.99.053004
https://doi.org/10.1103/PhysRevD.99.053004
https://doi.org/10.1103/PhysRevD.99.053004
https://doi.org/10.1103/PhysRevD.99.053004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

A.N. IVANOV et al.

PHYS. REV. D 99, 053004 (2019)

and proton. In Sec. III we discuss the renormalization
procedure of the amplitude of the neutron ~-decay, caused
by the effective V —A weak interaction and radiative
corrections, calculated to order O(ar/7) in the one—photon
exchange approximation. In Sec. IV we calculate the
renormalized electron—energy and electron—antineutrino
angular distribution to order O(E,/M) and O(a/x), caused
by the weak magnetism, proton recoil, and radiative
corrections, dependent on the infrared cutoff 4 and obtained
within the finite-photon mass regularization [1,5]. In Sec. V
using the Dirac wave function of the decay electron,
distorted in the Coulomb field of the decay proton, we
calculate the correlation coefficient L(E, ), responsible for
time reversal violation. In Sec. VI we write down the
observable electron-energy and electron-antineutrino angu-
lar distribution, calculated in the SM to order 1073, caused
by the weak magnetism and proton recoil of order
O(E,/M) and radiative corrections of order O(a/xz). We
show that the radiative corrections to the correlation
coefficients H(E,) and K(E,) are defined by the functions

(a/ﬂ)hf)(Ee) and (a/zz)h,(f)(Ee), calculated for the first
time in the present paper. The radiative corrections
(a/ﬂ)hﬁf)(Ee) and (a/zr)hﬁf)(Ee) are calculated in the
Appendix and plotted in Fig. 3. In Sec. VII we adduce
the analytical expressions for the correlation coefficients
a(E,),G(E,), H(E,), K,(E,) and L(E,), calculated in the
SM to order 1073, caused by the weak magnetism, proton
recoil, and radiative corrections. The obtained results can
be used for the analysis of the experimental data on the
neutron f~-decay with polarized electron and unpolarized
neutron and proton. In Sec. VIII we discuss Wilkinson’s
corrections of order 10~>, which have not been taken into
account for the calculation of the correlation coefficients in
Sec. VII. They are caused by (i) the proton recoil in the
Coulomb electron-proton final-state interaction, (ii) the
finite proton radius, (iii) the proton-lepton convolution,
and (iv) the higher-order outer radiative corrections [8]. We
calculate the contributions to the correlation coefficients,
|

induced by the change of the Fermi function caused by the
proton recoil in the electron-proton final-state Coulomb
interaction. We plot these corrections in the electron-energy
region 0.761 MeV < E, < 0.966 MeV in Fig. 4. We point
out that Wilkinson’s corrections of order 107>, caused by
(ii) the finite proton radius, (iii) the proton-lepton con-
volution and (iv) the higher-order outer radiative correc-
tions and calculated in [2], retain fully their shapes and
values for the correlation coefficients analysed in the
present paper. In Secs. IX and X we calculate the
contributions to the correlation coefficients, caused by
interactions beyond the SM [9-20] (see also [1,3]), and
give the correlation coefficients in the form suitable for the
analysis of experimental data on searches of contributions
of interactions beyond the SM [21] (see also [1,3]). In
Sec. XI we discuss the obtained results and perspectives
of the theoretical background to order 1075, which goes
beyond the scope of Wilkinson’s corrections of order 1073
[2,22]. In the Appendix we calculate the electron-energy
and electron-antineutrino angular distribution of the neu-
tron radiative f~-decay with polarized electron and unpo-
larized neutron and proton. We use these results for a
cancellation of the infrared divergences in the electron-
energy and electron-antineutrino angular distribution of the
neutron S~ -decay with polarized electron and unpolarized
neutron and proton. The results, obtained in the Appendix
can be also used for the experimental analysis of the
neutron radiative f~-decay with polarized electron and
unpolarized neutron and proton.

II. ELECTRON-ENERGY AND ELECTRON-
ANTINEUTRINO ANGULAR DISTRIBUTION

The electron-energy and electron-antineutrino angular
distribution of the neutron S~ -decay with polarized electron
and unpolarized neutron and proton can be written in the
following form [11,14]

BA,(E,. K, &, k) G2 |V al? k, -k g, -k
ne e e W — (14 32%) L (Ey - E,)*\/ E2 — mE,F(E,,Z = 1){(E,)} 1 E,)—=—"+G(E,)>*—
dEedQedQD ( + ) 3271'5 ( 0 e) e — MLy, ( e )C( e) + a( e) EeEp + ( e) Ee

Ee ) ]_gv (ge : I_ge)(l_ge : l_év) Ee ’ (l_{)e X I_gl/)
H(E K (E,)——————F+L(E,)—F7—+ . 1
+H(E,) E o(Ee) (E. + m,)E.E, (E) EE (1)
where dQ, and dQ, are infinitesimal solid angles of the electron and antineutrino 3-momenta, 4 = —1.2750(9) is

the axial coupling [23] (see also [24—26] and [1-3]), Gy = 1.1664 x 107! MeV~2? is the Fermi weak coupling
constant, V,,;=0.97417(21) is the Cabibbo-Kobayashi-Maskawa matrix element [4], extracted from the 0" — 0 transitions,
Ey= (m2 - mf, +m2)/2m, = 1.2926 MeV is the end—point energy of the electron spectrum, calculated for the neutron
m, =939.5654MeV, proton m,, = 938.2721 MeV, andelectron m, = 0.5110 MeV masses [4], &, is a unit polarization vector
of the electron, and F(E,,Z = 1) is the relativistic Fermi function used in [1-3] and equal to [27-29]

F<1+7/+ig)
p

2

: (2)

1 )4(2rpmeﬂ)27 em/P

F(E.Z=1)= (Hiy 23 +2y) (1-p)
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where f = k,/E, = \/E% — m2/E, is the electron velocity,
y = V1 —a? — 1, r,isthe electric radius of the proton. In the
numerical calculations we will use r, = 0.841 fm [30].

The function {(E, ) and the correlation coefficients a(E, )
and G(E,) have been calculated in [1-3]. They are defined
by the contributions of order 10~3 of the SM interactions,
Wilkinson’s corrections of order 10~ and interactions
beyond the SM (see [1-3] and [31]). In this paper we
calculate the correlation coefficients H(E,), K,(E,) and
L(E,), where the correlation coefficient L(E,) is respon-
sible for violation of invariance under transformation of
time reversal. We calculate (i) a complete set of corrections
of order 1073, caused by the weak magnetism and proton
recoil of order O(E,/M) and radiative corrections of order
O(a/r), (ii) Wilkinson’s corrections of order 10~ [8] (see
also [1,2]), (iii) contributions of interactions beyond the SM
[11-14] (see also [1,3]), and (iv) second class contributions
or G—odd correlations [19,20]) (see also [3]).

III. EFFECTIVE LOW-ENERGY INTERACTIONS,
DEFINING AMPLITUDE OF NEUTRON g~ -DECAY
TO ORDER 10~3 IN THE SM

In the SM of electroweak interactions the neutron
p~-decays, defined in the one-loop approximation with
one—virtual-photon exchanges, are described by the follow-
ing interactions

Eint (X) (3)

Here Lyw(x) is the effective Lagrangian of low-energy
V — A interactions with a real axial coupling constant
A= —1.2750(9) [23] (see also [1,2])

= EW(X) + [’em(x)'

GOF
V2
K _
+ g o ()]
X [@oe (x)r*(1 = ¥ )y, (x)], 4)
where ., (x), Wo,(x), wo.(x), and yr,(x) are bare field
operators of the proton, neutron, electron, and antineutrino,

respectively, Gor is a bare Fermi weak coupling constant,
and y* = (y°,7) and y° are the Dirac matrices [32];

Lo(x) = {[u—/o,, (721 + 7 )on ()]

Lenl2) = =3 (7= D) = 5 (0,0
-
(2 = 1)), ()7, (A, ()

2\~ 1) (=)o ()rwe (A, (x) = Z55mp, (x)y (x) + (2 ~
(

= 23 6m i, () (x),

K = K, — k, = 3.7058 is the isovector anomalous magnetic
moment of the nucleon, defined by the anomalous magnetic
moments of the proton k, = 1.7928 and the neutron
k, = —1.9130 and measured in nuclear magneton [4],
and M = (m, 4+ m,)/2 is the average nucleon mass.

For the calculation of the radiative corrections to order
O(a/n) the Lagrangian of the electromagnetic interaction
Len(x) we take in the following form [22]

Lonl) = = IO (5) = 5 0,40 (1))
+ l/_/Oe (x)(iyﬂaﬂ - mOe)l//Oe (X)
~ (~eo)ue ()AL ()
+l//0p( )(Wﬂa - mOp)l//Op(x)
)

— (400, (¥)7"wop ()AL (x),

where F ,(w( ) =0, AP ( ) — 8,/Af,0) (x) is the electromag-
netic field strength tensor of the bare (unrenormalized)

(5)

electromagnetic field operator A (x) Wo.(x) and ), (x)
are bare operators of the electron and proton fields with
bare masses my, and my),, respectively; —e, and +e, are
bare electric charges of the electron and proton, respec-
tively. Then, &, is a bare gauge parameter. After the
calculation of the one-loop corrections of order O(a/rx)
a transition to the renormalized field operators, masses and
electric charges is defined by the Lagrangian

'Cem ('x)

1 1 2
= Ful) () = 5 (0,41(0)

+ W (%) (i7"0, — m, )y (x)

= (=) (X)r'y.(x)A,(x)

+ @, (X) (@70, —m,, )y, (x)

= (+e)w, ()7 w , (x)A,(x) + Lem (%),

(6)
where A,(x), w,.(x) and w,(x) are the renormalized
operators of the electromagnetic, electron and proton fields,
respectively; m, and m,, are the renormalized masses of the
electron and proton; e is the renormalized electric charge;

and ¢ is the renormalized gauge parameter. The Lagrangian
8L.m(x) contains a complete set of the counterterms [33],

( )) ( l)l//e( )(l]/”aﬂ - me)l//e(x)
l)li/p(x)(iyﬂau - mp)Wp(x)

(7)
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where Z;, Z( ), Zie), Zép), Z(lm, ém,, and ém, are the
counterterms. Here Z; is the renormalization constant of
the electromagnetic field operator A, 7\ and 7\ are the
renormalization constants of the electron field operator y,
and the electron-electron-photon (e~e~y) vertex, respec-

tively; Z$" and Z{") are the renormalization constants of

the proton field operator y,, and the proton-proton-photon
(ppy) vertex, respectively. Then, (—e) and (+e), m,
and m, and 6m, and om, are the renormalized electric
charges and masses and the mass-counterterms of the
electron and proton, respectively. Rescaling the field

operators [33,34]

V2@ = v, 70, (0) = o, () (®)

and denoting m, + ém, = my,, m, + ém, = mg,, and Z:£ = &, we arrive at the Lagrangian

Loy powy L
A FO () = 5 (9,0

— (=) Z\(Z) 25 200 () w00 ()AL (%) + 0, (6) (78, — mop oy (%)
— (+e) 2V (Z3) ' 2320, () pop (1AL (%), 9)

12

Lom(x) = #(x))? + Woe (x) (i7 0, = moe Jyroe (x)

Because of the Ward identities Z( = Z<2 ‘) and Z( P = ng ) [32-34], we may replace (—e)Z; " = —e, and
(+e)Zy 12 = = +e¢(. This brings Eq. (9) to the form of Eq (5). We would like to emphasize that to order O(a/7) the
renormalization constant Z; is equal to unity because of the absent of closed fermion loops [32-34], i.e., Z3 = 1. This
means that in such an approximation the bare electric charge e, coincides with the renormalized electric charge e, i.e.,
eo = e. After the rescaling of the proton and electron field operators Eq. (8) the Lagrangian of V — A weak interactions
Eq. (4) takes the form

G _ ) _
Ly(x) = —7gvud{[w,,<xm<1 + ()] + 332 17 (K)o <x>1}[we<x>w<1 ~Pw@l (10)
where Gy = ng )Zée)GOF is the Fermi weak coupling constant renormalized by electromagnetic interactions to order

O(a/x). The bare neutron y,(x) and antineutrino y,(x) field operators are not renormalized by electromagnetic
interactions and coincide with the field operators v, (x) and y, (x), respectively, i.e., yo, (x) = v, (x) and w, (x) = v, (x).

IV. ELECTRON-ENERGY AND ELECTRON-ANTINEUTRINO ANGULAR DISTRIBUTION WITH
RADIATIVE CORRECTIONS CAUSED BY ONE-VIRTUAL PHOTON EXCHANGES

Using the results, obtained in [1], the renormalized amplitude of the neutron ~-decay with contributions, caused by the
weak magnetism and proton recoil, calculated to next-to-leading order O(E,/M) in the large nucleon mass expansion, and
radiative corrections to order O(a/x), defined by the Feynman diagrams in Fig. 1 and calculated to leading order in the large
nucleon mass expansion, takes the form (see Eq. (D-52) of Ref. [1])

MG~ pe2) = <2, SV (1422 15 (B ) lobol 00 = 7))

31 g e B ) 071 = 0s] = 5 an B o[ (1 = )

+ 3 A9r(EQ )] - [1.°7(1 = 7)) = 2 (@bl e (1 = 7))
b b (@ R ) lla (0 = 7)) = 5 (3 x K, ) - [0 - yw}, (1)

where ¢, and ¢, are Pauli spinorial wave functions of the proton and neutron, u, and v, are Dirac wave functions of the

electron and electron antineutrino, & are the Pauli 2 x 2 matrices, and 1 = A(1 = Ey/2M) and k = —1?6 - lzy is the proton
3-momentum in the rest frame of the neutron. The functions fj4-(E,,u) and g (E,) are equal to [see Eq. (D-51)]
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<|

FIG. 1. The Feynman diagrams, defining the main contribution of the radiative corrections of order O(a/x), caused by one-virtual
photon exchanges, to the neutron f~-decay (see Sirlin [5]).

3 (m\ 11 145 1/ 28 1 B
pegen =3en(e) =g raen() pen(125) -1 -5 () -5 (125)

1 1
(1) vy

2,5 p
1-— 2
wE) =P en (120, (12)

where u is a photon mass, which should be taken in the limit 4 — 0, and Li,(x) is the Polylogarithmic function. A photon
mass y is used for Lorentz invariant regularization of infrared divergences of radiative corrections [5]. The constant Cy,
defined by the contributions of the W—boson and Z—boson exchanges and the QCD corrections [35] (see also [36,37]), is
equal to Cy, = 10.249 (see also discussion below Eq. (D-58) of Ref. [1]).

The squared absolute value of the matrix element Eq. (12), summed over polarizations of massive fermions, we calculate
for polarized electron and unpolarized neutron and proton [2]. We get (see also Eq. (A-16) in Appendix A of Ref. [1])

Z|M n—pev,)?

8m2G%’|Vud|2

= <1 +%fﬂ; (Ee,ﬂ)>tf{(7<e +m)(1+7°8 )%k (1= 1)} _%QF(Eeﬁr{(i{e +m) (14780, (1+7°)}
g Ee{ ke m) 1+ k1 =)+ (14 B )Pt m) 1+ L) PR (1 =)
—izigF(Ee)csijtr{(l?e +m,)(1+ 75&)707"1%%(1 -7°)} +22%9F(Ee)5ijtr{(]}e +m,)(1+7°L)r k' (1+7°)}

( e)(l—i_ysze)]%vyo(l_ys)}

(ko +m,)(1+7°8)r°k, (14+7°)

12 A ,12 NPV
kp - tf (ke +me)(1+ 87k (1= 7°)} =5k, - e (ke +m) (1 4+ L)k, 7(1 = 7))
Y 2M
sk 4 2 55\, ER i 5 Ak A 55 \if o 5
+ MWE jak;“{(’% + me)(l +v Ce)V kﬂ/’(l -7 )} - MW’S jakztr{(ke +me)(1 +v Ce)yjkvy (1 -7 )}’
(13)
where ¢% = (£9, Z’ .) is the 4-vector of an electron polarization defined by [2]
z e fe e(k fe)
fe=(00.0.) = ( & o E am ) (14)
m, me(E, +m,)
It obeys the constraints {2 = —1 and k, - £, = 0, where Ee is a unit vector of the electron polarization [32]. We would like to

emphasize that in Eq. (13) following Sirlin [5] we have neglected the contributions of order O(aE, /zM ). Having calculated
the traces over Dirac matrices we obtain
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Z M(n — pev,)|?
32m2G2|V 4*EE,

pol
:(1+gfﬂc(Ee, )) 1+
-k

(& - ko) (K
(E, +m,)E,E,

E
m

+ Byt -
" E,E, E, . E,
‘ : (15)

+ (ZEe - EO) %
where we have used a relation E, + E, = E;. Now we have to take into account the contribution of the phase—volume [1]

and multiply Eq. (15) by the function

3 (E ke 1?) (16)

This gives
R e e e
po
—(1+ 3/12)5(126){] + a(E,) I;E:;: ~ Eg 'el_ée +I:](Ee)ge /; Y+ K, (Ee)m
-saOM ((’“Ez’;; ) + el (B 5

where we have denoted ay = (1 —2%)/(1 + 34%) and

(17)

E(E) = (1 (B = S00(E) 52 3 | 2400 e+ D)
+(10/12—4(z<+1)A+2)Ee—21(/1—(z<+1))’g—ﬂ,
HE,)a(E,) = a0<1 + = e (.. )) +%ﬁ[zz(z— (K + 1)) Eg — 4A(30 — (x
HEIG(E) = (14215 (Ee) ) + 4155 A= (e 1)Eo = (107 -
BB =2 { o (14 2y Ben) = S (B E2) + s 2200 e+ D)y

e

+ (422 =2k +1)A— Z)Ee}},

+1))E.],

4(k +1)A+2)E,]
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Z<E6>1“<<Ee>——ao(1+%fﬁ;< W~ —gF<E>E€) b 200 (e 1) Ey
+ 4432 = (k + 1))E, + (822 = 2(k + 1)A + 2)m,]. (18)

The use of the Dirac wave function of a free decay electron leads to a vanishing correlation coefficient L(E,) = 0. In order

to get a non—vanishing correlation coefficient L (E,) we have to use the Dirac wave function of a decay electron, distorted in
the Coulomb field of the decay proton [28,29,38].

V. CORRELATION COEFFICIENT L(E,)

For the calculation of the correlation coefficient we use the Dirac wave function of the electron, distorted by the Coulomb
proton-electron final state interaction. It is equal to [28,29,38]

7 Ee+me(1_7)< 1 )
u@ ke’ e = -alm, k 0,° 19
(kes o) 1-y (14§90 2k ® 0o 19)

where y = 1 — V1 — a?Z2. The electron wave function Eq. (19) satisfies the Dirac equation [38]

N aZ 0= T -
(k (1 _7/) +1i km y'ke>ue(ke’ae) =0. (20)

e

We normalize the wave function Eq. (19) in a standard way i, (lze, o,)u, (lze, 6,) =2m,6,, . Since y = O(a?), keeping the
contributions of order O(ar) we have to set y = 0. The contribution of the Coulomb distortion to the right-hand side (r.h.s) of
Eq. (15), multiplied by the contribution of the phase-volume Eq. (15) is defined by the trace

>z |M(n = pev,)?
Dy (K, k,)
p: (ke ey Z32m2G 2|V,a*E.E,

_ =2 iaZmetr{[(E'ke),(c?fe)](&'lzn}
14322k, 4E,E,

11— aZm, & - (k,x k)

14322 &, E,E,

(21)

We would like to emphasize that the contribution of the Coulomb distortion of the Dirac wave function of a decay electron
to the correlation coefficient comes from the traces of V xV and A x A products only, ie., tr{VxV+AxA}~
(1-22). Thus, we get

| 2

M(
ke,k>z | n—>pe l/e)

32m2Gr|V 4 E.E,
pol

~ ]_() ]_éy ~ _>g ° ]_ge -a _>€ ) ]_éll
— +3/12)§(Ee){1 vaE) ety o)t ey ae,)
_ (&, -k)(k, - k) g, - (k, x k) E, ((k,-k)* 1k
Ko (E,) e =l 20 | [(E,) 2 De 22 _3q)=¢ -
R E) T, THE) TR Sy \TEE 3R

+3a0me ((éeku)(kek) lée' e> +3a0i<(§e'ke)(ke'kv)z_l(Ee_me)ge'ke,)}. (22)

M E,E2 3 E, M\ (E, + m,)E,E2 3

The correlation coefficient C(E,)L(E,) is equal to

L(ENL(E,) = a*ay, (23)
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where we have set Z = 1. Thus, the electron-energy and electron-antineutrino angular distribution of the neutron ™ -decay
with polarized electron and unpolarized neutron and proton is

dsj’ﬁ; (Ee’ l_éev Eev ]_C'u)
dE,dQ,dQ,

GHVudl’ ; ke -k,
=432 S0 6y - £ [ e (B 2 = DEEN {1+ ()

327[5
e (Ee . ]_ée)(l_ée : ]_él/) ¥ Ee . (]_ée X kl/) Ee (l_ée : ]_éu)z 1 k(%
H = - Y4 L(E))——"t— — | —=—-==
E, o H(E) E, (E. +m,)E.E, (Ee) Sy \TEE 3R

( )(]_ge ) p) lge . ]_ge 1 <Ee . ]_ge)(l_ge . ]_gv)z 1 Ee . I_ge
3a —— 3ap— | —--———5—=(E, — = 5. 24
a0, ( E.E2 35 ) T\ g mope 3 Ee )R (24)
The radiative corrections to the correlation coefficients, defined by the function fj-(E,, u), depend on the infrared cutoff y.
In order to remove such a dependence we have to add the contribution of the neutron radiative f~-decay [5] (see also [1,2]).

E'%u

el

+K.(E,)

+G(E,)

VI. ELECTRON-ENERGY AND ELECTRON-ANTINEUTRINO ANGULAR DISTRIBUTION
OF NEUTRON g~-DECAY WITH POLARIZED ELECTRON AND UNPOLARIZED NEUTRON
AND PROTON TO ORDER 103

Summing the electron-energy and electron-antineutrino angular distributions Eq. (24) and Eq. (AS) in the Appendix we

obtain the electron-energy and electron-antineutrino angular distribution of 4, = A4~ + 44-, equal to

Py (B, ke E0 K,
dE,dQ,dQ,
G2V al? — k, -k,
_ 2 Fl1Y ud _ 2 2 _ 02 —
- (1 +34 ) 325 (EO Ee) Ee meEeF(EwZ 1>€( ) 1 —I—Cl( E E

T

ge'l_ée Ee'l_éu (Ee'l_ée)(l_ée'l_év) ge'(l_éeka) Ee (I_C)e']_éu)z lkg
E) 2" 4 H(E) 2™ K (E,) 2 e \e " Bu) 4 yoe e X0 g e (e Tl " Fe
TOE) g~ HHE) == K(E) +m)EE THE) T ey e e
m, (Eel_éu)(l_éel_éu) lge’l_ée (ge )(l_é 'I_év)z 1 Ee'l_ée
3ay - 3ag— (e LR B (g gy )0e Re) L 25
+ aOM( E,E2 3 E )° (E, + m,)E,E2 3 Ee—md)=F (25)

The correlation coefficients are equal to

{(E,) = <1+39n(Ee)> +%ﬁ {_2’1@_("+1))E0+<1042—4('<+1)ﬂ+2)Eg—2A(,1 (K+1))E—5}
C(E, =a0(1+:9n ) +— fn( e)> +%1+3/12[22(/1—(K+1))E0—4/1(3,1_<K+1))Ee]’
C(E ( +:_gn E ) +:_fn( e)) +%1 +13ﬂz [2/1(/1— (K'—l— 1))E0_ (10/12 —4(K‘—|- 1)/1+2)Ee}

1 1

(BB =5 { a0 (14 L0u(E) + EHED ) 3 200 (ot DB + (42 =2+ DA=2)E]},

CBIRAED = =ao (1 + 20 (E) + EHED ) + s 200 e+ DB+ 42031 (x4 DJE,
+ (842 = 2(k + 1)A +2)m,],
C(EL(E,) = aZ ao (26)

e

The radiative corrections of order O(a/x) to the correlation coefficients are defined by the functions g,(E,), f,(E,) and
the functions hf)(Ee) and hgf)(Ee). The functions g, (E,) and f,(E,) have been calculated by Sirlin [5] and Shann [6]
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FIG.2. The Feynman diagrams, defining the contribution to the amplitude of the neutron radiative #~-decay in the tree-approximation

to order e.

. T T R 0.000f_
0.0025f ] _0.002F
i -0.004f
-0.006}
£ -0.008f
-0.010}
-0.012f

P S S ~0.014 . . . .
0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2

Ec[MeV] E [MeV]
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2 0.0020?

—

U(Ee)

W

3| K 0.0015} 1 s

—h

0.0010}

-0.005f

—hP(Ee)

a

-0.010¢

L L L L

0.6 0.8 1.0 1.2
Eo[MeV]

FIG. 3. Radiative corrections (a/x)f,(E,), (a/n)h,(f)(Ee), and (a/ﬂ)h5,4) (E,) to the correlation coefficients G(E,), H(E,) and
K,(E,) of the electron-antineutrino energy and angular distribution Eq. (25).

(see also [7] and Appendices B, C, D, E and F in Ref. [1]), respectively. The contributions of the electroweak—boson
exchanges and QCD corrections to the function g, (E,) have been calculated in [35-37]. In turn, the radiative corrections

(a/ﬂ)h513)(E€) and (a/n)h5,4)(Ee) are calculated in Appendix A. The functions (a/ﬂ)h5,3)(Ee) and (a/n)hﬁ,‘” (E,), together
with the function (a/z)f,(E.), are plotted in Fig. 3 in the electron-energy region m, < E, < E|,.
VIL. CORRELATION COEFFICIENTS «(E,), G(E,), H(E,), AND K,(E,) TO ORDER 10-3
The correlation coefficients a(E,) and G(E,) have been calculated in [1,2], respectively. They are equal to

a(E,) = (1 + %f,,(Ee)) {ao + %ﬁ 244~ (k+ 1) Ey — 4434 — (x + 1)E,]

+1 ao
M1+ 32

1 1

G(E,) = —(1 + %fn(E») (1 TR A T2+ D)

[-(10&2 —4(k+ 1)A+2)E, + (2% = 2(k + 1)) (Eo + ’2—2)] }

e

e

2—2> . (27)

For the correlation coefficients H(E,) and K,(E,) we obtain the following expressions
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H(E,) = (1 +%h,(13>(Ee)> ’g— {—ao +$ﬁ[—mu — (k+ 1))Ey + (422 = 2(k + 1)1 = 2)E,]
LA o — 4t )44 2)E +(2/12—2(1<+1)/1)<E +m—2>H (28)
M1+ 32 ¢ °TE,

and

K,(E,) = (1 + :h5,4)(Ee)) {—ao + %?13&2 (=244 = (k + 1)) Eg + 4434 = (k + 1))E, + (842 = 2(k + 1) + 2)m,]

1 ClO
M1+ 3)?

[—(1042 — 4(k + 1)A+2)E, + (222 = 2(k + 1)4) <E0 + f)] } (29)

The obtained correlation coefficients are calculated to order 1073, taking into account the complete set of corrections of
order O(E,/M) and O(a/x), caused by the weak magnetism, proton recoil, and one-photon exchanges, respectively.

-0.0000245F ' ' ' ~ 4§  0.00030;
-0.0000250 F
0.00025}
~0.0000255F ]
¢ )
; ~0.0000260¢ 17 o0.00020]
-0.0000265F ]
-0.0000270F 1 0.00015}
~0.0000275F . . . L . . . .
0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95
E.[MeV] E.[MeV]
5.x1077 | 1 -3.5x1077F
-4.x1077F
4.x107} ]
5G SH —4.5x 107F
G 3.x107f 1H -5x107f
-55x1077 |
2.x1077+
—6.x107}
0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95
E.[MeV] E.[MeV]
0.00050F
0.00045F
0.00040f
K 0.00035F
K
0.00030F
0.00025F
0.00020f
0.80 0.85 0.90 0.95
E.[MeV]

FIG. 4. Relative corrections to the correlation coefficients {(E,), a(E,), G(E,), H(E,), and K, (E, ) induced by the proton recoil to the
Fermi function, caused by the Coulomb electron-proton final-state interaction and calculated for the experimentally observable electron
energy region 0.761 MeV < E, < 0.966 MeV [1].
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VIII. WILKINSON’S CORRECTIONS

According to Wilkinson [8], the higher order corrections
with respect to those calculated in Sec. VII should be
caused by (i) the proton recoil in the Coulomb electron-
proton final-state interaction, (ii) the finite proton radius,
(iii) the proton-lepton convolution, and (iv) the higher-
order outer radiative corrections.

The relative corrections to the correlation coefficients
¢(E.), a(E,), G(E,), H(E,), and K,(E,), caused by the
proton recoil in the final state electron-proton Coulomb
interactions, are equal to

8((E.)  maE, 11-2 mak,—E,

C(E) B M 314328 M
Sa(E,) 1 1-2° naEy—E, 1+3/127mE0 E,
a(E,) 314328 M 2B M
SG(E,) 1 1-2 ) ﬂan E,

G(E,) = 31532 ﬁ)ﬁ3 M
SH(E,) 1 1-% naEy—E,

H(E,) 314328 M
6K,(E,) 11-2* naEy—E,
K, E,) 314328 M
1—1—3/1 JT(XEO
E. 1+V1-=p5). 30

In the expenmental electron energy region 0.761 MeV <
E, <£0.966 MeV the corrections Eq. (30) are plotted in
Fig. 4 and take the values adduced in Table I. The proton
recoil corrections to the correlation coefficient a(E, ), caused
by the electron-proton final-state Coulomb interactions, are

TABLE I. Wilkinson’s corrections, induced by the change of
the Fermi function caused by the electron-proton final-state
Coulomb interaction, in the energy region 0.761 MeV < E, <
0.966 MeV.

E, =0.761 MeV SX(E,)/X(E,) E, = 0.966 MeV
-2.5%x 107 > 8¢(E,)/¢(E,) > -2.8x 107
+3.0 x 107 > da(E,)/a(E,) > +1.1 x 107
+5.1 x 1077 > 6G(E,)/G(E,) > +1.3x 1077
—6.2 x 1077 <6H(E,)/H(E,) < -3.3x 1077
+5.0x 1074 > 6K, (E,)/K,(E,) > +1.9x 107

of order 10™* and should be taken into account for the
analysis of the experimental data on searches of contributions
of interactions beyond the SM at the level of 10~ [21].

In turn, Wilkinson’s corrections, caused by (ii) the finite
proton radius, (iii) the proton-lepton convolution, and (iv) the
higher-order outer radiative corrections, retain their expres-
sion for calculated in [2] and the order |6((E,)/¢(E,)|~
107, [8a(E,)/a(E,)| ~ 5K (E,)/K.(E,)| ~ 10, and
|6G(E,)/G(E,)|~|6H(E,)/H(E,)|~107", respectively.

IX. ELECTRON-ENERGY AND ELECTRON-
ANTINEUTRINO ANGULAR DISTRIBUTION
BEYOND THE SM

For the calculation of contributions of interactions
beyond the SM we use the effective low—energy
Hamiltonian of weak nucleon-lepton four-fermion local
interactions, taking into account all phenomenological
couplings beyond the SM [9-20] in the notations of [1,3]:

= % Vud{ 7 ()7, () ()7 (Cy + Cyr ), ()] + [, ()1, v (0)][Fe ()7 (Ca + Car )y, (%)

O 7 3)(Cs + Csr (3] + 7, (P 7 ) (Cp + P, (3]
+ 3oy () (Cr + Crro, () . B1)

This is the most general form of the effective low-energy weak interactions, where the phenomenological coupling
constants C; and C; fori = V, A, S, P, and T can be induced by the left-handed and right-handed hadronic and leptonic
currents [9—14]. They are related to the phenomenological coupling constants, analogous to those which were introduced by
Herczeg [13], as follows

Hy (x)

Cp=—A+aj, —ajp+ake—aj.
Cs=—Al, —Alr+Ajx + A%y,
CTZZ(O’QL +a}ll?R)7 CTZZ(_GZL +a}II€R)7 (32)

Cy=—l—aj, —ajp+age+ap,,
Cs=A}L +ALR+Akg + A%y,
CP :AQL _A]ZR +A%R _A%U

Cy=1+aj, +ajp+age+ag,,
Ch=A—a},+a}g+apg—ak,
Cp=—A}, +Al g+ Akg = Ay

where the index & means that the phenomenological coupling constants are introduced at the hadronic level but not at the
quark level as it has been done by Herczeg [13]. In the SM the phenomenological coupling constants C; and C;fori =V, A,
S, P and T are equal to Cg=Cs=Cp=Cp=Cr=Cr =0, Cy=-Cy =1 and C4 =—-C, = -1 [1]. The
phenomenological coupling constants af'J, Ah and afj for i(j) = L or R are induced by interactions beyond the SM.

The contribution of interactions beyond the SM, given by the Hamiltonian of weak interactions Eq. (6), to the amplitude
of the neutron f~-decay, calculated to leading order in the large nucleon mass expansion, takes the form
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_ Gr ~ ¥ o I
M(n - pe—ye) - 2m \/E ud{[(pp(an e}/()(CV =+ CVyS)UD} - [(pILG(pn] ' [ue7/<CA + CAyS)UE]
+ [@p@allit.(Cs + Csy®)v5] + [@h9,] - [1,7°7(Cr + Cry®)v]}. (33)

The Hermitian conjugate amplitude is

Mi(n - pe p,) = -2m, %Vzd{ (i, [0 (Cy + Cyr*)u,] = [wide,) - [5:7(Ch + Caru,]
+ b, [0:(Cs — Cr°)u,] — [@nd,) - [0:7°7(Cy — Cir)u, ]} (34)

The contributions of interactions with the strength, defined by the phenomenological coupling constants Cp and Cp, may
appear only of order O(CpE,/M) and O(CpE,/M) and can be neglected to leading order in the large nucleon mass
expansion. We have also neglected the contributions of the neutron-proton mass difference. The squared absolute value of
the amplitude Eq. (8), summed over polarizations of massive fermions, is equal to

Z IM(n— pe~1,)|?

5 8miGr|V.al’E,E,

1 _ _ _ _ m, _
:{§(|CV|2+|CV|2+3|CA|2+3|CA|2+|CS|2+|CS|2+3|CT|2+3|CT|2)+E_RC(CVC§+CVC* 3C4C;—3C4Cy)

- - - -

ke.kl’l 2 a a a fe'ke ) vk P
£ 5 UGV HICy P =[CaP =[Ca P =[Cs[? = |CsP +|Cr[* + |Cr[?) +=L=Re(Cy Cy, +3C,4 C = CsC
] Ee.]:l/ ] r % ] ~ % m, ] ] ] a
_3CTCT>+ E Re CVCS+CVCS+CACT+CACT+E_(CVCV_CACA+CSCS_CTCT)

(&, k) (k, k)
(

+EeTe)EeEVRe(CVC; — C,C + C5C— CrCp — CyC— CyCl = CoC = T C)
g (k, xk, o o
+ 55 - )Im(CSC’{, + CsC;y + C1Ch 4 CC) } (35)

The structure of the correlation coefficients in Eq. (35) agrees well with the structure of the corresponding expressions
obtained in [11]. In the linear approximation for coupling constants of vector and axial-vector interactions beyond the SM
[1] we get

| 2

M(n — pe7v,
T (M(n = pev.)

pol. 8m%G%|Vud‘2EDEe(1 + 3/12)

1 1 - - m, 1 _
=< |14+= Cs|? 4 |C|? + 3|Cy|? + 3|Cr[? — > Re((C -C 34 -C
{[ +21+3/12(| sI* +1Cs|* +3|Cr|* + 3|7 )] E, 1430 e((Cs — Cs) +34(Cr — Cr))
ikl Lo esP - lor? - o) R [ - L Re(cyy + 36,0
o — — _ _ _
EE, |° 21+32"8 s g r 1+342 5s e
Ee'_}p me — - me 1 ~
+ E _E_eao_1+322Re((CS_CS>_/1(CT_CT)> E, 1+3/12R3(Cscs CrCy)
(ge'l_ée (I_ée _)u) 1 = — 1 — =
— Re((Cg—Cq) —A(Cr - C ——Re(CsCi — CC5
+(Ee+m8)ELEy a0+1+3/12 e(( § S) ( T T))+1+312 e( S-S T T)

m((Cs — Cs) — A(Cy CT»}, (36)

where we have replaced C; and C; with j = V,Aby Cy = 1 4 6Cy, Cy = =1 + 6Cy, C4 = =4+ 6C,,and C4 = 1 + 6C,4
[1] and neglected also the contributions of the products 6C;Cy, 6C‘jCk and so on for j =V, A and k = S, T. Following
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[16,17] (see also [1]) we have absorbed the contributions the vector and axial vector interactions beyond the SM by the axial
coupling constant 4 and the Cabibbo-Kobayashi-Maskawa matrix element V ;.

Thus, the electron-energy and electron-antineutrino angular distribution Eq. (1), taking into account the contributions of
interactions beyond the SM, can be transcribed into the form

Phalbelefudel _ g BVl g, [5 2 pE. 2 = 100 () x 1+ £59(E)
X {1 + bg—: + aee (E.) %eg,y + Getr(E,) geéfe + Her (E,) Eeéfy + Keei (E.) %@;EE
gt e B R) g B (B BT g (Gl ) 12K
gy (g 36 5E) | &

where the indices “SM” and “BSM” mean “standard model” and “beyond standard model,” respectively. The correlation

coefficient M) (E,) is given in Eq. (25). The Fierz interference term b and the correlation coefficients X g (E,) with
X =a, G, H and K, are defined by

[
1+¢BSW(E,)
(BSM)

H(E,) + HP M (E,)
L+EP(E,)

a®M(E,) +a®M(E,)
14 (:(BSM) (Ee>

KSW(E,) + KW (E,)
L+ (BSW(E,)

GSW(E,) + GPSW(E,)
1+ Z_,’(BSM)(EE)
LOW(E,) + LPSW(E,)
L+ (BSW(E,)

> aeff(Ee) = ) Geff(Ee) =

’

He,eff(Ee> =

Keff(Ee) =

> Leff(Ee) =

’

(38)

where the correlation coefficients with index “SM” are adduced in Eqs. (27)—(29). They should be also supplemented by
Wilkinson’s corrections Eq. (30) and those obtained in [2] (see Chapter III of Ref. [2]). The correlation coefficients by and
the correlation coefficients with index “BSM” are given by

| . i}
br =3 Re(Cs = Cs) +34(Cr = Cr)),
11 ~ c
(B () = ST (ICs)* + |Cs]* + 3|Cr|* + 3|Cr|?),
11 - c
aBSM)(E,) = _EWQCSP +|Cs]* = [Cr|* = |Cr 7).
1 _ -
GBM(E,) = _mRe(CSCE +3CrCy),
m, s (% 1 C C
HESW(E,) = Fo 3 Re(CsCs = CrCh) = g Re((Cs = Cs) = A(Cr = Cr))
KPW(E,) = L Re(CyCh = C1T)) + oy Rel(Cy = Cs) = HCr = C)),
e 1+ 32 S 1+ 312
| i i
LPM(E,) = T3 M((Cs = o) = ACr = Cr)). )

The correlation coefficient X (E, ) with X = a, G, H and K, are given in the form suitable for the analysis of experimental
data of experiments on the searches of interactions beyond the SM [21]. The structure of the correlation coefficients in
Eq. (39) agrees well with the structure of corresponding expressions calculated in [11]. The averaged values of the
correlation coefficients X4 (E,) with X = a, G, H, and K, can be obtained with the electron-energy density [3]

1 1

_ (8M) (BSM) _ (SM) 2
E,)=p; (E,)(l+ E,))=pc "(E,)|1+

<|cs|2+|és12+3cT|2+3|CT|2>), (40)

where the electron-energy density p(eSM)(Ee) is defined by Eq. (D-59) of Ref. [1].
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X. G-ODD CORRELATIONS

The G-parity transformation, i.e., G = Ce'*2, where C and I, are the charge conjugation and isospin operators, was
introduced by Lee and Yang [39] as a symmetry of strong interactions. According to the G-transformation properties of
hadronic currents, Weinberg divided hadronic currents into two classes, which are G—even first class and G-odd second
class currents [40], respectively. Following Weinberg [40], Gardner and Zhang [19], and Gardner and Plaster [20] the G-odd
contribution to the matrix element of the hadronic n — p transition in the V — A theory of weak interactions can be taken in
the following form

- - - q 1 ) -
0y 0p) 5 O 00 s = 1y Ry ) (e F5(0) 410 0 )it o). (@)

where J, ,(f) 0) = V,(]L) 0) — A,(f) (0), &, (I%,, 0,)and u, (l:n c,) are the Dirac wave functions of the proton and neutron [41];
f3(0) and g,(0) are the phenomenological coupling constants defining the strength of the second class currents in the weak
decays. The contributions of the second class currents Eq. (41) to the amplitude of the neutron p~-decay in the
nonrelativistic baryon approximation is defined by [3]

M0 PR = =2 T Vaal 1200) 3 bl 1.1 = )]+ 020) 3 06 Ephonlns’(1 =7}
- 00) 2 g} w71 = )i @)

where we have kept only the leading 1/M terms in the large baryon mass expansion. The Hermitian conjugate
contribution is

M0 PR = =2 TV 150) 2 byl [0,01 +7°)ud] + 500) 0k G Ep ol [0 = ]
- G500) 2 gl - 071 = )] . (#3)

The contributions of the G-odd correlations to the squared absolute value of the amplitude of the neutron ~-decay of
polarized electron and unpolarized neutron and proton, summed over polarizations of massive fermions, are equal to

Z(MT(n - pe—De>M(n - pe—De)G-odd + MT(” - pe—De)G-oddM(n - pe—De))
pol.

-

m, fe ) (]_()e X ]_éy)

k,-k, C,-k

— 8m2G2|V, 4[24 2Ref4(0) e |Te ety _Se R) |y op

muGE|Vial* ) 2Ref3(0) 57 et &5 g )|t mf3(0) 7 EE

1 K\ E,+E/k, -k E,+Em m, k,-k, m,E,, k

2),R O E e 14 e l/_ e I./_€ ()__60 e IJ__E_I-/@ 14

+ egZ()[M( +Ee)+ M E,E, M E‘:e M E,E, ME, E,

Ey o kok, m, k m, &, (k, x k)

=0 De e 21 e Ve 2R 44
+M<3 37 g L +E Z )]+ lmgz(O) EE (44)

For the relative G-odd contributions to the correlation coefficients we obtain the following expressions

8C(E,)G-oad 21 m? m?
- IR Me | IR 4E, —Me
(M(E,) ~ 1+3°M ef3(0) g, +4Reg>(0) E )|

(SII\E/I )(c ot)ﬂd —8¢(E,) -odd»

oG Ee)G—odd 22 4E0 5H(E€)G—Odd 2 E
GSM (E,) =7 n 3/1271{ 92(0) = 8(E.) g-0aa- H(5M) (E,) T1-2M — (Ref3(0) — AReg,(0)) = 6C(E. ) G-oaas
0K (E.)Godd 2 m, 5L(Ee)c-odd 2k
gSM)(Ee) - 1— 12 M ( Ref3( ) + j‘RegZ(O>) - éé’(EE)G—Odd’ LESM) (Ee) 1 _ 12 aM (Imfg( ) + lIng(O)>

(45)

053004-14



TESTS OF THE STANDARD MODEL IN NEUTRON BETA DECAY ...

PHYS. REV. D 99, 053004 (2019)

These expressions agree well with the G-odd correlations obtained in [3] and as well as with those by Gardner and Plaster

[20]. For A = —1.2750 [23] we get

E.)c-o me _
<SM (G ‘;d 1.85x 107*Ref3(0 )Ee < -2.39x107342.36x 10 4E6>Reg2(0),
5‘1(E )G-odd 4 ne 3 —4Mm,
o (£ °) —1.85x 10~*Ref5(0 )Ee 2.39x1073-2.36x10 E Reg,(0),
oG Ee)G- dd 4 m, 4 m,
—Godd 1 85% 107*Ref5(0) =5 —2.36 x 107*Reg, (0)—<,
GM(E,) x efs( )Ee X ega( )Ee
6H(Ee)G-odd _ -3 Ee —4 m, 3 — _4
I{(SM—W— —4.40x 10 E—0—185X10 E—e Ref3(0)+ 2.39x 10 561)(10 EO 236)(10 Ee Reg2(0),
5KE<E€) -0 — —_ — me
S Godd (1 74x1072—1.85x 10~ 4E )Ref3(0)+ (4.61x10 3-236x10 4E—>Regz(0),
K>V (E,) e e
SL(E,

% ZO( 0.603Imf3(0) +0.769Img, (0)).

Following Gardner and Plaster [20] and setting f3(0) =0
and [Reg,(0)| < 0.01 we obtain the contributions of the
G-odd correlations at the level of 1073, Of course, the same

order of magnitude of the G-odd correlations one may get
also for [Ref3(0)| < 0.01 [3].

XI. DISCUSSION

We have analyzed the electron-energy and electron-
antineutrino angular distribution of the neutron f~-decay
with polarized electron and unpolarized neutron and pro-
ton. The correlation coefficients are calculated in the SM to
order 1073, caused by the weak magnetism and proton
recoil of order O(E,/M) and radiative corrections of order

O(a/xm) Egs. (27)—(29). The radiative corrections to the
correlation coefficients H (E,) and K,(E,) are defined
by the functions (a/z)hy >(Ee) and (a/m)h ff)(Ee) [see
Eq. (A8) in the Appendix], respectively, which have been
never calculated in literature. The correlation coefficients
are also supplemented by Wilkinson’s higher order cor-
rections Eq. (30) (see also Chapter III of Ref. [2]), which
have not been taken in Eqgs. (27)—(29) and are induced by
(1) the proton recoil in the Coulomb electron-proton final-
state interaction, (ii) the finite proton radius, (iii) the proton-
lepton convolution, and (iv) the higher-order outer radiative
corrections [8].

Taking into account the contribution of interactions
beyond the SM we have arrived at the set of correlation
coefficients X (E,) with X = a, G, H, and K,, given in
Egs. (38) and (39). The structure of these contributions
agrees well with the results obtained in [11-14]. These
correlation coefficients are presented in the form suitable
for the analysis of experimental data on searches of
interactions beyond the SM at the level of 107* [21]

(40)

|

(see also [1,3]). The analysis of the superallowed 0t —
0" transitions, carried out by Hardy and Towner [42] and
Gonzalez—Alonso et al. [43], has shown that in the
approximation of real scalar coupling constants such as
Cs = —Cy, i.e., the neutron and proton couple to right—
handed electron and antineutrino, the scalar coupling
constants are constrained by |Cg| =0.0014(13) and
|Cg| =0.0014(12). Such a small value of the scalar
coupling constants commensurable with zero can be
justified by the property of the scalar density y,y, with
respect to the G—transformation [39,40] (see also [41,44]).
Indeed, the scalar density @y, = 1/7Nr(+)z//N, where yy is
the field operator of the nucleon isospin doublet with
components (y,,y,) and ) = (¢! 4 ir? )/2 is the iso-
spin 2 x 2 Pauli matrix such as 7= (z',7%,7%) [32], is
G-odd [41,44]. According to Weinberg [40], the contribu-
tions of G-odd hadronic currents or second class
hadronic currents to the weak decays are suppressed with
respect to the contributions of G-even or first class hadronic
currents. As a result one may expect that in the neutron
p~-decays the contributions of the tensor density
WOy = leJﬂyT(+)l//N, which is G-even [41,44], should
be larger than the contribution of the scalar density
VoW, = Wyt Py, which is G-odd [41,44]. These esti-
mates agree well with the contributions of order 107> of
G—odd terms in the matrix element of the hadronic n — p
transition to the correlation coefficients, which we have
calculated in Sec. X in agreement with the results obtained
by Gardner and Plaster [20] and Ivanov et al. [3].

It is obvious that the analysis of experimental data of
experiments on the searches of contributions of interactions
beyond the SM at the level of 107 or even better [21]
demands a robust SM theoretical background with
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corrections at the level of 107>. These are (i) Wilkinson’s
corrections [2] and (ii) corrections of order O(E%/M?)
defined by the weak magnetism and proton recoil, calcu-
lated to next-to-next-to-leading order in the large nucleon
mass expansion, the radiative corrections of order
O(aE,/M), calculated to next-to-leading order in the large
nucleon mass expansion, and the radiative corrections of
order O(a?/x?), calculated to leading order in the large
nucleon mass expansion [22]. These theoretical corrections
should provide for the analysis of experimental data of
“discovery” experiments the required 5o level of exper-
imental uncertainties of a few parts in 107 [2]. An
important role of strong low—energy interactions for a
correct gauge invariant calculation of radiative corrections
of order O(aE,/M) and O(a?/z*) as functions of the
electron energy E, has been pointed out in [22]. This agrees
with Weinberg’s assertion about important role of strong
low-energy interactions in decay processes [45]. A pro-
cedure for the calculation of these radiative corrections to
the neutron p~-decays with a consistent account for
contributions of strong low-energy interactions, leading
to gauge invariant observable expressions dependent on the
electron energy E, determined at the confidence level of
Sirlin’s radiative corrections [5], has been proposed in [22].
As we have shown that the contributions of the G-odd
correlations are at the level of 107>. Hence, the SM
corrections of order 107> should be important also as a
theoretical background for the analysis of experimental
data on the search of the contributions of the G-odd
correlations in the neutron f~-decays.

Finally, we would like to make some comments on the
radiative corrections of order O(a/z), which we have
calculated to the correlation coefficients of the electron-
energy and electron-antineutrino angular distribution of the
neutron S~ -decay with polarized electron and unpolarized
neutron and proton. Such a calculation has been performed
in analogy to the calculation of radiative corrections to the
neutron lifetime and the correlation coefficients of the
electron-energy and electron-antineutrino angular distribu-
tions of the neutron f~-decay with polarized neutron and
unpolarized proton and electron, carried out by Sirlin [5]
and Shann [6] (see also [1,7]), and of the neutron ~-decay
with polarized neutron and electron and unpolarized proton
[2]. The radiative corrections to the correlation coefficients

|

dg/lﬂ;y(Eev ]_éev Ee’ ]_éw 6),1,1’
dwdE,dQ,dQ,dQ,

G%|Vud|2
(27)°

a
=_—(1 2
2ﬂ( +34%)

16

E2—m2F(E,.Z =1)

1 . , _ ) L
<6 il + L) 001 =) 4 a4 mr 80701 =)

define the level of accuracy of the theoretical background
for the measurements of these correlation coefficients.
However, as has been pointed out by Gliick [46], these
results may not be applicable to precise analyses of recoil
measurements, dealing with recoil energy and angular
distributions. For the neutron f~-decay with polarized
neutron and unpolarized proton and electron the radiative
corrections to the proton recoil-energy and angular dis-
tribution have been calculated in [31] (see also [7]). The
calculation of radiative corrections to the electron-proton
recoil-energy and angular distribution for the neutron f~-
decay with polarized electron and unpolarized neutron and
proton demands a special consideration (see, e.g., [31]) and
goes beyond the scope of this paper. We are planning to
perform such a calculation in our forthcoming publication.
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APPENDIX: NEUTRON RADIATIVE g--DECAY
WITH POLARIZED ELECTRON AND
UNPOLARIZED NEUTRON, PROTON, AND
PHOTON

In this Appendix we calculate the electron-energy and
angular distribution of the rate of the neutron radiative -
decay n - p+ e~ + v, +y with polarized electron and
unpolarized neutron, proton, and photon. Such a distribu-
tion is important for the cancellation of infrared divergen-
ces in the neutron lifetime and correlation coefficients of
the neutron f~-decay [1,2,5]. The Feynman diagrams of the
neutron radiative f~—decay are shown in Fig. 2.

Following [1,2] (see also [22,31]) the energy and angular
distribution of the neutron radiative f~-decay with polar-
ized electron and unpolarized neutron and proton is

(Ey—E, —w)* 1
—n

(Ee : l_ée)Z 5
k,

Q1

(A1)

12
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where dQ,, dQ,, and d<, are elements of the solid angels of the electron, antineutrino, and photon, respectively. Then,
01 = 2¢3(q) - ke +25(q)q and Oy = y° Q1" = 2¢4(q) - k, + §2(q), where €}(q) (or £y (¢)) and ¢ = (. ) = (. wii;)
are the polarization vector and 4-momentum of the photon obeying the constraints ¢;(g) - ¢ = 0 (or €y(q) - ¢ = 0) and
q* =0, ii; = §/w is a unit vector and A(1') = 1, 2 defines physical polarization states of the photon. In Eq. (A1) the traces
over Dirac matrices in the covariant form are defined by

a0 (1 =) = (e Ko)ex - koJa +3 (65 Ko)(er @)+ (65 a)ex ko) = (6 - €)@~ ))g”

_5 ((‘c":lk ' ke)gg’ + g/lﬂ (8/1’ . ke))(a : (’I> - Elgﬂmﬁ«gi ' ke>€ﬂ’z/ - 821/(81’ : ke))“a‘]/} - E lqﬂep(paﬂgﬁpeﬂ’(ﬂaaQ/}v (AZ)

where a = k, and a = m,{,, and €™ is the Levi-Civita tensor defined by €% = 1 and &,,,; = —e** [32]. Plugging

Eq. (A2) into Eq. (A1), using the Coulomb gauge [1,2] (see also [22,31]) and summing over photon polarizations we obtain
the following expression for the energy and angular distribution of the neutron radiative f~-decay

dS/‘Lﬂ:}’(Eea ]_éev Ee’ ]_él/’ é))
dwdE,dQ,dQ,d<Q,

a , G2V, — L 21{|:ﬂ2_(ﬁg'ﬁ)2< w) 1 2}
= 3/1)7(271)6 VE2 = m2EF(E,.Z =1)(Ey~ E, - 0)* ~ w3 4 +71—ﬁ,7-ﬁE%

+ao&'[ﬂ<2 UMD ﬁﬂ>+ﬁ;,<—m—% L S S R— q—2}
E, (1—iig-p)> 1—iig-BE E;(1—iiz-p)*Ee 1—iig-fE. 1-ii;-pE
L&k [_/ﬂ—(ﬁq ) S R w_2]+& (_ il gl \o

E, (1-ng-p)?> (1—ng-p)*Ee e 1—iiz-p (1-iz-p)*/) Ee

The integration over directions of the photon momentum we carry out using the results obtain in the Appendix of Ref. [2].
As result the energy and angular distribution Eq. (A3) takes the form

dﬁ/lﬁ?}’(Ee’ ]ze’ ge’ ]_éw Zi)

dodE,dQ,dQ,

G|V, 4| 1
S +3/12)M\/E 2 m2E,F(E,,Z = 1)(Ey — E, — )> —
T (27)3 ®

G R A S [
fE e () [ (25) -7 gEk% TR
D)) oo P g )
o [%'“ﬂ"(l fﬁ) 1 —2ﬁ2] Eﬁ(l w) o [ﬂf ( jﬁ) ~* —zﬁz] %2}} (84)
The first three correlation coefficients agree well with the results, obtained in [1] (see Eq. (B-11) of Ref. [1]) and [2] (see

Eq. (A-5) of Ref. [2]). Having integrated over the photon energy in the region w,;, < w < E — E,, where wy, is an infrared
cutoff [1], we arrive at the expression

== =
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N
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dsﬂﬂ;y(Em I_{)ev gw Izv)
dE,dQ,dQ,

- -

G2V, 2 kK
=214 32) S\ = B P (52 = 1)( = B P ) o) + 2 Eev o)

(2n)°
(& - k)(k, k) 0

g; : ]_ée (2) ge ’ I_éz/ m, (s)
— ‘) (E ) — E, .
gﬂc}’< er a)mln) (E 4 me)E E ﬂ y( wmln)

E E E_ B y(E wmln) —dp (AS)

The functions g}), >Y(Ee,a)mm) and g(,_> (E., i) have been calculated in [1,2], whereas the functions g;,) (E,, ®pin) and

gfy(Ee, @pin) are defined by the 1ntegrals
Ev-E. dw (Ey— E, — )* [1 1+ 1 o
G Eeiy = [ Ao Bl (1, (1D (Lo
‘ omn @ (Eo—E,) -5 2p°E;
e = [P (1 (140) (1
i @pmin o (EO - Ee)2 1- ﬂ 2ﬁ2 Ee%
1 w 1 1+ p 1)
1 1-p° 4 2| =
O () )
1 1 2 1 1 2 2
LN LW (A I Y O L - (e R S L G S5
2p 1-p 1-p°| E E, 44 1-p 1-p7] E;
The results of the integration are equal to
Ey—E)\ 3 1 (Ey—E)*[1, (1
Cnl 20— "¢ ____ZM —¢n tp -21,
®min 2 24p E? 1-p
E,—E)\ 3 1 (E,—E,)[1 1+5 >\ 1(Ey—E,)
— ) e |= -2 1 1- -
() e G 2p) 2 ()R
1 1 1 1 1 ]1 1 2 1E)—E
X ——+—|=tn TP | o L Ly (L2 —— (1=
1=p2p 1-p 2p -p) 1-p 4 E,
1 |3 145 2 | Ey—-E,
=7 —-4-—- . A7
+16ﬁ4[ﬂ "(1—ﬁ> 1—ﬁ2} E, } )
Now we are able to define the electron-energy and electron-antineutrino angular distribution for the neutron f~-decay with

polarized electron and unpolarized neutron and proton, where the correlation coefficients are calculated to order 1073,
caused by the weak magnetism and proton recoil of order O(E,/M) and radiative corrections of order O(a/x).

5
g;;)y (Ee ’ COmin)

6
g,(ﬂg)y (Ee ’ CUmin)

N

—_—

The radiative corrections of order O(a/x) to the correlation coefficients of the neutron ~-decay with polarized electron
and unpolarized neutron and proton are defined by the function g,(E,) and the functions

m, 11-p*E,—E, 1+1E0—Ee
“E, 3 p? E, 8 E,

+p 1 (Ey—E)* 1-p (1+p
X[ﬁf”(l—/f) 2]_5 2 f”(l—ﬂ)’

3 1 m, e
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4 . 6
) = T, [0 (Ees omin) = 9 (Ees o)l +

1Ey—E l—zE—
_ _3+_0 e /i 0
3 E, 244
_|_
E,
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gr
1 1 1+
X5+t 75 ff ﬂ
L=p= 2p Iy
1 (3 1+p 2
-7 -4 -

+16ﬂ4[ﬂ ”(1—ﬁ> l—ﬂz} E,
For the calculation of the radiative corrections to the

neutron lifetime and correlation coefficients of the neutron
p~-decay the integral

‘](ﬁ KIR /da)/dg2 ﬂz _' ‘?)27

(1—-15-p)?

(15
7l
5

(A9)

which is logarithmically divergent in the infrared region of
photon energy [5], plays an important role. As has been
pointed out in [1], the result of the calculation of this
integral depends on the regularization procedure, where kg
is an infrared parameter.

Using the infrared cutoff regularization kg = @i, <

o < (Ey—E,), where w;,, may be also treated as a
photon-energy threshold of the detector, we get

(55

J(B.pu) =¢n

where Li,(x) is a Polylogarithmic function [47,48]. We
would like to emphasize that the infinitesimal photon mass
u, providing a Lorentz covariant regularization of infrared
divergences in the neutron f~-decays, cannot be identified
with the infrared cutoff w,,,, which can be treated as a
photon-energy threshold of the detector [49-51] (see also
[1]). Nevertheless, the use of the Lorentz covariant FPM
regularization is important only for the calculation of the
function g, (E,), defining the radiative corrections to the
neutron lifetime [5]. It is required by gauge invariance of
radiative corrections and by the Kinoshita—Lee—Nauenberg

()5 = ar(E)

Ee) Efﬂ(%) —2} +1 —l—lfn

E,
0 --4029)- (- R)=z
(4)- )12

(A8)

a0~ o) en(52) ] ar

In turn, the use of the finite photon-mass u (FPM)
regularization

3, 32 _ 17_*2
J(M):/dqﬁ (7 )

=, All
4ﬂq8(1_1‘}.ﬂ)2 (A1)

where gy = \/@*> +u*> and ¥ = G/q, are energy and
velocity of a photon with mass y, gives one (see Eq. (B-26)

of Ref. [1])

1+p\ 1 1+p\ 1. [ 28
(ﬂ)‘ﬁ"’*(ﬂ) ‘“( +ﬂ>
[

theorem [5] (see also [1]). In turn, for the calculation of the
functions f,(E,) and nY )( E,), where £ =1, 2 [2] and
¢ =3, 4 [see Eq. (A8)], one may use both the Lorentz
covariant FPM regularization with an infinitesimal photon
mass u and the infrared cutoff w,,;, regularization. Indeed,
the contributions of the integral J (3, kg ), the regularization
of which depends on the regularization procedure [see
Egs. (A10) and (A12)], cancel themselves in the differences
limy,—olgy (E,.kir)— gy, (E,.ki)], where i=2,3,4, 5,6,
and the results do not depend on the regularization
procedure.
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