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Using the reaction γN → ππN as the paradigmatic topological framework, a field-theoretical description
of the electromagnetic production of two pseudoscalar mesons off the nucleon is derived and applied to
photo- and electroproduction processes, assuming only one-photon exchange for the latter. The dynamics
of all explicit three-point interaction mechanisms of the ππN system is accounted for by the Faddeev-type
ordering structure of the Alt-Grassberger-Sandhas equations. The modifications necessary for incorpo-
rating n-meson vertices for n ≥ 4 are discussed. The formulation is valid for hadronic two-point and three-
point functions dressed by arbitrary (even nonlinear) internal mechanisms provided all associated
electromagnetic currents are constructed to satisfy their respective (generalized) Ward-Takahashi identities.
Coupling the photon to the Faddeev structure of the underlying hadronic two-pion production mechanisms
results in a natural expansion of the full two-pion photoproduction currentMμ

ππ in terms of multiple dressed
loops involving two-body subsystem scattering amplitudes of the ππN system that preserves gauge
invariance as a matter of course order by order in the number of (dressed) loops. A closed-form expression
is presented for the entire gauge-invariant current Mμ

ππ with complete three-body dynamics. Individually
gauge-invariant truncations of the full dynamics most relevant for practical applications at the no-loop, one-
loop, and two-loop levels are discussed in detail. An approximation scheme to the full two-meson
amplitude for calculational purposes is also presented. It approximates, systematically, the full amplitude to
any desired order of expansion in the underlying hadronic two-body amplitude. Moreover, it allows for the
approximate incorporation of all neglected higher-order mechanisms in terms of a locally gauge-invariant
phenomenological remainder current.
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I. INTRODUCTION

The most basic of electromagnetic production processes
of two mesons is the photon-induced production of two
pions off the nucleon. The corresponding experimental
studies of double-pion production have a fairly long
history, with some of the earliest experiments going back
to more than half a century [1–7]. In the last two decades,
with the availability of sophisticated experimental facilities
at MAMI in Mainz, GRAAL in Grenoble, ELSA in Bonn,
and the CLAS detector at Jefferson Lab (JLab), the
emphasis of experiments with both real and virtual photons
is clearly on using this reaction as a tool to study and extract
the properties of excited baryonic states that form at
intermediate stages of the reaction [8–40]. For compre-
hensive accounts on the pre-2013 activities in double-
meson photo- and electroproduction processes in particular,

and on baryon spectroscopy in general, we refer to
Refs. [41,42].
One of the main spectroscopic interests in two-meson

production processes—and, in particular, two-pion produc-
tion processes—is due to the expectation that the basic
sequential production mechanism of this process along
intermediate baryons may reveal baryonic structures not
directly accessible by single-decay processes into πN final
states. Two-step mechanisms thus may help in addressing
the so-called missing resonance problem [43,44], which
refers to resonances predicted by nonrelativistic quark
models but not found in πN scattering experiments.
Indeed, analyses of some experiments in two-pion and
πη photoproduction processes provide evidence for sequen-
tial decays of N and Δ resonances [13,27,32,38,45,46].
Theoretically, the study of double-meson electroproduc-

tion off the nucleon is a challenging problem because,
unlike single-meson production, its correct description
needs to combine baryon and meson degrees of freedom
(d.o.f.) on an equal footing because the two mesons in the
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final state can come off a decaying intermediate meson
state, and not just off intermediate baryons as a sequence of
two single-meson productions. For the ππN final state, e.g.,
this therefore requires accounting for all competing internal
photosubprocesses like, e.g., the baryonic γN → πN and
the purely mesonic γρ → ππ in a consistent manner.
Several groups have theoretically studied two-meson

photo- and electroproductions employing a variety of
approaches. The Bonn-Gatchina group has performed a
multichannel partial-wave analysis of the existing two-pion
and πη photoproduction data [45,46]. Double-pion photo-
production near threshold is described by chiral perturba-
tion theory [47–49], and the 2004 data fromMAMI on π0π0

photoproduction off the proton [15] seem to be consistent
with its predictions. Unitary chiral perturbation theory has
been applied in the analyses of πη and KπΣ photopro-
duction [50–52].
At present, the most detailed model calculation of two-

pion photoproduction is that of the EBAC/ANL-Osaka
group [53]. It is an extension of their dynamical coupled-
channels approach for single pseudoscalar-meson produc-
tion developed over recent years [54] by describing the
basic two-meson production mechanisms as isobar-type
approximations obtained by attaching the vertices for
Δ → πN, ρ → ππ, and σ → ππ transitions to the corre-
sponding single-meson production amplitudes, viz.,
γN → πΔ, γN → ρN, and γN → σN amplitudes, respec-
tively, obtained in the dynamical coupled-channels
approach [54]. This model includes the hadronic πN →
ππN channel [55], and the S11ð1535Þ, S31ð1620Þ, and
D13ð1520Þ resonances are found to be relevant to two-pion
photoproduction up to W ¼ 1.7 GeV.
The majority of existing model calculations of two-

meson photo- and electro-photoproduction processes are
based on straightforward tree-level effective Lagrangian
approaches. Despite their simplicity, they often provide
insights into dominant aspects of the reaction mechanism in
a more transparent way than more involved approaches. In
photoproduction, these models have been applied to two-
pion [56–66] and πη [67] productions. Two-pion photo-
production in nuclear medium has been also studied within
tree-level approximations [68,69]. In the strangeness sector,
the KK̄ photoproduction has been investigated within the
tree-level effective Lagrangian approach [70] as well as the
KKΞ photoproduction [71,72]. The latter calculation
includes a generalized four-point contact current to keep
the resulting amplitude gauge invariant. The πη and ππ
electroproduction reactions were studied in a similar
framework [73,74]. A variation of the tree-level approxi-
mation in the analyses of two-pion electroproduction is
adopted in Refs. [75–77]. For the theoretical description of
ππ-production observables, we refer to Ref. [78] and
references therein.
The purpose of the present work is to derive two-meson

photoproduction amplitudes beyond simple tree-level

models which include the full microscopic details con-
tained in the three- and four-point hadronic vertices and
thus allow exploiting the underlying reaction dynamics in a
detailed and systematic manner. The paradigmatic frame-
work for the formalism to be presented is furnished by the
reaction γN → ππN; however, we emphasize that from a
topological perspective, the resulting dynamics applies
equally well to any final two-meson state with mesons
whose basic production mechanism is described by a three
point meson-baryon-baryon vertex. The resulting equa-
tions, thus, apply in particular also to three-hadron final
states with two pseudoscalar mesons like, e.g., πηN, KK̄N,
KKΞ, etc.
The derivation proceeds analogous to single-meson pho-

toproduction, based on the field-theoretical approach of
Haberzettl [79], where the photoproduction amplitude is
obtained by attaching a photon to the full N → πN
three-point hadronic vertex using the Lehmann-Symanzik-
Zimmermann (LSZ) reduction [80] which allows us to
express the full photoproduction amplitude in term of the
gauge-derivative procedure proposed in Ref. [79]. For the
two-meson case, we attach the photon to the full N → ππN
four-point hadronic vertex, whose microscopic structure is
described in a nonlinear three-body Faddeev-type approach.
The gauge-derivative device provides a very convenient tool
to identify and link all relevant microscopic reaction
mechanisms in a consistent manner. Similar to the single-
meson photoproduction amplitude, the resulting two-meson
photoproduction amplitude is analytic, unitary, covariant,
and (locally) gauge-invariant as demanded by the general-
ized Ward-Takahashi identity [81,82]. Local gauge invari-
ance, in particular, is important in electromagnetic processes
because it requires consistency of all contributing mecha-
nisms. Its violation may thus point to missing mechanisms,
as was demonstrated for the NN bremsstrahlung reaction
which is one of the most basic hadron-induced processes. In
Refs. [83,84], it was shown how to solve the long-standing
problem of describing the high-precision KVI data by
including in the model a properly constructed interaction
current that obeys the generalized Ward-Takahashi identity
required by local gauge invariance.
Since particle number is not conserved in meson

dynamics, the full two-meson photoproduction amplitude
as described here is highly nonlinear, thus making trunca-
tions unavoidable in practical calculations. However, to
help with the incorporation of higher-order contributions,
we present a scheme that expands the amplitude in powers
of the underlying two-body hadronic T-matrix elements
and, in addition, provides a procedure for accounting for
neglected higher-order contributions in a phenomenologi-
cal manner. In principle, at least, the approximation can be
refined to any desired accuracy. Local gauge invariance is
maintained at each level of the approximation.
A preliminary account of a part of the main results of the

present work can be found in the conference proceedings of
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Ref. [85]. The present paper is organized as follows. In the
subsequent Sec. II, we recapitulate some features of the
theory of single-pion production off the nucleon of Ref. [79]
so that we can establish the relevant techniques and tools to
tackle the double-pion production problem. Then in Sec. III,
using the basic topological properties of the process, we
derive a formulation of the hadronic two-pion production
process N → ππN that incorporates all relevant d.o.f. and all
possible final-state mechanisms of the dressed ππN system.
We do this by employing the Faddeev-type [86,87] three-
body Alt-Grassberger-Sandhas equations [88] to sum up the
corresponding multiple-scattering series. The actual electro-
magnetic production current Mμ

ππ is then constructed in
Sec. IV, by applying the gauge derivative [79] to couple the
(real or virtual) photon to the hadronic process found in
Sec. III. (This procedure is sometimes referred to as
“gauging” of the underlying hadronic mechanisms.) We
show that the resulting closed-form expression for the
complete current satisfies the generalized Ward-Takahashi
identity and thus is locally gauge invariant. We also show
that the full current can be decomposed in a systematic
manner into a sum of contributions that are directly related to
topologically distinct hadronic two-pion production mech-
anisms of increasing complexity and that each of these
partial currents is gauge invariant separately. This finding is
important from a practical point of view because it allows
one, to a certain extent, to separate the technical issue of
maintaining gauge invariance from the question of how
complex the reaction mechanisms must be to describe the
physics at hand. In Sec. V, an approximation scheme to the
full two-meson photoproduction amplitude is presented
based on the expansion in powers of the underlying two-
body hadronic interactions. Finally, we present a summa-
rizing assessment and discussion in the concluding Sec. VI.
The Appendix discusses the incorporation of four-meson
vertices like ω → πππ.

II. FOUNDATION: THE γN → πN PROBLEM

A necessary prerequisite to understanding the photo-
production of two pions is to understand the photopro-
duction of a single pion off the nucleon. To this end, we

recapitulate here some features of the theoretical formu-
lation of that process following the field-theoretical treat-
ment of Ref. [79]. This will also help us establish some of
the necessary tools for the description of two-pion
production.
The basic topological structure of the single-pion pro-

duction current Mμ was given a long time ago [89] by
observing how the photon can couple to the underlying
hadronic single-pion production process N → πN. As
shown in Fig. 1, there are two distinct types of contribu-
tions, respectively called class A and class B in Ref. [89].
Class A contains the three contributions Mμ

s , M
μ
u, and Mμ

t
coming from the external legs of the πNN vertex that have
poles in the Mandelstam variables s, u, and t, and class B is
the nonpolar contact-type current Mμ

int originating from the
interaction of the photon with the interior of the vertex.
The full current Mμ, therefore, can be written as

Mμ ¼ Mμ
s þMμ

u þMμ
t þMμ

int; ð1Þ

as indicated in Fig. 1. This structure is based on topology
alone and therefore independent of the details of the
individual current contributions.
These details matter, of course, if one wishes to derive

the currents for practical applications. In general, an
electromagnetic current for a hadronic process is defined
by first employing minimal substitution for the connected
part of the hadronic Green’s functions and then taking the
functional derivative with respect to the electromagnetic
four-potential Aμ, in the limit of vanishing Aμ. The current
is then obtained by removing the propagators of the
external hadron legs from this derivative in an LSZ
reduction procedure [80]. The gauge-derivative procedure
of Ref. [79] provides a formally equivalent method that is
much simpler to handle in practice because it essentially
amounts to the simple recipe of attaching a photon line to
any topologically distinct feature of a hadronic process
expressed in terms of Feynman diagrams and summing up
the corresponding contributions to obtain the full current.
For the single-pion photoproduction process at hand, the

connected part of the free πNN Green’s function is given by

FIG. 1. Generic topological structure of the single-pion production current Mμ for γN → πN of Eq. (1). Here and throughout this
paper, time proceeds from right to left in all diagrams. Attaching the incoming photon (wavy line) to the three external legs of the πNN
vertex on the left (where the solid lines are nucleons and the dashed line is the pion) produces the first three diagrams on the right labeled
s, u, and t, after the corresponding Mandelstam variables of the intermediate off-shell particle. The three resulting currents are denoted
byMμ

s,M
μ
u, andM

μ
t , respectively. Coupling the photon to interior of the vertex produces the interaction currentM

μ
int depicted by the last

contact-type four-point vertex. This generic structure is independent of how the vertex is dressed in detail, or even if it is dressed at all.
For bare vertices, the interaction current of the last diagram is the Kroll-Ruderman term [90]. The labels at the external lines indicate the
four-momenta of the respective particles satisfying four-momentum conservation, pþ k ¼ p0 þ q.
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G0FS, where F is the πNN vertex shown on the left-hand
side of Fig. 1, S is the propagator of the incoming nucleon
leg and

G0 ¼ SðpNÞ∘ΔðqπÞ ð2Þ

is the product of the outgoing nucleon and pion propagators
S and Δ, respectively, written here with generic momenta
for the nucleon and the pion, where the sum of the
respective four-momenta pN þ qπ is the fixed available
total momentum. Within a loop integration, this free πN
propagator would correspond to a convolution integration
of these momenta, as indicated by “∘” here. The LSZ
expression for the photoproduction current may now be
written as [79]

Mμ ¼ −G−1
0 fG0FSgμS−1; ð3Þ

where f� � �gμ is the short-hand notation for the gauge
derivative introduced in Ref. [79], with μ indicating the
Lorentz index of the incoming photon. Being a derivative,
the product rule applies, and we obtain

Mμ ¼ −G−1
0 fG0gμF − fFgμ − FfSgμS−1

¼ dμG0F þMμ
int þ FSJμN; ð4Þ

where in the last step

− fSgμ ¼ SJμNS; ð5aÞ

−fFgμ ¼ Mμ
int; ð5bÞ

− fG0gμ ¼ G0dμG0; ð5cÞ

were used [79], which relate the corresponding gauge
derivatives to the nucleon current operator JμN of the
incoming nucleon, the interaction current Mμ

int for the
interior of the vertex F, and the dual-current contribution
of the free πN system,

G0dμG0 ¼ S∘ðΔJμπΔÞ þ ðSJμNSÞ∘Δ; ð6Þ

as depicted in Fig. 2, which sum up attaching the photon to
G0 in terms of the corresponding nucleon current JμN and
the pion current Jμπ . The three polar currents in Eq. (1)
obviously are given here by

dμG0F ¼ Mμ
t þMμ

u; ð7aÞ

FSJμN ¼ Mμ
s ; ð7bÞ

which completes matching the field-theoretical result of
Eq. (4) with the topological one in Eq. (1).
Note here that with the external momenta of the photo-

process given as in Fig. 1, namely,

γðkÞ þ NðpÞ → πðqÞ þ Nðp0Þ; ð8Þ

it was not necessary to write out the momentum depend-
ence of any of the elements of the preceding equations
because it can easily be found explicitly by knowing that
the photon carries a momentum k into the element to which
it is attached.

A. Gauge invariance

Gauge invariance as the manifestation ofUð1Þ symmetry
is of fundamental importance for any photoprocess because
it provides a conserved (on-shell) current and thus implies
charge conservation. The requirement of local gauge
invariance [91], in particular, implies the very existence
of the electromagnetic field and thus is of fundamental
importance for the formulation of consistent reaction
dynamics of photoprocesses, which goes beyond the mere
on-shell constraint of charge conservation.
For single-pion photoproduction, local gauge invariance

is formulated in terms of the generalized Ward-Takahashi
identity (WTI) [79,92]

kμMμ ¼ S−1ðp0ÞQNf
Sðp0 − kÞFu

þ Δ−1ðqÞQπΔðq − kÞFt

− FsSðpþ kÞQNi
S−1ðpÞ; ð9Þ

where the four-momenta are those shown in Fig. 1 and the
vertices Fx are the πNN vertex functions in the specific
kinematic situations described by the Mandelstam vari-
ables x ¼ s, u, t in the figure. The charge operators for the
initial and final nucleons are represented by QNi

and QNf
,

respectively, and Qπ is the charge operator for the outgoing
pion. The inverse propagators here ensure that this four-
divergence vanishes for matrix elements with all hadron
legs on-shell and thus provides a conserved current. The
generalized WTI as such, however, is an off-shell con-
straint, thus providing a continuous dynamical link
between the transverse and longitudinal regimes. This is
analogous to the usual single-particle Ward-Takahashi
identities [81,82] for the nucleon current,

kμJ
μ
NðpN þ k; pNÞ ¼ S−1ðpN þ kÞQN −QNS−1ðpNÞ;

ð10Þ
FIG. 2. Graphical representation of the dual-current contribu-
tion G0dμG0 of Eq. (6) for the photon being coupled to the free
πN propagator G0 ¼ SðpNÞ∘ΔðqπÞ of Eq. (2).
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and for the pion current,

kμJ
μ
πðqπ þ k; qπÞ ¼ Δ−1ðqπ þ kÞQπ −QπΔ−1ðqπÞ; ð11Þ

which are also off-shell relations. Note that the validity of
these two equations, which apply to the currents associated
with the external legs in Fig. 1, and the generalized WTI of
Eq. (9) immediately imply that the four-divergence of the
interaction current is given by

kμM
μ
int ¼ QNf

Fu þQπFt − FsQNi
: ð12Þ

In fact, given the usual single-particle WTIs of Eqs. (10)
and (11), Eqs. (9) and (12) are equivalent formulations of
gauge invariance of the photoproduction amplitude, with
one condition implying the respective other. However, for
practical purposes, in particular, in a semiphenomenolog-
ical approach, the interaction-current condition (12) is
actually a more versatile tool because it lends itself very
easily to phenomenological recipes that help ensure gauge
invariance [79,93–96]. The fact that all of these four-
divergences are off-shell relations and therefore remain
valid within whatever context the corresponding currents
appear will be of immediate and direct relevance for two-
pion production-current considerations in Sec. IV.
To facilitate the investigation of gauge invariance for the

two-pion production case later on, we will now expand the
meaning of the charge operators Qi of particle i. We first
note that the charge operators appearing in all of the
preceding relations only act on the isospin dependence
within the πNN vertices Fx; i.e., their placements before or
after a vertex cannot be changed, but otherwise they can
appear anywhere in an equation. In all of the preceding
equations, however, the charge operators Qi have always
been placed at the locations where the momentum of the
particular particle line increases by the momentum k of
the incoming photon. Therefore, following Ref. [79], we
define the operator Q̂i which injects the photon momentum
k into the equation where it is placed as well as having
the role of the charge operator Qi. We can then omit all
explicit momenta in the equations because they can be
recovered unambiguously from knowing the given external
momenta of the process at hand. We can even go further to
introduce [79]

Q̂ ¼
X
i

Q̂i; ð13Þ

where the summation is taken to be context-dependent; i.e.,
wherever Q̂ is placed in an equation, the sum extends over
all particles that appear in that place in the equation. We
may then write the generalized WTI of Eq. (9) equivalently
and very succinctly as

kμðG0MμSÞ ¼ Q̂ðG0FSÞ − ðG0FSÞQ̂; ð14Þ

i.e., as a commutator of Q̂ and the connected πNN Green’s
function G0FS. Here, Q̂ appearing on the left of G0FS
subsumes the outgoing pion and nucleon, and Q̂ on the
right only comprises the incoming nucleon. The physical
current Mμ on the left is amended with the propagators S
and G0 of the incoming and outgoing particles, respec-
tively, similar to the external propagators in the Green’s
function G0FS. For the interaction current, the formulation
equivalent to Eq. (12) is

kμM
μ
int ¼ Q̂F − FQ̂; ð15Þ

and the single-particle WTIs of Eqs. (10) and (11) may be
written as

kμðSJμNSÞ ¼ Q̂S − SQ̂; ð16aÞ

kμðΔJμπΔÞ ¼ Q̂Δ − ΔQ̂; ð16bÞ

where the propagators S and Δ are single-particle Green’s
functions for the nucleon and the pion, respectively, in
complete analogy to Eq. (14).
The structures of all equations here are similar: For a

physical current, the four-divergence of the current, with
propagators attached to its external legs, is expressed as a
commutator of Q̂ with the corresponding (connected)
Green’s function. For an interaction current describing
only the interaction with the interior of a hadronic process,
the four-divergence is given by the commutator of Q̂ with
the underlying hadronic process. This finding is generic
and holds true irrespective of how complicated the photo-
process at hand actually is. The Q̂ device will prove to be
invaluable for investigating the gauge invariance of the two-
pion production process.

B. Dressing propagators and vertices

In the preceding discussion, we have not touched upon
the question if, and if yes, to what extent, the propagators of
the nucleon and pion and the πNN vertex need to be
dressed. As far as gauge invariance is concerned, the
answer is very simple: for gauge invariance to hold true
any degree of dressing that ensures the validity of Eqs. (16)
for the propagators and of Eq. (15) for the interaction
current is sufficient. Local gauge invariance, therefore, only
requires that the single-particle and the interaction currents
be constructed consistently with each other by keeping the
overall structure of the production current depicted in
Fig. 1. Besides that, it does not demand or imply any
particular degree of dressing.
Even the simplest example, where the nucleon and pion

propagators and their currents as well as the πNN vertex are
essentially bare, satisfies the generalized WTI of Eq. (9), as
long as the masses are physical and the interaction current
is the well-known Kroll-Ruderman current [90]. The key to
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maintaining gauge invariance, therefore, is consistency
among all ingredients of a particular formulation of the
reaction dynamics. Exploiting this consistency requirement
in cases where gauge invariance does not follow—which
nearly always is the case as soon as one introduces any kind
of dressing mechanisms—is found to be indeed a powerful
tool for constraining the interaction current by ensuring the
validity of Eq. (12) [79,93–95].
We will find, in Sec. IV, similar consistency constraints

for the present problem of two-pion production. However,
to understand better the structure of the problem, we need
to look in more detail at some of the features of the dressing
mechanisms resulting from the theoretical treatment of
single-pion photoproduction of Ref. [79], since the under-
lying field theory for both single-pion and two-pion
production is the same. The full dressing mechanisms of
single-pion production originate from the Dyson-
Schwinger-type structure that governs the pion-nucleon
scattering problem whose equations are summarized dia-
grammatically in Figs. 3 and 4. There is no need here to
recapitulate all features of the treatment of Ref. [79]
providing these structures. Relevant for the problem at
hand is only the fact that the bare πNN vertex f from the
underlying interaction Lagrangian is dressed by the non-
polar part X of the full πN T matrix, i.e.,

F ¼ f þ XG0f ð17Þ

depicted in Fig. 4(b). Here, X solves the Bethe-Salpeter-
type equation,

X ¼ U þUG0X ð18Þ

shown in Fig. 3(d), whose nonpolar driving termU is given
in the lowest order by the u-channel exchange of Fig. 3(e).
At higher orders, U also contains nonlinear contributions
where the full X itself is dressed by loops, as shown in the
example of Fig. 5. (See also Ref. [79].) In principle,
therefore, everything in Eq. (18) is dressed fully by the
nonlinear Dyson-Schwinger mechanisms.
According to Eq. (5b), the four-point interaction current

Mμ
int is obtained by applying the gauge derivative to the

dressed vertex F. Using the explicit dressing equation (17),
this reads [79]

Mμ
int ¼ ð1þ XG0Þfμ þ XμG0f þ XG0dμG0f; ð19Þ

where fμ is the (bare) Kroll-Ruderman current and Xμ is the
five-point interaction current resulting from applying the
gauge derivative to Eq. (18), i.e.,

(b) (d)

(e)(c)

(a)

FIG. 3. Generic structure of the pion-nucleon T matrix employing pions and nucleons as the only hadronic d.o.f. [79]. (a) Splitting of T
into s-channel pole part and nonpole X. (b) Bethe-Salpeter integral equation for T, with (c) the driving term V that contains an undressed
s-channel exchange. (d) Bethe-Salpeter integral equation for nonpole X, with (e) fully dressed nonpole driving term U. Dressed vertices
are represented by solid circles, while undressed ones are denoted by open circles. Dressed (internal) nucleons are shown as thick lines;
undressed ones as thin lines; pions are shown as dashed lines. Note that the s-channel pole term in the driving term V is bare [because it
gets dressed by the equation (b) itself] whereas, in the full theory, all mechanisms in the nonpole U are fully dressed via the Dyson-
Schwinger-type mechanisms as shown in Fig. 4.

(a)

(b)

FIG. 4. Dressing mechanisms for (a) the nucleon propagator S
and (b) the πNN vertexF according to Eq. (17) that appears in the
nucleon’s self-energy contribution Σ shown in (a) as a loop. The
notation is the same as in Fig. 3.

FIG. 5. More detailed description of the driving term U in
Fig. 3(e). In addition to the basic u-channel exchange, U also
contains nonlinear contributions where the full amplitude X given
in Fig. 3(d) is dressed by hadron loops [79]. (The lowest-order
contribution from the nonlinear dressing mechanism of the second
diagram on the right-hand side here appears in the fourth graph
of Fig. 10.)
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Xμ ¼ ð1þ XG0ÞUμðG0X þ 1Þ þ XG0dμG0X: ð20Þ

Here, Uμ is the five-point interaction current (whose lowest
order is shown in Fig. 6) obtained by coupling the photon to
all elements of the driving term U. We see here that the
internal dressing structure of the interaction current Mμ

int in
Eq. (19) is quite complex; it contains, in particular, the full
hadronic final-state interaction in terms of the nonpolar πN
scattering matrix X. One can use Eq. (20) to bring Eq. (19)
into a form better suited for practical applications, but there
is no need to pursue this here (for more details: see
Ref. [79] for formal derivations and Refs. [94,95] for
practical aspects).
What we do need for the present purpose, however, is the

proof that Xμ satisfies the usual gauge-invariant constraint
of an interaction current. This proof was given already in
Eq. (72) of Ref. [79], but we repeat it here because it will
introduce the general techniques of handling such four-
divergences that we will need later on. For this purpose, let
us restrict U to be given only by the u-channel exchange
shown in Fig. 5. We emphasize that neglecting higher
orders is done here only to simplify the derivation.
In general, the proof will go through for any possible
mechanism at any order [79]. For a simple u-channel
exchange, we may write U as

U ¼ FiSFf; ð21Þ

where the indices i and f on the dressed vertices F indicate
whether the corresponding pion leg is an initial or a final
particle for the πN → πN process. The current Uμ ≡
−fUgμ resulting from coupling the photon to U is then
given by the three diagrams shown in Fig. 6, i.e.,

Uμ ¼ Mμ
i SFf þ FiSJ

μ
NSFf þ FiSM

μ
f: ð22Þ

We note here that, because the photon couples into the fully
dressed πNN vertices of the u-channel exchange (21), the
currents Mμ

i and Mμ
f are the full four-point interaction

currents of Eq. (19), with i and f indicating the direction of
the pion leg. This type of nonlinearity is a natural and
unavoidable consequence of the fact that particle number is
not conserved in any process involving mesons. Using the
four-divergences of Eqs. (15) and (16), we obtain

kμUμ ¼ ðQ̂Fi − FiQ̂ÞSFf þ FiðQ̂S − SQ̂ÞFf

þ FiSðQ̂Ff − FfQ̂Þ
¼ Q̂U − UQ̂; ð23Þ

and thus,

kμXμ ¼ ð1þ XG0ÞðkμUμÞðG0X þ 1Þ þ XG0ðkμdμÞG0X

¼ ð1þ XG0ÞðQ̂U −UQ̂ÞðG0X þ 1Þ
þ XðQ̂G0 −G0Q̂ÞX

¼ Q̂X − XQ̂; ð24Þ

where

G0ðkμdμÞG0 ¼ Q̂G0 − G0Q̂ ð25Þ

was used, which follows from the definition of dμ and the
WTIs of Eq. (16). Both four-divergences of Uμ and Xμ,
therefore, produce the generic structure associated with
interaction currents discussed at the end of the preceding
section. For this generic result to hold, it is irrelevant
whether we are dealing with four-point currents likeMμ

int or
five-point currents like Uμ or Xμ. The result (24), in
particular, will be relevant for the gauge-invariance proof
of the two-pion photoproduction current given in Sec. IV in
the context of Eq. (64).
Regarding the detailed dressing effects, we mention that

the recent results of Ref. [97] indicate that there may be
considerable cancellations taking place when combining
dressed propagators and dressed currents, in particular, for
real photons. However, since the details of such cancella-
tions depend on specific reactions, we will not pursue this
any further for the present general formalism.

C. Topologically analogous problem: γρ → ππ

The underlying field theory of single pion photopro-
duction just discussed above [79] contains pions, nucleons,
and photons as explicit d.o.f. The resulting topological
structure is complete in the sense that even if in actual
practical applications one needs to expand the meaning of
“pion” and “nucleon” to generically stand for all possible
mesons and baryons, respectively, this structure does not
change. The situation is different for two-pion production
processes because, as we will discuss in more detail in
Sec. III, two pions can be produced not only sequentially
off baryons but also directly through the decay of mesons,
and this will add topological features to the problem that
cannot be expressed in the generic picture of pions and
nucleons alone with their interaction being described by
the πNN vertex. In the following, therefore, we need to
introduce the ρmeson as an additional generic meson d.o.f.
that can decay into two pions, i.e.,

FIG. 6. Contribution to the five-point interaction current Uμ

based on coupling the photon to the interior of the lowest-order
u-channel exchange in the nonpolar driving term U in Fig. 5. The
currents arising from the higher-order loops are discussed
in Ref. [79].
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ρ → ππ: ð26Þ

As with pions and nucleons, in an actual application, “rho”
can then be expanded to subsume all mesons that can decay
into two pions.
As far as the interaction with photons is concerned, we

now also need to consider the photon-induced process,

γρ → ππ ð27Þ

as being on par with the γN → πN reaction. Topologically,
the production current for this reaction has the structure
depicted in Fig. 7, which is in complete analogy to the pion
production of the nucleon shown in Fig. 1 because both
types of processes are based on the interaction of the
photon with a hadronic three-point vertex.
The hadronic final-state interaction of the ππ system for

this process can be depicted in a structure similar to Fig. 3,
with all external lines being pions and the primary
interaction being given by the ππρ vertex. Relevant for
the following, in particular, is the fact that one can also split
the full T matrix into a pole part and a nonpole part X
whose lowest-order driving term is a u-channel exchange as
depicted in Fig. 8(a). The same is true for any meson-meson
scattering problem whose basic interaction is described in
terms of a bare three-meson vertex. Figure 8(b) shows the
corresponding nonpolar driving terms for πρ → πρ.
As we shall see, the details of the underlying meson-

meson scattering problem does not matter for the following.
What matters is only the generic topological structure of the
production current shown in Fig. 7 and the fact that
nonpolar contributions X to the scattering amplitude satisfy
a Bethe-Salpeter-type equation of the generic structure
given in Eq. (18) that is driven at lowest order by nonpolar
u-channel exchanges, like the ones shown in Fig. 8. All
other details can be left to be worked out in an actual
application.

III. HADRONIC TWO-PION PRODUCTION

We now turn to the problem of the production of two
pions off a nucleon. Before looking at the photon-induced
process, we first consider all possible hadronic transitions,

N → ππN; ð28Þ

including all possible dressing mechanisms. We will then
derive the associated photoproduction current by attaching
the photon in all possible ways to the dressed hadronic
process. This is done in complete analogy to how the
single-pion-production current is obtained from the fully
dressed πNN vertex as visualized in Fig. 1.
Describing the process N → ππN within the generic

field-theory framework of pions, rho mesons, and nucleons,
there are three basic interaction vertices that are relatively
easy to deal with, namely the three-hadron vertices πNN,
ππρ, and ρNN. These interactions provide the basic
sequential production mechanisms shown in Figs. 9(a)
and 9(b). However, there exist also multipion processes
where a meson decays into three or more pions that cannot
be resolved experimentally as being due to a sequence of
three-meson interactions. For the ω meson, e.g., the
dominant decay mode is ω → πþπ0π−. Hence, one of
the simplest examples of two-meson production due to a
four-meson interaction is depicted in Fig. 9(c) showing an
intermediate ωπππ vertex where one of the pions is
subsequently absorbed by the nucleon.
It should be clear that the full dynamical treatment of

processes initiated by the three-pion vertex requires at least
a four-body treatment of the intermediate πππN system. In
general, any process initiated by an n-pion meson vertex

FIG. 7. Generic topological structure of the two-pion production current off another meson (depicted here as a heavy wavy line), with
γρ → ππ shown as an example. Attaching the photon to the hadronic ππρ vertex on the left produces a structure exactly analogous to the
πNN case, with three contributions arising from the external legs, and one from the interior interaction region.

(a) (b)

FIG. 8. Lowest-order nonpolar u-channel exchanges for
(a) ππ → ππ and (b) πρ → πρ scattering.

(a) (b) (c)

FIG. 9. Basic two-pion production processes: (a) sequential
production along the nucleon line, and (b) intermediate produc-
tion of a ρ meson decaying into two pions. Part (c) provides an
example of another mechanism based on intermediate multipion
vertices. In this example, an ω meson produced off the nucleon
decays into three pions, with one pion subsequently being
absorbed by the nucleon. The mesons ρ and ω here subsume
any meson having two-pion and three-pion decay modes,
respectively.
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would require employing the dynamics of at least an
(nþ 1)-body system. Such treatments clearly are beyond
the scope of what is at present practically possible, and we
will deal with this complication by, at first, ignoring
multipion vertices like the one depicted in Fig. 9(c). We
will restrict, therefore, the present formulation to the three-
body dynamics of the ππN system that is initiated by the
two types of processes depicted in Figs. 9(a) and 9(b) based
solely on three-hadron interactions. As we shall see, this
does not exclude incorporating processes initiated by
multipion vertices like the one in Fig. 9(c) at some later
stage because all photoprocesses that can be related to
independent hadronic production mechanisms can be
treated independently. Hence, we may safely ignore such
multipion processes now, and we will revisit the problem
later, in the Appendix.
For the time being, therefore, we only consider the

two basic N → ππN processes initiated by the two bare
transitions depicted in Figs. 9(a) and 9(b). Figure 10 shows
the first few terms of higher-order loop corrections of
the basic processes. In the figure, we have omitted all

contributions that can be subsumed in the dressing
mechanisms of individual three-point vertices. In other
words, the diagrams shown in Fig. 10 depict the first few
contributions of the multiple-scattering series describing
the three-body final-state interaction (FSI) within the ππN
system.
Inspecting the diagrams in Fig. 10 and noting that the

u-channel exchanges appearing there are the beginnings of
the two-body multiple-scattering series,

X ¼ U þ UG0U þ � � � ; ð29Þ

it is a simple exercise to sum up all contributions up to the
level of two dressed loops; i.e., the internal particle
propagators and vertices in the resulting diagrams shown
in Fig. 11 are fully dressed, and all meson-baryon and
meson-meson FSI scattering processes are described by
nonpolar scattering matrices X because all s-channel pole
contributions are accounted for in fully dressed sequential
two-meson vertices. In drawing Fig. 11, we have relaxed
the restriction to nucleons, pions, and rho mesons, and
allowed the graphs to subsume all possible meson and
baryon states that may contribute to the process of
N → ππN. The diagrams are grouped into no-loop (NL),
one-loop (1L), and two-loop (2L) contributions in increas-
ing complexity of the hadronic final-state interactions
mediated by nonpolar X amplitudes.
We could now attach the photon to the hadronic dia-

grams in Fig. 11 and derive the corresponding production

(b)

(a)

FIG. 10. Hadronic two-pion production processes (a) along a
nucleon line and (b) via an intermediate meson (wavy line) that
can decay into two pions. Shown here for both cases are only
those bare graphs up to the two-pion-loop level that do not
contribute to the dressing of individual vertices; i.e., the loops
shown here always straddle at least two vertices. The braces
under the diagrams for (a) indicate basic u-channel-type ex-
changes. The u-channel exchange in the fourth diagram is dressed
by a pion loop, corresponding to the nonlinear loop mechanism
shown in the second diagram on the right-hand side of Fig. 5. The
intermediate wavy line in the u-channel-type exchange of the last
diagram in (a) indicates a meson that can couple to two pions.
(Note that we could equally well interpret this as a t-channel
exchange. In fact, when symmetrizing the indistinguishable
physical pions, both types of exchanges are incorporated on
an equal footing as a matter of course.)

FIG. 11. Grouping of hadronic two-pion production mecha-
nisms off the nucleon involving no loop (NL), one loop (1L), and
two loops (2L). (Anticipating the outcome of taking into account
the symmetry of the indistinguishable pions, we do not differ-
entiate between diagrams that differ only by labeling the two
pions.) The thick interior lines subsume all particles permitted by
the process with the solid lines indicating baryons and the dashed
lines mesons. The thick wavy line stands for those mesons (like ρ,
ω, etc.) that can decay into two pions (for intermediate mesons,
such mesons are subsumed under the heavy dashed line).
Summations over all permitted internal particles are implied.
All vertices are fully dressed and various meson-baryon or
meson-meson scattering processes indicated by X are nonpolar;
i.e., they do not contain s-channel driving terms because their
contributions are already subsumed in the full dressing of the
vertices.
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currents. The explicit results given in Sec. IV B pre-
sumably will be sufficient for most, if not all, practical
purposes. For the fundamental theoretical understanding
of the process, however, it would be interesting to derive
a closed-form expression for the entire two-pion photo-
process similar to what is possible for the single-pion
production. And one would like to do so in a manner
that maintains gauge invariance. To this end, we note
that after the first interaction in the 1L graphs of
Fig. 11, the ππN system loses its memory about which
of the two NL graphs of Fig. 11 was responsible for its
initial creation and only retains the memory about the
last two-body interaction, i.e., whether it was a πN or a
ππ reaction. Ignoring for the moment nonlinear effects
that allow the creation of an arbitrary number of pions,
all subsequent interactions, therefore, are governed by
the dynamics of a three-body system. [We add here
parenthetically that apart from the generic implications
of a Dyson-Schwinger-type framework which is tanta-
mount to having infinitely many mesons, the multipion
aspect will also enter the picture through the driving-
term’s nonlinearities discussed in the context of Eq. (35);
see also Fig. 13.]

A. Alt-Grassberger-Sandhas equations

The solution of the nonrelativistic quantum-mechanical
three-body scattering problem was given by Faddeev
[86,87]. One of the most decisive aspects of the Faddeev
approach is the manner in which the information about
the sequence of interactions percolates through the
system such that all interactions at all orders are
possible, but double counting of sequential interactions
within the same two-body subsystem of the three
particles is precluded, thus making the solutions unique.
This basically is just an “accounting” problem and as
such also valid in a relativistic context.1 We may
therefore translate the structure of the Faddeev equations
to the present problem by (1) simply assuming covariant
relativistic kinematics, (2) realizing that the proper
counterparts of the nonrelativistic two-body T matrices
are the corresponding nonpolar scattering matrices X
because nonrelativistic potentials correspond to nonpolar
driving terms, and (3) allowing for nontrivial nonlinear-
ities of the type analogous to those for the πN problem
depicted in Fig. 5.
The particular variant of the Faddeev approach we will

use in the present work are the Alt-Grassberger-Sandhas
(AGS) equations [88,99] because they are given in terms of
transition operators that are symmetric in their initial and
final cluster configuration and thus can be applied to the
present problem requiring only minor modifications related

to relativistic kinematics and the fact that the particle
number is not conserved.2

First, to organize the information, we assume that the
pions are distinguishable and label them as π1 and π2.
(The indistinguishability of pions can easily be taken care
of when calculating observables by appropriately sym-
metrizing the amplitudes.) Accordingly, we introduce three
two-cluster channels α, β, γ ¼ 1, 2, 3 by grouping the three
particles as

“1” ¼ ðπ1N; π2Þ;
“2” ¼ ðπ2N; π1Þ;
“3” ¼ ðπ1π2; NÞ: ð30Þ

Each (2þ 1) three-body configuration, therefore, consists
of a two-body subsystem and a single-particle spectator.
The indices α, β, γ, etc., may also refer to the two-body
subsystem of these two-cluster configurations.
The AGS equations [88,99] can be written within the

present context as

Tβα ¼ Vβα þ
X3
γ¼1

VβγG0XγG0Tγα; ð31Þ

with α, β, γ ¼ 1, 2, 3, where Tβα describes the transition
from an initial two-cluster configuration α to the final
configuration β. The equation is depicted in Fig. 12. For
each two-body subsystem within the intermediate configu-
rations γ, the full interaction is given by the corresponding
nonpolar scattering matrix X of the two-body subsystem of
γ that has to be extended into the three-body space such that
the propagation of the single spectator particle within γ is
unaffected. Hence, we may write in a generic manner,

Xγ ¼ ½X�γ∘t−1s;γ ; ð32Þ

where ½� � ��γ denotes the restriction to the two-body sub-
space within the γ cluster, and ts;γ is a generic notation for
the single-particle spectator propagator within the γ cluster.
We thus have

G0XγG0 ¼ ½G0XG0�γ∘ts;γ; ð33Þ

where G0 on the left-hand side describes the free inter-
mediate propagation of the three particles within the ππN
system, i.e.,

G0 ¼ Δ1ðqπ1Þ∘Δ2ðqπ2Þ∘SðpNÞ; ð34Þ

1Relativistic versions of Faddeev equations have been used
before. See, e.g., the corresponding treatments of three-quark
systems in Ref. [98]; see also references therein.

2The original Faddeev equations [86,87], by contrast, corre-
spond to a Green’s function description of the scattering process
that contains unwanted disconnected contributions [99] that need
to be removed to be useful for the present context.
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which is the straightforward three-body extension of the
two-body G0 of Eq. (2), whereas G0 within the ½� � ��γ
brackets denotes the two-body restriction as given in
Eq. (2). The meaning of G0XγG0 within the present
three-body context, therefore, is simply ½G0XG0�γ as a
two-body expression convoluted with the spectator propa-
gator ts;γ of the free third particle that is unaffected by the
two-body interaction X.
The driving terms Vβα of Eq. (31) are given as

Vβα ¼ δ̄βαG−1
0 þ Nβα; ð35Þ

where

δ̄βα ¼ 1 − δβα ð36Þ

is the anti-Kronecker symbol that vanishes if the initial and
final two-body groupings of the ππN system are the same.
The elements Nβα describe the nonlinear dressing of Tβα in
the manner depicted in Fig. 13, in analogy to the nonlinear
πN dressing mechanisms shown in Fig. 5. It is crucial here
that this dressing happens aroundG0XβG0TβαG0XαG0; i.e.,
the loop particle must connect particles of the initial and
final two-body systems to avoid double counting with the
mechanisms described by Fig. 5 or with higher-order
iterations of Xγ contributions. Nonlinearities, like Nβα,
are absent from the original AGS equations [88,99] because
they assume the particle number to be conserved. For three-
body processes involving pions, however, terms like this
one are necessary in principle (even if they are very difficult
to calculate in practice) because internally infinitely many
pions may contribute.

We emphasize that there are limits to the three-body
treatment of the ππN system even if one takes into account
nonlinear dressings of the driving terms of the kind shown
in Fig. 12. For example, if the loop particle for the last
graph in Fig. 12 is the nucleon, the AGS amplitude
enclosed by the loop is a three-meson amplitude and thus
outside the scope of the three-body treatment of the ππN
system. Moreover, in general, depending on how many
mesons one considers to be created at intermediate stages,
much more complicated N-body-type nonlinearities will
result. It is possible in this way to recover some of the
complexities of the problem associated with multipion
vertices discussed in connection with the mechanism of
Fig. 9(c), for example. We will consider additional three-
body-force-type mechanisms associated with such proc-
esses in more detail in the Appendix. In general, of course,
the actual calculation of such higher-order contributions in
practical applications is quite challenging, to say the least,
and we will, therefore, limit the detailed derivations in the
following to the “pure” Faddeev contribution δ̄βαG−1

0 , and
only mention in passing the ramifications of including
nonlinearities in the driving term. Suffice it to say that the
present formulation is consistent and correct for the system
of two explicit pions and one nucleon where each of the
particles may be fully dressed by any mechanism compat-
ible with three-body dynamics.
Before we implement the AGS approach for the present

problem, it is convenient to introduce a short-hand notation
by defining operator-valued 3 × 3 matrices according to

Tβα ¼ Tβα; ð37aÞ

Vβα ¼ Vβα; ð37bÞ

ðG0Þβα ¼ δβαG0XαG0: ð37cÞ

This permits us to write the AGS equation (31) as a matrix
equation in the form of

T ¼ Vþ VG0T; ð38Þ

which has the familiar Lippmann-Schwinger (LS) form of
all scattering problems. Note in this context that the three-
body dressing mechanism depicted in Fig. 13 corresponds
to the dressing of G0TG0, i.e., exactly analogous to the
dressing of G0XG0 depicted in the rightmost diagram of
Fig. 5 for the two-body πN problem.

B. Three-body Faddeev treatment
of hadronic two-pion production

Following the reasoning that the primary dynamics of the
ππN system beyond the one-loop level is given by three-
body dynamics, the multiple-scattering series providing the
final-state interactions within the ππN system can be
summed up in terms of the three-body transition operators

FIG. 12. Generic structure of the Faddeev-type AGS three-body
equations (31) and its driving terms (35). Depending on the
cluster indices α, β, and γ defined in Eq. (30), two of the
horizontal lines depict pions and one the nucleon. The (dashed)
meson loop around G0XβG0TβαG0XαG0 in the last diagram of
the bottom line provides one (of many) nonlinear contributions to
the solution (see also Fig. 13). The nature of the meson depends
on which particles are connected by the loop.

FIG. 13. First two lowest-order contributions of the nonlinear
dressing Nβα of the AGS driving term (35). The loop is seen here
to straddle at least two X amplitudes. Higher-order iterates of Tβα

produce loops around any number of X amplitudes.
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Tβα of the AGS approach, and we immediately find that the
hadronic two-pion production can be described by three
components Mβ (β ¼ 1, 2, 3) given by

Mβ ¼
X
α

�
δβα þ

X
γ

TβγG0XγG0δ̄γα

�
fα

þ
X
γ

ðδβγ þ TβγG0XγG0Þ
X
α

NγαG0fα; ð39Þ

where fα describes the three basic production mechanisms
shown in Fig. 14. The second term here is only present
because of nonlinearities like those depicted in Fig. 13; it is
absent in a standard three-body treatment. Expanding the
right-hand side to second order in Xγ produces

Mβ ¼ fβ þ
X
γ;α

δ̄βγδ̄γαXγG0fα

þ
X
γ;κ;α

δ̄βγδ̄γκδ̄καXγG0XκG0fα

þ
X
α

NβαG0fα � � � ; ð40Þ

where the first three terms correspond precisely to the
structure up to two loops shown in Fig. 11, with the terms
here corresponding to the NL, 1L, and 2L graph groups of
that figure. The lowest-order nonlinear effects contained in
the last explicit term here are of second order in Xγ , like the
preceding term, but they are of third order in the (dressed)
loop structure, as shown in Fig. 15.
Defining formal three-component vectors with elements

fα ¼ fα; ð41aÞ

Fβ ¼
X
α

δ̄βαfα; ð41bÞ

F̃β ¼
X
α

NβαG0fα; ð41cÞ

Mβ ¼ Mβ; ð41dÞ

we may rewrite Eq. (39) as

M ¼ ðIþ TG0ÞFþ ð1þ TG0ÞF̃; ð42Þ

where the matrix I provides

IF ¼ f with Iβα ¼
1

2
− δβα: ð43Þ

One easily verifies that I is indeed the inverse of the matrix
whose elements are the anti-Kronecker symbols. Here, 1 is
the unit matrix of the three-body system with elements δβα
and Fþ F̃ ¼ VG0f.
In summary, the present description of the N → ππN

process is given by

F ¼
X
β

Mβ ¼
X
β

Mβ: ð44Þ

The ππNN “vertex” F constructed in this manner provides
a complete description of the reaction dynamics at the
three-body level of the dressed ππN system (subject to the
general limitations of three-body dynamics discussed
earlier).

IV. ATTACHING THE PHOTON

Using the LSZ reduction, the full double-pion produc-
tion current is given in terms of the gauge derivative by

Mμ
ππ ¼ −G−1

0 fG0FSgμS−1; ð45Þ

where S describes the incoming nucleon propagator and
G0 ¼ Δ1∘Δ2∘S is the outgoing propagation of the free ππN
system. Hence, we have

Mμ
ππ ¼ DμG0F þ Fμ þ FSJμN; ð46Þ

where JμN describes the current of the incoming nucleon.
Here, Dμ is the three-body generalization of dμ of Eq. (6),
viz.,

G0DμG0 ≡ −fG0gμ
¼ ðSJμNSÞ∘Δ1∘Δ2 þ S∘ðΔ1J

μ
π1Δ1Þ∘Δ2

þ S∘Δ1∘ðΔ2J
μ
π2Δ2Þ; ð47Þ

FIG. 14. Definition of the basic ππN vertices fα assuming
distinguishable pions. The pion lines of the first two diagrams are
labeled accordingly. The cluster index α ¼ 1, 2, 3 defined in
Eq. (30) describes the hadron pair of the final three-point vertex
in fα.

FIG. 15. Lowest-order nonlinear contributionsNβαG0fα employing the mechanism of Fig. 13. The internal meson lines (thick dashes)
depicts any meson compatible with the process. The loops may connect any two particle respectively from the α and β two-body
systems; i.e., each graph here represents only one example of four possible contributions.
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i.e., it subsumes the three currents of the outgoing legs
analogous to what is depicted in Fig. 2 for the two-body
case. The five-point interaction current Fμ ≡ −fFgμ con-
tains all mechanisms where the photon is attached to the
interior of the hadronic two-pion production mechanisms
given by Eq. (44).
Then with

kμDμ ¼ G−1
0 Q̂ − Q̂G−1

0 ð48Þ

and the WTI of Eq. (10) for the nucleon current, the four-
divergence of Mμ

ππ reads

kμM
μ
ππ ¼ G−1

0 Q̂G0F − Q̂F þ kμFμ þ FQ̂ − FSQ̂S−1;

ð49Þ

which shows that the four-divergence of the interaction
current Fμ, in analogy to Eq. (15), must be given by

kμFμ ¼ Q̂F − FQ̂ ð50Þ

to produce the generalized WTI,

kμM
μ
ππ ¼ G−1

0 Q̂G0F − FSQ̂S−1: ð51Þ

This provides a conserved current in the usual manner
when all external hadrons are on shell. More explicit form
of this result will be given later in Eq. (77).

A. Proof of gauge invariance

To verify Eq. (50), let us define

Mμ ≡ −fMgμ ð52Þ

as the vector whose components provide Fμ according to
Eq. (44) as

Fμ ¼
X
β

Mμ
β: ð53Þ

Taking the gauge derivative of the matrix relation (42), the
interaction-current component vector is given as

Mμ ¼ ðIþ TG0ÞF̃μ þ TμG0F̃þ TGμ
0F̃; ð54Þ

where

Tμ ¼ ð1þ TG0ÞVμðG0Tþ 1Þ þ TGμ
0T ð55Þ

is a straightforward consequence of applying the gauge
derivative to the LS equation (38), in complete analogy to
Xμ of Eq. (20). Hence,

Mμ ¼ ðIþ TG0ÞF̃μ þ ð1þ TG0ÞKμð1þ TG0ÞF̃; ð56Þ

where the elements of F̃μ,

F̃μ
β ¼

X
α

δ̄βαF
μ
α; with Fμ

α ¼ −fFαgμ; ð57Þ

are the interaction currents associated with the elementary
processes depicted in Fig. 14, and

Kμ ≡ −fVG0gμ ¼ VμG0 þ VGμ
0 ð58Þ

is the current associated with the kernel of the LS
equation (38). The current matrix Gμ

0 reads

ðGμ
0Þβα ¼ δβαG0ðDμG0Xα þ Xμ

α þ XαG0DμÞG0; ð59Þ

where, using Eq. (32), we obtain

Xμ
α ≡ −fXαgμ
¼ ½Xμ�α∘t−1s;α − ½X�α∘Jμs;α; ð60Þ

which is the three-body extension of the two-body inter-
action current ½Xμ�α. The current of the spectator particle
within the three-body cluster α is represented by
Jμs;α ≡ ft−1s;αgμ. The negative sign of this term is crucial
for avoiding double counting of spectator contributions. In
Eq. (59), e.g., it cancels out one of the spectatorDμ currents
in (59), as shown in Fig. 16.
In detail, the AGS-kernel matrix is given by

ðVG0Þβα ¼ δ̄βαXαG0 þ NβαG0XαG0: ð61Þ

If we neglect the nonlinearities Nβα, we have

Kμ
βα → Kμ

βα ¼ VβαG0ðXμ
αG0 þ XαG0DμG0Þ: ð62Þ

Using Eqs. (47) and (60), we may write this as

Kμ
βα → Kμ

βα ¼ VβαG0½XμG0 þ XG0dμG0�α; ð63Þ

as shown in Fig. 17. In this approximation, therefore, using
the known four-divergences of Xμ and dμ given in Eqs. (24)
and (25), one immediately obtains

FIG. 16. Representation of the current ðGμ
0Þβα of Eq. (59). As in

Fig. 12, two of the horizontal lines depict pions and one the
nucleon. Note that the negative contribution of the spectator
current in Eq. (60) cancels one of the spectator contributions of
the twoDμ currents in Eq. (59), leaving only one spectator current
given as the last diagram here.
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kμKμ ¼ Q̂VG0 − VG0Q̂: ð64Þ

One may use here Q̂ for the entire three-body system,
even though Eqs. (24) and (25) only contain the
corresponding operator for the two-body subsystem,
because the spectator contribution of Q̂, along the lower
line on the right-hand side of Fig. 17, cancels between
the two terms on the right-hand side of Eq. (64) since no
interaction takes place along that line. One can show that
the result (64) remains true even if the nonlinearities Nβα

are taken into account. The proof requires tedious
calculations and is not very illuminating; it will be
omitted here.
To evaluate the four-divergence of Mμ, we use the

four-divergence (64) and the fact that the current F̃μ

satisfies the generic relations of any interaction-type
current, i.e.,3

kμF̃
μ ¼ Q̂ F̃− F̃ Q̂; ð65Þ

and then we easily find

kμMμ ¼ Q̂M −MQ̂; ð66Þ

which upon using Eq. (53) immediately verifies the validity
of Eq. (50) as stipulated. Hence, the currentMμ

ππ of Eq. (46)
constructed with the help of the hadronic mechanisms (42)
is indeed (locally) gauge invariant, and its generalized WTI
is given by Eq. (51).
We can now write down the closed-form equation,

Mμ
ππ ¼

X
β

ðDμG0Mβ þMμ
β þMβSJ

μ
NÞ ð67Þ

for the full two-pion photoproduction current Mμ
ππ , where

Mμ
β ≡Mμ

β ð68Þ

is the two-body component of Mμ in Eq. (56) that contains
the full three-body final-state interactions of the problem.

For practical applications, this presumes that the full two-
pion production mechanisms Mβ of Eq. (39) can be
calculated. In view of their complexity, this cannot be
done easily in practice. One can show, however, that one
can expand the full current in contributions of increasing
complexity, similar to the NL, 1L, and 2L contributions in
Fig. 11, which satisfy independent WTIs of their own.
Maintaining local gauge invariance, therefore, is not
predicated on being able to calculate the full current Mμ

ππ .

B. Expanding the two-pion production current

To see how one may expand the full current, we define

M0 ¼ F and Mi ¼ ðVG0ÞiF̃ for i ¼ 1; 2; 3;…; ð69Þ

which implies, formally, that M of Eq. (42) can be
written as

M ¼
X∞
i¼0

Mi: ð70Þ

Note that, without the nonlinearities Nβα, the matrix
elements of the AGS kernel VG0 are just given by
δ̄βαXαG0, as seen from Eq. (61). The expansion (70),
therefore, provides the three-body multiple-scattering
series of the final-state interactions within the ππN system
as a sequence of two-body interactions Xα. One can show
very easily, by the same techniques used in verifying the
gauge invariance of the full current Mμ

ππ that the same is
true order by order by coupling the photon to Mi.
For the NL graphs of M0, whose components are shown

in Fig. 14, the two-pion currents depicted in Fig. 18 are
gauge invariant as a matter of course because the corre-
sponding gauge-invariant subprocess currents indicated
by M in the diagrams trivially add up to make each of
the NL1 and NL2 currents in Fig. 18 gauge invariant
separately. This can be found immediately by taking the
four-divergence of each current. These are simple examples
for something which is generally true: Coupling the photon
to topologically independent hadronic processes (like the
two distinct processes summed up in the NL contributions
of Fig. 11) will produce naturally independent gauge-
invariance constraints. This means that each component
of M0 ¼ F is gauge invariant separately.4 Since the com-
ponents of F̃μ are given by sums of NL currents, this
also implies an explicit proof for the gauge-invariance
relation (65).
To investigate the gauge invariance of higher-order

currents, we only need to look at the properties of the
interaction-type currents Mμ

i ≡ −fMigμ because the

FIG. 17. Interaction-current matrix element Kμ
βα of the kernel of

the AGS equation with explicit terms shown in the approximation
of Eq. (63), i.e., without nonlinear terms Nβα. As in Fig. 12, two
of the horizontal lines depict pions and one the nucleon. In this
approximation, due to the cancellation mechanism explained in
the caption of Fig. 16, there is no current associated with the
spectator particle; i.e., only the first three diagrams of Fig. 16
contribute.

3This will be proved explicitly in the next section in the context
of Fig. 18.

4Note that Fig. 18 only shows topologically different currents;
i.e., no distinction is made for graphs that differ only by
numbering the pions.
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contributions resulting from the four external legs of any
γN → ππN current are trivial. We must show, therefore,
that each of such currents satisfies a constraint similar
to Eq. (50). We write

W≡ ðVG0Þi ð71Þ

and find for the current Wμ ≡ −fðVG0Þigμ,

Wμ ¼
Xi−1
k¼0

ðVG0ÞkKμðVG0Þi−1−k; ð72Þ

which gives its four-divergence as

kμWμ ¼
Xi−1
k¼0

ðVG0ÞkðQ̂VG0 − VG0Q̂ÞðVG0Þi−1−k

¼ Q̂W −WQ̂: ð73Þ

This indeed is the generic result for an interaction-type
current. With

Mμ
i ¼ WμF̃þWF̃μ; ð74Þ

we thus find

kμM
μ
i ¼ ðQ̂W −WQ̂ÞF̃þWðQ̂ F̃−F̃ Q̂Þ
¼ Q̂Mi −MiQ̂; ð75Þ

which, once again, provides the generic gauge-invariance
constraint for interaction currents. In other words, in view
of the trivial gauge-invariance contributions from external
legs, the current

Mμ
i;ππ ¼ DμG0Mi þMμ

i þMiSJ
μ
N ð76Þ

is also gauge invariant for each two-body component β of
this equation.
This consideration shows that attaching the photon in all

possible ways to any topologically independent hadronic
production process will provide an independent current that
is constrained by its own Ward-Takahashi-type identity.
The two topologically independent NL processes depicted
in Fig. 18 are among the simplest examples for this fact.
Figure 19 provides the currents resulting from attaching the
photon to the three 1L diagrams of Fig. 11. The three
independent currents labeled 1Li (i ¼ 1, 2, 3) in Fig. 19
must be gauge invariant separately. The corresponding
proofs are implied by the result found in Eq. (75).
Nevertheless, we shall prove gauge invariance for the
example of the current 1L1 in Fig. 19 because it comprises
contributions from single-particle currents, single-meson
production currents, and the five-point interaction currents
Xμ given in Eq. (20), and thus provides a nontrivial explicit
example of how the consistency among all contributing
current mechanisms ensures gauge invariance of the entire
process. The procedure is most transparent in the graphical
manner as shown in Fig. 20. Writing the underlying
hadronic process, i.e., the first of the three 1L diagrams
in Fig. 11, as Hππ and the corresponding current as H

μ
ππ, its

four-divergence can now simply be read from the final line
in Fig. 20 as

FIG. 18. Two-pion photoproduction at the no-loop level where
the photon is attached to the NL diagrams of Fig. 11. The two
contributions NL1 and NL2 correspond to the two NL diagrams in
Fig. 11 in the given order. The photoproduction amplitudes
labeledM are comprised of four generic terms each, similar to the
pion-production case shown in Fig. 1 or the ππ-production of
Fig. 7. The subtractions correct the double counting resulting
from the photon being attached to the respective intermediate
particle in both preceding diagrams; i.e., when expanding all
amplitudesM, each group consists of seven topologically distinct
diagrams. Each group of NL1 and NL2 diagrams satisfies an
independent gauge-invariance constraint.

FIG. 19. Two-pion-production currents resulting from coupling
the photon to the 1L diagrams in Fig. 11. The subtractions correct
double counting of the corresponding mechanisms. Expanding
each four-point current labeled M into its generic four terms, all
current groups comprise ten diagrams each. Attaching the photon
to the interior of X, as indicated in the respective fourth diagram
of each group, produces the five-point interaction current Xμ

detailed in Eq. (20) (see also Fig. 6 in Ref. [79]). Each group 1Li
(i ¼ 1, 2, 3) obeys an independent gauge-invariance constraint.
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kμH
μ
ππ ¼ Δ−1

1 ðq1ÞQπ1Δ1ðq1 − kÞHðπ1Þ
ππ

þ Δ−1
2 ðq2ÞQπ2Δ2ðq2 − kÞHðπ2Þ

ππ

þ S−1ðp0ÞQNf
Sðp0 − kÞHðNfÞ

ππ

−HðNiÞ
ππ Sðpþ kÞQNi

S−1ðpÞ; ð77Þ

where the explicit four-momenta are those of the photo-
process

γðkÞ þ NiðpÞ → π1ðq1Þ þ π2ðq2Þ þ Nfðp0Þ ð78Þ

in a self-explanatory symbolic notation. The functionsHðhÞ
ππ

describe the hadronic process Hππ in the respective
dynamical situations of the four diagrams of the final line
in Fig. 20, i.e., h ¼ π1, π2, Nf indicate that, as compared to
the momentum dependence of the photoprocess, the
corresponding outgoing pion or nucleon leg is reduced
by the photon momentum k, and for h ¼ Ni, the initial
nucleon leg is increased by k. The momenta at the four

external hadron legs of each HðhÞ
ππ , therefore, add up to

conserve the overall four-momentum, similar to the photo-
process (78). Equation (77) is completely analogous to the
generalized WTI for the single-pion photoproduction given
in Eq. (9).
The off-shell result (77) is the appropriate generalized

WTI for any two-pion production current resulting from a
topologically distinct hadronic two-pion production proc-
ess Hππ. It is true for any one of the hadronic processes
depicted in Fig. 11, and it will remain true for any one of the
higher-order loop contributions.
Similar to the one-loop currents of Fig. 19, one can now

easily derive as well the currents for the two-loop graphs in
Fig. 11. Each group of 13 current diagrams resulting from
each of the two-loop hadron graphs in Fig. 11 is then gauge
invariant separately. Moreover, higher-order-loop contribu-
tions can be constructed by expanding the hadron equa-
tion (39) beyond what is given in Eq. (40). In general, each
gauge-invariant group of graphs with n loops consists of
7þ 3n members of which 5þ n graphs contain a three-
point current along a hadron line and 2þ 2n contain a four-
point current resulting from the photon interaction with the
interior of a three-hadron vertex. Each of these n-loop
extensions is straightforward and may be easily derived
following the examples given here explicitly. However, we
expect that for most, if not all, practical purposes, the NL
and 1L currents of Figs. 18 and 19 may be sufficient, and so
we see no immediate need to go into more details here.
Before closing this section, we reiterate that in the

formalism presented here, nucleons, pions and rho mesons
are to be understood as generic placeholders for any and all
baryonic or mesonic states compatible with the reaction in
question. In particular, all intermediate states must subsume
all baryons and mesons allowed for a particular reaction.
This means that the nucleon lines in the intermediate states
in the diagrams in Figs. 18 and 19 represent not only the
nucleons but also any baryons that may contribute to the
process at hand, i.e., the baryon resonances. Also, the pion
as well as the ρ meson lines appearing in the intermediate
states in those diagrams represent any meson that may
contribute. In two-pion photoproduction, e.g., one of the
relevant baryons in the intermediate states is the Δ which
couples strongly to πN. For the same process, the σ meson
should also be taken into account wherever the ρ meson
appears since both mesons couple strongly to ππ.
Moreover, pure transverse transition-current contributions
such as due to the Wess-Zumino anomalous couplings γπρ
and γπω, which have no bearing on gauge invariance,
should also be included.

V. POSSIBLE APPROXIMATION SCHEME

The evaluation of the full two-pion photoproduction
amplitude as derived in Sec. IV is practically not feasible
due to, in particular, its nonlinear character. This calls for an
approximation scheme to make the problem tractable in
practice. While there may be many ways to approximate the

FIG. 20. Graphical proof of gauge invariance for the 1L1

current of Fig. 19. Each bracketed group above the equal sign
corresponds to the four-divergence of one of the six graphs of 1L1

in the same order as they appear in Fig. 19. In other words, the
contents of each group is the result of applying the appropriate
WTI to the corresponding current. The open diamond symbols
indicate the action of the Q̂ charge operators and show where the
photon four-momentum k needs to be injected into the hadronic
graphs so that the four external hadron momenta are exactly the
same as for the photoprocess. If the diamond sits right next to a
vertex or the amplitude X, there is no propagator between the
diamond and the vertex or amplitude along that leg because it was
canceled by the inverse propagators in the corresponding Ward-
Takahashi identities (16); see text. The solid diamond symbols at
the ends of some external legs indicates that in addition to a
momentum k being injected, there are residual inverse propa-
gators with the four-momenta of the respective external particles
that vanish when taken on shell. Hence, the resulting expression
in the last line, given explicitly in Eq. (77), vanishes if all four
external hadrons are on shell, thus providing a conserved current.

HABERZETTL, NAKAYAMA, and OH PHYS. REV. D 99, 053001 (2019)

053001-16



full amplitude given by Eq. (67), we would like to advocate
that—as alluded to already—a scheme that preserves the
increasing complexity of the reaction dynamics in terms of
dressed loop structures as presented in the no-loop and one-
loop examples of Figs. 18 and 19, respectively, is best suited
to reflect the underlying physics. This loop expansion
corresponds to an expansion in powers of the two-body
hadronic interaction Xγ . We know, of course, that even at the
levels of individual loops this is largely an intractable
problem if the loop ingredients are to be calculated com-
pletely because of, again, the nonlinear dynamics of the
required four-point interaction currents for single-meson
production [79] that enter the internal reaction mechanisms
of such loops. However, efficient approximation schemes
have been developed to deal with this complication at the
four-point-function level (see, e.g., Refs. [79,93–95,100],
and references therein). Because of its off-shell nature, the
requirement of local gauge invariance, in particular, proved
to be an invaluable tool for helping link contributing
dynamical mechanisms in a consistent manner (as described
in the Introduction for the example of NN bremsstrahlung
[83,84]). We can make use of the experience gained there to
treat the present five-point function dynamics of two-meson
production in a similar manner, by demanding that all
approximate steps fully preserve local gauge invariance as
an off-shell constraint.
The (dressed) loop structure described in the previous

section can be enumerated in terms of a multiple-scattering
series in powers of Xγ according to Eqs. (39) and (40) for
the underlying hadronic N → ππN vertex F of Eq. (44).
Formally, we may write

F ¼
X∞
i¼0

F i; ð79Þ

where the index i enumerates the relevant powers of Xγ ,
resulting in

F0 ≡
X
β

fβ; ð80aÞ

F1 ≡
X
β

�X
γ;α

δ̄βγδ̄γαXγG0fα

�
; ð80bÞ

F2 ≡
X
β

�X
γ;κ;α

δ̄βγδ̄γκδ̄καXγG0XκG0fα þ
X
α

NβαG0fα

�
;

ð80cÞ

etc. The explicit expressions here correspond to the NL, 1L,
and 2L contributions depicted in Fig. 11, of course.

A. Phenomenological hadronic contact vertex

In practice, we suggest to truncate the infinite sum (79) at
some order n,

F ≈
Xn
i¼0

F i þ C; ð81Þ

and account for all higher orders by a remainder term5 C
that is to be constructed phenomenologically as a contact
term (free of singularities) by making an ansatz modeled
after the Dirac and isospin structures of the full vertex F .
To this end, we note that the most general (Dirac)

structure of the full reaction amplitude F for

NðpÞ → πðq1Þ þ πðq2Þ þ Nðp0Þ; ð82Þ

where the arguments indicate the corresponding four-
momenta, may be written as

F ¼ a1 þ a2
=p
m
þ a3

=p0

m0 þ a4
=p0=p
m0m

þ b1
=q
mπ

þ b2
=q=p
mπm

þ b3
=p0=q
m0mπ

þ b4
=p0=q=p

m0mπm
; ð83Þ

where q≡ q1 − q2 and the coefficients ai and bi (i ¼ 1, 2,
3, 4) are, in general, complex scalar functions of the
momenta. Here, m, m0, and mπ , respectively, stand for
the masses of the initial nucleon, final nucleon, and
produced pion.6

The most general structure of F in isospin space is

F ¼ Aðπ̂1 · π̂2Þ þ Bðπ̂1 × π̂2Þ · τ⃗; ð84Þ

where π̂iði ¼ 1; 2Þ denotes the outgoing pion fields in
isospin space and τ⃗ is the usual Pauli (isospin) operator. The
Dirac structures of coefficients A and B here take the form
given by Eq. (83).
Both the Dirac and isospin structures of the full ampli-

tude F given by Eqs. (83) and (84) hold also for any term F i
in Eq. (79), i.e., at any order in powers of Xγ . This means, in
particular, that the Dirac structure of F also carries over to
the remainder term C independent of the truncation order n.
A natural phenomenological ansatz for C, therefore, would
be to use the Dirac structure (83) and replace all eight
coefficients ai, bi (i ¼ 1, 2, 3, 4) by individual phenom-
enological form factors with parameters that can be fitted to
experimental data.
However, rather than discussing this in full detail, we

present here a simple phenomenological ansatz, with only
one overall common form factor. Thus, ignoring isospin
structure for now, we put

5For simplicity, we suppress the index n for C, in particular,
since the form of the phenomenological ansatz for C employed
here will be independent of n; only the fitted values of free
parameters will depend on n.

6These mass parameters are only needed to ensure that all
coefficients have the same dimensions. Thus, having one (aver-
age) pion mass parameter mπ does not preclude treating π� and
π0 as distinguishable with different physical masses.
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C ¼
�
a1 þ a2

=p
m
þ a3

=p0

m0 þ a4
=p0=p
m0m

þ b1
=q
mπ

þ b2
=q=p
mπm

þ b3
=p0=q
m0mπ

þ b4
=p0=q=p

m0mπm

�
F; ð85Þ

where the coefficients ai, bi (i ¼ 1, 2, 3, 4) are now simple
(complex) fit constants (that may also parametrically
depend on the Mandelstam variable s because it is a
constant for a given experiment). The form factor

F ¼ Fðp02; q21; q
2
2;p

2Þ ð86Þ

is a scalar function of the squared external four-momenta.
We may take F to be normalized to unity when all particles
are on their respective mass shells, i.e.,

Fðm02; m2
1; m

2
2;m

2Þ ¼ 1; ð87Þ

where m1 and m2 are the physical masses of the two pions.
The detailed functional form of F is irrelevant for now, but,
in general, F may contain further fit parameters.
At this point a remark is in order. Although the analyticity

andcovarianceof the full reactionamplitudeF is preserved in
the contact approximation for the higher-order loop con-
tribution described above, unitarity is violated. To maintain
unitarity in any type of approximation requires the complex
phase structure of the reaction amplitude to be adjusted
consistently as well. This is a highly nontrivial issue and
beyond the scope of the present work.

B. Phenomenological current for higher-order loops

The next step is to construct a two-pion production
current Rμ that results from the mechanisms subsumed in
C. Using the loop expansion, the full photoproduction
amplitude of Eq. (45) may be written as

Mμ
ππ ¼

X∞
i¼0

ð−G−1
0 fG0F iSgμS−1Þ

≈
Xn
i¼0

ð−G−1
0 fG0F iSgμS−1Þ þRμ

¼
Xn
i¼0

Mμ
i þ Rμ; ð88Þ

where the sum over Mμ
i subsumes two-meson pro-

duction processes that are to be treated explicitly, with
two-pion production loops up to order n. Lowest-order
examples are the no-loop processes Mμ

0 of Fig. 18 (see
also Fig. 22) and the one-loop processes Mμ

1 depicted
in Fig. 19.
The approximate treatment of higher-order loops is

provided by the remainder current Rμ, which arises from
coupling the photon to the phenomenological hadronic
contact term C. In detail, one has

Rμ ¼ −G−1
0 fG0CSgμS−1;

¼ Rμ
i þRμ

f þ Rμ
1 þ Rμ

2 þ Cμ; ð89Þ

as depicted in Fig. 21. This is not a contact current
since the first four contributions contain the polar
contributions due to the photon coupling to the initial
(i) and final (f) baryons and the two outgoing pions
(1, 2) given by

Rμ
i ¼ CSJμNi

; ð90aÞ

Rμ
f þ Rμ

1 þRμ
2 ¼ DμG0C; ð90bÞ

where Dμ given by Eq. (47) subsumes the currents for all
three outgoing hadrons.
The contact current Cμ corresponding to the last

diagram in Fig. 21 is derived by applying the gauge
derivative introduced in Ref. [79] as a formal way of
applying minimal substitution to interacting systems. The
resulting current will satisfy the appropriate generalized
WTI (50) mandated by local gauge invariance [79].
However, it may lack additional transverse current con-
tributions that do not contribute to gauge invariance and
thus are inaccessible to the gauge-derivative procedure
unless there are additional conditions. For phenomeno-
logical contact currents, in particular, the gauge-derivative
result needs to be amended by a manifestly transverse
current to address the “violation-of-scaling problem” at
high energies [101]. For the present purposes, we only
need the version where all external hadrons are on shell.
We may thus write

FIG. 21. Phenomenological current Rμ given by Eq. (89) subsuming higher-order loop contributions. The hadronic four-point vertex
labeled C is the contact term introduced by Eq. (81), with its phenomenological form given by (85), and the last diagram depicts the five-
point contact current Cμ, whose on-shell form is given in Eq. (91).
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Cμ ¼ −eiFi

�
ða2 þ a4Þ þ ðb2 þ b4Þ

=q
mπ

�
γμ

m

− efFf
γμ

m0

�
ða3 þ a4Þ þ ðb3 þ b4Þ

=q
mπ

�

− ðe1F1 − e2F2Þðb1 þ b2 þ b3 þ b4Þ
γμ

mπ

þ
�
ða1 þ a2 þ a3 þ a4Þ

þ =q
mπ

ðb1 þ b2 þ b3 þ b4Þ
�
Cμ
F; ð91Þ

where

Fi ¼ Fðm02; m2
1; m

2
2; ðpþ kÞ2Þ; ð92aÞ

Ff ¼ Fððp0 − kÞ2; m2
1; m

2
2;m

2Þ; ð92bÞ

F1 ¼ Fðm02; ðq1 − kÞ2; m2
2;m

2Þ; ð92cÞ

F2 ¼ Fðm02; m2
1; ðq2 − kÞ2;m2Þ ð92dÞ

accounts for kinematical situations with an intermediate
off-shell hadron in the first four diagrams of Fig. 21.
(Note that within the present on-shell context, F effec-
tively is separable in all four squared-momentum con-
tributions.) The four Kroll-Ruderman-type terms with γμ

couplings—one for each hadron leg—arise from applying
the gauge derivative to the Dirac structure of C. The
auxiliary scalar current Cμ

F is obtained by coupling
the photon to the internal vertex structure described by
the form factor. Assuming F to be normalized to unity,
according to (87), the on shell expression for Cμ

F may be
written as the manifestly nonsingular contact current

Cμ
F ¼ −e1ð2q1 − kÞμ F1 − 1

ðq1 − kÞ2 −m2
1

H1

− e2ð2q2 − kÞμ F2 − 1

ðq2 − kÞ2 −m2
2

H2

− ef½ð2p0 − kÞμ þ iσμνkν�
Ff − 1

ðp0 − kÞ2 −m02Hf

− ei½ð2pþ kÞμ þ iσμνkν�
Fi − 1

ðpþ kÞ2 −m2
Hi; ð93Þ

where

H1 ¼ 1 − ð1 − δ2F2Þð1 − δfFfÞð1 − δiFiÞ: ð94Þ

The functions H2, Hf, and Hi are obtained from this
expression by cyclic permutation of indices f12fig.
The factors δx for x ¼ 1; 2; f; i are unity if the corre-
sponding particle carries charge; they are zero otherwise.
Equation (93) generalizes the generic four-point-function

results given in the Appendix of Ref. [96], with the
function factors Hx here providing the necessary falloff
behavior to avoid scaling violation [101].
Note here that the σμνkν terms for the incoming and

outgoing baryon legs in Eq. (93) are based on the recent
findings [97] that the currents for dressed Dirac particles
need to be treated differently from those of scalar particles.
However, since the current (93) is phenomenological in
nature anyway, with undetermined transverse contribu-
tions, it is perhaps debatable whether ‘fine-tuning’ with
these particular transverse terms is necessary.
The four-divergence of the contact current (91) satisfies

kμCμ ¼ e1Cðp0; q1 − k; q2;pÞ þ e2Cðp0; q1; q2 − k;pÞ
þ efCðp0 − k; q1; q2;pÞ − eiCðp0; q1; q2;pþ kÞ;

ð95Þ

which is the explicit version of the generalizedWTI (50) for
the present case.
The contact current Cμ thus provides a separate, inde-

pendent generalized WTI for the entire remainder current
Rμ, just like each of the ith order loop currents Mμ

i in (88),
as was shown in the preceding Sec. IV. The present
treatment, therefore, remains fully locally gauge invariant
across all orders. Note that by construction, the generic
form of the hadronic contact term Cμ underlying the
approximate current Rμ remains the same at all orders;
however, the values of the corresponding free fit parameters
modeled after Eq. (83) will change depending on how
many loop orders Mμ

i are taken into account explicitly.
It should be emphasized in this context that the sole

purpose of incorporating the phenomenological remainder
current Rμ would be to provide an approximate account of
otherwise neglected higher-loop contributions. As such,
therefore, this current is not necessary for preserving
gauge invariance and could be omitted entirely (which
presumably would be justified when the order n of explicit
loop contributions is sufficiently high). However, if it is
incorporated, it must be made locally gauge invariant as
described here.

C. Lowest-order approximation

The lowest-order approximation of ππ photoproduction
is given by

Mμ
ππ ≈Mμ

0 þRμ; ð96Þ

where

Mμ
0 ¼ Mμ

0;N þMμ
0;ρ ð97Þ

corresponds to the no-loop currents depicted in Fig. 18 that
separates into two separately gauge-invariant contributions,
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depending on whether the two pions are produced sequen-
tially off the nucleon (Mμ

0;N) or the ρ meson (Mμ
0;ρ), with

each mechanism breaking down into seven topologically
distinct graphs as shown in Fig. 22. Each group of seven
diagrams respectively corresponds to explicit renderings of
the NL1 and NL2 diagrams of Fig. 18.
Hence, if all mechanisms depicted in these lowest-level

diagrams are implemented fully, this requires dressing all
vertices and propagators according to the description given
in Sec. II B7 and, in particular, it requires accounting for all
two-body final-state interactions in terms of contact-type
four-point interaction currents (labeled by 1–4 in Fig. 22)
such that local gauge invariance is preserved fully. This
corresponds to full solutions of the underlying γN → πN
and γρ → ππ problems at a level of sophistication that so
far has never been undertaken because of the inherent
nonlinearities of these problems. At their most sophisti-
cated, such two-body subsystem dynamics are treated in
linearized coupled-channel approaches that account for
dressing and final-state effects. The two-pion production
calculation reported in Ref. [53], e.g., corresponds to such
an approximate treatment of the no-loop diagrams of
Fig. 22 however, without properly accounting for gauge
invariance. Moreover, no attempt was made to account
for higher-order loops, thus effectively setting Rμ ¼ 0
in Eq. (96).
At its most elementary, one may interpret the diagrams in

Fig. 22 as tree-level diagrams, with Feynman propagators
with physical masses, and vertices with physical coupling
constants and phenomenological cutoff functions, based on

effective Lagrangians. This is straightforward for the usual
s-, u-, and t-channel diagrams of single-meson-production
dynamics corresponding to diagrams like the correspond-
ingly labeled ones from Figs. 1 and 7, for example. In fact,
this is an approximation widely used in the literature for
single-meson production. The preservation of local gauge
invariance, however, demands that the corresponding
contact-type interaction currents (labeled 1–4 in Fig. 22)
be constructed in a manner that preserves local gauge
invariance in terms of an off-shell generalized WTI. The
advantages of proceeding in this way are threefold. First,
the underlying single-meson production processes will of
course be gauge invariant by construction. Second, and
crucial for the present application, the two-meson produc-
tion will be gauge invariant as well, without any additional
work and the two contributing mechanisms Mμ

0;N and Mμ
0;ρ

will be gauge invariant separately. Third, if one ever wishes
to undertake the calculation of three or more meson-
production processes based on the same elementary inter-
action mechanisms, the corresponding amplitudes will be
gauge invariant as well. In other words, implementing
local gauge invariance correctly at the lowest level will
carry through to all levels of more complex dynamical
situations.
Approximate treatments of interaction currents in terms

of contact currents that preserve local gauge invariance
have been suggested in Refs. [94–96], and its variations
have been used by a number of authors (including the
present ones) in the study of one-meson photoproduction
reactions [100,102,103].
We mention that the majority of existing two-meson

photo- and electroproduction models correspond to tree-
level approximations of Mμ

0 of Eq. (97) with some varia-
tions. None of them includes the remainder current Rμ, and
none preserve local gauge invariance, except Refs. [71,72].
Before leaving this section, it should also be mentioned

that while gauge invariance, analyticity, and covariance of
the two-meson photo- and electroproduction are preserved
in a tree-level approximation, unitarity is violated. Note that
the origin of this kind of unitarity violation is different from
that introduced by approximating the higher-order loop
contributions of the N → ππN hadronic amplitude by a
contact interaction as described in Sec. VA.

VI. SUMMARY AND DISCUSSION

Maintaining gauge invariance is trivial in any photo-
process if all currents that contribute to the reaction are
constructed in a manner that preserves their individual
(generalized) Ward-Takahashi identities. The present con-
siderations show that then putting together these currents in
groups where each member can be related to the same
topologically distinct hadronic process will not only
imply gauge invariance for the entire group, but it will
also ensure that this group as a whole will provide the
correct four-divergence contribution if it appears as a

FIG. 22. Explicit diagrams for two-pion photoproduction at the
no-loop level, corresponding to Eq. (97), providing a full account
of the topology inherent in the diagrams of Fig. 18. Internal thick
lines subsume hadrons compatible with the reaction. Labels 1–4
indicate contact-type four-point currents. Depending on the level
of sophistication, these diagrams indicate microscopic interaction
currents incorporating two-body final-state interactions [94] or
simple phenomenological contact currents. Details for the latter
case can easily be constructed along the lines discussed in
Refs. [94–96].

7We reiterate here the remark at the end of that section that
there may be considerable cancellation effects of dressing
functions for specific reactions, as recently found in Ref. [97].
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subprocess within a larger and more complicated process.
Consistency of the construction of the microscopic dynam-
ics in terms of currents that satisfy off-shellWTIs is the key
here. Mere current conservation alone does not help,
because then one must start all over again when going
over to a new problem. As a simple illustration of this point,
let us consider the no-loop current given in Fig. 18. The fact
that the four-point and two-point currents appearing in the
graphs satisfy their respective off-shell WTIs automatically
ensures gauge invariance of the NL currents. If, on the other
hand, the construction of the single-pion photoproduction
amplitude Mμ had been restricted to providing a conserved
current only, and not the full off-shell WTI, the NL graphs
of Fig. 18 would not be gauge invariant and would not even
provide a conserved current. In other words, one would
need an additional unphysicalmechanism to even construct
a conserved current. Not considering at the outset the full
set of diagrams that are needed for gauge invariance would
make matters even worse.
With this microscopic consistency in mind, we have

presented here a gauge-invariant theory for the production
of two mesons off the nucleon that applies equally well to
real and virtual photons. The formalism is based on an
extension of the field-theory approach of Ref. [79] origi-
nally developed by one of the authors for single-pion
photoproduction off the nucleon. In analogy to the single-
pion case, we first constructed a complete description of the
hadronic production process N → ππN by accounting for
the multiple-scattering series of the interacting final ππN
system to all orders in terms of the Faddeev-type three-
body AGS amplitudes [88,99]. Coupling then the electro-
magnetic field to this hadronic system by employing the
gauge derivative [79] produced the closed-form expression
of Eq. (46) for the full double-pion production currentMμ

ππ

that is gauge invariant as a matter of course. The resulting
reaction scenario subsumes and surpasses all existing
approaches to the problem based on hadronic d.o.f. We
emphasize in this respect the efficacy of the gauge-
derivative procedure to identify and link all relevant
reaction mechanisms in a microscopically consistent
manner.
Most importantly for practical purposes, we have pro-

vided here a consistent expansion scheme for the full
current in terms of groups of contributing currents that are
easily identifiable by the topological complexity of the
underlying hadronic processes and that are separately
gauge invariant as a group. We have explicitly discussed
in this manner the no-loop currents of Fig. 18 and the
one-loop currents of Fig. 19.
Existing theoretical models based on baryon and meson

d.o.f. can all be subsumed under the no-loop scenario of
Fig. 18, more explicitly depicted in Fig. 22. However,
none of the models actually incorporates the full subsys-
tem-process information in terms of, e.g., the γN → πN or
the γρ → ππ production currents which, as Fig. 22 clearly

shows, would be necessary for a consistent description and
which would be fairly straightforward to do given the
technology available for treating such subprocesses in a
gauge-invariant manner [93–95]. As the details of Fig. 22
show, at the no-loop level practically all the theoretical
effort needs to be expended on the adequate modeling of
these subprocesses.
The situation is quite a bit more complicated at the two-

loop level depicted in Fig. 19. Apart from the additional
complication of the loop integrations itself and the fact that
the meson-baryon and meson-meson amplitudes X must be
available, the most complicated ingredient in each of the
three gauge-invariant groups of graphs is the occurrence of
the interaction current Xμ for γπN → πN in the two groups
labeled 1L1 and 1L2, and for γππ → ππ in the 1L3 group.

8

Equation (20) shows that the interaction current Xμ itself is
fairly complicated, requiring another double-loop integra-
tion for its full calculation, and it may not be possible to
evaluate Eq. (20) in an actual application. However,
following the examples given in Ref. [84] for the NN
bremsstrahlung reaction, it is relatively straightforward to
construct phenomenological contact-type currents for any
interaction current that preserve local gauge invariance.
Local gauge invariance, therefore, need never be an issue
even if other approximations may be necessary to render
the problem manageable.
In deriving the present formalism, we have relied heavily

on the dynamically correct formulation in terms of local
gauge invariance because it provides a very convenient
framework that allowed us to identify and consistently link
in a straightforward manner all topologically relevant
microscopic mechanisms. We emphasize, however, that
as a consistent field-theory-based formulation, the resulting
amplitudes satisfy as well the usual properties of Lorentz
covariance and analyticity. With respect to unitarity, how-
ever, care must be exercised when approximating or
truncating the full formalism, as mentioned in Secs. VA
and V C.
In summary, we have presented here a formulation of the

two-pion production process off the nucleon based on field
theory that is of the same level of rigor as the one-pion
production described in Ref. [79]. We hope that the present
formulation of two-pion photoproduction will be of similar
usefulness. Moreover, we emphasize that since the present
formulation is based solely on the topological properties of
the underlying hadronic production processes (cf. Fig. 9), it
applies equally well to the photoproduction of any two
mesons off any baryon resulting from topologically similar
basic hadronic mechanisms.

8Recall here that π andN on the initial sides of the reactions are
just generic placeholders for any allowed meson and baryon,
respectively, since they occur as intermediate states of the
diagrams.
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APPENDIX: INCORPORATING FOUR-MESON
VERTICES LIKE ω → πππ

In this Appendix, we address the question how processes
based on n-pion vertices for n ≥ 3 can be incorporated into
the formalism. As mentioned earlier, the dynamics result-
ing from such vertices requires at least a treatment in terms
of an (nþ 1)-body problem. For the simplest possible case,
e.g., the πππω vertex depicted in Fig. 9(c), this means that
we need at least a four-body treatment. It is possible to do
that in principle; i.e., the formalism for doing so exists
[104–107], but presumably there is little practical value to
do so in full because of the enormous complexity of the
relativistic version of that problem. Instead, we will take
our cues from the full four-body problem of the πππN
system and then reduce its complexity to a three-body
problem by reabsorbing one of the mesons into either
another meson or the nucleon, similar to the simple
example depicted in Fig. 9(c).
Using the AGS four-body theory [104–107], one finds

two classes of graphs where the initial four-body system
eventually is reduced to a three-body system because one of
the three intermediate mesons is absorbed either in the
baryon or another meson. If somewhere along the line
before the final absorption at least one interaction with the
baryon takes place, we find the processes depicted in
Fig. 23(a), and if all scattering processes happen exclu-
sively within the three-meson system, we obtain Fig. 23(b).
We thus obtain a contact-type ππNN vertex for Fig. 23(a)

that behaves topologically like the sequential two-pion
process of Fig. 9(a) where the intermediate nucleon
propagation has shrunk to a point and an intermediate
effective three-meson vertex for Fig. 23(b) that is topo-
logically equivalent to the intermediate ππρ vertex of
Fig. 9(b). Taken as effective “elementary” production
processes, their resulting three-body dynamics is exactly
like that of the basic processes depicted in Fig. 14, and we
may apply the full formalism developed for them to the
new effective two-pion production mechanisms of Fig. 23.
Up to the two-loop level, therefore, we obtain the processes
depicted in Fig. 24 which, apart from the fact that certain
intermediate baryon lines have shrunk to a point, is
completely analogous to Fig. 11.
Attaching the photon is now equally straightforward,

producing the diagrams of Fig. 25 at the no-loop (NL0) level
and of Fig. 26 for the one-loop (1L0) currents. Both sets of
graphs are analogous to those of Figs. 18 and 19,
respectively. The four- and five-point currents resulting
from the mechanisms of Fig. 23 are given in Fig. 27. The
crucial parts of these currents are the respective interaction
currents (depicted as solid square boxes with an incoming
photon attached) because formally they follow from cou-
pling the photon to the respective interiors of the

FIG. 24. Higher-order double-pion-production contributions
using the initial mechanisms depicted in Fig. 23. The no-loop
(NL0), one-loop (1L0), and two-loop (2L0) diagrams given here are
exactly analogous to those of Fig. 11.

(a)

(b)

FIG. 23. Hadronic two-pion production mechanism resulting from a three-pion vertex that start out as a four-body process until one of
the mesons gets absorbed. The thick dashed and solid internal lines stand for any meson or baryon, respectively, compatible with the
process. (a) Contact-type mechanisms summing up processes where at least one connection is made with the baryon line after the initial
production. Part (b) sums up the three-body multiple-scattering series within the three-meson system, without intermediate reconnection
with the baryon line. Once the final ππN system occurs, subsequent interactions for both cases are topologically equivalent to that of the
ρππ production vertex in Fig. 9(b) resulting in the graphs shown in Fig. 24. The contact-term contributions (a) are chosen to avoid double
counting with the mechanisms shown in Fig. 24.
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mechanisms depicted in Fig. 23 which in practice cannot be
calculated such that the usual gauge-invariance constraints
of an interaction current can be expected to hold true.
However, it is straightforward to find phenomenological
approximations of these interaction currents that allow one
to maintain the full off-shell gauge invariance of both
currents in Fig. 27. The corresponding prescriptions for
doing so consistently with whatever description one choo-
ses for the underlying hadronic processes allowing for

iterative refinements of approximations have been given in
Ref. [94], and there is no need here to repeat that
discussion. In practical applications, therefore, one may
employ phenomenological models for the two-pion pro-
duction mechanisms in Fig. 23 without sacrificing gauge
invariance. For the process in Fig. 27(b), in particular, we
note that it is topologically equivalent to the remainder
current Rμ of Fig. 21. Therefore, if a meaningful approxi-
mate treatment of the contact-type hadronic process
depicted in Fig. 23(a) can be extracted, one may use this
as the basis for an approximate treatment along the lines
outlined in Sec. V B.
The procedure just described takes care of two-pion

systems evolving out of the initial four-body system created
via a nucleon and a three-pion vertex. All subsequent
interactions, however, follow the three-body dynamics
described in Sec. III A. To bring back the possibility of
intermediate four-meson interactions, one may add any
number of mechanisms involving four-meson vertices to
the driving term (35) of the AGS equations. Some of the
simplest examples are the three-body-force graphs shown
in Fig. 28. Denoting such processes by Bβγ, one finds that
the expansion of Mβ given in Eq. (40) then needs to be
modified in lowest order as

Mβ → M0
β ¼ Mβ þ

X
γ;α

BβγG0XγG0δ̄γαFα þ � � � ; ðA1Þ

i.e., the additional terms are linear in Xγ, whereas the
nonlinear mechanisms of Fig. 13 are of third order in Xγ .
However, either one of such effects requires three-loop
integrations at their respective lowest orders. For the graphs
shown in Fig. 28, the extra term here corresponds to
subjecting the final ππN system of the one-loop graphs
in Fig. 11 to the corresponding three-body forces.

FIG. 26. Current contributions resulting from the one-loop
(1L0) diagrams of Fig. 24. See Fig. 25 for details.

(a)

(b)

FIG. 27. Two-pion photoproduction currents associated with (a) the effective two-pion vertex of Figs. 23(b) and (b) the contact vertex
of Fig. 23(a). The respective last diagrams here (solid square boxes with photon attached) depict the four-point and five-point interaction
currents of the respective processes.

FIG. 25. Current contributions resulting from the no-loop (NL0)
diagrams of Fig. 24. The four- and five-point currents indicated
by square boxes labeled M are given in Fig. 27.

(a) (b)

FIG. 28. Examples of four-meson vertices producing three-
body forces. There are several more examples of this kind.
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We will not pursue this point any further since we
suspect that it may be of limited practical value in view of
the complexity of such mechanism. Also, for the same
reason, we will not consider even more complex mecha-
nisms with an even higher number of mesons produced at
initial or intermediate stages. In any case, we would like to
emphasize once more that, should the inclusion of more

complicated mechanisms be deemed necessary for practical
applications, the corresponding currents may simply be
added without affecting gauge invariance of the existing
approach because the currents of topologically indepen-
dent hadronic graphs satisfy their own independent
gauge-invariance constraints and this can be treated
independently.
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