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We consider linearized Vasiliev’s equations around the background AdS field in three dimensions for the
correlation function of two scalars and a higher spin field. Relating this with the higher spin field
determined in the metric formulation allows determination of the corresponding coupling coefficient. The
result agrees with the analogous computation for the spin three field.
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I. INTRODUCTION AND MOTIVATION

Higher spin (HS) theories have started receiving more
attention in the recent years due to a fact that they offer an
answer to some important questions in string theory. They
have been introduced in the early years by Vasiliev [1–4].
We can describe them characterizing free fields by spin and
mass and considering the consistent interaction among
them. Writing consistent interaction for fields of arbitrary
spin and mass turned out to be difficult, therefore one
usually starts by looking at the massless fields. Their
particular property is that interaction terms due to the
masslessness need to be restricted by gauge symmetry,
making them interesting and simpler to study. For the fields
with spin higher than two and the general number of
dimensions higher than three, the spectrum of the theory is
necessarily infinite and contains the fields of all spins. In
three dimensions it is possible to truncate to a finite number
and one obtains the Chern-Simons action which describes a
coupling of massles HS fields and AdS gravity in consistent
manner. The gauge group is two copies of SLðn;RÞ [5,6,7]
and for finite n one can consider finite number of
interacting HS fields [8]. The theory is minimal, which
means that each spin state appears only once, unlike in the
string theory, where spectrum contains degenerate states.
Another property of the theory is that it does not contain
dimensional parameter like string theory therefore it cannot
come from spontaneous symmetry breaking.
In the early days of its development the theory encountered

number of no-go theorems due to a fact that interacting
higher-spins do not propagate in the Minkowski space. This

issue was solved by the consideration of the HS fields
on AdS.
First action for arbitrary HS fields was introduced by

Fronsdal and described a tower of massless noninteracting
HS fields [9–11]. The issue that remained is construction of
the interacting action of the theory for the spin higher than
three. The interacting theories can be constructed order
by order using perturbative interaction procedure. One
deforms a quadratic Lagrangean of a particle spectrum
of certain spins and masses by cubic terms, while keeping
the gauge invariance which he repeats at the following step
for quartic terms, etc. The procedure also deforms the
gauge transformations. The solution of the cubic deforma-
tions gives cubic interaction vertices. The cubic vertices
have been studied from the metriclike and framelike
approach in number of articles. Some of the early works
in metriclike formalism are [12,13].1 These traditional
methods as metriclike approach have led to little progress
in development of construction of interacting theory for
higher-spin gauge fields. They are less efficient beyond
cubic interaction.
The new approach to this was offered by Fradkin and

Vasiliev, and extended by Vasiliev, developing nonlinear
system for higher spin fields, called unfolded approach
[2,15]. An overview of this approach can be found in [14],
which also considers Vasiliev’s equations up to second
order in perturbation. First attempt to extract observables
from the equations has been done in [16], while the
extraction of the higher spin couplings from Vasiliev’s
equations has been considered in [17].
HS theory can also be considered in the sense of

AdS=CFT correspondence, where the HS theory of mass-
less HS fields corresponds to a limiting case of the string
theory for the string tension going to zero. Large N
superconformal field theories were studied as holographic
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duals for higher spin gauge theories in perturbative expan-
sion around AdS spacetime [18].
Klebanov and Polyakov [19] have proposed a duality

between the singlet sector of the critical 3-d O(N) vector
model with ðϕaϕaÞ2 interaction and minimal bosonic
theory in AdS4 which contains massless gauge fields with
even spin. The analog of AdS4 conjecture by Klebanov and
Polyakov appeared in AdS3 [20] conjecturing a duality
between a complex scalar coupled to higher-spin fields in
Vasiliev’s gravity in 3 dimensions and WN minimal model
CFT in t’Hooft limit denoted by coset representation

SUðNÞk ⊕ SUðNÞ1
SUðNÞkþ1

; ð1Þ

where we define the t’Hooft limit with N; k → ∞ for
λ≡ N

kþN. This duality has been verified by the number of
studies, correspondence of global symmetries in bulk and at
the boundary [21], correspondence of the 1-loop partition
function in the bulk and at the largeNCFT [22], and partition
function of the HS black hole at high temperature in the bulk
and at the boundary CFT, as well as for the 3-point functions
when λ ¼ 1

2
and s ¼ 2, 3, 4 for the scalar-scalar-HS field

(00s) correlator in the t’Hooft limit. Via three-point func-
tions, tests of the conjecture have been done in [23] (for 00s
correlator with general λ), and in [24,25].
In thiswork,we extract the coupling of the 00s three-point

correlator by considering the linearised Vasiliev’s equations
of motion, and we verify it by choosing the spin to be three
and comparing with result in [23]. The result corresponds
to coupling of the three-point correlation function up to
selected normalization. While we consider general λ, the
similar work has been done for the fixed λ in [26].
The structure of the work is as follows: In Sec. II we

consider linearised equations of motion in the Vasiliev’s
theory, in Sec. III we consider the higher spin field in the
metric formulation, and in Sec. IV we conclude.

II. LINEARIZED EQUATIONS OF MOTION

Let us first consider the coefficient coming from the
Vasiliev’s linearized equations. Vasiliev’s theory contains
five equations for the master fields W which is spacetime
1-form, B and Sα which are spacetime 0-forms. The
generating functions are dependent on the coordinates of
the spacetime, auxiliary bosonic twistor variables (referred
to as “oscillators”) and Clifford element pairs, where in
definitions we follow conventions from [23]. The oscil-
lators and various other ingredients are used to define the
“deformed” oscillator star-commutation relations which
give rise to hs½λ� higher spin algebra. Two of the above
mentioned equations that will be of interest here are

dW ¼ W ∧ ⋆W ð2Þ

dB ¼ W ⋆ B − B ⋆ W: ð3Þ

We can rewrite W with projector operators

P� ¼ 1� ψ

2
ð4Þ

for ψ elements of the Clifford pairs such that W ¼
−PþA − P−Ā for

P�ψ1 ¼ ψ1P� ¼ �P� P�ψ2 ¼ ψ2P∓ ð5Þ

where A are Chern-Simons gauge fields which take value
in the Lie algebra hs[λ]. In this formulation the equation

dW ¼ W ∧ ⋆W ð6Þ

gives

dAþ A ∧ ⋆A ¼ 0 ð7Þ

DĀþ Ā ∧ ⋆Ā ¼ 0 ð8Þ

where A and Ā are positive polynomials of the positive
degree in products of deformed oscillators. (7) and (8) are
in that case equal to field equations hs½λ� ⊗ hs½λ� Chern-
Simons theory. The generators of hs½λ� are defined with
spin index s and mode index m as Vs

m for s ≥ 2 while
jmj < s and obey star product

Vs
m ⋆ Vt

n ¼
Xsþt−js−tj−1

u¼1;2;3

gstu ðm; n; λÞVsþt−u
m−n ð9Þ

where

gstu ðm; n; λÞ ¼ ð−1Þuþ1gtsu ðm; n; λÞ ð10Þ

are specific coefficients dependent on λ and defined
according to conventions [23]. The equations describe
interaction of arbitrary higher spin background with lin-
earized scalars. The coupling that we are interested in can
be extracted from rewriting the master field B as a
linearized fluctuation around vacuum value ν

B ¼ νþ Pþψ2Cðx; ỹαÞ þ P−ψ2C̃ðx; ỹαÞ ð11Þ

and expanding the master field C in the deformed oscil-
lators ỹα in the equation

dCþ A ⋆ C − C ⋆ Ā ¼ 0: ð12Þ

That allows us determining the generalized Klein-Gordon
(KG) equation in the background of HS fields. While the
expansion of the master field C in formalism of bosonic
Vasiliev theory is given by

C ¼ C1
0 þ Cαβỹαỹβ þ Cαβσλỹαỹβỹσ ỹλ þ � � � ð13Þ
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with implied star product and symmetric C components.
Master field components are now separated in physical
scalar field C1

0 and higher ones, related to it on-shell by
derivatives. The expansion of C is given by

C ¼
X∞
s¼1

X
jmj<s

Cs
mVs

m ð14Þ

for Cs
m ∼ Cα1α2::α2s−1 where m and number of oscillators ỹ1

versus ỹ2 are related with 2m ¼ N1 − N2 and Cs
m are

functions of spacetime coordinates. Auxiliary tensors are
absorbed within a field. The fields A and Ā are expanded
analogously

A ¼
X∞
s¼2

X
jmj<s

As
mVs

m Ā ¼
X∞
s¼2

X
jmj<s

Ās
mVs

m: ð15Þ

The standard procedure of finding the generalised KG
equation consists of inserting the expressions for A, Ā and
C in (12) and determining the smallest possible set of
equations needed to find the scalar equation in arbitrary
background. Standard procedure can be described consid-
ering Eq. (12) in AdS background since it is a foundation
for the following computations. The vacuum C1

0 equation
without AdS fields is ordinary KG equation while one can
determine the higher components in the terms of C1

0.
The AdS connection consists of the spin-2 generators

that form SL(2), subalgebra of hs½λ�

A ¼ eρV2
1dzþ V2

0dρ ð16Þ

Ā ¼ eρV2
−1dz̄ − V2

0dρ ð17Þ

with AdS metric

ds2 ¼ dρ2 þ e2ρdzdz̄: ð18Þ
The higher spins fields vanish, and we are working in
Euclidean metric and Fefferman-Graham gauge. The gen-
eral form of the C equation (12) in the AdS background is

∂ρCs
m þ 2Csþ1

m þ Csþ1
m gðsþ1Þ2

3 ðm; 0Þ ¼ 0 ð19Þ

∂Cs
m þ eρ

�
Cs−1
m−1 þ

1

2
g2s2 ð1; m − 1ÞCs

m

þ 1

2
g2ðsþ1Þ
3 ð1; m − 1ÞCsþ1

m−1 ¼ 0

�
ð20Þ

∂̄Cs
m − eρ

�
Cs−1
mþ1 −

1

2
g2s2 ð−1; mþ 1ÞCs

mþ1

þ 1

2
g2ðsþ1Þ
3 ð−1; mþ 1ÞCsþ1

mþ1

�
¼ 0 ð21Þ

for jmj < s, ∂ ¼ ∂z; ∂̄ ¼ ∂ z̄ and the λ-dependence in the
structure constants suppressed.
In the simplest case choosing s ¼ 1, s ¼ 2 one can

solve for the higher components in C and obtain the
Klein-Gordon KG equation

½∂2
ρ þ 2∂ρ þ 4e−2ρ∂∂̄ − ðλ2 − 1Þ�C1

0 ¼ 0: ð22Þ

Consistency condition on equations is that all the compo-
nents of C have smooth solution when expressed using C1

0.
The strategy for determining the minimal set of equations
forC1

0 is to select components of C that are of the formCmþ1
�m

and therefore the smallest spin for fixed m (e.g.,C1
0; C

2
�1,..).

That are minimal components. One needs Vs
m;ρ equations

for fixed m, solve for non-minimal components in terms of
minimal ones and ρ derivatives, for Aρ ¼ −Āρ ¼ V2

0. After
solving for minimal ones, one needs to solve Vs

m;z and Vs
m;z̄

equations in terms of C1
0 and its derivatives.

Once that we have expressed the higher components of C
in terms of C1

0 we can determine the part that defines the
KG equation and the generalized part that appears due to
the HS background. To obtain the equation of motion for
the scalar field up to linear order we consider the variation
of the gauge field and apply the KG equation on it. This and
the standard procedure for obtaining the linearized equation
of motion for the scalar field described above should be
equal once the gauge parameter is chosen conveniently.
That approach can be written in the following way.
First we express the higher components of the C field

in terms of the combination of the derivatives on C1
0 in the

background AdS. Focusing on the master field C, the
Eq. (12) is invariant under the hs½λ� ⊕ hs½λ� gauge invari-
ance when

C → Cþ C ⋆ Λ̄ − Λ ⋆ C ð23Þ

for

Λðρ;z; z̄Þ¼
X2s−1
n¼1

1

ðn−1Þ!ð−∂Þ
n−1λðsÞðz;z̄Þeðs−nÞρVs

s−n: ð24Þ

Where we take Λ to be chiral, so Λ̄ ¼ 0. The field in the
higher spin background is obtained by transformation

C̃s
m ¼ Cs

m − ðΛ ⋆ CÞsm: ð25Þ

The field Cs
m we express in terms of the C1

0. To do that we
focus on the set of Eqs. (19)–(21). The product of the C
field with Λ gives combination of higher components of
C in AdS background which can, as we will show, be
expressed in terms of C1

0. On the field C1
0 we can use the

transformation (23) and obtain

C̃1
0 ¼ C1

0 − ðΛ ⋆ CÞ10: ð26Þ
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Since we are at the linear order, once we have C1
0 we can

rewrite it as C̃1
0 which is defined on the higher spin

background. From the expression for the gauge field Λ
(24) and the relation for the star product (9) we can
determine the variation of the scalar field C1

0

ðδCÞ10 ¼ −
X2s−1
n¼1

1

ðn − 1Þ! ð−∂Þ
n−1ΛðsÞ

×
1

2
gss2s−1ðs − n; n − sÞCs

−ðs−nÞe
ðs−nÞρ; ð27Þ

for Cs
−ðs−nÞ an arbitrary component of the master field C.

Takingm → −m in the set of Eqs. (19)–(21) and s ¼ mþ 1
in (20), we can iteratively determine the dependence of the
Cmþ1
m on the C1

0. From the Eq. (20) we obtain

∂zCmþ1
−m þ eρ

2
g2ðmþ2Þ
3 ð1;−m − 1ÞCmþ2

−m−1 ¼ 0 ð28Þ

taking into consideration that for certain components Cs
n it

is required jnj ≤ s − 1 this iteratively leads to relation of
Cmþ1
m and C1

0, and from the (21) analogously for Cmþ1
−m and

C1
0. The general form of the Cs

� is then given in terms of
Cmþ1
�m and coefficients gtsu ðm; nÞ. Knowing Cs

� and Cmþ1
�m

allows us to obtain [23]

ðδCÞ10 ¼
Xs

n¼1

fs;n� ðλÞ∂n−1
z ΛðsÞ∂s−n

z ϕ ð29Þ

for ϕ≡ C1
0 and fs;n� ðλÞ expressed in terms of coefficients

gstu ðm; nÞ. Using the replacement ∂ρ → −ð1� λÞ and writ-
ing explicitly first few n values for fs;n� ðλÞ, allows to
determine its general expression

fs;n� ðλÞ ¼ ð−1Þs Γðsþ λÞ
Γðs − nþ 1� λÞ

1

2n−1ð2ðn
2
− 1ÞÞ!!ðn−1

2
Þ!

×
Yn−12
j¼1

sþ 1 − n
2s − 2j − 1

: ð30Þ

Substituting (30) in (29) one obtains the variation of the
scalar field

ðδCÞ10 ¼
Xs
n¼1

ð−1Þs Γðs� λÞ
Γðs − nþ 1� λÞ

1

2n−1ð2ðn
2
Þ − 1Þ!!ðn−1

2
Þ!

ð31Þ

×
Yðn−12 Þ

j¼1

sþ j − n
2s − 2j − 1

∂n−1
z ΛðsÞ∂s−n

z C1
0: ð32Þ

To consider the coefficient in front, we focus on the term
with the lowest number of ∂z derivatives on the gauge field
ΛðsÞ, obtained for n ¼ 1. Then, (32) becomes

ðδCÞ10jn¼1 ¼ ð−1ÞsΛðsÞ∂s−1C1
0: ð33Þ

To obtain the linearized equation of motion for the scalar
field we act on (33) with KG operator (22). This can be
written as

□KGC̃
1
0 ¼ □KGC1

0 þ□KGδC1
0: ð34Þ

Taking ∂ρ → ð1� λÞ in fs;n� ðλÞ and considering the term
with highest number of derivatives on C1

0 leads to

□KGjhighest number of derivativesðδCÞ10 ¼ ð35Þ

¼ ð−1Þs4e−2ρ∂∂̄
�
ΛðsÞ∂ðs−1ÞC1

0

�
ð36Þ

¼ ð−1Þs4e−2ρ½∂∂̄Λ̄ðsÞ∂ðs−1ÞC1
0 þ ∂̄ΛðsÞ∂sC1

0

þ ∂ΛðsÞ∂̄∂ðs−1ÞC1
0 þ ΛðsÞ∂̄∂sC1

0� ð37Þ

which is of further interest.

III. METRIC FORMULATION

In the metric formulation we can express the higher spin
field of arbitrary spin s with

ϕμ1…::μs ¼ trðẽðμ1…ẽμs−1ẼμsÞÞ ð38Þ

where Ẽμs ¼ Ãμ − ˜̄Aμ and Ãμ and ˜̄Aμ we define below.
The dreibein is determined from the background AdS
metric (18)

ez ¼
1

2
eρðL1 þ L−1Þ ¼

1

2
eρðV2

1 þ V2
−1Þ ð39Þ

ez̄ ¼
1

2
eρðL1 − L−1Þ ¼

1

2
eρðV2

1 − V2
−1Þ ð40Þ

eρ ¼ L0 ¼ V2
0: ð41Þ

The invariance of the Eq. (12) under the gauge trans-
formation for hs½λ� ⊕ hs½λ� for the fields A means

A → Aþ dΛþ ½A;Λ�⋆ ≡ Ã ð42Þ

Ā → Āþ dΛ̄þ ½Ā; Λ̄�⋆ ≡ ˜̄A: ð43Þ

Since Λ parameter is chiral it means Λ̄ ¼ 0 and the field ˜̄A
is essentially unchanged. The field Ãμ is then

Ã ¼ AAdS þ dΛþ ½AAdS;Λ�⋆: ð44Þ

dΛ reads
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dΛ¼
X2s−1
n¼1

1

ðn−1Þ!V
s
s−neðs−nÞρ½ð−∂Þn−1∂ΛðsÞðz; z̄Þdz ð45Þ

þð−∂Þn−1∂̄ΛðsÞðz; z̄Þdz̄þð−∂Þn−1ΛðsÞðz; z̄Þðs−nÞdρ�
ð46Þ

and

½AAdS;Λ�⋆ ¼
�
eρV2

1dzþ V2
0dρ;

X2s−1
n¼1

1

ðn − 1Þ! ð−∂Þ
n−1ΛðsÞðz; z̄Þeðs−nÞρVs

s−n

�

ð47Þ
To read out the coupling we focus on z̄…:z̄ component of
the field C1

0 with lowest number of derivatives on gauge
field ΛðsÞ. The ⋆ multiplication of the dreibeins in (38) in
that case contributes only with first gstu ðm; n; λÞ coefficient
with the each following dreibein that is being multiplied.
More explicitly

ez̄ ⋆ ez̄ ¼
1

22
e2ρðV2

1 − V2
−1Þ ⋆ ðV2

1 − V2
−1Þ ð48Þ

From (24) we notice that the lowest number of derivatives
on Λ will appear for lowest n, i.e., for n ¼ 1 in summation
(24). Knowing the relation for the trace of higher spin
generators, the required generator Vs

s−n will than be of the
form Vs

s−1, as we see below, which means that multipli-
cation of HS generators we have to consider is

V2
−1 ⋆ V2

−1 ⋆ …: ⋆ V2
−1: ð49Þ

Then

V2
−1 ⋆ V2

−1 ¼
1

2
ðg221 ð−1;−1ÞV3

−2 þ g222 ð−1;−1ÞV2
−2

þ g223 ð−1;−1ÞV1
−2Þ ð50Þ

where the g222 ð−1;−1Þ ¼ g223 ð−1;−1Þ ¼ 0. Multiplying
with following V2

−1, etc., on e can conclude

V2
−1 ⋆ V2

−1 ⋆…: ⋆ V2
−1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

s−1

¼ 1

2s−1
g2ðs−1Þ1 ð−1;−ðs− 2ÞÞVs

−ðs−1Þ

ð51Þ
while

g2ðs−1Þ2 ð−1;−ðs − 2ÞÞ ¼ g2ðs−1Þ3 ð−1;−ðs − 2ÞÞ ¼ 0: ð52Þ

That means we have found the contribution to the z̄…z̄
component multiplied with lowest derivative on ΛðsÞ due to
definition of trace for generators Vs

n [21]

trðVs
mVt

nÞ¼Ns
ð−1Þs−m−1

ð2s−2Þ! ΓðsþmÞΓðs−mÞδstδm;−n: ð53Þ

for

Ns ≡ 3 · 4s−3
ffiffiffi
π

p
q2s−4ΓðsÞ

ðλ2 − 1ÞΓðsþ 1
2
Þ ð1 − λÞs−1ð1þ λÞs−1 ð54Þ

and ðaÞn ¼ ΓðaþnÞ
ΓðaÞ ascending Pochhammer symbol. The

overall constant is set to

trðV2
1V

2
−1Þ ¼ −1: ð55Þ

Let us go back to ϕz̄…:z̄ component. The star product
ez̄ ⋆ … ⋆ ez̄ will contribute with 1

2s−1
eðs−1ÞρVs

−ðs−1Þ if we

consider as explained above the lowest derivative on ΛðsÞ.
We can denote this as

ez̄ ⋆…:⋆ ez̄ðV2
−1 ⋆…:⋆V2

−1Þ¼
1

2s−1
eðs−1ÞρVs

−ðs−1Þ: ð56Þ

The Ẽz̄s ¼ Ãz̄s −
˜̄Az̄s needs to be able to satisfy the con-

ditions of the trace (53) in star multiplication with
ez̄ ⋆ … ⋆ ez̄, the only HS generator that contributes is
Vs
s−1 generator. When we gauge the field Aμ̄s , dz̄ compo-

nent appears in dΛ while AAdS and ½AAdS;Λ�⋆ do not have

dz̄ component. The ˜̄Az̄s has dz̄ component that comes from
ĀAdS part and it is eρV2

−1dz̄. This however will not appear
with the right number of derivatives on Λ. Since we have
chosen Λ to be chiral and Λ̄ ¼ 0, that was the only

contribution from ˜̄Az̄.
Altogether, we can write ϕz̄…z̄ component for the ∂̄ΛðsÞ

derivative as

ϕz̄…:z̄j∂̄ΛðsÞ ¼ tr

�
1

2s−1
eðs−1ÞVs

−ðs−1Þ ⋆Vs
s−1e

ðs−1Þρ∂̄ΛðsÞðz; z̄Þ
�

ð57Þ

¼ 1

2s−1
e2ðs−1Þρ∂̄ΛðsÞNs: ð58Þ

Inserting the normalization Ns we obtain

ϕz̄…z̄j∂̄ΛðsÞ ¼ 1

2s−1
e2ðs−1Þρ∂̄ΛðsÞ

×
3 · 4

ffiffiffi
π

p
44−2sΓðsÞΓðsþ λÞΓðs − λÞ

ðλ2 − 1ÞΓðsþ 1
2
ÞΓð1 − λÞΓð1þ λÞ : ð59Þ

The expression ϕz̄…z̄ we want to compare with expres-
sion (37) for highest derivative on C1

0 and ∂̄ΛðsÞ. In the
computation of the vertex this would be a term

ϕz…zϕ∇z…∇zϕ ð60Þ
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for ϕz…z higher spin field with s indices and ϕ scalar field.
Raising indices contributes with a factor 2se−2sρ, so that the
field ϕz…z becomes

ϕz…z¼1

2
e−2ρ∂̄ΛðsÞ3 ·44−2s

ΓðsÞΓðsþλÞΓðs−λÞ
ðλ2−1ÞΓðsþ1

2
ÞΓð1−λÞΓð1þλÞ:

ð61Þ

Whenwetaketheratiowith□KGjhighest number of derivativesðδC1
0
Þj∂̄Λ ¼

ð−1Þs4e−sρ∂̄ΛðsÞ∂sC1
0 we get

ϕz…zj∂̄ΛðsÞ

□KGjhighest number of derivativesðδCÞ1
0
j∂̄ΛðsÞ

¼ ð−1Þs1
2
3

ffiffiffi
π

p 44−2sΓðsÞΓðsþλÞΓðs−λÞ
ðλ2−1ÞΓðsþ 1

2
ÞΓð1−λÞΓð1þλÞ : ð62Þ

which taking into account the normalisation gives the
coupling for the 00s three point function.

IV. CONCLUSION AND OUTLINE

We have considered the three-point coupling using
metriclike formation to express the higher spin field and
using the linearised Vasiliev’s equations of motion. The
obtained result can also be verified using the alternative
methods, for example following the procedure by [20].
The generalization of the result to higher point functions
would be nontrivial since in order to compute higher order
vertices, one would have to consider perturbations around
the background AdS field with higher spin fields up to that
required higher order.
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