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The sine-Gordon theory is generalized to include many scalar fields and several cosine terms. This is
similar to the world sheet description of a string propagating in a tachyon background. This model is
studied as a (boundary) 2D Euclidean field theory and also using an AdS3 holographic bulk dual. The beta
functions for the cosine vertex of this modified theory are first computed in the boundary using techniques
based on the exact RG. The beta functions are also computed holographically using position space and
momentum space techniques. The results are in agreement with each other and with earlier computations.
The cosine perturbation is of the form cos bX. Due to wave function renormalization the parameter b, and
thus the dimension of the cosine, get renormalized. The beta function for this parameter is thus directly
related to the anomalous dimension of the X field. We compute this beta function in position space. They
match with the earlier results in [P. Oak and B. Sathiapalan, Exact renormalization group and sine-Gordon
theory, J. High Energy Phys. 07 (2017) 103; J. High Energy Phys. 09 (2017) 77.].
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I. INTRODUCTION

The sine-Gordon model and its renormalization group
evolution is interesting from many viewpoints. It is related
to the X-Y model in two dimensions and gives the famous
Kosterlitz-Thouless flow. A lot of work on both has been
done before [1–31]. It is also intimately related to string
theory where a generalized version of the sine-Gordon
theory describes the bosonic string propagating in a
tachyonic background. There also the RG flow is interest-
ing because the β-function equations are related to the
tachyon equation of motion.
The form of the β functions for the sine-Gordonmodel are

well known and have been computed by both field theoretic
methods [1] long ago and more recently using the exact
renormalization group (ERG) theory [6]. An interesting
computation would be to reproduce them holographically in
order to understand better the holographic RG.
It has been shown in [2] that an ERG equation in a

boundary theory can be mapped to a scalar field action in
AdS space time. The main results are for a free theory.
Some suggestions for how the interactions should work out
were given there. To understand these issues better it is

important to understand RG equations in the boundary
theory and obtain them from some bulk computations. The
precise connection between these equations and what is
called “holographic RG”—which is really a radial evolu-
tion equation of the bulk theory—needs to be understood
better. This paper is a step towards that goal. There is
extensive literature on the AdS=CFT correspondence and
holographic RG [32–61].
The boundary theory is a free CFT perturbed by some

composite (cosine) operators. The bulk theory that repro-
duces the leading two and three point correlators is a cubic
theory. Of course there are any number of composite
operators with definite scaling dimension and so the bulk
theory should have a field of definite mass corresponding to
each of these—we are assuming that an AdS dual exists for
the free scalar theory in 2 dimensions. One can study the
RG flow of this theory and one should be able to reproduce
the β function of the cosine operator of the boundary
theory. We perform this calculation in this paper.
However, motivated by the string theory tachyon con-

nection we consider a generalized sine-Gordon theory. In
string theory, instead of one scalar field, there are D scalar
fields (D ¼ 26 for the bosonic string). The tachyon
perturbation is of the form

Z
d2z

Z
k
ϕðkÞeik⃗:X⃗:

ϕðkÞ is the tachyon field in momentum space. We can
consider a continuum of values of k⃗. For each value of k it
corresponds to a sine-Gordon-like theory. In [3] this theory
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was considered and shown to reproduce the leading non-
linear terms in the tachyon-dilaton system equations of
motion in string theory.
Holographic techniques in position space are well suited

for calculating correlation functions. In [4] a proper time
method was used to evaluate the tachyon equation of
motion starting from two point functions. We will use this
technique here. For near marginal operators the two point
function has the form

hOiðRÞOjð0Þi ¼
Gij

R4
þHij

R4
ln
R
a
:

Gij is the Zamoldchikov metric. A similar formula exists
for the open string boundary CFT, with R4 replaced by R2.
In [4] it was shown (in the context of the open string) that

Hijϕ
j ¼ 0

is the tachyon equation of motion to all orders in pertur-
bation theory. Furthermore, it was argued by Polyakov [7]
(for closed strings) that the equation of motion and β
function are related simply:

∂Γ½ϕ�
∂ϕi ¼ Gijβ

j:

This was also shown to all orders in perturbation theory
in the open string context in [4]. Thus we can conclude [5]
that

Hijϕ
j ¼ Gijβ

j:

Thus to extract the beta function we can compute the two
point function, corrected by interactions, and obtain the
leading logarithmic deviation from the 1

R4 scaling to obtain
the β function. In the position space holographic calcu-
lation we employ this technique.
Once the perturbation is turned on, it is no longer a CFT.

This should reflect itself in the bulk deviations from AdS.
This requires one taking into account the gravitational
backreaction. This back reaction in the bulk can be seen to
manifest itself in the field strength renormalization of the
boundary scalar fields. This gives us the β function for the
field strength renormalization. To compute this we look at
the fluctuations of the graviton about the AdS. This
contribution comes from another cubic vertex in the bulk.
This is also equivalent to the dilaton equation in the string
theory context.
In Sec. II we start with a brief overview of the sine-

Gordon model. We fix propagators and other normaliza-
tions. Then we give a brief summary of the calculation of
the β functions using ERG and give the leading term of the
β function, which has been computed in many ways in
earlier papers as mentioned above. Next we motivate and
detail the modification of the sine-Gordon model. Then we

compute the subleading term and extract the β function.
This concludes our boundary calculation.
In Sec. III we give a brief overview of AdS-CFT

computations using position space techniques. Then we
compute the leading and subleading terms for the β function
from the bulk. In Sec. IV we start by briefly introducing
computational techniques in AdS-CFT inmomentum space.
Then we calculate β functions using momentum space
techniques. All calculations are found to be in agreement.
In Sec. V, we compute the β function for the running of

the field strength renormalization. This calculation is done
in position space. This is found to be in agreement with
previous results.
In the Appendix Awe determine relative normalizations

between couplings in the bulk and boundary by comparing
the generating functions for two point functions computed
from both sides. To fix the value of the coupling strength of
the interaction vertex in the bulk we compare the generating
function for the three point correlator on both sides. Doing
this thus determines the bulk dual that reproduces correla-
tions of the composite operators calculated in the free theory.

II. THE ERG β FUNCTION CALCULATION OF
THE GENERALIZED SINE-GORDON MODEL

A. The generalized sine-Gordon model

The action for the generalized theory is

Sboundary ¼
1

4π

Z
d2x

�
ð∂μX⃗Þ:ð∂μX⃗Þ þm2X⃗:X⃗

þ F
að0Þ2 cosðb⃗1:X⃗Þ

þ G
að0Þ2 cosðb⃗2:X⃗Þ þ

H
að0Þ2 cosðb⃗3:X⃗Þ

�
ð2:1Þ

in Euclidean d ¼ 2. Powers of að0Þ, the UV cutoff, have
been added so that the engineering dimension of the action
is zero. The mass term acts like an IR regulator in the
propagator. In our calculations we cut off all integrals in the
IR by a moving scale; therefore, we encounter no IR
divergences. At marginality all b2i ¼ 4. This can be viewed
as a world sheet action for a string in the presence of a
background tachyon field with some definite momentum
[3]. The marginality condition is the “on-shell” condition
for the tachyon. In that case the metric, gMN , for the dot
product of bMbNgMN has Minkowski signature. By doing
this we have an additional freedom to tune the norm of the
vector to the required value by modifying the individual
components of the vector. This is important for the massless
and higher string modes, though it is not required for the
tachyon. From here on all bi’s and X’s are understood to be
vectors—bMi ; X

M. We will drop all arrows on the top and
suppress the vector index.
Wewant to calculate β functions for the flow of F and b1.

Due to wave function renormalization the parameter b1, and
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thus the dimension of the cosine, get renormalized. The β
function for this parameter is thus directly related to the
anomalous dimension of the X field. F gets corrections
from the self-interaction of the cosine and corrections from
higher order terms. From the string point of view, we are
computing scattering amplitudes for the zeroeth mode of
the closed strings with momenta bi at position XðxÞ, where
exp ibi:XðxÞ is the vertex operator for the tachyon.
exp ibiXðxÞ is a tachyon vertex operator for a distinct
closed string, each with momentum bi, where now instead
of b being continuous, as in the Introduction, we choose a
discrete set of bi ’s. We will choose b1 þ b2 þ b3 ¼ 0 for
reasons that will become clear. It has been shown in [1] that
the sine-Gordon theory is renormalizable with a well-
defined expansion in F and a parameter δ ¼ b2

4
− 1.

We want to reproduce the β functions of the sine-Gordon
model from the bulk. In the boundary theory we will look at
the action of the generalized sine-Gordon theory and use
that to compute the β function. In the cos b:X term, the dot
product is over an N dimensional vector space and as such
the b’s and the X’s all are vectors under some Lie group,
such as SO(N). With N scalar fields, the central charge c of
the free CFT is N. In AdS3 a large c expansion plays the
role of large N in the more familiar AdS5 case. We could do
an expansion of the boundary theory in thisN. Thus we can
invoke the AdS-CFT correspondence to, as explained in the
Introduction, compute the appropriate multipoint boundary
correlators from the bulk, to get the β functions. These
correlators diverge when some or all of these points
coincide. Thus, to extract the β function we compute the
leading logarithmic deviation from the 1

R4 scaling of these
correlators. In the position space holographic calculation
we employ this technique.
When b1 þ b2 þ b3 ¼ 0, the first nonvanishing higher

point correlator is the cubic one involving all three cosines.
From the point of view of the string theory tachyon, this
constraint on the bi is just momentum conservation. From
the CFT viewpoint, this comes from integrating over the
zero mode of XðxÞ. In that case the β function for F starts at
quadratic order

βF ≈OðGHÞ:

This is the cubic term in the tachyon equation of motion [3].
At higher orders the four point correlator is always nonzero
and there is a contribution of OðF3Þ. (This is the first
subleading term in the usual sine-Gordon model.)

B. The propagator, other preliminaries

We start with the kinetic term

SKinetic ¼
1

2α0

Z
d2x∂μX∂μX: ð2:2Þ

α0 is like the string tension. The propagator is

GMNðx1; x2Þ ¼ hXMðx1ÞXNðx2Þi ¼ −gMN α0

2π
ln
jx⃗1 − x⃗2j

L
:

ð2:3Þ
Set α0 ¼ 2π. L is an arbitrary scale to make the argument

of log dimensionless.
Therefore,

h∶cosb:Xðx1Þ∶∶cosb:Xðx2Þ∶i¼
1

2

�jx⃗1− x⃗2j
L

�
−b2

: ð2:4Þ

The mass dimension of a marginal operator in d ¼ 2 is 2.
Therefore, b2=2 ¼ 2. The β functions are a power series
expansion in the two couplings F and b⃗. F is a small
number, F → 0. b2 ¼ 4 is a large number; therefore we will
look for a suitable expansion parameter which is small.
Both parameters are renormalized. When F is nonzero, the
theory is interacting and there is a wave function renorm-
alization that causes δ also to run.

C. The ERG calculation

The ERG can be described by

ψðX; tÞ ¼ e−
1
2

R
d2x1d2x2Fx1x2t

δ
δXðx1Þ

δ
δXðx2ÞψðX; 0Þ: ð2:5Þ

Here Fx1x2t ¼ − 1
2
ln ðx1−x2Þ2þaðtÞ2

ðx1−x2Þ2það0Þ2 is the ERG high energy

“propagator.” t is the scale up to which the RG trans-
formations are done, að0Þ is the UV cutoff, aðtÞ is the IR
cutoff, and aðtÞ ¼ að0Þet, which implies t ¼ lnðaðtÞ=að0Þ,
the log of the ratio of the scales whose coefficient is the β
function.

ψðX; 0Þ ¼ e
−
R

d2x 1
4π½ F

að0Þ2 cosðb⃗1:X⃗Þþ
G

að0Þ2 cosðb⃗2:X⃗Þþ
H

að0Þ2 cosðb⃗3:X⃗Þ�

ð2:6Þ
is the unintegrated “partition function” of the theory and the

evolution operator e−
1
2

R
d2x1d2x2Fx1x2t

δ
δX1

δ
δX2 acting on ψðX; 0Þ

up to some scale t, gives ψðX; tÞ, thus implementing
the RG.
One can bring down appropriate powers of cosine from

the exponential and act on it with the ERG operator. The
calculation can then be organized as the ERG operator
acting on a power series

e−
1
2

R
d2x1d2x2Fx1x2t

δ
δXðx1Þ

δ
δXðx2Þ

�Z
d2x1
að0Þ2 ða1Þ cos bXðx1Þ

þ
Z

d2x1
að0Þ2

d2x2
að0Þ2 ða2Þ cos bXðx1Þ cos bXðx2Þ

þ
Z

d2x1
að0Þ2

d2x2
að0Þ2

d2x3
að0Þ2 ða3Þ cos bXðx1Þ

× cos bXðx2Þ cos bXðx3Þ
�
; ð2:7Þ
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the ai’s, most generally, being the different corresponding
coefficients. We look for corrections to cos bX which is a
term of the form

ðc1þ c2þ c3Þt
Z

d2x1
aðtÞ2 cos bXðx1Þ; ð2:8Þ

where c1, c2, and c3 are the coefficients obtained after the
ERG operator acts on the power series term by term. The
final expression can be reorganized such that ðc1þ c2þ
c3Þt is the correction to the coupling(the above equation)
and its derivative with respect to t is the β function. Further
details can be found in [6,62].
For our case, to calculate the leading contribution we

bring down one power of F cos b1X and apply the ERG
operator to it.

D. Leading term in βF
The ERG operator acting on the interaction term gives

Z
d2x1
að0Þ2

F
4π

exp

�
−
1

2

Z
d2xid2xjFxixjt

δ2

δXðxiÞδXðxjÞ
�

× cosðbXðx1ÞÞ:

Simplifying, we get

Z
d2x1
aðtÞ2

F
4π

ð1 − 2δtÞ cosðbXðx1ÞÞ: ð2:9Þ

The leading term in the β function for F is

βF ¼ −2δF: ð2:10Þ

δ ¼ b2
4
− 1 is the other small expansion parameter in

terms of which we will calculate β functions. We refer the
reader to [6] for further details.

E. The subleading term

To calculate the subleading contribution we will bring
down one power of G

að0Þ2 cos b2:XðxÞ and H
að0Þ2 cos b3:XðxÞ

each:

GH
ð4πÞ2

Z
d2x1d2x2
að0Þ4 exp

�
−
1

2

Z
d2xid2xjFxixjt

δ2

δXðxiÞδXðxjÞ
�

×cosb2Xðx1Þcosb3Xðx2Þ ð2:11Þ

¼ GH
4

t
1

ð4πÞ
Z

d2x
aðtÞ2 cos b1XðxÞ: ð2:12Þ

Refer to Appendix B for further details.

F. The β function

We can organize the calculation as follows:

�
Fð1 − 2δtÞ þGH

4
t

�
1

4π

Z
d2x1
aðtÞ2 cosðbXðx1ÞÞ: ð2:13Þ

Therefore, the full β function, the t derivative of the
coefficient of the above expression, is

βF ¼ −
�
2Fδ −

GH
4

�
: ð2:14Þ

III. POSITION SPACE CALCULATION
OF THE β FUNCTION FROM THE BULK

A. A brief overview of AdS=CFT and
the β function calculation

The AdS metric in the Poincare patch is

ds2 ¼ 1

z2
½dz2 þ dx⃗2�: ð3:1Þ

x⃗ is Euclidean.
According to the AdS-CFT correspondence

Z
DΦ expð−S½Φ�Þ ¼

�
exp

�
−
Z
∂AdS

ϕ0O

��
ð3:2Þ

which to leading order is

Sbulk½ϕ0� ¼ −WQFT½ϕ0� ð3:3Þ

where Sbulk½ϕ0� is the bulk action and WQFT½ϕ0� is the
connected generating functional of the boundary theory.
The correlation functions from the bulk are calculated by

taking variations with respect to ϕ0 on both sides. A general
n point correlation function is given by

hO1ðx1Þ…OnðxnÞi ¼ ð−1Þnþ1
δnSbulk

δϕ0ðx1Þ…δϕ0ðxnÞ
����
ϕ0¼0

:

ð3:4Þ

To compute β functions from the bulk we start with the
bulk action with the ϕχγ term,

Sbulk ¼
Z

d3x
ffiffiffi
g

p �
1

2
ð∂ϕÞ2þ1

2
ðmϕϕÞ2þ

1

2
ð∂χÞ2þ1

2
ðmχχÞ2

þ1

2
ð∂γÞ2þ1

2
ðmγγÞ2−λ3ϕγχ

�
: ð3:5Þ

The ϕ, γ, and χ correspond to cos b1X, cos b2X, and
cos b3X, respectively.
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The free equation of motion is

1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
gμν∂νϕÞ −m2ϕ ¼ 0 ð3:6Þ

with boundary conditions ϕðz0; z⃗Þ ¼ 0 for z → ∞ and
ϕðz0; z⃗Þ → zd−Δ0 ϕ0ðz⃗Þ as z0 → 0.
The normalized bulk to boundary Green’s function is

KΔðz0; z⃗; x⃗Þ ¼
ΓðΔÞ

πd=2ΓðΔ − d=2Þ
�

z0
z20 þ ðz⃗ − x⃗Þ2

�
Δ
: ð3:7Þ

The solution to (3.6) is

ϕðz0; z⃗Þ ¼
ΓðΔÞ

πd=2ΓðΔ − d=2Þ
Z

d2x
�

z0
z20 þ ðz⃗ − x⃗Þ2

�
Δ
ϕ0ðx⃗Þ:

ð3:8Þ

To extract the β function we first regulate the generating
function for the correlators of the boundary theory to be
calculated from the bulk by inserting x0 which acts as the
UV cutoff. Then we compute the generating function for
the two point function with one particle off shell and then,
as was described in the Introduction, obtain the leading
logarithmic deviation from the 1

R4 scaling which comes, at
the leading order, from taking the particle off shell. Then
we extract terms which are logarithmically divergent in
terms of x0 which acts as the UV scale.

B. Leading order

The bulk action for the free massive scalar is

S ¼
Z

ddþ1y
ffiffiffi
g

p ��
1

2
gμν∂μϕðyÞ∂νϕðyÞ þ

1

2
m2ϕ2ðyÞ

��
:

ð3:9Þ

Evaluating the free action on shell we get,

1

2
ϕ2
0

Z
ddx1ddx3ddydy0

× ½∂μðy−dþ1
0 KΔðy0; y⃗; x⃗1Þ∂μKΔðy0; y⃗; x⃗3ÞÞ�: ð3:10Þ

Choose the outward pointing normal along the radial
direction and by the Gauss’s divergence theorem, and
calculate the surface integral,

S ¼ −
1

2
ϕ2
0

Z
ddx1ddx3ddy

× ½y−dþ1
0 KΔðy0; y⃗; x⃗1Þ∂0KΔðy0; y⃗; x⃗3Þ�jy0¼ϵ ð3:11Þ

where ϵ → 0; therefore, y0 is close to the boundary, y0 → 0.
We identify y0 with x0, the UV regulator. The minus sign

comes from choosing the convention for the outward
pointing normal nμ ¼ ð−ϵ; 0Þ. Therefore, using

lim
x0→0

xΔ−d0 KΔðx0; y⃗; x⃗iÞ → δðdÞðy⃗ − x⃗iÞ ð3:12Þ

S ¼ −
1

2
ϕ2
0CΔ

Z
ddx1ddx3ddy

�
ΔδðdÞðy⃗ − x⃗1Þ

ðx20 þ ðy⃗ − x⃗3ÞÞΔ

−
ð2ΔÞx20δðdÞðy⃗ − x⃗1Þ
ðx20 þ ðy⃗ − x⃗3ÞÞΔþ1

�
: ð3:13Þ

This is the action for the free massive term. A general
n-point correlation function is given by

hO1ðx1Þ…OnðxnÞi ¼ ð−1Þnþ1
δnSbulk

δϕ0ðx1Þ…δϕ0ðxnÞ
����
ϕ0¼0

:

ð3:14Þ

Therefore, the generating function of a two point
function will have another minus. The two point functions
from the bulk and the boundary now match. The generating
function for the two point function Fig. 1 is

S2¼−ð−1Þ1
2
ϕ2
0CΔ

Z
ddx1ddx3

×

�
Δ

ðx20þðx⃗1− x⃗3ÞÞΔ
−

ð2ΔÞx20
ðx20þðx⃗1− x⃗3ÞÞΔþ1

�
: ð3:15Þ

The log divergent term comes from the first term and is
retained. The second term is x20 suppressed. In the limit

x0 → 0, it vanishes. We drop this term. CΔi
¼ ΓðΔiÞ

πd=2ΓðΔi−d=2Þ;
therefore,

S2 ¼
ΓðΔþ 1Þ

πd=2ΓðΔ − d=2Þ
Z

ddx1ddx3
1

ðx20 þ ðx⃗1 − x⃗3Þ2ÞΔ
ϕ2
0

2!
:

ð3:16Þ

FIG. 1. The leading order Witten diagram.
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This is the generating functional for the two point function
with theUV regulator x0. Setting d ¼ 2,Δ ¼ 2ð1þ δÞ, x1 to
zero, and x3 to R, R → ∞, the expression becomes

ϕ2
0

2!
πΔðΔ − 1Þ

Z
d

�
x21
x20

�
d

�
x23
x20

�
1

ððx20 þ R2Þ=x20Þ2ð1þδÞ :

ð3:17Þ

Multiply and divide by R and expand the denominator
for δ ≪ 1 such that ðR=x0Þ−4δ ¼ 1–4δ logR=x0, we get

ϕ2
0π

Z
d

�
x21
R2

�
d

�
x23
R2

��
1 − 4δ log

R
x0

�
: ð3:18Þ

We will extract the leading term of the β function
from this.

C. Order ϕγχ

The β function is the change in the couplings of the theory
under scaling transformations. To determine the deviation
from the canonical scaling dimension we look at the
behavior of the two point function slightly away from
marginality and determine the leading termof the β function.
This was the calculation we did above. To calculate the
subleading termwe start with a two point function and insert
another operator; therefore, now we have a three point
function Fig. 2, and we look for the log deviation from 1=R4

scaling for this object. We first calculate the generating
function for the three point function. To do this we start with

S3 ¼ −λ3
Z

ddþ1y
ffiffiffi
g

p
ϕðyÞγðyÞχðyÞ ð3:19Þ

where

ϕðzÞ ¼ ϕðz0; z⃗Þ ¼
Z

ddxKΔðz0; z⃗; x⃗Þϕ0ðx⃗Þ ð3:20Þ

and substitute this for ϕðyÞ, γðyÞ, χðyÞ in S3. Hereffiffiffi
g

p ¼ y−ðdþ1Þ
0 , d ¼ 2, CΔi

¼ ΓðΔiÞ
πd=2ΓðΔi−d=2Þ. ϕ0, γ0, and χ0

are the couplings of the boundary theory (boundary values of
the bulk fields; they have no coordinate dependence). This
becomes (see details in Appendix C)

S3 ¼ −λ3πϕ0γ0χ0

Z
d

�
x21
R2

�
d

�
x23
R2

�
log

R
x0

: ð3:21Þ

D. The beta function

The full generating function can be organized as

S ¼ S2 þ S3 ð3:22Þ

¼ π

Z
dx21dx

2
3

�
ϕ2
0 − 2ϕ0

�
2ϕ0δþ

λ3γ0χ0
2

�
log

R
x0

�
:

ð3:23Þ

Substituting the relations between ϕ0, γ0, χ0 and F, G,H
[(A4), (A5), (A6)] and the value of λ3 (A10) we get

¼ 1

64

Z
dx21dx

2
3

�
F2 − 2F

�
2δF −

GH
4

�
log

R
x0

�
: ð3:24Þ

We have calculated the correction to F2. To get the β
function we want to isolate the change in F. To do this we
note

F2 → F02 ¼ F2 þ δðF2Þ ¼ F2 þ 2FδðFÞ ð3:25Þ

F2 þ ð−4δF2 þ FGH=2Þ log R
x0

¼ F2 − 2Fð2δF −GH=4Þ log R
x0

ð3:26Þ

and comparing the above two expressions we see

δðFÞ ¼ −
�
2δF −

GH
4

�
log

R
x0

: ð3:27Þ

In the Poincare patch (3.1) a physical distance s between
two points is s ¼ scoord=z0, where scoord is the coordinate
distance between the points at the boundary at z ¼ z0. x0 is
the physical UV cutoff scale on the boundary where the
metric is δμν. On the boundary at z ¼ z0, the coordinate
distance becomes R ¼ x0z0. If one identifies this with
aðtÞ ¼ að0Þet, the moving IR scale of the boundary theory,
and one further identifies x0 with a(0), then one can
naturally identify the boundary position z0 with et and
then moving along the z direction is the same as scaling
transformations of the boundary theory, thus implying that
moving along the z direction is the same as calculating RG
transformations. Therefore log R

x0
gets identified with t.

Then the t derivative of (3.27) gives us the β functionFIG. 2. Witten diagram for the subleading contribution.
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βF ¼ −
�
2δF −

GH
4

�
ð3:28Þ

which matches our result from the boundary calcula-
tion (2.14).

IV. BETA FUNCTION COMPUTATION
USING MOMENTUM SPACE TECHNIQUES

FROM THE BULK

We will now compute the results obtained in earlier
sections using momentum space techniques. This method is
more closely related to the conventional way of obtaining β
functions, namely, picking out the log divergence, intro-
ducing a renormalization scale, and extracting the β
function from the derivative with respect to the scale.
Although using the previous approach, one can do com-
putations for a larger class of bulk vertices, doing the
calculation by this method is much simpler in some of the
cases of interest. We will start with a brief introduction to
AdS-CFT computations in momentum space.

A. A brief summary of AdS=CFT from the
momentum space perspective

The bulk action with the termΦχγ is (here we relabel the
field ϕ from earlier to Φ)

Sbulk ¼
Z

d3x
ffiffiffi
g

p �
1

2
ð∂ΦÞ2þ1

2
ðmΦΦÞ2þ1

2
ð∂χÞ2

þ1

2
ðmχχÞ2þ

1

2
ð∂γÞ2þ1

2
ðmγγÞ2−λ3Φγχ

�
: ð4:1Þ

The equation of motion is

ð−□G þm2ÞΦ ¼ λ3γχ: ð4:2Þ
Φ can be expanded in powers of λ

Φ ¼ Φ0 þ λ3Φ1 þ � � � ; ð4:3Þ
Φ0 ¼ ϕ00 þ z2ϕ02 þ z4ϕ04 þ � � � ; ð4:4Þ

Φ1 ¼ ϕ10 þ z2ϕ12 þ z4ϕ14 þ � � � : ð4:5Þ

γ and χ have similar expansions.
The equations of motion can be solved perturbatively

order by order in λ3 m

ð−□G þm2ÞΦ0 ¼ 0 ð4:6Þ
and

ð−□G þm2ÞΦ1 ¼ γχ: ð4:7Þ

We fourier transform along all directions parallel to the
boundary at z ¼ 0. We write the Fourier transform of
Φðz; x⃗Þ as Φðz; p⃗Þ. The free equation of motion becomes

Ld;Δðz; pÞΦðz; pÞ ¼ 0 ð4:8Þ

where

Ld;Δðz; pÞ ¼ −z2∂2
z þ ðd − 1Þz∂z þm2 þ z2p2: ð4:9Þ

The bulk to boundary propagator is given by

Kd;Δðz; pÞ ¼
2
d
2
−Δþ1

ΓðΔ − d
2
Þp

Δ−d
2zd=2KΔ−d

2
ðpzÞ: ð4:10Þ

The bulk to bulk propagator is

Gd;Δðz; p; ζÞ ¼ ðzζÞd=2IΔ−d=2ðpzÞKΔ−d=2ðpζÞ ð4:11Þ

for z ≤ ζ
and

Gd;Δðz; p; ζÞ ¼ ðzζÞd=2IΔ−d=2ðpζÞKΔ−d=2ðpzÞ ð4:12Þ

for z ≥ ζ
We saw earlier that for small λ3, Φ can be expanded in

powers of λ3

Φ ¼ Φ0 þ λ3Φ1 þ � � � : ð4:13Þ

Φ has a near boundary(small z) expansion,

Φ ¼ ðϕ00 þ λ3ϕ10 þOðλ33ÞÞ
þ z2ðϕ02 þ λ3ϕ12 þOðλ33ÞÞ þOðz3Þ: ð4:14Þ

Therefore,

ϕ0 ¼ ϕ00 þ λ3ϕ10 þ λ23ϕ20 þ � � � ð4:15Þ

should be considered the full source, each of the ϕi0
sourcing Φi. The solutions to the equations of motion
order by order in λ3 are

Φ0ðz; p⃗Þ ¼ Kd;Δðz; pÞϕ0: ð4:16Þ

To begin with we turn off the higher order terms in the
source ϕ0. We only keep the leading term ϕ00 in Φ0 here.
Later we will see that the higher orders will have to be
turned on.
The solution to the second equation is

Φ1¼
Z

ddk1ddk2
ð2πÞ2d γ0χ0δ

ðdÞðk1þk2þk3Þ

×
Z

∞

0

dζ
ζdþ1

Gd;Δðz;k1;ζÞKd;Δðζ;k2ÞKd;Δðk3;ζÞ: ð4:17Þ

Further details can be found in [37].
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B. Leading order

For d ¼ 2 and Δ ¼ 2þ 2δ, the solution to the free
equation of motion is

Φ0 ¼ p1þ2δzK1þ2δðpzÞϕ: ð4:18Þ

We expand about z ¼ 0 and then expand for δ ≪ 1
and get

Φ0 ¼ ð1 − 2δ log zÞϕ0: ð4:19Þ

At z ¼ x0 where x0 → 0, −2δϕ0 log x0 is divergent.
Therefore ϕ0 would have to change to

ϕ0 → ϕ0 þ 2δϕ0 log
x0
R

ð4:20Þ

to cancel the divergent term. Here R is an IR scale
introduced on dimensional grounds. Thus we see that a
change in the canonical scaling dimension of Φ0, induces a
flow in ϕ0.

C. Order ϕγχ

To get the contribution at this order we look at the
solution of Φ1.
We want to solve the integral

Iδ;<d¼2;Δ¼2 ¼
Z

z

x0

dζ
ζdþ1

Gd;Δðz; p1; ζÞKd;Δðζ; p2ÞKd;Δðp3; ζÞ:

ð4:21Þ

In the near boundary region ζ ≤ z and x0 is the UV
cutoff,

Φ1 ¼ γ0χ0

Z
z

x0

dζ
ζdþ1

ðzζÞd=2IΔ1−d=2ðp1ζÞKΔ1−d=2ðp1zÞ
2d=2−Δ2þ1

ΓðΔ2 − d=2Þp
Δ2−d=2
2 ζd=2KΔ2−d=2ðp2ζÞ

×
2d=2−Δ3þ1

ΓðΔ3 − d=2Þp
Δ3−d=2
3 ζd=2KΔ3−d=2ðp3ζÞ: ð4:22Þ

Since the δ has no effect at this order all Δ’s are set to 2.
The log divergent part of Φ1 is

1

2
γ0χ0p1zK1ðp1zÞð− log x0Þ: ð4:23Þ

We can expand Φ in powers of λ3. Therefore we can
write the log divergent terms of Φ as

Φ ¼ Φ0 þ λ3
1

2
γ0χ0p1zK1ðp1zÞð− log x0Þ: ð4:24Þ

This diverges as x0 → 0. p1zK1ðp1zÞ is the solution to
the leading order equation of motionΦ0; therefore, to make
the full Φ finite we can turn on a subleading Oðλ3Þ term in
the expansion of the source ϕ0 in Φ0 (as mentioned before
we are turning on subleading coefficients),

ϕ0 ¼ ϕ00 þ λ3ϕ10 þ � � � : ð4:25Þ
The modified source ϕ0 is

ϕ0 ¼ ð1þ 2δ log x0Þϕ00 þ λ3ϕ10: ð4:26Þ

We set

ϕ10 ¼
1

2
γ0χ0ðlog x0Þ: ð4:27Þ

The modified source becomes

ϕ0 ¼
�
1þ 2δ log

x0
R

�
ϕ0 þ λ3

1

2
γ0χ0

�
log

x0
R

�
ð4:28Þ

where we have again introduced the IR length scale R.

D. The β function

As before, we make the identification log R
x0
→ t, and

substitute the relations between ϕ0, γ0, χ0 and F, G, H
[(A4), (A5), (A6)] and the value of λ3 (A10). Therefore we
get the β function

βF ¼ −
�
2δF −

GH
4

�
ð4:29Þ

which matches all earlier results.

V. BETA FUNCTION FOR δ

A. Overview of the calculation

As mentioned before, b multiplies X inside the cosine
and therefore can be interpreted as the field strength
renormalization. b2 is close to 4. This is large compared
to F which is close to zero. It was mentioned that the β
functions of the sine-Gordon model are a power series
expansion in two parameters; δ ¼ b2=4 − 1 is the other
appropriate small parameter in which the expansion can be
carried out. From the perspective of the boundary theory
the correction to this modified coupling δ comes from two
cosines combining together to give ð∂XÞ2. This is the
anomalous dimension and gives this β function. This has
been calculated before in an earlier paper [6].
From the bulk theory the leading contribution to the β

function has to come from a vertex of the type gμν∂μϕ∂νϕ
Fig. 3 so that we have a structure similar to the boundary
calculation and we can see that the two ϕ’s correct the gμν
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which is associated to the ð∂XÞ2 term. Next we note that the
boundary kinetic term involves only diagonal components
and therefore we can attempt to model the graviton by a
dilaton which takes into account only the diagonal degrees

of freedom and is a scalar, thus simplifying the problem
enormously.

B. Fixing the coupling of the graviton-scalar-scalar
vertex in the bulk

To compute the graviton-scalar-scalar vertex we want to
look at the fluctuation about AdS,

gμν ¼ ḡμν þ hμν: ð5:1Þ

ḡμν is AdS. We want to simplify this by modeling the
graviton as a dilaton. Therefore,

gμν ¼ e−λσσ ḡμν ¼ ð1 − λσσÞḡμν: ð5:2Þ

Therefore the kinetic term 1
2
gμν∂μϕ∂νϕ becomes

1

2
gμν∂μϕ∂νϕ ¼ 1

2
ð1 − λσσÞḡμν∂μϕ∂νϕ: ð5:3Þ

We treat the dilaton as a massive scalar withmσ → 0; the
full action therefore becomes

Sbulk ¼
Z

d3x
ffiffiffi
g

p �
1

2
ð∂ϕÞ2 þ 1

2
ðmϕϕÞ2 þ

1

2
ð∂χÞ2 þ 1

2
ðmχχÞ2

þ 1

2
ð∂γÞ2 þ 1

2
ðmγγÞ2 − λ3ϕγχ −

1

2
λσσḡμν∂μϕ∂νϕþ 1

2
ð∂σÞ2 þ 1

2
m2

σσ
2

�
: ð5:4Þ

The kinetic term in the boundary action is modified as

Sboundary ¼
1

4π

Z
d2x½ð1þ ξ0Þð∂μX⃗Þ:ð∂μX⃗Þ

þm2X⃗:X⃗ þ F
að0Þ2 cosðb⃗1:X⃗Þ ð5:5Þ

þ G
að0Þ2 cosðb⃗2:X⃗Þ þ

H
að0Þ2 cosðb⃗3:X⃗Þ�: ð5:6Þ

ξ0 is related to the bulk field σ whose boundary value σ0
is equal to ξ0 up to normalization. We vary the action with
respect to ξ0 to compute various correlators.

C. The 3-point correlator calculation

To compute the β function we want to calculate the
generating functional for the three point function as before,
but this time for the vertex − 1

2
λσσḡμν∂μϕ∂νϕ. To do this we

again start with

Sσ3 ¼ −
1

2
λσ

Z
ddþ1y

ffiffiffi
g

p
ḡμν∂μϕðyÞ∂νϕðyÞσðyÞ: ð5:7Þ

We, as before, put in the expressions for the bulk to
boundary propagators for all the fields and simplify. See
details in Appendix D. We get

Sσ3 ¼ −2πð1þ δÞλσσ0ϕ2
0

Z
d

�
x21
R2

�
d

�
x23
R2

�
log

R
x0

×

�
ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−d

2
Þ

ΓðΔ2ÞΓðΔ3Þ

−
ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−dþ2

2
Þ

ΓðΔ2ÞΓðΔ3 þ 1Þ
�
: ð5:8Þ

Sσ3 is nonzero off shell but vanishes on shell where the
square bracket is zero. This is resolved when λσ is fixed
[(A27) and the comment thereafter].
Putting in all the relative normalizations [(A4), (A17)]

and the value of λσ, we get

Sσ3 ¼
−F2ð1þ δÞ

8

ξ0
4π

Z
d2
�
x1
R

�
d

�
x23
R2

�
log

R
x0

: ð5:9Þ

FIG. 3. Witten diagram for the graviton-scalar-scalar vertex for
the β function of the field strength renormalization.
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D. The β function

The kinetic term in the boundary theory, whose correc-
tion we are computing is

1þ ξ0
4π

Z
d2xð∂XðxÞÞ2: ð5:10Þ

Comparing this with the expression for Sσ3 above and as
before, making the identification log R

x0
→ t, we immedi-

ately see the β function (the t-derivative) is

βδ ¼
−F2ð1þ δÞ

8
ð5:11Þ

which matches 5.2.46 in [6]. This computation is correct up
to OðF2δÞ. There are higher order corrections to it. The
computation for the boundary theory using the usual field
theoretic approach has been done by Amit et al. [1]. In their
paper (Sec. VII) they have a detailed analysis of the higher
order corrections. These can be easily obtained by an order
by order double expansion in F and δ. Therefore the next
term would be OðF3Þ.

VI. SUMMARY AND CONCLUSIONS

In this paper the β function of a generalized sine-Gordon
theory has been calculated using a bulk holographic dual.
The boundary theory is a free theory deformed by a term
F cos b:X. The anomalous dimension is proportional to F
and goes to zero as F → 0. The bulk theory is dual to a
free field theory in the boundary for F ¼ 0. The bulk fields
(in addition to the graviton) introduced correspond to the
cosine perturbation. The calculations have been done
both in position space as well as momentum space. The
boundary calculation is also done and it is shown that the
results agree.
To compute the β functions, two and three point

correlation functions were computed from the bulk. We
are in fact constructing the bulk dual of the free theory
and including just those bulk fields and interaction
vertices that are necessary to reproduce correlators of
some specific boundary operators (cos b:X) which would
give us the β functions. The correlators computed from
the bulk match the boundary calculations up to nor-
malization. These normalizations and the bulk interac-
tion vertex coupling were further fixed by comparing the
two and three point correlators on both sides, which is
done in the Appendix A. The bulk theory was con-
structed in such a way as to reproduce the correlators in
the boundary theory; therefore, agreement between
results was expected.
The main motivation for doing this calculation is to

understand the results of [2] better when interactions are

involved. There the main example used was the free
scalar theory and in this situation interactions are between
composite operators. In 1þ1 dimension, the cosine is one
of the most interesting example of such operators and
besides being related to string theory, has applications in
1þ 1 dimensional condensed matter systems, such as the
X-Y model [1].
The model is also motivated by the first quantized

description of a string propagating in a tachyon back-
ground. The β function gives the equation of motion for the
tachyon. The model also has a wave function renormaliza-
tion which results in a β function for the string theory
dilaton coupling. The boundary calculation in this paper
uses techniques derived from the exact RG, as used in [6]
for the usual sine-Gordon model. The main idea for the
bulk calculation in position space is to identify the β
function with the coefficient of a logarithmic deviation
from the canonical scaling of a two point function. This is
based on the technique described in [4,7] and is suitable for
holographic computations. In the bulk momentum space
calculation the technique is to first solve the fourier
transformed equations of motion order by order in the
coupling of the bulk interaction vertex and then identify the
log divergent terms in the solutions as described in [35]. All
the results agree to the order calculated.
There are many further problems that need to be

addressed. One technically interesting issue of course is
to go to higher orders. This should constrain the bulk dual
much more. The precise bulk dual of free scalar theory
considered here, in particular the connection to higher spin
theory in AdS3 needs to be understood better. It would be
interesting if one can say something about the IR fixed
point of this theory by studying the bulk. One should
remember that the underlying theory in the boundary is a
free scalar theory. The interactions in the bulk involve fields
dual to composite operators. There are an infinite number
of them—they can be identified with the momentum modes
of the string theory tachyon. One expects that there should
be a corresponding simple way to package these in the bulk
also. This needs to be understood better. Finally, regarding
the ERG description of composite operators and also the
map to a holographic theory in the presence of these
operators, there are many complications. These can be
studied in a controlled way in this model. We hope to return
to these questions.

VII. FUTURE DIRECTIONS

Wewould like to compute the aforementioned four point
Witten diagrams and reproduce the β functions for the sine-
Gordon model.
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APPENDIX A: FIXING RELATIVE
NORMALIZATION OF THE BULK
AND THE BOUNDARY COUPLINGS

AND COMPUTING λ3

1. Fixing ϕ0, γ0, χ 0 and F, G, H
relative normalizations

To compute the relative normalization between the bulk
and the boundary for the couplings ϕ0 and F we compare
the generating functionals of the two point functions
calculated for both sides.
The generating function for the two point function for the

boundary theory is

GF2 ¼
A2

4

F2

ð4πÞ2 ; ðA1Þ

A2 ¼
Z

d2x1d2x2
1

ðx⃗1 − x⃗2Þ2Δ
: ðA2Þ

The generating function for the two point function for the
bulk is

S2 ¼
2

π
A2ϕ

2
0=ð2!Þ: ðA3Þ

Comparing S2 and GF2 we get

ϕ0 ¼
1

8
ffiffiffi
π

p F: ðA4Þ

Similarly,

γ0 ¼
1

8
ffiffiffi
π

p G; ðA5Þ

χ0 ¼
1

8
ffiffiffi
π

p H: ðA6Þ

2. Computing λ3
To compute λ3 we compare the generating function for

the three point function of the boundary theory and for the
bulk theory.
The generating function for the three point function of

the boundary theory is

GF3 ¼
A3

4

FGH
ð4πÞ3 ; ðA7Þ

A3¼
Z

d2x1d2x2d2x3
1

ðx⃗1− x⃗2ÞΔ123ðx⃗2− x⃗3ÞΔ231ðx⃗3− x⃗1ÞΔ312
:

ðA8Þ

Here Δijk ¼ Δi þ Δj − Δk.

For the bulk theory

S3 ¼ −
λ3
2π2

A3ϕ0γ0χ0: ðA9Þ

Comparing GF3 and S3 we get

λ3 ¼ −4ðπÞ1=2: ðA10Þ

3. Relative normalization between σ0 and ξ0
To fix this we calculate the generating function of

hð∂Xðx1ÞÞ2ð∂Xðx2ÞÞ2i from the bulk and boundary and
compare them.
Bulk:

GFσ2
0
¼ 1

2
σ20

ΓðΔþ 1Þ
πd=2ΓðΔ − d=2Þ

Z
d2x1d2x2

1

x2Δ12
; ðA11Þ

GFσ2
0
¼ σ20

π
A2: ðA12Þ

Boundary:

GFξ2
0
¼ 1

2!

ξ20
ð4πÞ2

Z
d2x1d2x2hð∂Xðx1ÞÞ2ð∂Xðx2ÞÞ2i ðA13Þ

hð∂Xðx1ÞÞ2ð∂Xðx2ÞÞ2i ¼ 2

x412
: ðA14Þ

Therefore,

GFξ2
0
¼ 1

2!

ξ20
ð4πÞ2

Z
d2x1d2x2

2

x412
; ðA15Þ

GFξ2
0
¼ ξ20

ð4πÞ2 A2: ðA16Þ

Comparing,

σ0 ¼
ξ0

4
ffiffiffi
π

p : ðA17Þ

4. Fixing λσ
To fix λσ we will compute hð∂Xðx1ÞÞ2 cos bXðx2Þ×

cos bXðx3Þi from the bulk and the boundary and com-
pare them.
Bulk: From (D9),

Sσ3 ¼
−λσ
π2

σ0ϕ
2
0ð1þ δÞA3½� ðA18Þ

where ½� ¼
h
ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−d

2
Þ

ΓðΔ2ÞΓðΔ3Þ − ΓðΔ2þΔ3−Δ1
2

ÞΓðΔ2þΔ3þΔ1−dþ2

2
Þ

ΓðΔ2ÞΓðΔ3þ1Þ
i
.
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Boundary:Wewant to compute hð∂Xðx1ÞÞ2 cos bXðx2Þ×
cos bXðx3Þi
hð∂Xðx1ÞÞ2 cos bXðx2Þ cos bXðx3Þinonvanishing

¼ 2=4hð∂Xðx1ÞÞ2 exp ibXðx2Þ exp−ibXðx3Þi: ðA19Þ
We change to complex coordinates: ð∂Xðx1ÞÞ2 →

4∂X1∂̄X1. We get

2h∂X1∂̄X1 exp ibXðx2Þ exp−ibXðx3Þi: ðA20Þ
We consider the product exp iα∂X1 exp iβ∂̄X1, where α

and β are close to zero”

hexp iα∂X1 exp iβ∂̄X1 exp ibXðx2Þ exp−ibXðx3Þi ðA21Þ

¼ −αβh∂X1∂̄X1 exp ibXðx2Þ exp−ibXðx3Þi ðA22Þ

is the part to linear order in αβ. The coefficient of the
−αβ=2 term will give us the correlator (A19).
Now,

hexp iα∂X1 exp iβ∂̄X1 exp ibXðx2Þ exp−ibXðx3Þi ðA23Þ

¼ exp

�
1

4

Z
d2zd2z0ðδðz − z1Þδðz̄ − z̄1Þα∂ þ δðz − z1Þδðz̄ − z̄1Þβ∂̄ þ δðz − z1Þδðz̄ − z̄1Þbþ δðz − z1Þδðz̄ − z̄1Þð−bÞÞ

× ðlnðz − z0Þðz̄ − z̄0ÞÞðδðz − z1Þδðz̄ − z̄1Þα∂ þ δðz − z1Þδðz̄ − z̄1Þβ∂̄
þ δðz0 − z1Þδðz̄0 − z̄1Þbþ δðz0 − z1Þδðz̄0 − z̄1Þð−bÞÞ

�
: ðA24Þ

For b2 ¼ 4ð1þ δÞ the expression becomes

ð−αβ=2Þ−2b
2

4

1

z212z
2
13z

2
23

: ðA25Þ

Therefore, the generating function from the boundary
theory is

GFσ3 ¼
1

2!

−2ξ0F2ð1þ δÞ
ð4πÞ3 A3 ðA26Þ

Comparing (A18) and (A26),

λσ ¼
4

ffiffiffi
π

p
�
ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−d

2
Þ

ΓðΔ2ÞΓðΔ3Þ − ΓðΔ2þΔ3−Δ1
2

ÞΓðΔ2þΔ3þΔ1−dþ2

2
Þ

ΓðΔ2ÞΓðΔ3þ1Þ

�
:

ðA27Þ
Thus the square brackets cancel out in Sσ3. The correlator

remains finite on shell.

APPENDIX B: THE SUBLEADING TERM FOR βF
USING ERG ON THE BOUNDARY

The action of the evolution operator is

Z
d2x1d2x2Fx1x2t

δ2

δX1δX2

�
eib3X3 þ e−ib3X3

2

�

×

�
eib2X4 þ e−ib2X4

2

�
: ðB1Þ

Here Xi means XðxiÞ. Keeping terms that contribute
we get,

Z
d2x1d2x2Fx1x2t

δ2

δX1δX2

�
e−ib3X3−ib2X4 þ eib3X3þib2X4

4

�
:

ðB2Þ
In the last expression the two terms that conserve

momenta have been retained. We look at the action of
the evolution operator on the first term. The second term
gives an identical contribution:

Z
d2x1d2x2Fx1x2t

δ2

δX1δX2

½eib3X3þib2X4 � ðB3Þ

¼ ð−b23F33t − b2:b3F34t − b2:b3F34t − b22F44tÞeiðb3þb2ÞX4 :

ðB4Þ

Here X3 has been Taylor expanded and brought to X4.
Therefore, �

eib3X3þib2X4 þ e−ib3X3−ib2X4

4

�
ðB5Þ

becomes

1

2
cosðb2 þ b3ÞX4 ¼

1

2
cos b1X4: ðB6Þ

Substituting (B5) and (B6) in (2.11) we get

GH
ð4πÞ2

Z
d2x1d2x2

a4
exp

�
−
1

2
ð−b23 − b22ÞF11t þ b2:b3F12t

�

×
1

2
cos b1Xðx2Þ ðB7Þ

where F12t ¼ − 1
2
ln ðx1−x2Þ2þaðtÞ2

ðx1−x2Þ2það0Þ2.

PRAFULLA OAK and B. SATHIAPALAN PHYS. REV. D 99, 046009 (2019)

046009-12



Now we relabel x2 − x1 → y and x2 → x and we get

¼ GH
8

Z
dy2

aðtÞ2 e
4t−

b2
3
þb2

2
2

t

�
y2 þ aðtÞ2
y2 þ að0Þ2

�−b2 :b3
2 1

ð4πÞ
Z

d2x
aðtÞ2 cos b1XðxÞ: ðB8Þ

aðtÞ is the IR cutoff; therefore, we drop y2 from the numerator and integrate:

¼ GH
8

e4t−
b2
3
þb2

2
2

taðtÞ−b2:b3−2 ðaðtÞ
2 þ að0Þ2Þb2 :b32

þ1 − að0Þ2ðb2 :b32
þ1Þ

b2:b3
2

þ 1

1

ð4πÞ
Z

d2x
aðtÞ2 cos b1XðxÞ ðB9Þ

dropping að0Þ2 from the first term:

¼ GH
8

e4t−
b2
3
þb2

2
2

t
1 − ðaðtÞað0ÞÞ−2ð

b2 :b3
2

þ1Þ

b2:b3
2

þ 1

1

ð4πÞ
Z

d2x
aðtÞ2 cos b1XðxÞ: ðB10Þ

For b2:b3 close to –2 and for b22 ¼ b23 ¼ 4 we get

GH
4

t
1

ð4πÞ
Z

d2x
aðtÞ2 cos b1XðxÞ: ðB11Þ

APPENDIX C: POSITION SPACE CALCULATION FOR βF

Position space calculation for βF from the bulk for the subleading term reads

S3¼−λ3
Z

ddx1

Z
ddx2

Z
ddx3

Z
ddþ1yy−ðdþ1Þ

0 CΔ1
CΔ2

CΔ3
ϕ0γ0χ0

yΔ1þΔ2þΔ3

0

ðy20þðy⃗− x⃗1Þ2ÞΔ1ðy20þðy⃗− x⃗1Þ2ÞΔ2ðy20þðy⃗− x⃗2Þ2ÞΔ3
:

ðC1Þ

After Feynman parametrization we get

¼ −λ3
Z

ddx1

Z
ddx2

Z
ddx3

Z
ddþ1yCΔ1

CΔ2
CΔ3

ϕ0γ0χ0

Z
dα1dα2dα3α

Δ1−1
1 αΔ2−1

2 αΔ3−1
3 δðΣ3

i¼1αi − 1Þ ΓðΣ
3
i¼1ΔiÞ

Π3
i¼1ΓðΔiÞ

×
y−ðdþ1ÞþΔ1þΔ2þΔ3

0

ðy20 þ ðy⃗ − Σn
i¼1αix⃗iÞ2 þ Σ3

i<j¼1αiαjðx⃗i − x⃗jÞ2ÞΔ1þΔ2þΔ3
: ðC2Þ

We perform the y0 and y⃗ integrals,

S3¼−λ3
πd=2Γ



Σ3
i¼1

Δi

2

�
Γ


Σ3
i¼1

Δi−d
2

�
2Π3

i¼1ΓðΔiÞ
Z

ddx1

Z
ddx2

Z
ddx3CΔ1

CΔ2
CΔ3

ϕ0γ0χ0

Z
dα1dα2dα3

αΔ1−1
1 αΔ2−1

2 αΔ3−1
3 δðΣ3

i¼1αi−1Þ
ðΣ3

i<j¼1αiαjðx⃗ijÞ2Þ
Δ1þΔ2þΔ3

2

:

ðC3Þ

Now we transform from αi’s to βi’s. αi ¼ β1βi for i ≥ 2, α1 ¼ β1. The Jacobian for n parameters is βn−11 . Here n ¼ 3.

S3 ¼ −λ3
πd=2Γ



Σ3
i¼1

Δi

2

�
ΓðΣ3

i¼1
Δi−d
2

Þ
2Π3

i¼1ΓðΔiÞ
Z

ddx1

Z
ddx2

Z
ddx3CΔ1

CΔ2
CΔ3

ϕ0γ0χ0

×
Z

dβ1dβ2dβ3
βΔ2−1
2 βΔ3−1

3 ½δðβ1 − 1=ð1þ β2 þ β3ÞÞ�=ð1þ β2 þ β3Þ
β1ðβ2x212 þ β3x213 þ β2β3x223Þ

Δ1þΔ2þΔ3
2

: ðC4Þ
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After performing the β1 integral we get

S3¼−λ3
πd=2Γ



Σ3
i¼1

Δi

2

�
Γ


Σ3
i¼1

Δi−d
2

�
2Π3

i¼1ΓðΔiÞ
Z

ddx1

Z
ddx2

Z
ddx3CΔ1

CΔ2
CΔ3

ϕ0γ0χ0

Z
dβ2dβ3

βΔ2−1
2 βΔ3−1

3

ðβ2x212þβ3x213þβ2β3x223Þ
Δ1þΔ2þΔ3

2

ðC5Þ

S3 ¼ −λ3
πd=2Γ



Σ3
i¼1

Δi

2

�
Γ


Σ3
i¼1

Δi−d
2

�
2Π3

i¼1ΓðΔiÞ
Z

ddx1

Z
ddx2

Z
ddx3CΔ1

CΔ2
CΔ3

ϕ0γ0χ0

×
Z

dβ2dβ3
βΔ2−1
2 βΔ3−1

3

ðβ2ðx20 þ x212Þ þ β3ðx20 þ x213Þ þ β2β3ðx20 þ x223ÞÞ
Δ1þΔ2þΔ3

2

: ðC6Þ

Here we have introduced x20’s in the denominator
(x20 → 0). These act as UV regulators. We perform the β2
and β3 integrals. Any factors of δ coming from the two β
functions from the two β integrals contribute atOðδϕ0γ0χ0Þ.
Therefore they are dropped. We set d ¼ 2 and Δ2¼
2ð1þδÞ, particle 2 is off shell. We substitute CΔi

’s.
We set x⃗1 to zero using translation invariance, multiply
and divide by R, the IR cutoff. Therefore, the integral
simplifies to

S3 ¼ −
λ3
2π2

Z
d2x1d2x2d2x3

R6

×
ϕ0γ0χ0


x2
0
þx2

2

R2

�ð1þδÞ
x2
0
þx2

3

R2

�ð1−δÞ
x2
0
þx2

23

R2

�ð1þδÞ : ðC7Þ

We will now calculate the log divergent term. The x2
integral is

Z
d2x2
R2

1

x2
0
þx2

2

R2

�ð1þδÞ
x2
0
þx2

3

R2

�ð1−δÞ
x2
0
þx2

23

R2

�ð1þδÞ : ðC8Þ

The log divergent contributions come from the two
regions, when (i) x⃗2 → x⃗3, and (ii) x⃗2 → 0.
(i) x⃗2 → x⃗3.
Set y⃗ ¼ x⃗2 − x⃗3. At x⃗2 ¼ x⃗3, y⃗ ¼ 0.

Z
d2y
R2

1

x2
0
þðy⃗þx⃗3Þ2

R2

�ð1þδÞ
x2
0
þx2

3

R2

�ð1−δÞ
x2
0
þy2

R2

�ð1þδÞ : ðC9Þ

We Taylor expand the first term in the denominator.
We get

Z
d2y
R2

1 − ð1þ δÞ


y⃗2−2x⃗3:y⃗
x2
0
þx⃗2

3

�


x2
0
þx⃗2

3

R2

�ð1þδÞ
x2
0
þx2

3

R2

�ð1−δÞ
x2
0
þy2

R2

�ð1þδÞ : ðC10Þ

We drop the δ term. It is higher order. We look at

Z
d2y
R2

−


y⃗2−2x⃗3:y⃗
x2
0
þx⃗2

3

�


x2
0
þx⃗2

3

R2

�

x2
0
þx2

3

R2

�

x2
0
þy2

R2

� : ðC11Þ

Add and subtract x20,

Z
d2y
R2

−


x2
0
þy⃗2−x2

0
−2x⃗3:y⃗

x2
0
þx⃗2

3

�


x2
0
þx⃗2

3

R2

�

x2
0
þx2

3

R2

�

x2
0
þy2

R2

� : ðC12Þ

The x20 þ y⃗2 term cancels in the numerator and the
denominator. We drop that and get

Z
d2y
R2

−


−x2

0
−2x⃗3:y⃗

x2
0
þx⃗2

3

�


x2
0
þx⃗2

3

R2

�

x2
0
þx2

3

R2

�

x2
0
þy2

R2

� ðC13Þ

Z
d2yð−2x⃗3:y⃗Þ¼−2

Z
2π

0

ydydθ3yx3ycosθ3y ¼ 0: ðC14Þ

Therefore we drop this term. We get

Z
d2y
R2

−



−x2
0

x2
0
þx⃗2

3

�


x2
0
þx⃗2

3

R2

�

x2
0
þx2

3

R2

�

x2
0
þy2

R2

� ðC15Þ

which in the limit x0 → 0 goes to zero.
We look at

�
x20 þ y2

R2

�ð1þδÞ
¼

�
x20 þ y2

R2

��
1þ δ log

�
x20 þ y2

R2

��
:

ðC16Þ

in the denominator. Again drop the δ term. Set x⃗3 ¼ R⃗,
Z

d2y
R2

1

x2
0
þR2

R2

�ð1þδÞ
x2
0
þR2

R2

�ð1−δÞ
x2
0
þy2

R2

�ð1þδÞ : ðC17Þ
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The log divergent part is

¼ π

Z
R2

x2
0

dy2

R2

1

ðx20þy2

R2 Þð1þδÞ ðC18Þ

¼ π log
R2

x20
: ðC19Þ

A similar computation for x⃗2 → 0 gives an identical
contribution. The total contribution from both regions is

¼ 2π log
R2

x20
: ðC20Þ

The partition function becomes

S3 ¼ −
1

2
4λ3πϕ0γ0χ0

Z
d

�
x21
R2

�
d

�
x23
R2

�
log

R
x0

: ðC21Þ

This expression corrects b1 when x2 → x3 and b3 when
x2 → x1. These are both equal in magnitude. We only want
the correction to b1; therefore, we divide the expression
above by 2 to get the contribution of the generating
functional to the β function for cos b1X,

S3 ¼ −λ3πϕ0γ0χ0

Z
d

�
x21
R2

�
d

�
x23
R2

�
log

R
x0

: ðC22Þ

APPENDIX D: CALCULATION FOR βδ

We start with

Sσ3 ¼ −
1

2
λσ

Z
ddþ1y

ffiffiffi
g

p
ḡμν∂μϕðyÞ∂νϕðyÞσðyÞ ðD1Þ

¼−
1

2
λσσ0ϕ

2
0CΔ1

CΔ2
CΔ3

Z
ddþ1y

ffiffiffi
g

p
y20∂μ

�
y0

ðy20þðy⃗− x⃗1Þ2Þ
�

Δ1∂μ

�
y0

ðy20þðy⃗− x⃗2Þ2Þ
�

Δ2

�
y0

ðy20þðy⃗− x⃗3Þ2Þ
�

Δ3

: ðD2Þ

Set x⃗1 ¼ 0. Under inversion [34],

y0
y20 þ ðx⃗ − y⃗Þ2 → x⃗02

y00
y020 þ ðx⃗0 − y⃗0Þ2

ðD3Þ

∂ 0μy00
Δ ¼ ∂ 00y00

Δ ¼ Δy00Δ−1.

∂ 0μ¼0

�
y00

ðy002 þ ðy⃗0 − x⃗0iÞ2Þ

�
Δi ¼

�
Δiy00

Δi−1

ðy002 þ ðy⃗0 − x⃗0iÞ2ÞΔi

�
−
�

Δiy00
Δi2y0

ðy002 þ ðy⃗0 − x⃗0iÞ2ÞΔiþ1

�

Sσ3 ¼ −
1

2
λσσ0ϕ

2
0CΔ1

CΔ2
CΔ3

Δ1Δ2x0
2Δ2

2 x02Δ3

3

Z
ddþ1y0y00

−ðdþ1Þþ2þΔ1−1þΔ3þΔ2−1

×

�
1

ðy002 þ ðy⃗0 − x⃗03Þ2Þ

�
Δ3

�
1

ðy002 þ ðy⃗0 − x⃗02Þ2ÞΔ2

�

þ 1

2
λσσ0ϕ

2
0CΔ1

CΔ2
CΔ3

Δ1Δ2x0
2Δ2

2 x02Δ3

3

Z
ddþ1y0y00

−ðdþ1Þþ2þΔ1−1þΔ3þΔ2þ1

×

�
1

ðy002 þ ðy⃗0 − x⃗03Þ2Þ

�
Δ3

�
2

ðy002 þ ðy⃗0 − x⃗02Þ2ÞΔ2þ1

�
: ðD4Þ

Thus, setting x⃗1 to zero and using inversion we have reduced the number of factors in the denominator from 3 to 2. This
simplifies Feyman parameter integrals significantly. Now we Feynman parametrize and perform y0 integrals. Writing the
integrals and dropping the prefactors we get

π

2

ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−d

2
Þ

ΓðΔ3 þ Δ2Þ
ΓðΔ3 þ Δ2Þ
ΓðΔ2ÞΓðΔ3Þ

Z
dα3dα2δðα3 þ α2 − 1ÞαΔ3−1

3 αΔ2−1
2

1

ðα2α3x⃗0223Þ
Δ2þΔ3−Δ1

2

− 2
π

2

ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−dþ2

2
Þ

ΓðΔ3 þ Δ2 þ 1Þ
ΓðΔ3 þ Δ2 þ 1Þ
ΓðΔ2ÞΓðΔ3 þ 1Þ

Z
dα3dα2δðα3 þ α2 − 1ÞαΔ3

3 αΔ2−1
2

1

ðα2α3x⃗0223Þ
Δ2þΔ3−Δ1

2

: ðD5Þ

The α integrals are as follows:
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The first, Z
dα3dα2δðα3 þ α2 − 1ÞαΔ3−1

3 αΔ2−1
2

1

ðα2α3Þ
Δ2þΔ3−Δ1

2

¼ 1: ðD6Þ

The second,

Z
dα3dα2δðα3 þ α2 − 1ÞαΔ3αΔ2−1

1

ðα2α3Þ
Δ2þΔ3−Δ1

2

¼ 1=2: ðD7Þ

Use ðx⃗02Δ ¼ 1=x⃗2ΔÞ and

ðx⃗0 − y⃗0Þ2ðΔ1þΔ2−Δ3Þ=2 ¼ ðx⃗ − y⃗Þ2ðΔ1þΔ2−Δ3Þ=2=ðx⃗2ðΔ1þΔ2−Δ3Þ=2y⃗2ðΔ1þΔ2−Δ3Þ=2Þ:

Sσ3 ¼ −
π

4
λσσ0ϕ

2
0CΔ1

CΔ2
CΔ3

Δ1Δ2

Z
d2x1d2x2d2x3

1

ðx⃗223Þ
Δ2þΔ3−Δ1

2

1

ðx22Þ
Δ2−Δ3þΔ1

2

1

ðx23Þ
−Δ2þΔ3þΔ1

2

×

�
ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−d

2
Þ

ΓðΔ2ÞΓðΔ3Þ
−
ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−dþ2

2
Þ

ΓðΔ2ÞΓðΔ3 þ 1Þ
�
: ðD8Þ

Where now we have explicitly written integrals over the boundary coordinates(which were suppressed earlier). We insert
a UV cutoff x20 as before and multiply and divide by powers of R2; we get

Sσ3 ¼ −
π

4
λσσ0ϕ

2
0CΔ1

CΔ2
CΔ3

Δ1Δ2

Z
d

�
x21
R2

�
d

�
x22
R2

�
d

�
x23
R2

�
1


x2
0
þx⃗2

23

R2

�Δ2þΔ3−Δ1
2

1

x2
0
þx⃗2

2

R2

�Δ2−Δ3þΔ1
2

1

x2
0
þx⃗2

3

R2

�−Δ2þΔ3þΔ1
2

×

�
ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−d

2
Þ

ΓðΔ2ÞΓðΔ3Þ
−
ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−dþ2

2
Þ

ΓðΔ2ÞΓðΔ3 þ 1Þ
�
: ðD9Þ

CΔi
¼ 1=π. The square bracket vanishes. This gets renormalized when we fix λσ . We have taken particle 2 off shell.

Therefore Δ2 ¼ 2ð1þ δÞ. Δ1 ¼ 2.
We get the same x2 integral as before (C8). The contribution from the x2 integral from before is

4π log
R
x0

: ðD10Þ

The contribution to the generating function is half of this as before.

2π log
R
x0

: ðD11Þ

Therefore Sσ3 becomes

Sσ3 ¼ −2πð1þ δÞλσσ0ϕ2
0

Z
d

�
x21
R2

�
d

�
x23
R2

�
log

R
x0

�
ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−d

2
Þ

ΓðΔ2ÞΓðΔ3Þ
−
ΓðΔ2þΔ3−Δ1

2
ÞΓðΔ2þΔ3þΔ1−dþ2

2
Þ

ΓðΔ2ÞΓðΔ3 þ 1Þ
�
: ðD12Þ

[1] D. J. Amit, Y. Y. Goldschmidt, and G. Grinstein, Renorm-
alization group analysis of the phase transition in the 2D
Coulomb gas, sine-Gordon theory and xy model, J. Phys. A
13, 585 (1980).

[2] B. Sathiapalan and H. Sonoda, A holographic form for
Wilson’s RG, Nucl. Phys. B924, 603 (2017).

[3] S. R. Das and B. Sathiapalan, String Propagation in a
Tachyon Background, Phys. Rev. Lett. 56, 2664 (1986).

PRAFULLA OAK and B. SATHIAPALAN PHYS. REV. D 99, 046009 (2019)

046009-16

https://doi.org/10.1088/0305-4470/13/2/024
https://doi.org/10.1088/0305-4470/13/2/024
https://doi.org/10.1016/j.nuclphysb.2017.09.018
https://doi.org/10.1103/PhysRevLett.56.2664


[4] B. Sathiapalan, Proper time formalism, the renormalization
group, and equations of motion in string theory, Nucl. Phys.
B294, 747 (1987).

[5] B. Sathiapalan, The proper time equation and the Zamo-
lodchikov metric, Int. J. Mod. Phys. A 11, 2887 (1996).

[6] P. Oak and B. Sathiapalan, Exact renormalization group and
sine-Gordon theory, J. High Energy Phys. 07 (2017) 103;
Erratum, J. High Energy Phys. 09 (2017) 77.

[7] A. Polyakov, Gauge Fields and Strings (Harwood Aca-
demic Publishers, London, 1987).

[8] T. Yanagisawa, Renormalization group theory of effective
field theory models in low dimensions, arXiv:1804.02845.

[9] N. Defenu, V. Bacsó, I. G. Márián, I. Nándori, and A.
Trombettoni, Criticality of models interpolating between the
sine- and the sinh-Gordon Lagrangians, arXiv:1706.01444.

[10] T. Yanagisawa, Chiral sine-Gordon model, Europhys. Lett.
113, 41001 (2016).

[11] V. Bacsó, N. Defenu, A. Trombettoni, and I. Nándori,
c-function and central charge of the sine-Gordon model
from the nonperturbative renormalization group flow, Nucl.
Phys. B901, 444 (2015).

[12] J. Kovacs, S. Nagy, and K. Sailer, Asymptotic safety in the
sine-Gordon model, Phys. Rev. D 91, 045029 (2015).

[13] L. Wang, T. Tu, P. G. Guo, and G. C. Guo, Renormalization
group method for kink dynamics in a perturbed sine-Gordon
equation, Mod. Phys. Lett. B 28, 1450068 (2014).

[14] I. Nandori, I. G. Marian, and V. Bacso, Spontaneous
symmetry breaking and optimization of functional renorm-
alization group, Phys. Rev. D 89, 047701 (2014).

[15] A. Pelissetto and E. Vicari, Renormalization-group flow and
asymptotic behaviors at the Berezinskii-Kosterlitz-Thouless
transitions, Phys. Rev. E 87, 032105 (2013).

[16] M. Malard, Sine-Gordon model: Renormalization group
solutions and applications, Braz. J. Phys. 43, 182 (2013).

[17] I. Nandori, Coulomb gas and sine-Gordon model in arbi-
trary dimension, arXiv:1108.4643.

[18] S. Nagy, I. Nandori, J. Polonyi, and K. Sailer, Functional
Renormalization Group Approach to the Sine-Gordon
Model, Phys. Rev. Lett. 102, 241603 (2009).

[19] I. Nandori, S. Nagy, K. Sailer, and A. Trombettoni, Phase
structure and compactness, J. High Energy Phys. 09 (2010)
069.

[20] I. Nandori, S. Nagy, K. Sailer, and A. Trombettoni,
Comparison of renormalization group schemes for sine-
Gordon type models, Phys. Rev. D 80, 025008 (2009).

[21] S. Nagy, J. Polonyi, and K. Sailer, Effective potential for
the massive sine-Gordon model, J. Phys. A 39, 8105
(2006).

[22] H. Bozkaya, M. Faber, A. N. Ivanov, and M. Pitschmann,
On the renormalization of the sine-Gordon model, arXiv:
hep-th/0505276.

[23] I. Nandori, U. D. Jentschura, K. Sailer, and G. Soff,
Renormalization group analysis of the generalized sine-
Gordon model and of the Coulomb gas for d greater than
or equal to three-dimensions, Phys. Rev. D 69, 025004
(2004).

[24] G. Schehr and P. Le Doussal, Exact multilocal renormal-
ization on the effective action: Application to the random
sine-Gordon model statics and nonequilibrium dynamics,
Phys. Rev. E 68, 046101 (2003).

[25] A. Leclair, J. M. Roman, and G. Sierra, Russian doll
renormalization group, Kosterlitz-Thouless flows, and the
cyclic sine-Gordon model, Nucl. Phys. B675, 584 (2003).

[26] C. M. Naon and M. J. Salvay, RG study of a nonlocal sine-
Gordon model, Nucl. Phys. B663, 591 (2003).

[27] L. Kjaergaard, The exact renormalization group equation
and the perturbed unitary minimal models, J. High Energy
Phys. 07 (2000) 053.

[28] S. Kehrein, Flow equation approach to the sine-Gordon
model, Nucl. Phys. B592, 512 (2001).

[29] J. M. Park and T. C. Lubensky, Sine-Gordon field theory for
the Kosterlitz-Thouless transitions on fluctuating mem-
branes, Phys. Rev. E 53, 2665 (1996).

[30] I. Ichinose and H. Mukaida, Renormalization group study of
the massive sine-Gordon theory and phase structure of the
Abelian Higgs model, Int. J. Mod. Phys. A 09, 1043 (1994).

[31] J. Dimock and T. R. Hurd, A renormalization group analysis
of the Kosterlitz-Thouless phase, Commun. Math. Phys.
137, 263 (1991).

[32] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999); The large N limit of superconformal field theories
and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998).

[33] E. Witten, Anti–de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[34] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli,
Correlation functions in the CFTðdÞ=AdSðdþ 1Þ corre-
spondence, Nucl. Phys. B546, 96 (1999).

[35] K. Skenderis, Lecture notes on holographic renormalization,
Classical Quantum Gravity 19, 5849 (2002).

[36] A. Bzowski, P. McFadden, and K. Skenderis, Implications
of conformal invariance in momentum space, J. High
Energy Phys. 03 (2014) 111.

[37] A. Bzowski, P. McFadden, and K. Skenderis, Scalar 3-point
functions in CFT: Renormalisation, beta functions and
anomalies, J. High Energy Phys. 03 (2016) 066.

[38] I. R. Klebanov and E. Witten, AdS=CFT correspondence
and symmetry breaking, Nucl. Phys. B556, 89 (1999).

[39] M. Ammon and J. Erdmenger, Gauge/Gravity Duality:
Foundations and Applications (Cambridge University Press,
Cambridge, England, 2015).

[40] W. Mueck and K. S. Viswanathan, Conformal field theory
correlators from classical scalar field theory on AdSðdþ 1Þ,
Phys. Rev. D 58, 041901 (1998).

[41] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal
Field Theory (Springer, New York, NY, 1997).

[42] V. Balasubramanian, P. Kraus, and A. E. Lawrence, Bulk
versus boundary dynamics in anti–de Sitter space-time,
Phys. Rev. D 59, 046003 (1999).

[43] C. J. C. Burges, D. Z. Freedman, S. Davis, and G.W.
Gibbons, Supersymmetry in anti-de Sitter space, Ann. Phys.
(N.Y.) 167, 285 (1986).

[44] C. Fronsdal, Elementary particles in a curved space. II,
Phys. Rev. D 10, 589 (1974).

[45] C. P. Burgess and C. A. Lutken, Propagators and effective
potentials in anti-de Sitter space, Phys. Lett. 153B, 137
(1985).

[46] S. S. Gubser, I. R. Klebanov, and A.M. Polyakov, Gauge
theory correlators from noncritical string theory, Phys.
Lett. B 428, 105 (1998).

HOLOGRAPHIC BETA FUNCTIONS FOR THE … PHYS. REV. D 99, 046009 (2019)

046009-17

https://doi.org/10.1016/0550-3213(87)90606-7
https://doi.org/10.1016/0550-3213(87)90606-7
https://doi.org/10.1142/S0217751X96001401
https://doi.org/10.1007/JHEP07(2017)103
https://doi.org/10.1007/JHEP09(2017)077
http://arXiv.org/abs/1804.02845
http://arXiv.org/abs/1706.01444
https://doi.org/10.1209/0295-5075/113/41001
https://doi.org/10.1209/0295-5075/113/41001
https://doi.org/10.1016/j.nuclphysb.2015.11.001
https://doi.org/10.1016/j.nuclphysb.2015.11.001
https://doi.org/10.1103/PhysRevD.91.045029
https://doi.org/10.1142/S0217984914500687
https://doi.org/10.1103/PhysRevD.89.047701
https://doi.org/10.1103/PhysRevE.87.032105
https://doi.org/10.1007/s13538-013-0123-4
http://arXiv.org/abs/1108.4643
https://doi.org/10.1103/PhysRevLett.102.241603
https://doi.org/10.1007/JHEP09(2010)069
https://doi.org/10.1007/JHEP09(2010)069
https://doi.org/10.1103/PhysRevD.80.025008
https://doi.org/10.1088/0305-4470/39/25/S21
https://doi.org/10.1088/0305-4470/39/25/S21
http://arXiv.org/abs/hep-th/0505276
http://arXiv.org/abs/hep-th/0505276
https://doi.org/10.1103/PhysRevD.69.025004
https://doi.org/10.1103/PhysRevD.69.025004
https://doi.org/10.1103/PhysRevE.68.046101
https://doi.org/10.1016/j.nuclphysb.2003.09.032
https://doi.org/10.1016/S0550-3213(03)00374-2
https://doi.org/10.1088/1126-6708/2000/07/053
https://doi.org/10.1088/1126-6708/2000/07/053
https://doi.org/10.1016/S0550-3213(00)00507-1
https://doi.org/10.1103/PhysRevE.53.2665
https://doi.org/10.1142/S0217751X94000480
https://doi.org/10.1007/BF02431881
https://doi.org/10.1007/BF02431881
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0550-3213(99)00053-X
https://doi.org/10.1088/0264-9381/19/22/306
https://doi.org/10.1007/JHEP03(2014)111
https://doi.org/10.1007/JHEP03(2014)111
https://doi.org/10.1007/JHEP03(2016)066
https://doi.org/10.1016/S0550-3213(99)00387-9
https://doi.org/10.1103/PhysRevD.58.041901
https://doi.org/10.1103/PhysRevD.59.046003
https://doi.org/10.1016/0003-4916(86)90203-4
https://doi.org/10.1016/0003-4916(86)90203-4
https://doi.org/10.1103/PhysRevD.10.589
https://doi.org/10.1016/0370-2693(85)91415-7
https://doi.org/10.1016/0370-2693(85)91415-7
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3


[47] I. Y. Aref’eva and I. V. Volovich, On large N conformal
theories, field theories in anti-de Sitter space and singletons,
arXiv:hep-th/9803028.

[48] R. G. Leigh and M. Rozali, The large N limit of the (2,0)
superconformal field theory, Phys. Lett. B 431, 311 (1998).

[49] H. Liu and A. A. Tseytlin, D ¼ 4 super Yang-Mills, D ¼ 5
gauged supergravity, and D ¼ 4 conformal supergravity,
Nucl. Phys. B533, 88 (1998).

[50] M. Henningson and K. Skenderis, The holographic Weyl
anomaly, J. High Energy Phys. 07 (1998) 023.

[51] W. Mueck and K. S. Viswanathan, Conformal field
theory correlators from classical field theory on anti-de Sitter
space. 2. Vector and spinor fields, Phys. Rev. D 58, 106006
(1998).

[52] E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and
L. Rastelli, Graviton and gauge boson propagators in
AdSðdþ 1Þ, Nucl. Phys. B562, 330 (1999).

[53] G. E. Arutyunov and S. A. Frolov, On the origin of super-
gravity boundary terms in the AdS=CFT correspondence,
Nucl. Phys. B544, 576 (1999).

[54] E. Kiritsis, F. Nitti, and L. Silva Pimenta, Exotic RG flows
from holography, Fortschr. Phys. 65, 1600120 (2017).

[55] K. Kikuchi, H. Hosoda, and A. Suzuki, On three-
dimensional trace anomaly from holographic local RG,
Prog. Theor. Exp. Phys. 013B02 (2017).

[56] G. Mandal and P. Nayak, Revisiting AdS=CFT at a finite
radial cut-off, J. High Energy Phys. 12 (2016) 125.

[57] N. Behr and A. Mukhopadhyay, Holography as a highly
efficient renormalization group flow. II. An explicit con-
struction, Phys. Rev. D 94, 026002 (2016).

[58] K. Kikuchi and T. Sakai, AdS=CFT and local renormaliza-
tion group with gauge fields, Prog. Theor. Exp. Phys.
033B02 (2016).

[59] O. Aharony, G. Gur-Ari, and N. Klinghoffer, The holo-
graphic dictionary for beta functions of multitrace coupling
constants, J. High Energy Phys. 05 (2015) 031.

[60] E. Kiritsis, W. Li, and F. Nitti, Holographic RG flow and the
quantum effective action, Fortschr. Phys. 62, 389 (2014).

[61] J. Bourdier and E. Kiritsis, Holographic RG flows and
nearly-marginal operators, Classical Quantum Gravity 31,
035011 (2014).

[62] Y. Igarashi, K. Itoh, and H. Sonoda, Realization of
symmetry in the ERG approach to quantum field theory,
Prog. Theor. Phys. Suppl. 181, 1 (2009).

PRAFULLA OAK and B. SATHIAPALAN PHYS. REV. D 99, 046009 (2019)

046009-18

http://arXiv.org/abs/hep-th/9803028
https://doi.org/10.1016/S0370-2693(98)00495-X
https://doi.org/10.1016/S0550-3213(98)00443-X
https://doi.org/10.1088/1126-6708/1998/07/023
https://doi.org/10.1103/PhysRevD.58.106006
https://doi.org/10.1103/PhysRevD.58.106006
https://doi.org/10.1016/S0550-3213(99)00524-6
https://doi.org/10.1016/S0550-3213(98)00816-5
https://doi.org/10.1002/prop.201600120
https://doi.org/10.1093/ptep/ptw174
https://doi.org/10.1007/JHEP12(2016)125
https://doi.org/10.1103/PhysRevD.94.026002
https://doi.org/10.1093/ptep/ptw010
https://doi.org/10.1093/ptep/ptw010
https://doi.org/10.1007/JHEP05(2015)031
https://doi.org/10.1002/prop.201400007
https://doi.org/10.1088/0264-9381/31/3/035011
https://doi.org/10.1088/0264-9381/31/3/035011
https://doi.org/10.1143/PTPS.181.1

