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We solved the impact-parameter dependent Balitsky-Kovchegov equation with the recently proposed
collinearly improved kernel. We find that the solutions do not present the Coulomb tails that have affected
previous studies. We also show that once choosing an adequate initial condition it is possible to obtain a
reasonable description of HERA data on the structure function of the proton, as well as on the cross section
for the exclusive production of a J=ψ vector meson off proton targets. As a further application of the
solutions, we computed the impact-parameter dependent Weizsäcker-Williams gluon distribution.
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I. INTRODUCTION

The high-energy, or equivalently small Bjorken-x, limit
of perturbative quantum chromodynamics (pQCD) has
received significant attention in recent years. From the
experimental side, this has been driven by the precise
measurements from HERA [1], the large kinematic reach
of the LHC [2], and the proposal of new electron-ion
facilities [3,4]. In particular, the precise measurement of
the F2ðx;Q2Þ structure function of the proton at HERA and
its interpretation within pQCD [5,6] shows that the gluon
distribution grows rapidly with decreasing x for a fixed Q2,
where x is fractional momentum of the struck parton and
Q2 is the negative squared four-momentum transferred
between the lepton and the nucleon. This growth has to be
tamed at some high energy in order to respect unitarity.
In this limit, integro-differential equations are a powerful

tool to compute and predict observables related to the
dynamics of pQCD where the nonperturbative contribu-
tions are typically incorporated into an initial condition.
In the seminal work [7], it was shown that the inclusion of a
nonlinear term in these so-called evolution equations would
limit the growth of the gluon distribution, a phenomenon
known as saturation, see e.g., [8] and references therein. In
this context, the Balitsky-Kovchegov (BK) equation [9,10]
has been quite successful for phenomenological studies.
This equation was derived independently in the formalism
of the operator product expansion in [9] and within the
dipole approach in [11,12]. It can also be obtained within

the color glass condensate model as a limit of the so-called
Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner
(JIMWLK) equation [10,13–18].
The BK equation describes the evolution with rapidity,

Y, of the dipole-target scattering amplitude, Nðr⃗; b⃗; YÞ,
where r⃗ is the transverse size of the dipole, b⃗ the impact
parameter, and Y ¼ lnðx0=xÞ with x0 being the x value at
the start of the evolution. Solutions obtained under the
assumption that there is no dependence on the impact
parameter describe quite well the F2ðx;Q2Þ data [19]. This
equation has also been solved including the impact param-
eter dependence [20,21], where it was found out that the
solutions acquired a so-called Coulomb tail, meaning that
the contribution at large impact parameters grew too fast.
This behavior was curbed by introducing an extra term to
the kernel; furthermore, it was necessary to include an
extra, so-called soft, contribution in order to describe
F2ðx;Q2Þ data [22]. With this approach it was also possible
to describe the exclusive production of vector mesons in
deeply inelastic scattering [23]. These studies were based
on a BK equation with a kernel including running coupling
corrections [24,25]. Recently, a new kernel including
collinear corrections was proposed and shown to describe
correctly HERA data on F2ðx;Q2Þ in an impact-parameter
independent BK equation [26,27].
In this work we study the BK equation including the

dependence on the impact parameter using the collinearly
improved kernel. We find that the Coulomb tails are
strongly suppressed with respect to the running coupling
case. Furthermore, we show that when using an appropriate
initial condition a good description of experimental data is
directly obtained; that is, without having to modify the
kernel nor having to add extra soft contributions.
The improved treatment of the impact parameter depend-

ence provides a new tool for phenomenology. This tool is
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particularly important for the EIC facilities being currently
under design and which have as one of their main goals
a tomographic study of the structure of nucleons and
nuclei [3,4].

II. THE BALITSKY-KOVCHEGOV EQUATION

We assume a rotational symmetry of the target which
implies that the scattering amplitude depends on the
magnitude of the impact parameter, b, but not on its
orientation. Furthermore, we assume the scattering ampli-
tude to be independent of the angle between the vectors r⃗
and b⃗. In this case, the BK equation reads

∂Nðr; b; YÞ
∂Y ¼

Z
dr⃗1Kðr; r1; r2ÞðNðr1; b1; YÞ

þ Nðr2; b2; YÞ − Nðr; b; YÞ
− Nðr1; b1; YÞNðr2; b2; YÞÞ; ð1Þ

where r⃗2 ¼ r⃗ − r⃗1, jr⃗j≡ r with similar definitions for r1
and r2, while b1 and b2 are the magnitudes of the impact
parameters of the respective dipoles. The collinearly
improved kernel [26–28] is given by

Kðr; r1; r2Þ ¼
ᾱs
2π

r2

r21r
2
2

�
r2

minðr21; r22Þ
��ᾱsA1 J1ð2

ffiffiffiffiffiffiffiffiffi
ᾱsρ

2
p

Þffiffiffiffiffiffiffi
ᾱsρ

p :

ð2Þ
It constitutes of four factors. The factors ᾱs=2π and r2=r21r

2
2

are present already at the LO, the factor in square brackets
represents the contribution of single collinear logarithms
and factor J1ð2

ffiffiffiffiffiffiffiffiffi
ᾱsρ

2
p

Þ= ffiffiffiffiffiffiffi
ᾱsρ

p
resums double collinear

logarithms to all orders. Parameter A1 ¼ 11=12 and the
sign in the third factor is positive when r2 < minðr21; r22Þ
and negative otherwise. J1 is the Bessel function, ρ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr1rLr2r

p
and Lrir ≡ lnðr2i =r2Þ. For the running coupling,

ᾱs ≡ αsNc=π with Nc the number of colors, we use the
smallest dipole prescription: αs ¼ αsðrminÞ, where
rmin ¼ minðr1; r2; rÞ. This prescription has been used in
previous studies, where it was compared to other prescrip-
tions at a phenomenological level [27]; it has also been
advocated to be the correct prescription for the BK equation
at next-to-leading order (NLO) [29].
To be consistent with the computations leading to the

BK equation the form of the running coupling is given by

αsðrÞ ¼
4π

β0;nf lnð 4C2

r2Λ2
nf
Þ ; ð3Þ

where nf denotes the number of flavors that are active at
the scale r and β0;nf is the leading order coefficient of the

QCD beta-series. The value of Λ2
nf depends on the number

of active flavors and was computed in the same manner as

in [19]. Two parameters control the infrared behavior of αs:
αfr and C2. For very large dipoles the perturbative form of
αs given by Eq. (3) is not anymore valid. Following the
procedure used in previous studies [19] (see also discussion
in Sec II. C of [30]) we freeze the value of αs to αfr ¼ 1.0
for all dipole sizes that would produce a larger value of αs
when using Eq. (3). This is a purely phenomenological
approach, which roughly describes the behavior found in
more theoretical studies of αs in the nonperturbative regime
[31,32]. Finally, the parameter C2 also contributes to
regulate the infrared behavior and takes into account the
potential effect of the approximations made when comput-
ing the Fourier transform to coordinate space [29,33].

III. SOLVING THE BK EQUATION

For the initial condition we use a combination of the
Golec-Biernat and Wusthoff (GBW) model [34] for the
dependence on the dipole size r and a Gaussian distribution
for the impact parameter dependence. A similar approach
has been considered in [35]. We use the following func-
tional form

Nðr; b; Y ¼ 0Þ ¼ 1 − exp
�
−
1

2

Q2
s

4
r2Tðbq1 ; bq2Þ

�
; ð4Þ

where bqi are the impact parameters of the quark and
antiquark forming the dipole and

Tðbq1 ; bq2Þ ¼
�
exp

�
−
b2q1
2B

�
þ exp

�
−
b2q2
2B

��
: ð5Þ

Both Q2
s and B are parameters to be adjusted. These

parameters have a clear interpretation: the scale at which
nonlinear effects become important, known as the saturation
scale, is given byQ2

s ; whileB is related to the effective radius
of the Gaussian distribution in impact parameter space that
represents the target profile by 2B ¼ hb2i. Tðbq1 ; bq2Þ
suppresses contributions from dipoles that are large with
respect to the size of the target. Such suppression of large
dipole sizes, which makes sense from the phenomenological
point of view, has also been used in previous approaches [22]
in order to describe the data.
ParameterBwas chosen to obtain a reasonable description

of the cross section for J=ψ photoproduction off protons as a
function of jtj (−t is the square of the momentum transferred
at the proton vertex) at a fixed center-of-mass energy of
the photon–proton system (W ¼ 100 GeV), while Q2

s was
simultaneously chosen to describe F2ðx;Q2Þ data at x0 ¼
0.008 and Q2 ∈ ð3.5; 27Þ GeV2. That is, the fixing of Q2

s
does not involve an evolution in Y, while that of B requires
evolving the dipole scattering amplitude to x ≈ 0.001. (This
value is obtained from x ¼ ðMJ=ψ=WÞ2 where MJ=ψ is the
mass of the J=ψ). These two conditions uniquely fix the
value of these two parameters, since the structure function
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is sensitive to an overall integral of the scattering amplitude
and vector meson production is sensitive to the b-dependence
of it. The values we use in the following areQ2

s ¼ 0.49 GeV2

and B ¼ 3.22 GeV−2. The value of C2 used in the compu-
tation of αsðrÞ was chosen to regulate the evolution speed
of the dipole scattering amplitude and set to C ¼ 9.
The BK equation is solved numerically using the Runge-

Kutta method of order four with the algorithm described in
[36,37], extended to include the b-dependence. The grids in
log10ðrÞ and log10ðbÞ are of the same size and cover the
range from 10−7 to 102 1=GeV for both r and b. A linear
interpolation in log10ðrÞ and log10ðbÞ is used to find the
value of the dipole scattering amplitude outside the points
in the grids. The step in rapidity was 0.01. The integrals are
performed with the Simpson method.
Using the procedure just described we obtained the

solutions presented in Fig. 1, which shows the impact-
parameter dependence of the dipole scattering amplitude
for a dipole of size r ¼ 1 GeV−1 at different rapidities for
two computations: using the collinearly improved or the
running-coupling kernel. In both cases we use the same
initial condition.
We show results for rapidities which are relevant for

phenomenology at current and planned facilities, but have
checked that such a behavior is still present even at Y ¼ 10,
which is beyond the reach of foreseeable accelerators.
The evaluation of αsðrÞ for the running coupling case is
done as in [19]. Figure 1 shows that the Coulomb tails are
strongly suppressed when using the collinearly improved
kernel. A similar pattern is observed for all dipole sizes.
The suppression of the amplitude at large values of b
observedwhen using the collinearly improved kernel instead

of the running coupling kernel is due to two reasons: (i) the
different treatment of the r2=r21r

2
2 factor, which in the running

coupling kernel appears accompanied by other additive
terms, and (ii) the new corrections introduced in the
collinearly improved kernel. When comparing the original
LO with the collinearly improved kernel, there are three
factors contributing to the suppression: the use of a running
coupling constant instead of a fixed αs, the contribution of
single collinear logarithms, and the resummation of double
collinear logarithms. This last term is numerically the most
important. A detailed discussion of the properties of the
solutions foundwith our approach is outside the scope of this
work and will be presented elsewhere [38].

IV. APPLICATIONS

As a first use of the solutions to the b-dependent BK
equation we compute the F2ðx;Q2Þ structure function and
compare the result with HERA data. In the dipole model
the structure function is related to the dipole scattering
amplitude by

F2ðx;Q2Þ ¼ Q2

4π2αem

X
f

Z
dr⃗db⃗dz

× jΨf
T;Lðz; r⃗Þj2

dσqq̄ðr⃗; xfÞ
db⃗

; ð6Þ

where αem is the electromagnetic coupling constant,
Ψf

T;Lðz; r⃗Þ is the convolution of the wave functions for a
photon to split into a quark-antiquark dipole of flavor f and
for the dipole to return to the photon state—see e.g., [39]
for a detailed discussion—z is the fraction of the dipole
energy carried by the quark, and the cross section is related
to the dipole scattering amplitude by

dσqq̄ðr⃗; xÞ
db⃗

¼ 2Nðr⃗; b⃗; xÞ: ð7Þ

As it is customary, we use xf ¼ xð1þ ð4m2
fÞ=Q2Þ with mf

an effective quark mass set to 100 MeV=c2 for light quarks.
The description of data shown below does not depend
strongly on the value of mf and remains the same if a value
of 10 MeV=c2 is used. Similar observations were made in
[27]. In the future, it would be interesting to match this
prescription with a more formal description of dressed
quarks as e.g., in [40]. Mass of the charm quark was fixed
to 1.3 GeV=c2; these values are the same as used in [27].
Figure 2 shows the comparison of the computation with

the measured data [5] for several different values ofQ2 as a
function of x. The average percentile difference between
data and theory is 3.7% for data with Q2 ∈ ½3.5; 35� GeV2.
We would like to emphasize that this level of agreement
was obtained without the need to include ad hoc corrections
to the kernel and without the addition of soft contributions.

FIG. 1. Dependence of the dipole scattering amplitude with
respect to the impact parameter at different rapidities for a dipole
of size r ¼ 1 GeV−1. The dashed-dotted lines represent solutions
obtained with the running-coupling kernel (Nrc), while solid lines
represent solutions with the collinearly improved kernel (Nci).
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As a further application we computed the jtj dependence
of cross section for the exclusive photoproduction of
J=ψ vector mesons off protons at fixed values of W.
The amplitude for this process is given by (see e.g., [39])

Aðx;Q2; Δ⃗ÞT;L ¼ i
Z

dr⃗
Z

1

0

dz
4π

ðΨ�ΨJ=ψÞT;L

×
Z

db⃗e−iðb⃗−ð1−zÞr⃗Þ·Δ⃗
dσqq̄

db⃗
; ð8Þ

where −t≡ Δ⃗2, T and L represent transverse and longi-
tudinal photons, respectively, andΨJ=ψ is the wave function
of the transition from the dipole into a J=ψ vector meson.
We use the boosted Gaussian wave functions [41,42] with
parameters as determined in [39].
The jtj-differential cross section is given by the square of

the amplitude divided by 16π. The contributions from the
longitudinal and transverse photons are added. As it is
customary (see discussion in Sec. III of [39]), we correct
the cross section for two effects: (i) to take into account the
contribution of the real part of the dipole scattering
amplitude that was not considered when deriving the form
of the amplitude in Eq. (8), and (ii) the fact that in a two-
gluon exchange the gluons have different momentum,
which is known as the skewedness correction [43]. The
correction has been computed using the derivative of the
amplitude as in [39]. The correction in this context has to
be understood as a phenomenological ingredient that
contributes up to a value of 30% to the total cross section.
The comparison of the computation with data from the

H1 Collaboration [44,45] is shown in Fig. 3. Note that the
data at hWi ¼ 100 GeV were used to set the value of
the parameter B, but the computation forW ¼ 50 GeV is a
prediction. The agreement is at the level of 10%.

As a final application of the dipole scattering amplitude
solutions to the b-dependent BK equation with the collin-
early improved kernel we turn to TMD (transverse momen-
tum dependent) distributions. The measurement of these
distributions is one of the goals of future facilities which
are being currently designed [3,4]. There are also recent
ideas on how to access this kind of distributions, and how
to apply them to phenomenology, using LHC data, see
e.g., [46–48]. Here, as an example of the potential of the
solutions we found, we compute the impact-parameter
dependent Weizsäcker-Williams gluon distribution Gð1Þ.
This gluon distribution can be interpreted as the number

density of gluons at certain x and with a given transverse
momentum, kt, at a distance b from the center of the proton.
Its relation to the dipole scattering amplitude as given in
[46] is (see e.g., [49])

αsxGð1Þðx; kt; bÞ ¼
Nc

4π4

Z
dr⃗
r2

e−ik⃗t·r⃗

× f1 − ½1 − Nðx; r; bÞ�2g: ð9Þ

Figure 4 shows the impact-parameter dependent
Weizsäcker-Williams gluon distribution computed with
the dipole scattering amplitude obtained as a solution to
the b-dependent BK equation with the collinearly improved
kernel. The distribution is shown at a rapidity Y ¼ 2. The

figure also shows the integrals of this distribution over k⃗t
and over b⃗. Integrals of this distribution feature reasonable
size in impact parameter and fast-falling dependence on kt
(with an asymptotic behavior close to a power-like fall off
with a power of -2, which was also reported in [46]),

FIG. 2. Comparison of the structure function data from HERA
[5] with the computation based on solutions to the collinearly
improved b-dependent BK equation.

FIG. 3. Comparison of the computation for the jtj dependence
of the cross section for the exclusive photoproduction of J=ψ
vector mesons off protons with data from the H1 Collaboration at
HERA at hWi ¼ 55 GeV [44] and hWi ¼ 100 GeV [45].
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suggesting that these distributions are ready to be used for
phenomenological studies.

V. SUMMARY AND OUTLOOK

In this work we obtained the dipole scattering amplitude
as a solution to the impact-parameter dependent Balitsky-
Kovchegov equation using the collinearly improved kernel.
We find that the Coulomb tails that have affected previous
studies are strongly suppressed when using this kernel.
Furthermore, we show that choosing specific initial con-
ditions we obtain a good description of data on the
F2ðx;Q2Þ structure function of the proton and on the cross
section for the jtj dependence of exclusive photoproduction
of J=ψ vector mesons off protons. The agreement with data

is obtained without the need of adding any extra term to the
kernel and without any soft contribution. The success of
these dipole scattering amplitudes in the description of data
makes them valuable tools for phenomenological studies
either using existing HERA and LHC data or to predict
observables for future colliders. In this context we pre-
sented first results on the impact-parameter dependent
Weizsäcker-Williams gluon distribution.
As a last remark, we would like to point out that there

have been important advances in the computation of
the BK equation at the next order in perturbation theory.
The new equation, presented in [29], has been solved
in [50] using the collinearly improved kernel, but
without considering the impact parameter dependence.
Furthermore, the tools to be able to use this equation for
phenomenological applications are being developed, see
e.g., [51–54]. Our results indicate that solutions of the
NLO-BK equation including the collinearly improved
kernel and considering the impact-parameter dependence
may be useful to understand better the properties of pQCD
in the high-energy limit.
The dipole scattering amplitudes computed in this work

are publicly available in the website https://hep.fjfi.cvut.cz/.
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