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We report on a new calculation of the next-to-next-to-leading order QCD radiative corrections to the
inclusive production of top-quark pairs at hadron colliders. The calculation is performed by using the qT
subtraction formalism to handle and cancel infrared singular contributions at intermediate stages of the
computation. We present numerical results for the total cross section in pp collisions at

ffiffiffi

s
p ¼ 8 and 13 TeV,

and we compare them with those obtained by using the publicly available numerical program TOP++. Our
computation represents the first complete application of the qT subtraction formalism to the hadroproduction
of a colorful high-mass system at next-to-next-to-leading order.
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The top quark (t) is the heaviest known elementary
particle, and due to its large coupling to the Higgs boson, it
is expected to play a special role in electroweak-symmetry
breaking. Studies of top-quark production and decay are
central in the LHC physics program, allowing us to
precisely test the Standard Model and, at the same time,
offering a window to possible physics beyond the Standard
Model. The LHC supplies a huge number of top-quark
events, thereby offering an excellent environment for such
studies.
Within the Standard Model, the main source of top

quarks in hadronic collisions is top-quark pair production.
Studying the production of tt̄ pairs at hadron colliders can
not only shed light on the nature of the electroweak-
symmetry breaking, but it also provides information on the
backgrounds of many new-physics models.
Next-to-leading order (NLO) QCD corrections to the

total cross section for this production process were com-
puted 30 years ago [1–4]. The calculation of the next-to-
next-to-leading order (NNLO) QCD corrections to the tt̄
total cross section was completed a few years ago [5–8].
Besides the total cross section, differential cross sections
and more general kinematical distributions are of great
importance for precision studies [9]. The tt̄ asymmetry,
which is nonvanishing starting from the NLO level, is
known up to NNLO [10]. Other NNLO results on differ-
ential distributions are available [11–13].

At the partonic level, the NNLO calculation of tt̄
production requires the evaluation of tree-level contribu-
tions with two additional partons in the final state, of one-
loop contributions with one additional parton, and of purely
virtual contributions. The required tree-level and one-loop
scattering amplitudes are known, and they are the same as
those entering the NLO calculation of the associated
production of a tt̄ pair and one jet [14,15]. The purely
virtual contributions depend on the two-loop scattering
amplitudes and on the square of one-loop scattering ampli-
tudes. Partial results for the two-loop amplitude are available
in analytic form [16–19], and the complete computation has
been carried out numerically [20,21]. The square of the one-
loop amplitudes is also known [22–24].
The implementation of the above contributions in a (fully

differential) NNLO calculation is a highly nontrivial task
because of the presence of IR divergences at intermediate
stages of the calculation. Various methods have been
proposed and used to overcome these difficulties at the
NNLO level (see e.g., Ref. [25] and references therein).
Partial results for tt̄ production were obtained by using

the antenna subtraction method [26,27], by considering the
qq̄ channel at leading color, and including the light-quark
contributions [28–30]. The only complete NNLO compu-
tation for tt̄ production to date is that of Refs. [5–8,10–13],
which was performed by using the STRIPPER method
[31–33].
In this paper, we report on a new complete computation of

tt̄ production at NNLO based on the qT subtraction
formalism [34]. The qT subtraction formalism is a method
to handle and cancel the IR divergences in QCD compu-
tations at NLO and NNLO accuracy. The method uses IR
subtraction counterterms that are constructed by considering
the transverse-momentum (qT) distribution of the produced
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high-mass system in the limit qT → 0. If the produced high-
mass system is composed of non-QCD (colorless) partons
(e.g., leptons, vector bosons, or Higgs bosons), the behavior
of the qT distribution in the limit qT → 0 has a universal
(process-independent) structure that is explicitly known up
to NNLO through the formalism of transverse-momentum
resummation [35]. These results on transverse-momentum
resummation are sufficient to fully specify theqT subtraction
formalism for this entire class of processes. In the case of
heavy-quark production, the transverse-momentum resum-
mation formalism was developed only recently [36–38].
Nonetheless, such information was already sufficient to
apply the qT subtraction formalism to tt̄ production and to
obtain the complete NLO corrections and the NNLO
contributions in all the flavor off-diagonal channels [39].
The NNLO computation in the flavor diagonal channels
requires additional perturbative information (see below),
and the ensuing results are presented here for the first
time.
According to the qT subtraction method [34], the NNLO

differential cross section dσtt̄NNLO for the inclusive produc-
tion process pp → tt̄þ X can be written as

dσtt̄NNLO ¼ Htt̄
NNLO ⊗ dσtt̄LO þ ½dσtt̄þjet

NLO − dσtt̄;CTNNLO�; ð1Þ

where dσtt̄þjet
NLO is the tt̄þ jet cross section at NLO accuracy.

The square brackets term of Eq. (1) is IR finite in the limit
qT → 0, but its individual contributions, dσtt̄þjet

NLO and dσtt̄;CTNNLO,

are separately divergent. The contribution dσtt̄þjet
NLO can be

evaluated with any available NLO method to handle and
cancel IR divergences. The IR subtraction counterterm
dσtt̄;CTNNLO is obtained from the NNLO perturbative expansion
(see e.g., Refs. [39–41]) of the resummation formula of the
logarithmically enhanced contributions to the qT distribution
of the tt̄ pair [36–38]: the explicit form of dσtt̄;CTNNLO is
fully known.
To complete the NNLO calculation, the second-order

functions Htt̄
NNLO in Eq. (1) are needed. These functions

embody process-independent and process-dependent con-
tributions. The process-independent contributions to
Htt̄

NNLO are analogous to those entering Higgs-boson [34]
and vector-boson [42] production, and they are explicitly
known [43–46]. In the flavor off-diagonal channels, the
process-dependent contributions to Htt̄

NNLO originate from
the knowledge of the one-loop virtual amplitudes of the
partonic processes qq̄ → tt̄ and gg → tt̄ and from the
explicit results on the NLO azimuthal correlation terms
in the transverse-momentum resummation formalism [38].
The computation of Htt̄

NNLO in the diagonal qq̄ and gg
channels additionally requires the two-loop amplitudes for
qq̄ → tt̄ and gg → tt̄ and the evaluation of new contribu-
tions of purely soft origin. The two-loop amplitudes are
available in numerical form [21], whereas the computation
of the additional soft contributions has been completed by

some of us [47].1 Therefore, we are now in a position to
complete the calculation of Ref. [39] and to obtain the full
NNLO cross section.
Before presenting our results, we briefly describe

our implementation. The NNLO cross section can be
expressed as

σNNLO ¼ σNLO þ ΔσNNLO: ð2Þ

The NLO contribution σNLO is evaluated by using the
MUNICH code [49], which provides a fully automated
implementation of the NLO dipole subtraction formalism
[50–52]. We use Eq. (1) to compute the NNLO correction
ΔσNNLO. The NLO cross section dσtt̄þjet

NLO is computed by
using MUNICH. The subtraction counterterm dσtt̄;CTNNLO is also
implemented in MUNICH, whereas the contribution propor-
tional to Htt̄

NNLO is evaluated with an extension of the
numerical programs developed for Higgs-boson [34] and
vector-boson [42] production. All the required (spin- and
color-correlated) tree-level and one-loop amplitudes are
obtained by using OPENLOOPS [53], except for the four-
parton tree-level color correlations that we obtain through
an analytic implementation. OPENLOOPS relies on the fast
and stable tensor reduction of COLLIER [54,55], supported
by a rescue system based on quad-precision CUTTOOLS
[56] with ONELOOP [57] to deal with exceptional phase-
space points. For the purpose of validating our results for
the real-virtual contribution, we have used also the new on-
the-fly reduction of OPENLOOPS 2 [58,59] and the inde-
pendent matrix-element generator RECOLA [60], finding
complete agreement.
The contribution in the square brackets in Eq. (1) is

formally finite in the limit qT → 0, but both dσtt̄þjet
NLO and

dσtt̄;CTNNLO are separately divergent. In practice, the compu-
tation is carried out by introducing a cutoff rcut on the
dimensionless variable r ¼ qT=M, whereM is the invariant
mass of the tt̄ pair. The final result is obtained by
performing the limit rcut → 0. To do so, the cross section
is computed at fixed values of rcut in the interval
½0.01%; rmax�. Quadratic least χ2 fits are performed by
varying rmax from 0.5% to 1%. The result with the lowest
χ2=degrees-of-freedom value is kept as the best fit. The
extrapolation uncertainty is determined by comparing the
result of the best fit with the results of the other fits. This
procedure is the same as implemented in MATRIX [61], and
it has been shown to provide a conservative estimate of the
systematic uncertainty in the qT subtraction procedure for
various processes (see Sec. 7 in Ref. [61]).
To present our quantitative results, we consider pp

collisions at
ffiffiffi

s
p ¼ 8 and 13 TeV, and we use the

NNPDF31 [62] NNLO parton distribution functions

1An independent computation of these soft contributions was
recently presented in Ref. [48].
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throughout. The QCD running of αS is evaluated at three-
loop order with αSðmZÞ ¼ 0.118, and the pole mass of the
top quark is fixed to mt ¼ 173.3 GeV. The central values
of the renormalization (μR) and factorization (μF) scales are
fixed to μR ¼ μF ¼ mt. We start the presentation by
considering the complete NNLO cross sections. In
Table I, our results at

ffiffiffi

s
p ¼ 8 and 13 TeV are compared

with the corresponding results obtained with the numerical
program TOP++ [63],2 which implements the NNLO cal-
culation of Refs. [5–8] (at NLO TOP++ uses the para-
metrization of Refs. [64,65] of the analytic result of
Ref. [66]). In Table I, the NNLO cross sections are reported
with their perturbative uncertainty, which is estimated
through the customary procedure of independently varying
μR and μF by a factor of 2 around their central value with
the constraint 0.5 ≤ μF=μR ≤ 2. The program TOP++ gives
results without an associated numerical error. Our results
are given with an uncertainty that is obtained by combining
statistical errors from the Monte Carlo integration and the
systematic uncertainty associated to the rcut → 0 extrapo-
lation. Such combined uncertainty turns out to be at the
per mille level, and our results are consistent with those of
TOP++ for all the considered values of μR and μF.
In Table II, the NNLO corrections ΔσNNLO in the various

partonic channels ab → tt̄þ X computed with qT sub-
traction are compared to the corresponding results obtained
with TOP++. The contribution from all the channels with
ab ¼ qg; q̄g is labeled as qg, and the contribution from all
the channels with ab ¼ qq, q̄q̄, qq0, q̄q̄0, qq̄0, q̄q0 is labeled
as qðq̄Þq0.
We see that the numerical uncertainties of our NNLO

corrections are at the percent level or smaller, except for the
qg contribution at

ffiffiffi

s
p ¼ 13 TeV, for which there is a large

cancellation between the two terms in Eq. (1) (the term that is
proportional toHtt̄

NNLO and the term in the square brackets).
Similar effects were already observed in Ref. [39].
Comparingour 8TeV results forΔσNNLO with those obtained
by using TOP++, we see that they are fully compatiblewithin
1σ. At 13 TeV, we also find agreement at the 1σ level
apart from the qq̄ channel that exhibits a 1.6σ difference,
which corresponds to about 0.5% of ΔσNNLO in this

channel. Considering the partly statistical nature of our
error estimate and the fact that the uncertainties from
TOP++ were completely neglected in this discussion, we
can state that our results are in agreement with the TOP++
results throughout.
The quality of the rcut → 0 extrapolation can be assessed

by investigating the behavior of the cross section at fixed
values of rcut. In Fig. 1, we study this behavior in the
different partonic channels. We see that the rcut dependence
is larger than what is observed in the case of the production
of a colorless system (see Sec. 7 of Ref. [61]), where the
powerlike dependence of the total cross section on rcut is
known to be quadratic (modulo logarithmic enhance-
ments). In the case of tt̄ production, due to the additional
contribution of soft radiation from the heavy quarks, the rcut
dependence of the cross section is expected to be linear
[67], thereby implying a stronger sensitivity to the param-
eter rcut. The exception is the qðq̄Þq0 channel, where the
expected rcut dependence should be quadratic, since this
channel does not receive contributions from soft radiation
at NNLO.
To conclude, we have reported on a new complete

computation of the tt̄ cross section in hadron collisions
at NNLO in QCD perturbation theory. The computation is
performed by combining tree-level and one-loop QCD
amplitudes, as obtained from OPENLOOPS, with two-loop
contributions available from the literature. The results are
obtained by using the qT subtraction formalism to handle
and cancel IR singularities. The contributions needed to
apply qT subtraction to this process that were previously
unknown have been computed by some of us, and they will
be reported in a separate publication. We have presented
numerical results in pp collisions at 8 and 13 TeV and
compared them to the corresponding results obtained with
the numerical program TOP++. We find good agreement
within the numerical uncertainties. Our computation rep-
resents the first complete application of the qT subtraction
formalism to the hadroproduction of a colorful high-mass
system at NNLO. The computation can be naturally
extended to differential distributions and by applying
arbitrary IR safe cuts on the tt̄ pair and the associated
QCD radiation. More details on the calculation and addi-
tional results will be presented elsewhere.

TABLE I. Total cross section for tt̄ production in pp collisions.
The quoted uncertainties are obtained through scale variations as
described in the text. Numerical uncertainties on the last digit are
stated in parentheses (and include the rcut → 0 extrapolation
uncertainties).

σNNLO (pb) qT subtraction TOP++

8 TeV 238.5ð2Þþ3.9%
−6.3% 238.6þ4.0%

−6.3%
13 TeV 793.4ð6Þþ3.5%

−5.7% 794.0þ3.5%
−5.7%

TABLE II. NNLO corrections ΔσNNLO, split into the different
production channels, for μR ¼ μF ¼ mt. Numerical integration
errors on the last digits are stated in parentheses.

qT subtraction TOP++

ΔσNNLO (pb) 8 TeV 13 TeV 8 TeV 13 TeV

gg 25.77(23) 80.99(54) 25.86 81.54
qq̄ 2.249(12) 4.713(16) 2.248 4.739
qg −2.349ð31Þ −4.16ð19Þ −2.340 −4.089
qðq̄Þq0 0.1563(11) 0.6378(34) 0.1563 0.6375

2The program TOP++ is used with the input parameter
Precision=3.
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