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The ILL experiment, one of the “reactor anomaly” experiments, is reexamined. The ILL’s baseline of
8.78 m is the shortest of the reactor anomaly short baseline experiments, and it is the experiment that finds
the largest fraction of the electron antineutrinos disappearing—about 20%. Previous analyses, if they do not
ignore the ILL experiment, use functional forms for chisquare which are either totally new and unjustified,
are the magnitude chisquare (also termed a “rate analysis”), or utilize a spectral form for chisquare which
double counts the systematic error. We do an analysis which utilizes the standard, conventional form for
chisquare as well as a derived functional form for a spectral chisquare. We find that when analyzed with a
conventional chisquare that includes spectral information or with a spectral chisquare that is independent of
the magnitude of the flux, the ILL experiment finds a substantial distortion in the neutrino spectra as
compared to conventional no-oscillation spectra. Interpreting this in terms of a fourth neutrino, rather than
an error in some aspect of the analysis such as the energy calibration, the results are a set of specific values
for possible mass-squared differences of the fourth neutrino, and where the minimum chisquare difference
values are significantly enhanced over previous analyses. For the Huber flux and the conventional
chisquare, the two most preferred values are mass-squared differences of 0.90 and 2.36 eV2 preferred at
Δχ2min values of −12.1 and −13.0 (3.5 and 3.6σ), respectively. For the Daya Bay flux and conventional
chisquare we find 0.95 and 2.36 eV2 preferred at Δχ2min of −10.5 and −11.7 (3.2 and 3.4σ), respectively.
For the spectral chisquare and either flux these values are 0.95 and 2.36 eV2 preferred at Δχ2min of −8.22
and −9.45 (2.9 and 3.1σ), respectively. These are to be compared to −4.4 (2.1σ) found in the original
reactor anomaly analysis for all of the experiments except the ILL experiment.
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I. INTRODUCTION

Neutrino oscillation experiments have, over the last
decade, moved toward precision measurements [1–3].
A principle goal of these experiments is to determine the
six phenomenological mixing parameters—three mixing
angles, θ12, θ13, and θ23; two mass-squared differences
Δm2

21 and Δm2
31; and the CP violating phase δ. The mixing

angles, sin2 θ12, sin2 θ13, and sin2 θ23 are found [1] to be

3.20þ0.20
−0.16 × 10−1, 2.160þ0.083

−0.069 × 10−2 (2.220þ0.074
−0.076 × 10−2),

and 5.47þ0.20
−0.30 × 10−1 (5.51þ0.18

−0.30 × 10−1) respectively, where
the hierarchy is given by normal (inverse). The mass
squared-differences Δ2

21 and jΔ2
31j are found to be 7.55�

0.03 × 10−5 and 2.50�0.03×10−3 ð2.42þ0.03
−0.04 × 10−3Þ eV2,

respectively. Note that the errors range from just under
2% to 6%, defining our new precision era. There is also
evidence [1–3] at the 1 to 2σ level indicating a
nonzero value for δ, with its preferred value being near
3π=2. Only a small indication of which hierarchy is correct
is found.
However, there are experiments that are not consistent

with the three neutrino analyses. These experiments require
a mass-squared difference of order 1 eV2. These experi-
ments are
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(i) The LSND [4] and MiniBoone [5] experiments
measure ν̄μ → ν̄e and νμ → νe oscillations. The
LSND experiment indicates a sterile neutrino that
oscillates via a mass eigenstate with a mass-squared
difference that is greater than 0.1 eV2. MiniBoone
has a longer baseline and compensating larger
energy than LSND. These two experiments have
recently been found [6] to be compatible.

(ii) Experiments with radioactive sources at the Gallium
solar neutrino facilities, Sage and Gallex [7], see
fewer neutrinos than expected. This can be explained
by the disappearance of electron neutrinos oscillat-
ing via a mass-eigenstate with mass-squared differ-
ence greater than 1 eV2. This is called the “gallium
anomaly.”

(iii) A new calculation of the electron antineutrino flux
[8] yielded a net increase of the predicted rate of
antineutrinos emitted by the four dominant decays
that drive a reactor. This implied [9] for a number of
short-baseline reactor experiments from the 1980s
and 1990s that the antineutrinos oscillated away via
a mass-eigenstate with Δm2 > 1 eV2. This is called
the “reactor anomaly.”

(iv) There are five recent reactor antineutrino oscillation
experiments: Nucifer [10], NEOS [11], Neutrino-4
[12], DANSS [13], and PROSPECT [14]. A flux
independent analysis of [11,13] combined with the
Gallium [7] experiments is presented in Ref. [15].

This work focuses on one of the reactor anomaly
experiments—the ILL experiment [16,17]. This experiment
is distinctive in several ways. It has an 8.79 m baseline, the
shortest baseline of any of the reactor anomaly experi-
ments. The short baseline gives ILL sensitivity to the
largest values for Δm2. The original publication [16] of this
experiment found the total number of measured antineu-
trinos to be 4.5� 11.5% less than predicted. However, the
power of the reactor was found [17] to have been under-
measured by 18%, implying that approximately 20% of the
antineutrinos had disappeared. This is by far the largest
fraction of electron antineutrinos disappearing in any short-
baseline reactor experiment.
In the Mention analysis [9], the reactor anomaly data

indicate that a fourth antineutrino exists at the 2.1σ level,
but the ILL experiment is omitted from this analysis. When
they combine other data with the reactor anomaly data, they
use a spectral chisquare function for the ILL experiment
which we argue below is incorrect. In the Kopp-Dentler
analysis [18–20], the magnitude chisquare is used for all
but the Bugey experiment [21]. Use of the magnitude
chisquare underestimates the impact of experiments which
have spectral information, including ILL. They find that the
reactor anomaly experiments indicate the existence of a
fourth antineutrino at the 2.7σ level. In the Collin analysis
[22], only the Bugey [21] experiment from the reactor
anomaly experiments is included. In the Gariazzo study

[23] only the magnitude analysis for the ILL experiment is
used. They find a 2.9σ indication of a fourth antineutrino
after including results from the NEOS experiment, and the
near detector data from the Daya Bay [24], RENO [25], and
Double CHOOZ [26] experiments were also included.
They find that the existence of a fourth antineutrino is
indicated at a 3.1σ level when these additional data are
included. There is agreement that evidence exists support-
ing the existence of a fourth neutrino, but a correct analysis
of the ILL experiment beyond the use of the magnitude
chisquare (a rate analysis) does not yet exist.
Here, we address two fundamental questions within the

context of providing new results for the ILL experiment.
The first, in Secs. II and III, the importance of the choice
of the chisquare function used in the analysis is examined.
The second, in Sec. IV, the dependence of the results on the
choice of the flux is presented. We find that including the
spectral information gives results that favor a number of
particular values of Δm2. In Sec. V we demonstrate how
this comes about. In Sec. VI, we review our conclusions
and comment on possible future work.

II. CHISQUARE FUNCTIONS

Given that different authors utilize different functional
forms for their chisquare function, we ask the question of
how does the choice of the chisquare function impact the
physical results implied by an analysis of the experiment?
We give the formulas for each of the chisquare functions of
interest. We postulate that one is not free to create any
function one chooses. It is necessary to extract from the
calculated chisquare the answer to various questions that
involve probabilities. This usually is done by knowing that
the likelihood function that results from the chisquare
function is a probability distribution. To be correct, a
mathematical proof of how to extract probabilities is
required. Here, we maintain this constraint by limiting
ourselves to the conventional chisquare and normal
(Gaussian) statistics. This is the standard chisquare found
in books on probability theory. The extraction of proba-
bilities then follows a prescription which has been
rigorously derived, using what is commonly called a
“frequentist” approach or else a “Bayesian” [27,28]
approach. One can divide this conventional chisquare into
two parts. One part we call the spectral chisquare. This
chisquare is independent of the magnitude of the antineu-
trino flux. This second form is the limit in which one
simply counts the number of neutrinos without measuring
their energy. This is also called a “rate” calculation. This is
the limit of the conventional chisquare when there is only
one energy bin. Since both of these chisquares derive from
the conventional chisquare, extracting probabilities utiliz-
ing either the “frequentist” or “Bayesian” approach is
mathematically rigorous. In addition, we examine the
results of using the sum of the magnitude and spectral
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chisquare. The sum of the two parts is not rigorously
equivalent to the conventional chisquare.
We begin with the well-known and mathematically

rigorous conventional χ2 function as given by

χ2convðsin22θ;Δm2Þ

¼
Ximax

i¼1

ðNexp
i − Nth

i ðfag; Ei; sin22θ;Δm2ÞÞ2
ðσiNexp

i Þ2

þ
Xjmax

j¼1

ðaj − 1Þ2
σ̂2j

; ð1Þ

where Nexp
i is the experimentally measured number of

neutrinos and σi is its statistical error given in percent of
Nexp

i , both for bin i centered at energy Ei, with imax being
the total number of spectral bins. We stress that this
functional form of the chisquare follows in a mathemati-
cally rigorous way from the property that the data satisfies
normal statistics. By dividing the number of neutrinos by
the run time, the number of neutrinos can be replaced by the
rate of measuring the neutrinos in all formulas. Systematic
errors are included through the use of a set of nuisance
parameters fag with jmax the number of such parameters.
These parameters are varied, subject to the constraint
imposed by σ̂j in the formula. Nth

i ðfag; Ei; sin22θ;Δm2Þ
is the theoretical model for the number of neutrinos in bin i.
We use a two neutrino model, with our independent
variables taken as sin2 2θ and Δm2. The two neutrino
approximation results [22] from taking Δm2

21 ¼ Δm2
32 ¼ 0

in the full four neutrino mixing matrix.
The probability that an electron antineutrino leaving the

reactor remains an electron antineutrino when it arrives at
the detector is given by

PeeðL;E; sin22θ;Δm2Þ ¼ 1 − sin22θsin2ð1.267Δm2L=EÞ;
ð2Þ

where L is the distance traveled by the antineutrino in m
and E is its energy in MeV. The mass-squared difference
parameter is in units of eV2. In order to incorporate the
finite energy resolution of the detector the oscillation
probability must be convoluted with an energy resolution
function, fðE − E0Þ ¼ NE expð−ðE0 − EÞ2Þ=2σ2EÞ, with NE
a normalization factor. The distance L must be averaged
over the distance between points in the core and points in
the detector. This can be done with a one dimensional
integration by defining a weight function WLðL0Þ=L02dL0
that extends from the smallest (largest) distance, Lmin
(Lmax) between a point in the core to a point in the detector.
We divide Lmax − Lmin into bins. The 1=L02 factor accounts
for the inverse square drop in the flux with distance. We
generate randomly located pairs of points with constant
density in the core and in the detector and calculate the
distance between each pair of points, then put a point in the

appropriate bin for that distance. The number of points in
each bin then gives a weight function, WLðL0Þ=L02dL0,
which we normalize. With this weight function, we then
need only do a one dimensional integral over L0 weighted
byWLðL0Þ=L02. To include these two effects, we define this
averaged Pee by

hPeeðL; E; sin22θ;Δm2Þi

¼ NE

Z
∞

Eth

dE0FðE − E0Þ

×
Z

Lmax

Lmin
dL0WLðL0Þ=L02PeeðL0; E0; sin22θ;Δm2Þ; ð3Þ

where Eth is the antineutrino threshold energy for the
inverse beta decay reaction. The theoretically predicted
number of neutrinos in bin i is then

Nth
i ða; sin22θ;Δm2Þ ¼ aNno

i ðEiÞhPeeðL;Ei; sin22θ;Δm2Þi;
ð4Þ

whereNno
i is the theoretical number of neutrinos that would

have been measured in bin i in the absence of oscillations,
and a is the one nuisance parameter we employ.
An alternative approach, as used in Ref. [17], arises from

separating the χ2 function into two pieces, a magnitude
piece, χ2mag, and a spectral piece, χ2spec

χ2mþs → χ2mag þ χ2spec: ð5Þ
The magnitude part, χ2mag, describes experiments where the
total number of antineutrinos is detected but their energies
are not measured. This chisquare function, χ2mag, is given by

χ2magðsin22θ;Δm2Þ ¼ ðNexp
tot − Nth

totða; sin22θ;Δm2ÞÞ2
ðσtotNexp

tot Þ2

þ ða − 1Þ2
σ̂2

; ð6Þ

where Nexp
tot is the total experimental number of antineu-

trinos detected, and Nth
tot is the total theoretically predicted

number of antineutrinos. This is simply a one energy bin
form of Eq. (1).
The spectral chisquare function, χ2spec, is constructed to

be a chisquare that is independent of the magnitude of the
flux. Physically this means you have no knowledge of the
magnitude of the flux. This can be accomplished by letting
σ̂ go to infinity in Eq. (1) yielding

χ2specðsin22θ;Δm2Þ¼
Ximax

i¼1

ðNexp
i −Nth

i ða;Ei;sin22θ;Δm2ÞÞ2
ðσiNexp

i Þ2 :

ð7Þ

In Ref. [17] a different and unique form for the spectral
chisquare was proposed. We disregard that definition. Our
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definition is manifestly and completely independent of the
flux. In Mention, Ref. [9], another chisquare function that is
independent of the magnitude of the flux is used, a flux we
will call Δχ2specM. There they take the limit of σ̂ going to
infinity and then insert the systematic error by adding it in
quadrature to the statistical error. This chisquare, χ2specM, is
defined by Eq. (12) in Ref. [9] as

χ2specMðsin22θ;Δm2Þ

¼
Ximax

i¼1

ðNexp
i − Nth

i ða; Ei; sin22θ;Δm2ÞÞ2
ðσiNexp

i Þ2 þ ðσ̂Nexp
i Þ2 : ð8Þ

In taking the limit of σ̂ going to infinity, the effect of the
systematic error has been included; one could even say “we
have overincluded it.” Putting the second term in the
denominator of Eq. (8) is double counting the system-
atic error.
We have sufficient data to calculate each of these

chisquares. In Table IV of Ref. [16] we are given the
energy grid, Ei; the experimental rate of particles being
detected in units of MeV−1 h−1 in each bin; and its error σi.
We use one nuisance parameter with error σ̂ for the error in
the magnitude of the flux, number of protons, etc. We find
for the error a value of 11% in [16], a value of 8.87% in
[17], and a value of 9.5% in [9]. We choose to be
conservative and use the largest of these, 11%. Also from
Ref. [16] we get the dimensions needed to construct
WLðL0Þ. The core has a radius 0.2 m and a height of
0.8 m. The detector is 1.2 m tall, 0.8 m wide, and (we
estimate) 0.9 m deep, the first two taken from the diagram
in Fig. 1, Ref. [16], while the depth is estimated to be 1.0 m,
as it is not provided anywhere. We find that the inclusion of
the energy resolution integration is not needed as its impact
is less than one percent. On the other hand the spatial
integration over the size of the core and the size of the
detector is approximately a 25% correction.

III. RESULTS—CHISQUARE DEPENDENCE

χ2ðsin2 2θ;Δm2Þ does not return to zero as Δm2 tends to
infinity. It approaches a Δm2 independent valley arising
from the limit of Δ2m large,

sin2
�
1.267Δm2L

E

�
→ 1=2: ð9Þ

The usual approach to extract probabilities from a chi-
square function is to define a likelihood function,
Lðsin22θ;Δm2Þ≕ expð−χ2ðsin22θ;Δm2Þ=2, and realize
that the likelihood function is proportional to a probability
distribution. This cannot be done here since the probability
distribution is not integrable. The solution to this situation
can be found in Ref. [21]. The question one asks must be
altered and the approach is termed the “raster” interpreta-
tion. In this approach, one asks the question “for a given

Δm2, what is the minimum (best fit) value of the
chisquare and at what value of sin2 2θ does it occur?”
We define the answer to this question as Δχ2minðsin2ð2θminÞ;
Δm2ÞÞ ¼ χ2ðsin2ð2θmin; ÞΔm2Þ − χ2ð0; 0Þ, where θmin is
the minimum value for the chosen value of Δm2. The
no oscillation chisquare in the two neutrino analysis is the
value of the chisquare function for three neutrinos. Thus
Δχ2min tells you how much better a fit the inclusion of a
fourth neutrino yields. Note that the sign of Δχ2min is the
opposite of the sign often used. We use this sign as the best
fit is then given by the smallest value of Δχ2min. Also note
that the chisquare is a one variable, sin2ð2θÞ, chisquare,
and hence for a frequentist analysis the improvement due to
the fourth neutrino as measured in number of standard
deviations is the square root of jΔχ2minj.
We first investigate the dependence of results on the

choice of the chisquare function in Fig. 1 and in Table I we
quantify our results by giving the depth for each minima,
Δχ2min and its location sin2 2θmin and Δm2

min. For all curves
in this section we use the Huber [29] flux. In Fig, 1 the solid
(black) curve depicts Δχ2min as a function Δm2 for the
conventional chisquare, χ2conv, defined in Eq. (1). The first
thing we note is that the curve is a set of individual minima.
The origin of multiple minima will be investigated in
Sec. V. This phenomenon is new to this work. Each value
for the minima is exceptionally deep. The depth of the first
two minima are Δχ2min ¼ −12.1 and −13.0 (3.5 and 3.6σ)
and are located at Δm2 ¼ 0.9 and 2.4 eV2. The result
obtained in the Mention work [9] is −4.45 (2.1σ) for all the
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χ2 m
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FIG. 1. Δχ2min curves versus Δm2 for a variety of choices all
using the Huber [29] flux. The solid (black) curve is the result for
the conventional chisquare, χ2conv, Eq. (1); the dot-dash (red)
curve is the result for the magnitude or rate chisquared, Eq. (6);
the dash (blue) curve is the result of the spectral chisquare, χ2spec,
Eq. (7); the dot-dot-dash (indigo) curve is the results for the sum
of the conventional chisquare and our version of the spectral
chisquare, χ2mþs, Eq. (5); and the dot-dash-dash (green) curve is
the result of the spectral chisquare proposed by Mention, χ2specM,
Eq. (8). Note that the spectral chisquare, the dash (blue) line, is
also the result for the Daya Bay flux.
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reactor anomaly experiments except ILL. The ILL experi-
ment is thus the dominant experiment of the reactor
anomaly experiments. This is not surprising since the
ILL experiment finds about 20% of the antineutrinos have
oscillated away—much more than found in any other
experiment. The next curve to examine is the dot-dash
(red) curve which is generated by χ2mag, Eq. (6), the
magnitude (or rate) chisquare. This is the most commonly
used chisquare function for analyzing the reactor anomaly
experiments. First, we see that without the spectral infor-
mation, it has no sensitivity to a particular mass and is
nearly a straight line. Second, it underestimates the sig-
nificance of the experiment substantially; any analysis that
uses the rate approach for an experiment that has spectral
information will be significantly underestimating the
impact of that experiment. Next we examine the results
obtained from the spectral chisquare, Eq. (7), the dash
(blue) curve. It too produces predictions of possible mass-
squared differences, in fact, nearly identical values to those
predicted by the conventional chisquare. The dot-dot-dash
(indigo) curve is for the sum of the magnitude and spectral
chisquares. It gives results that are reasonably close to the
conventional chisquare. This supports our definition of the
spectral chisquare. Finally the dot-dash-dash green curve
is the result of the Mention spectral chisquare, Eq. (8).
These results are quite small. This is not surprising as the
systematic errors are included twice.
The spectral chisquare, which is independent of the

magnitude of the flux is of special interest. Note that because

the Huber flux and the Daya Bay flux differ [30] only in
magnitude, the spectral chisquare, χ2spec, the dash (blue)
curve, gives identical results for these two fluxes. The
revision of an increase by 18% of the flux appeared fourteen
years after the original publication and is authored by a
fraction of the original collaboration. It is also a much larger
disappearance fraction than any other oscillation experiment.
This makes us cautious of this change in the flux.We see that
the spectral chisquare produces results with the location of
the valleys, best fit values, very similar to what was found
from the full conventional chisquare with the minima
reduced, but much deeper than that found by Mention
[9]. If the flux increase is less than the full 18% increase,
the results will lie between the conventional chisquare solid
(black) curve and the spectral chisquare dash (blue) curve.
From the results of the use of the spectral chisquare, we

see evidence that the ILL experiment finds a significant
amount of spectral distortion in comparison with any of the
common models of the no-oscillation spectrum. We see that
the existence of this distortion is consistent with the
existence of a fourth neutrino. How this comes about is
further demonstrated in Fig. 3. For an almost thirty year old
experiment, however, it is impossible to rule out all other
possible explanations of the distortion, such as an error in
the energy calibration.

IV. RESULTS—FLUX DEPENDENCE

The question of the flux, both its magnitude and its
energy dependence, has received much attention [30–38]
lately. The historical way of modeling the flux is to start
with a measured beta decay spectrum and then theoretically
predict a neutrino spectrum that is consistent with the
measured beta spectrum. The most recent flux of this type
is that given by Huber [29]. The alternative is to measure
the flux directly, the most recent such flux is given by the
Daya Bay [30,36] collaboration. These two fluxes are not
consistent with each other. The energy dependence of the
flux for the Daya Bay measurement has a bump in the flux
near 5 MeV that is absent in the Huber flux. The recent
NEOS [11] experiment measures the flux for its particular
mix of isotopes and finds corroborating evidence for this
bump. The two approaches also do not agree on the
magnitude of the flux. The Daya Bay experiment sees a
lower flux rate for its particular mix of isotopes than is
predicted by Huber. It cannot tell you directly how much of
the decrease comes from which isotope. Unfolding the
decrease must be done theoretically. In Ref. [30], the
conclusion reached by the Daya Bay experimentalists is
that the Daya Bay flux is a reduction by 7.8% for the 235U
flux with the other isotopes unchanged as compared to the
Huber flux. We here present results, Fig. 2 and Table II, for
the ILL experiment utilizing the Huber flux, the Daya Bay
flux, and the ILL flux. We include the historical LL flux
purely out of curiosity concerning what would have been
the results had there been an analysis performed looking for

TABLE I. The location of the minima, sin2 2θmin and Δm2
min,

and the depth of the minima, Δχ2min for the conventional
chisquare, Eq. (1) and for the spectral chisquare, Eq. (7). For
the conventional chisquare the results are for the Huber flux,
while for the spectral chisquare, the results apply to both the
Huber flux and the Daya Bay flux.

Δχ2min sin2 2θmin Δm2
min (eV2) Δχ2min σ

Conv 0.259 0.90 −12.1 3.5
0.267 2.36 −13.0 3.6
0.225 3.78 −7.84 2.8
0.173 5.00 −3.77 1.9
0.187 6.23 −3.32 1.8
0.269 8.10 −5.42 2.3
0.285 9.61 −4.81 2.2
0.303 11.3 −3.25 1.8
0.319 11.8 −3.28 1.8

Spect 0.233 0.95 −8.22 2.9
0.245 2.36 −9.45 3.1
0.195 3.78 −5.10 2.3
0.127 5.00 −1.64 1.3
0.123 6.20 −1.55 1.2
0.207 8.12 −2.39 1.5
0.199 9.54 −1.73 1.3
0.123 11.3 −0.26 0.5
0.115 11.7 −0.24 0.5
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a fourth neutrino, rather than focusing on the 90%
disallowed region, the general approach adopted at
the time.
The Huber flux for 235U is given in Appendix B of

Ref. [29]. Rather than utilize the magnitude of the flux
given there, we put an emphasis on staying as close to what
the experimentalists did in their analysis as is possible. In
the second ILL paper [17] and in the Mention paper [9] we
are given the ratio of the total number of experimentally
measured neutrinos to the no-oscillation expected number,
0.802. In [16] we find that the total number of electron
antineutrinos measured is 4890. Thus the Mueller flux is to
be normed to 6070 events. In [29] we find the 235U Huber
flux is 1.004 times the Mueller flux or is to be normed to
6100. From [30] the Daya Bay flux is 7.8% smaller than the
Huber flux or is to be normed to 5620 counts. From [9] the
ILL flux is 2.6% smaller than the Mueller flux or is to be
normed to 5910 and approximately has the energy depend-
ence of the Mueller flux, which is given in Ref. [8].
Δχ2min versus Δm2 is presented in Fig. 2 for the Huber

flux, the Daya Bay flux, and the ILL flux and for the
conventional chisquare, Δχ2conv. In addition, in Table II the
depth of each Δχ2min and the location of the chisquare
minima, sin2 2θmin and Δm2

min, are given for the Daya Bay
and ILL flux. The results for the Huber flux was given in
Table I. We see that the change in the flux does not cause
much of a change in the location of the χ2min and does not
cause a major change in the depth of the χ2min. This is
because of the 20% disappearance of the antineutrinos.
This is sufficiently large that the 7.8% reduction in the flux
reduces the impact of the experiment, but not overwhelm-
ingly. If we investigate an experiment where we have pure
235U fuel, and the Huber flux gave a 6% or less disappear-
ance, the reduced flux of the Daya Bay experiment would
lead to a null result for the existence of a fourth neutrino.

We see that all three fluxes give substantial evidence for
the existence of a fourth neutrino. Indeed, the conventional
chisquare implies the lowest two minima for the Daya Bay
flux are quite deep, with Δχ2min given by −10.5 and −11.7
(3.2 and 3.4σ). We see similarly that the ILL flux gives
−10.2 and −11.6 (3.2 and 3.4σ) for the depth of the two
deepest minima. Had the ILL experiment been modeled
with a conventional chisquare, the reactor anomaly would
have been discovered much earlier.

V. ORIGIN OF MULTIPLE MINIMA

Finding multiple minima brings up the question of
whether the results are predicting more than one sterile
antineutrino or are offering several possible values for the
mass-square difference. The analysis was performed using
an oscillation probability from a 3þ 1model. Logically the
results could not be for multiple sterile antineutrinos.
In Fig. 3, the solid (blue) curve is for the first minimum
of the chisquare function found at sin2 2θ ¼ 0.26 and
Eν ¼ 6.0 MeV. The dash (red) curve is for the second
minimum found at sin2 2θ ¼ 0.25 and Eν ¼ 5.6 MeV, and
the dot-dash (green) curve is for the third minimum found
at sin2 2θ ¼ 0.22 and Eν ¼ 5.3 MeV. All three curves have
a minimum near 0.5 eV2. What is happening is that the
solid (blue) curve fits with its first minimum near 0.5 eV2,
the dash (red) curve fits with its second minimum near
0.5 eV2, and the third curve fits with its third minimum
near 0.5 eV2. With less than perfect data, a fundamental
and its harmonics can all produce reasonable fits. Thus
the data is producing a series of possible mass-square
differences. For data from a model calculation with small
errors given in Ref. [39], it is shown how the data can
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FIG. 2. Δχ2min versus Δm2 for the conventional chisquare and
three different fluxes. The solid (black) curve is for the Huber
flux, the dash (blue) curve is for the Daya Bay flux, and the dot-
dash (red) curve is for the ILL flux.

TABLE II. Results for the value of the minima of χ2min and their
location, sin2 2θmin and Δm2

min for the conventional chisquare,
χ2conv and two fluxes, the ILL flux and the Daya Bay Flux. Results
for the Huber flux is given in Table I.

Flux sin2 2θmin Δm2
min (eV2) Δχ2min σ

ILL 0.243 0.88 −10.2 3.2
0.251 2.34 −11.6 3.4
0.201 3.75 −5.38 2.3
0.223 3.73 −7.79 1.2
0.117 6.18 −1.09 1.0
0.181 8.12 −1.99 1.4
0.223 9.68 −1.64 1.3
0.181 11.6 −0.74 0.9

Daya Bay 0.239 0.95 −10.5 3.2
0.259 2.36 −11.7 3.4
0.213 3.78 −6.95 2.6
0.157 5.00 −3.10 1.8
0.165 6.23 −2.61 1.6
0.241 8.10 −4.34 2.1
0.243 9.56 −3.68 1.9
0.245 11.3 −2.05 1.4
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distinguish between multiple possible single antineutrino
solutions and a solution that actually represents the exist-
ence of multiple sterile antineutrinos. One can be cautious
of the suggested 18% increase in the flux suggested in
Ref. [17], but we believe that unless and until other data
contradict this claim, the results of a full analysis of the
reactor antineutrino data utilizing the standard chisquare
should be the default.

VI. CONCLUSIONS

Of the nineteen reactor anomaly experiments, the ILL
experiment has the shortest baseline, 8.78 m. In Ref. [17] a
correction to the measured power of the reactor during the
experiment was reported and an increase by 18% to the
reactor flux was proposed. This means that approximately
20% of the electron antineutrinos emitted from the reactor
had oscillated away. This large fraction of antineutrinos
disappearing would intuitively imply the existence of a
sterile fourth antineutrino at the mass-squared scale Δm2 ≥
1 eV2 and with a large probability for the existence of this
sterile antineutrino. The analysis performed in Ref. [17],
however, used an unusual and peculiar functional form for
the chisquare function, which we ignore. The analysis done
in Ref. [9], the work that originally proposed the existence
of a reactor anomaly, used a spectral chisquare which we
believe included the systematic errors twice. Other global
analyses, Refs. [15,18–20,22], either omitted the ILL
experiment or used the magnitude chisquare, which we
find underestimates the significance of an experiment that
contains spectral information. We also demonstrate that the
conventional chisquare, Δχ2conv, can be quantitatively bro-
ken into a magnitude (or rate) part and a spectral part, with

the spectral part, Δχ2spec, given by the form that we propose
in Eq. (7).
We find, with use of the standard chisquare function,

Δχ2conv, Eq. (1), or the spectral chisquare function, Δχ2spec,
Eq. (7), both rigorously justified by mathematicians for
normal statistics, significant spectral distortion as compared
to the existing models of the no-oscillation spectrum. A
possible interpretation of this distortion is the existence of a
fourth neutrino. We cannot rule out other possible explan-
ations, such as an error in the energy calibration. The
inclusion of the spectral information gives results that are
consistent with the existence of a fourth neutrino at a
number of specific values for the possible mass-squared
difference. The set of mass-squared differences preferred is
given in Table I together with the statistical significance of
each. We also examine the results implied by the spectral
chisquare, Δχ2spec, given in Eq. (7). The significance of an
experiment is necessarily reduced by utilizing only the
spectral form of the chisquare function, but there is the
advantage of the results being independent of the magni-
tude of the flux. We find for the Huber flux that Δχ2min for
the two lowest mass-square differences are −12.1 and
−13.0 (3.5 and 3.6σ) with mass-squared differences of 0.90
and 2.36 eV2. For the spectral chisquare, χ2spect, the mass-
squared difference values of the minima remain nearly the
same as those found for the conventional chisquare, 0.95
and 2.36 eV2, and have a depth of −8.22 and −9.45 (2.9
and 3.1σ). We note that the spectral chisquare puts a lower
limit on the implications of an experiment that can result
from not knowing the magnitude of the flux. The value for
the magnitude chisquare,Δχ2mag, for the Huber flux is found
to be −4.0 (2.0σ) and independent of the value of Δm2

for Δm2 > 0.1 eV2.
We find that the use of the magnitude chisquare (rate

analysis) underestimates the significance of an experiment
that has spectral information. Studies of the reactor
anomaly experiments, with the exception of the Daya
Bay experiment, utilize a rate analysis or ignore the ILL
experiment. This has motivated us to redo all nineteen
experiments in which we will include this new analysis of
the ILL experiment and spectral information when avail-
able. We also find that when spectral information is
included, each experiment predicts individual values for
Δm2 that are preferred. This alters how one can view the
process of combining individual experiments. The question
of coherence between the individual values preferred by
one experiment and those values found by all the other
experiments becomes very important. The discussion of
coherence between the Δm2 values found here for the ILL
experiment and the values found by other experiments will
be presented when the new results for the reactor anomaly
are complete. In addition there are five newer reactor
anomaly experiments that have been published. These
also need to be combined and included in with the
older experiments. These experiments are Nucifer [10],
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FIG. 3. The averaged oscillation probability hPeei versus the
antineutrino energy. The data are from Ref. [17]. The solid (blue)
curve is the theoretical calculation for the first minimum in the
chisquare, Δm2 ¼ 0.9 eV2; the dash (red) curve the second
minimum; Δm2 ¼ 2.36 eV2; and the dot-dash (green) curve
the third minimum, Δm2 ¼ 3.78 eV2.
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NEOS [11], Nuetrino-4 [12], DANSS [13], and
PROSPECT [14]. As these experiments should be more
reliable than the older experiments, the question of coher-
ence becomes a more important consideration.
The question of the magnitude of the flux remains. With

20% of the antineutrinos disappearing, the ILL experiment
finds that the 7.8% reduction for the Daya Bay flux does
reduce the impact of the ILL experiment, but leaves
the results with the deepest two values of Δχ2min at the
significant values of −10.5 (3.2σ) and −11.7 (3.4σ). The
PROSPECT [14] experiment will measure the 235U flux to a
much improved accuracy, both its measured energy

dependence and its magnitude. For research reactors that
use pure 235U, the flux question will be resolved. For other
experiments, this measurement will reduce the uncertainty.
If the Daya Bay flux is confirmed, the question will be
resolved. Otherwise, given the level of discussion,
Refs. [30–38], we will follow the conclusion of
Ref. [38], “The present analysis suggests that there is
currently insufficient evidence to draw any conclusions on
this issue.” Further measurements are necessary.

The work of D. J. E and J. M. M. was supported in part
by NSF Grant No. 156003.
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