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Some time ago, Bars found D ¼ 11þ 3 supersymmetry and Sezgin proposed super Yang-Mills theory
(SYM) in D ¼ 11þ 3. Using the “magic star” projection of e8ð−24Þ, we show that the geometric structure
of SYM’s in 12þ 4 and 11þ 3 space-time dimensions descends to the affine symmetry of the space
AdS4 ⊗ S8. By reducing to transverse transformations along maximal embeddings, the near-horizon
geometries of the M2 brane (AdS4 ⊗ S7) and M5 brane (AdS7 ⊗ S4) of M-theory are recovered. Utilizing
the recently introduced “exceptional periodicity” (EP) and exploiting the embedding of semisimple rank-3
Jordan algebras into rank-3 T-algebras of special type yields the spaces AdS4 ⊗ S8n and AdS8n−1 ⊗ S5

with reduced subspaces AdS4 ⊗ S8n−1 and AdS8n−1 ⊗ S4, respectively. As such, EP describes the near-
horizon geometries of an infinite class of novel exceptional SYM’s in ð8nþ 3Þ þ 3 dimensions that
generalize M-theory for n ¼ 1. Remarkably, the n ¼ 3 level hints at M2 and M21 branes as solutions of
bosonic M-theory and gives support for Witten’s monstrous AdS/CFT construction.
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I. INTRODUCTION

After Witten proposed M-theory [1], arguments to go
beyondD ¼ 11 have been put forth by Vafa [2], Bars [3,4],
Sezgin [5], and Nishino [6]. Bars found success in
his model of S-theory with two time dimensions in D ¼
sþ t ¼ 11þ 2 [3] and proposed D ¼ 11þ 3 supersym-
metry with three times [4], while Sezgin formulated
super Yang-Mills theories (SYM’s) up to signature
11þ 3 [5]. The signature 11þ 3 also found promise
in graviGUT models [7,8]. Nishino pushed beyond D ¼
11þ 3 and gave arguments for SYM’s in signature
ð9þmÞ þ ð1þmÞ, for arbitrary m ∈ N ∪ f0g.
The symmetry of 11þ 3 space-time, with a 64-

dimensional Majorana-Weyl (MW) spinor, interestingly
arises in a certain 5-grading of “extended Poincaré type”

of e8ð−24Þ, while the symmetry of 10þ 2 space-time is
seen in a 5-grading of “contact type” of e7ð−25Þ, with a
32-dimensional MW spinor [9]. Moreover, a certain
3-grading of e6ð−26Þ contains the symmetry of 9þ 1 space-
time with a 16-dimensional MW spinor. These are precisely
the signatures studied by Bars and Sezgin up to 11þ 3 [4,5].
Through a projection of e8ð−24Þ along an sl3;R subalgebra

(the so-called magic star projection, cf. Fig. 1), the hidden
Jordan algebraic structure within e8ð−24Þ becomes manifest
[10–13]. The central vertex e6ð−26Þ of the projection then
encodes the reduced structure symmetry of the degree three
exceptional Jordan algebra (also known as Albert algebra)
JO3 , mapped to six vertices of the star projection.
Using the aforementioned gradings of e6ð−26Þ, e7ð−25Þ, and

e8ð−24Þ, as well as the magic star, a periodic extension of
the exceptional Lie algebras can be formulated. This periodic
extension, dubbed exceptional periodicity (EP) [13], allows
higher dimensional extensions of the exceptional Lie alge-
bras, while also permitting arbitrarily high dimensional
magic star projections. Although the resulting algebras (with
generalized roots) no longer satisfy the Jacobi relation,
they do contain Lie algebraic reductive parts, as well as a
normalized cocycle, as seen in lattice vertex algebras [13,14].
In this study, using some gradings of the exceptional Lie

algebras and their exceptionally periodic extensions, we
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show that the geometric structure of SYM’s in 11þ 3 and
12þ 4 space-time dimensions can be recovered from the
affine symmetry of the space AdS4 ⊗ S8, with the 8-sphere
being a line in the Cayley plane OP2, the space of rank-1
projectors of JO3 [15,16]. The symmetry of S8, SOð9Þ (the
lightcone little group of M-theory), is a maximal and
symmetric subgroup of F4, and as such is the stabilizer
of OP2 ≃ F4=SOð9Þ itself. A fixed point of OP2, a rank-1
idempotent of JO3 , identifies one of three possible embed-
dings SOð9Þ ⊂ F4 and spans an orthogonal direction that
can serve as the 11th dimension of M-theory. By consid-
ering transverse directions along maximal embeddings, the
near-horizon geometries of the M2 brane (AdS4 ⊗ S7) and
M5 brane (AdS7 ⊗ S4) are recovered.
Generalizing the construction to higher levels of excep-

tional periodicity (parametrized by n ∈ N), where Jordan
algebras of degree 3 are lifted to the special class of rank-3
Vinberg’s T-algebras [17], maximal embeddings that
respect the symmetry of the T-algebraic spin factors yield
the spaces AdS4 ⊗ S8n and AdS8n−1 ⊗ S5, with reduced
subspaces AdS4 ⊗ S8n−1 and AdS8n−1 ⊗ S4, respectively.
Through exceptional periodicity, this suggests generaliza-
tions of the M2 brane and M5 brane near-horizon geom-
etries from SYM’s in ð8nþ 3Þ þ 3 space-time dimensions,
as descending from SYM’s in ð8nþ 4Þ þ 4 space-time
dimensions, resulting in an Mð8n − 3Þ brane dual to the M2
brane [18].
The plan of the paper is as follows.
Within EP, we explicitly study levels n ¼ 1 (the trivial

level, corresponding to exceptional Lie algebras, in par-
ticular, to e8ð−24Þ in our case), n ¼ 2 (the first nontrivial
level), and n ¼ 3, respectively, in Secs. II, III B, and III D.
Interestingly, at level n ¼ 3, the resulting branchings give
AdS4 ⊗ S23 and hint at M2 and M21 branes as solutions of
the (conjectured) bosonic M-theory [19]; by reduction to
AdS3 ⊗ S23, we recover a space that lends support for
Witten’s monstrous AdS/CFT construction for three-
dimensional gravity [20], as the Conway group Co0 (the
symmetry of the Leech lattice [21]) is recovered from the
SOð24Þ R-symmetry1 of a discretized S23. On the other
hand, our analysis at levels n ¼ 2 and 3 can be bridged by
the observation that every K3 sigma model contains a
symmetry group that is a subgroup of Co0 [22].
Section III A therein presents evidence for the existence

of higher dimensional N ¼ ð1; 0Þ SYM’s with 1, 2, 3 or 4
timelike dimensions, named exceptional SYM’s, stemming
from similar constructions given by Bars [4], Sezgin [5,23],
and Nishino [6].

Such higher dimensional SYM’s can be defined at every
level of EP for e8ð−24Þ, whose generic nth level is
considered in Sec. III C. The resulting “EP/SYM corre-
spondence” (which is investigated further on) suggests a
spectral formulation of M-theory from the class of
Vinberg’s special cubic T-algebras [17]. This generalizes
the structure of matrix theory [24] in D ¼ 10þ 1 to a
more general class of nonassociative matrix operator
algebras that periodically exhibit nonassociative geom-
etry, up to infinite dimensions. This is as Connes [25] has
done for noncommutative geometry from noncommuta-
tive C�-algebras, which falls under the more general
motivic program of Grothendieck [26].

II. e8ð − 24Þ
A. N = ð1;0Þ SYM in 11 + 3 dimensions

The Cayley plane OP2 is the projective space of all
rank-1 projectors of the exceptional Jordan algebra JO3 ; by
stabilizing a point of the Cayley plane, the affine symmetry
E6ð−26Þ is reduced to SOð9; 1Þ [15]. This SOð9; 1Þ subgroup
acts on a line (an S8) of the Cayley plane as affine trans-
formations. It is also the symmetry of the 10-dimensional
spin factor from the Peirce decomposition (cf., e.g., [27,28]),

JO3 ¼ 10 ⊕ 16 ⊕ 1; ð2:1Þ
where the fixed point (primitive idempotent of JO3 ) corre-
sponds to the 1 in the rhs of (2.1), and it serves as a point
at infinity for the eight-dimensional transverse space.
The affine symmetry and MW semispinor 16 occur in the
3-grading2 of e6ð−26Þ,

e6ð−26Þ ¼ 160−3 ⊕ ðso9;1 ⊕ RÞ0 ⊕ 16þ3; ð2:2Þ
where 160 is the conjugate MW semispinor in 9þ 1 space-
time dimensions. (2.2) can be interpreted as the maximal
symmetric embedding

str0ðJO3 Þ ⊃ str0ðR ⊕ JO2 Þ; ð2:3Þ
which is a consequence of the maximal Jordan-algebraic
embedding,

JO3 ⊃ R ⊕ JO2 ; ð2:4Þ
where JO2 ≃ Γ9;1 [cf., e.g., (5.2) of [30]] is a 10-dimensional
Lorentzian spin factor [31,32] and R is the span of the
fixed idempotent.3

The magic star of e8ð−24Þ (cf. Fig. 1 and its caption) is a
projection along an sl3;R subalgebra, with e6ð−26Þ projected
to a central vertex [10–13]. In e8ð−24Þ, the analog of so9;1 is
so12;4; indeed, the followingmaximal symmetric embedding
holds:

1ForD ¼ 27M-theory reduced toD ¼ 3, there is no light cone
little group and the expected R-symmetry is the full SOð24Þ, the
transversal rotation group in D ¼ 26. This is the higher dimen-
sional analog of what occurs for SOð8Þ R-symmetry in D ¼ 11
M-theory reduced to D ¼ 3.

2This is a remarkable 3-grading structure, related to a Jordan
pair that is not a pair of Jordan algebras, but rather a Jordan triple
system; cf., e.g., [29].

3TheR idempotent direction transforms spatially under so10;1 ⊂
so10;2 ⊂ e7ð−25Þ, and can serve as an 11th dimension of M-theory.
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e8ð−24Þ ⊃ so12;4; ð2:5Þ
interpreted as

qconfðJO3 Þ ⊃ qconfðR ⊕ JO2 Þ; ð2:6Þ
which is still a consequence of (2.4); qconf here denotes the
quasiconformal symmetry of the corresponding rank-3
Jordan algebra [33]. The branching corresponding to (2.5)
gives naturally rise to the following 5-grading,

e8ð−24Þ ¼ so12;4 ⊕ 128 ¼ 14−2 ⊕ 640−1 ⊕ ðso11;3 ⊕ RÞ0
⊕ 64þ1 ⊕ 14þ2; ð2:7Þ

where 64 and 640 are theMWsemispinor and its conjugate in
D ¼ sþ t ¼ 11þ 3 space-timedimensions. Part of (2.7) has
already appeared in [7,8]. As mentioned above, mathemati-
cally, it identifies (the minimally noncompact, real form of) a
Kantor triple system, of “extendedPoincaré type,” over e8 [9].
Moreover, we recall that so11;3, occurring in the 0-graded
reductive component of the 5-grading (2.7), is the space-time,
purely bosonic, symmetry Lie algebra of the N ¼ ð1; 0Þ
SYM studied by Sezgin, Bars, and Nishino in D ¼ 11þ 3
space-time dimensions [4–6] (see also Sec. III A below).

B. M2-brane in 10 + 1 dimensions

At the Lie group level, a maximal symmetric subgroup of
SOð12; 4Þ is

SOð12; 4Þ ⊃ SOð3; 3Þ × SOð9; 1Þ: ð2:8Þ
Recalling the coset

AdS4 ¼ Oð3; 2Þ=Oð3; 1Þ; ð2:9Þ

SOð3; 2Þ acts on AdS4 as isometries, while SOð3; 3Þ acts
via affine transformations. Hence, SOð12; 4Þ includes
maximally (and symmetrically) the affine transformations
of AdS4 ⊗ S8.
Reducing to transversal rotations, the isometry group

SOð9Þ of S8 ≃OP1 (which can be regarded as a line in
OP2) breaks to SOð8Þ acting on S7. This corresponds to
the two-step chain of maximal symmetric embeddings into
SOð12; 4Þ,

SOð12; 4Þ ⊃ SOð11; 3Þ ⊃ SOð3; 3Þ × SOð8Þ; ð2:10Þ
breaking down to isometries of AdS4 by further maximal
and symmetric embedding yields

SOð12; 4Þ ⊃ SOð11; 3Þ ⊃ SOð3; 3Þ × SOð8Þ ⊃ SOð3; 2Þ
× SOð8Þ: ð2:11Þ

Alternatively, the following embedding also holds:

SOð12; 4Þ ⊃ SOð3; 2Þ × SOð8Þ × SOð1; 2Þ; ð2:12Þ
where SOð3; 2Þ × SOð8Þ acts as isometries of AdS4 ⊗ S7,
the near-horizon geometry of the M2-brane [whose world
volume symmetry is described by SOð1; 2Þ], as a solution
of 10þ 1 M-theory (or of its low-energy limit, N ¼ 1
eleven-dimensional supergravity); see, e.g., [34–36].

C. M5 brane in 10 + 1 dimensions

Another maximal symmetric subgroup of SOð12; 4Þ is
SOð12; 4Þ ⊃ SOð6; 3Þ × SOð6; 1Þ: ð2:13Þ

Recalling the coset

AdS7 ¼ Oð6; 2Þ=Oð6; 1Þ; ð2:14Þ
SOð6; 2Þ acts on AdS7 as isometries, and SOð6; 3Þ acts via
affine transformations. Hence, SOð12; 4Þ includes maxi-
mally (and symmetrically) the affine transformations of
AdS7 ⊗ S5.
Considering the reduction S5 → S4, where S4 ≃ HP1 can

be conceived as a line in HP2, the isometry group SOð6Þ of
S5 breaks to SOð5Þ on S4. Thus, the reduction O → H
reduces OP1 ≃ S8 → HP1 ≃ S4 with the point at infinity
given by a fixed primitive idempotent of JH3 . This corre-
sponds to the following chain of maximal symmetric
embeddings into SOð12; 4Þ:

SOð12; 4Þ ⊃ SOð11; 3Þ ⊃ SOð6; 3Þ × SOð5Þ; ð2:15Þ
breaking down to isometries of AdS7 by further maximal
and symmetric embedding yields

SOð12; 4Þ ⊃ SOð11; 3Þ ⊃ SOð6; 3Þ × SOð5Þ
⊃ SOð6; 2Þ × SOð5Þ: ð2:16Þ

Alternatively, the following embedding also holds:

SOð12; 4Þ ⊃ SOð6; 2Þ × SOð5Þ × SOð1; 2Þ; ð2:17Þ

FIG. 1. The magic star of finite-dimensional exceptional Lie
algebras [10]. Jq3 denotes the Jordan algebra of 3 × 3 Hermitian
matrices over the division algebras A ¼ R, C, H and O for
q ¼ dimRA ¼ 1, 2, 4, 8 respectively, whereas gq

0 denotes its
reduced structure Lie algebra. In the case of the minimally
noncompact, real form e8ð−24Þ of e8 under consideration, q ¼ 8

and g8
0 ¼ e6ð−26Þ. In the text, we use JO3 ≡ J83.

GEOMETRY OF EXCEPTIONAL SUPER YANG-MILLS THEORIES PHYS. REV. D 99, 046004 (2019)

046004-3



where SOð6; 2Þ × SOð5Þ acts as isometries of AdS7 ⊗ S4,
the near-horizon geometry of the M5 brane, Hodge dual to
the M2 brane [whose world volume symmetry SOð1; 2Þ
still occurs as a commuting factor] in 10þ 1 space-time
dimensions (see, e.g., [34–36]).
Note also that SOð12; 4Þ contains the isometries of AdS7

and of the M5 brane world volume, times a dilatational
factor,

SOð12; 4Þ ⊃ SOð6; 2Þ × SOð5; 1Þ × SOð1; 1Þ
≃ SO�ð8Þ × SU�ð4Þ × SOð1; 1Þ; ð2:18Þ

or, equivalently, through two different maximal and sym-
metric embeddings, the isometries of AdS7 times the
conformal symmetry of the M5 brane world volume, or,
respectively, the conformal symmetry of AdS7 times the
isometries of the M5 brane world volume,

SOð12; 4Þ ⊃ SOð6; 2Þ × SOð6; 2Þ ≃ SO�ð8Þ × SO�ð8Þ;
ð2:19Þ

SOð12; 4Þ ⊃ SOð7; 3Þ × SOð5; 1Þ ≃ SOð7; 3Þ × SU�ð4Þ:
ð2:20Þ

III. GENERALIZATIONS WITHIN
EXCEPTIONAL PERIODICITY

A. Exceptional SYM’s

As mentioned in the introduction, various efforts have
been made over the years to define consistent supersym-
metric theories in D > 11 space-time dimensions. For
instance, Nishino constructed an N ¼ ð1; 0Þ SYM [37]
as well as an N ¼ 1 [38] and N ¼ 2 [39] supergravity
theory in 10þ 2 dimensions, with the two timelike dimen-
sions being motivated by the development of F-theory
[2,40,41], Bars’ S-theory [3], or other two-times theories
[42]. Nonminimal, chiral, N ¼ ð2; 0Þ SYM in 10þ 2 was
considered by Sezgin (cf., e.g., [23]). More recently,
Castellani proposed an N ¼ 1 supergravity in 10þ 2 with
locally supersymmetric SOð10; 2Þ-invariant action [43].
Switching to three timelike dimensions, Bars introduced
11þ 3 supersymmetry [4] and Sezgin constructed an N ¼
ð1; 0Þ SYM in 11þ 3 [5], obtaining a space-time super-
algebra with 64 real supercharges containing the type IIB
Poincaré superalgebra in 9þ 1 as well as N ¼ 1 Poincaré
superalgebra in 10þ 1. However, Sezgin also found an
obstruction for extending global supersymmetry beyond
11þ 3, later overcome by Nishino [6], who formulated
N ¼ ð1; 0Þ SYM’s in any signature ð9þmÞ þ ð1þmÞ,
for arbitrary m ∈ N ∪ f0g, with four general classes of
SYM’s given by the fact that m ¼ 4n, n ∈ N ∪ f0g.
Essentially, Bars [4], Sezgin [5], and then Nishino [6]

considered the symmetries of the γ-matrices [44], in particu-
lar, signatures D ¼ sþ t, all with s − t ¼ 8. Disregarding
the Euclidean case (t ¼ 0), four n-parametrized classes of

chiral,minimalN ¼ ð1; 0Þ superalgebras can be consistently
defined [5,6],
(1) D ¼ ð9þ 4nÞ þ ð1þ 4nÞ:

fQα; Qβg ¼ ðγμÞαβPμ þ ðγμ1…μ5ÞαβZμ1…:μ5

þ � � � þ ðγμ1…μ5þ4nÞαβZμ1…:μ5þ4n
: ð3:1Þ

(2) D ¼ ð10þ 4nÞ þ ð2þ 4nÞ:
fQα; Qβg ¼ ðγμνÞαβZμν þ ðγμ1…μ6ÞαβZμ1…:μ6

þ � � � þ ðγμ1…μ6þ4nÞαβZμ1…:μ6þ4n
: ð3:2Þ

(3) D ¼ ð11þ 4nÞ þ ð3þ 4nÞ:
fQα; Qβg ¼ ðγμνρÞαβZμνρ þ ðγμ1…μ7ÞαβZμ1…:μ7

þ � � � þ ðγμ1…μ7þ4nÞαβZμ1…:μ7þ4n
: ð3:3Þ

(4) D ¼ ð12þ 4nÞ þ ð4þ 4nÞ:

fQα; Qβg ¼ ηαβZ þ ðγμ1…μ4ÞαβZμ1…μ4

þ ðγμ1…μ8ÞαβZμ1…:μ8

þ � � � þ ðγμ1…μ8þ4nÞαβZμ1…:μ8þ4n
: ð3:4Þ

In such space-time superalgebras, Zμ1…μp are the bosonic
p-form generators. Actually, in (3.1)–(3.4) the γ-matrices
are all chirally projected: γμ1…μp ≡ γμ1…μpC−1, with C
denoting the charge conjugation matrix [the η-matrix
occurring in (3.4) is the chiral projection of C itself].
The maximal rank γ-matrices in the rhs of (3.1)–(3.4) have
a definite duality property, and hence the corresponding
bosonic generator is taken to be self-dual. Thus, the rhs of
(3.1)–(3.4) span the full symmetric space of relevant
dimension, and all the γ-matrices surviving the chiral
projection occur therein. It is here worth pointing out
that, among the above chiral superalgebras, only the one
in D ¼ ð9þ 4nÞ þ ð1þ 4nÞ space-time dimensions (3.1)
is a proper Poincaré superalgebra, containing the momen-
tum operator Pμ in the rhs.
We should also recall that the symmetry property of the

γ-matrices repeats itself every eight dimensions in space-time
[44], while the chirality (dottedness) of the spinors alternates
every two dimensions. In particular, the properties of spinors
are defined by two parameters: D ¼ sþ t mod(8) and
ρ ¼ s − t mod(8) [the mod(8) periodicity being the Bott
periodicity; see, e.g., [45], and references therein]. Thus, the
fact that all superalgebras (3.1)–(3.4) are characterized by a
MW (semi)spinor generator can be traced back to that they
all have ρ ¼ 8 ¼ 0 mod(8).
The simple but crucial observation is that, by switching 4n

timelike dimensions into 4n spacelike dimensions in the
above space-time signatures, one keepsD and ρ unchanged,
and so all the properties of spinors and γ-matrices relevant
for the definitionof the above super-Poincaré algebras are left
unchanged. Thus, one can check that the proofs given in [6]
(see also [5]) for the existence of SYM’s with superalgebras
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(3.1) and (3.2) can be successfully repeated to show the
existence of SYM’s based on global minimal, chiral (1,0)
superalgebras in the following space-time signatures:

(i) D ¼ ð9þ 8nÞ þ 1:

fQα; Qβg ¼ ðγμÞαβPμ þ ðγμ1…μ5ÞαβZμ1…:μ5

þ � � � þ ðγμ1…μ5þ4nÞαβZμ1…:μ5þ4n
: ð3:5Þ

(2) D ¼ ð10þ 8nÞ þ 2:

fQα; Qβg ¼ ðγμνÞαβZμν þ ðγμ1…μ6ÞαβZμ1…:μ6

þ � � � þ ðγμ1…μ6þ4nÞαβZμ1…:μ6þ4n
: ð3:6Þ

(3) D ¼ ð11þ 8nÞ þ 3:

fQα; Qβg ¼ ðγμνρÞαβZμνρ þ ðγμ1…μ7ÞαβZμ1…:μ7

þ � � � þ ðγμ1…μ7þ4nÞαβZμ1…:μ7þ4n
: ð3:7Þ

(4) D ¼ ð12þ 8nÞ þ 4:

fQα; Qβg ¼ ηαβZ þ ðγμ1…μ4ÞαβZμ1…μ4

þ ðγμ1…μ8ÞαβZμ1…:μ8 þ � � �
þ ðγμ1…μ8þ4nÞαβZμ1…:μ8þ4n

: ð3:8Þ
The SYM’s whose space-time (super-Poincaré) super-

algebra is given by (3.5)–(3.8) are named exceptional SYM’s
henceforth. Note that n ¼ n − 1, where n ∈ N is the level of
EP [13,14,46]. Thus, a direct relation between EP and higher
dimensional, exceptional (1,0) SYM’s inD ¼ ð9þ 8nÞ þ 1,
D¼ð10þ8nÞþ2,D¼ð11þ8nÞþ3, andD ¼ ð12þ 8nÞ þ 4
exists,4 hinting to the existence of an EP/SYM

correspondence [18]. In particular, the levels n ¼ 1, 2, 3
(and for a generic n) of the class of SYM’s in D ¼
ð11þ 8nÞ þ 3 space-time dimensions with superalgebra
(3.7) are considered in the present paper.

B. The first nontrivial level ðn= 2Þ∶eð2Þ8ð − 24Þ
1. N = ð1;0Þ SYM in 19+ 3 dimensions

At the second level (n ¼ 2) of EP [13], one can define

eð2Þ
8ð−24Þ ≔ so20;4 ⊕ 2048; ð3:9Þ

with algebraic structure and commutation relations defined
in terms of Kac’s asymmetry function [13], and with 2048
denoting the MW semispinor in 20þ 4 space-time dimen-
sions. (3.9) is the very first step of a Bott-periodic, non-Lie

generalization5 of e8ð−24Þ ≡ eð1Þ
8ð−24Þ, and it gives naturally

rise to the following 5-grading:

eð2Þ
8ð−24Þ ¼22−2⊕10240−1⊕ ðso19;3⊕RÞ0⊕1024þ1⊕22þ2;

ð3:10Þ
where 1024 and 10240 are the MW semispinor and its
conjugate in 19þ 3 space-time dimensions.
Equation (3.10) is the first nontrivial generalization of the

5-grading (2.7) of e8ð−24Þ, and, in light of the discussion in
Sec. III A, it provides the vector and spinor structures for a
novel, exceptionalN ¼ ð1; 0Þ SYM in 19þ 3, generalizing
[18] the work of Bars, Sezgin, and Nishino [4–6,23]. It is
worth stressing that 19þ 3 is the signature of a unimodular
lattice appearing in the description of the space of periods for
a complexK3 surfaceS andaKahler class ofH1;1ðS;RÞ [47].
Also, the moduli space of N ¼ ð4; 4Þ string theories

with K3 target space has a discrete symmetry group that is
the integral orthogonal group of an even unimodular lattice
of signature (20,4) [48]. This may permit further applica-
tion of (3.10) (with normalized cocycle) in the study of
vertex operator algebras for BPS states of K3 sigma models
with Mathieu group M24 symmetry [22].

2. M2 brane in 18+ 1 dimensions

Considering the Lie group associated to the reductive

(simple) part of eð2Þ
8ð−24Þ, namely SOð20; 4Þ, we observe that

a maximal symmetric subgroup of this reads

SOð20; 4Þ ⊃ SOð3; 3Þ × SOð17; 1Þ: ð3:11Þ
Again, SOð3; 3Þ yields affine transformations of AdS4. On
the other hand, SOð17; 1Þ can be regarded as the affine
symmetry of S16, which is the sphere acquired from T8;2

3 ,
the rank-3 T-algebra of special type [17], which provides
the first nontrivial generalization of the Albert algebra JO3 ≡
J83 ≡ T8;1

3 within EP (cf. Fig. 2). Fixing a rank-1 idempotent

4It should be pointed out that there exists an intrinsic, threefold
degeneracy in the determination of the noncompact real forms of
EP algebras. Indeed, at the nth level of EP, in the present paper (as
it is evident from Sec. III C) we understand to enlarge by 8n only
the spacelike dimensions in the (sþ t)-signature of the reductive,
pseudo-orthogonal part of the aforementioned EP algebras,
thus obtaining ð9þ8nÞþ1, ð10þ8nÞþ2, ð11þ8nÞþ3, and
ð12þ 8nÞ þ 4, and matching (by considering that n ¼ n − 1)
the space-time signatures (3.5)–(3.8). Nevertheless, the conju-
gation and reality properties of spinors depend only onD ¼ sþ t
and on ρ ≔ s − t (cf., e.g., [45]); thus at the nth level of EP, the
implementation of Bott [i.e., mod(8n)] periodicity could also be
made by increasing by 4n both spacelike and timelike dimensions,
or also by increasing by 8n only the timelike dimensions. In the
former case one would obtain ð9þ4nÞþð1þ4nÞ, ð10þ4nÞþ
ð2þ4nÞ, ð11þ4nÞþð3þ4nÞ, and ð12þ4nÞþð4þ4nÞ, thus giving
rise (by considering that n ¼ n − 1) to the space-time signatures of
(3.1)–(3.4), whereas in the latter case, one would obtain 9þ
ð1þ 8nÞ, 10þ ð2þ 8nÞ, 11þ ð3þ 8nÞ, and 12þ ð4þ 8nÞ, thus
giving rise (by considering that n ¼ n − 1) to other space-time
signatures in which other chiral, minimal N ¼ ð1; 0Þ superalge-
bras, besides (3.1)–(3.4) and (3.5)–(3.8), exist. Such a threefold
degeneracy of the implementation of Bott periodicity (yielding
spinors with the same dimensions, reality properties, and conjuga-
tion properties) can in principle be applied at any level of EP, also in
a different way from the way it was implemented at the previous
level; this allowsone to span a largevariety of ðs; tÞ-signatures in the
sos;t reductive part of the noncompact real forms of EP algebras
[18].

5This algebra was inspired by discussions with Eric Weinstein
on extended triality in D ¼ 24.
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of T8;2
3 induces the following SOð17; 1Þ-covariant Peirce

decomposition [13]:

T2
3 ¼ 18 ⊕ 256 ⊕ 1; ð3:12Þ

where 256 denotes the MW semispinor in signature 17þ 1,
and 1 is the fixed rank-1 idempotent of T8;2

3 . (3.12) can be
regarded as a consequence of themaximal embedding [13,46]

T2
3 ⊃ R ⊕ Γ17;1; ð3:13Þ

which in turn might give rise to a quasiconformal interpre-
tation of the definition (3.9) itself [14]. The 18-dimensional
Lorentzian spin factor Γ17;1 [49] has SOð17; 1Þ space-time
symmetry, which is also the affine symmetry of S16, a sphere
of the transverse degrees of freedom with a fixed (rank-1
idempotent) point at infinity. It is hereworth recalling that this
structure is seen in the 3-grading of the first nontrivial

extension eð2Þ
6ð−26Þ of e6ð−26Þ within EP [46],

eð2Þ
6ð−26Þ ¼ 2560−3 ⊕ ðso17;1 ⊕ RÞ0 ⊕ 256þ3; ð3:14Þ

which might enjoy a reduced structure symmetry interpreta-
tion, as well [14]. Hence, SOð20; 4Þ contains maximally (and
symmetrically) the affine symmetries of AdS4 ⊗ S16.
Considering the reduction to transversal rotations6

S16 → S15, and the isometry group SOð17Þ reduces to
SOð16Þ. This corresponds to the two-step chain of maximal
symmetric embeddings into SOð20; 4Þ,

SOð20; 4Þ ⊃ SOð19; 3Þ ⊃ SOð3; 3Þ × SOð16Þ: ð3:15Þ
Breaking down to isometries of AdS4 by a further maximal
and symmetric embedding yields

SOð20; 4Þ ⊃ SOð19; 3Þ ⊃ SOð3; 3Þ × SOð16Þ ⊃ SOð3; 2Þ
× SOð16Þ: ð3:16Þ

Alternatively, the following embedding also holds:

SOð20; 4Þ ⊃ SOð3; 2Þ × SOð16Þ × SOð1; 2Þ; ð3:17Þ

whereSOð3; 2Þ × SOð16Þ acts as isometries ofAdS4 ⊗ S15,
which can thus be regarded as a generalization of the near-
horizon geometry of the M2-brane in 18þ 1 space-time
dimensions.

3. M13-brane in 18+ 1 dimensions

Another maximal symmetric subgroup of SOð20; 4Þ is

SOð20; 4Þ ⊃ SOð14; 3Þ × SOð6; 1Þ; ð3:18Þ

yielding that SOð20; 4Þ includes maximally (and symmet-
rically) the affine transformations of AdS15 ⊗ S5.
Restricting to transverse directions induces S5 → S4, where
the isometry group SOð6Þ of S5 breaks to SOð5Þ of S4. This
corresponds to the two-step chain of maximal symmetric
embeddings SOð12; 4Þ,

SOð20; 4Þ ⊃ SOð19; 3Þ ⊃ SOð14; 3Þ × SOð5Þ: ð3:19Þ

Breaking down to isometries of AdS15 by a further maximal
and symmetric embedding yields

SOð20; 4Þ ⊃ SOð19; 3Þ ⊃ SOð14; 3Þ × SOð5Þ ⊃ SOð14; 2Þ
× SOð5Þ: ð3:20Þ

Alternatively, the following embedding also holds:

SOð20; 4Þ ⊃ SOð14; 2Þ × SOð5Þ × SOð1; 2Þ; ð3:21Þ

whereSOð14; 2Þ × SOð5Þ acts as isometries ofAdS15 ⊗ S4,
which can thus be regarded as a generalization of the near-
horizon geometry AdS7 ⊗ S4 [cf. (2.17)] of the M5 brane in
10þ 1 to the near-horizon geometry of anM13-brane,which
is the Hodge dual7 of M2 in 18þ 1 space-time dimensions.

FIG. 2. The magic star of EP [13]. Tq;n
3 denotes a T-algebra of

rank-3 and of special type [17], parametrized by q ¼ dimR A ¼
1, 2, 4, 8 for A ¼ R;C;H;O, respectively, and n ∈ N [17,46].
In the case of the EP for e8ð−24Þ, as under discussion, q ¼ 8.

6Note that the geometric picture in terms of projective lines in
higher projective spaces is lost for all nontrivial levels ofEP, namely
forn ≥ 2, because octonionic (projective) geometry is defined only
until dimension 2. This is also reflected in the fact thatT8;2

3 is not a
rank-3 Jordan algebra, and the triality among its block components
within SOð16Þ-covariant Peirce decomposition is spoiled [13].
Again, another consequence of the aforementioned fact is that EP
algebras are not Lie algebras (because the Jacobi identity does not
hold on their nonreductive component [13]). However, after
Rosenfeld [50], the isometry SOð16Þ of S15 can be regarded as
the stabilizer of ðO ⊗ OÞP2 ¼ E8=SOð16Þ, which is an example
(with the largest exceptional global isometry) of the so-called Tits’
buildings [51,52].

7An M13 brane is indeed recovered by taking the Hodge dual
of the 4-form field strength of the M2 in D ¼ 18þ 1 space-time,
sourcing a 15-form dual field strength.
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C. The generic nth level ðn ∈ NÞ∶ eðnÞ8ð − 24Þ
1. Infinite N = ð1;0Þ SYM’s in ð8n+ 3Þ+ 3 dimensions

The procedure of the previous subsection can be gen-
eralized to an arbitrary level n of EP (characterized by Bott
periodicity) as follows [13] (n ∈ N; recall that e8ð−24Þ≡
eð1Þ
8ð−24Þ):

eðnÞ
8ð−24Þ ≔ so8nþ4;4 ⊕ 2ð8nþ6Þ=2 ð3:22Þ

¼ ð8nþ 6Þ−2 ⊕ ð2ð8nþ6Þ=2−1Þ0−1
⊕ ðso8nþ3;3 ⊕ RÞ0 ⊕ 2ð8nþ6Þ=2−1

−1

⊕ ð8nþ 6Þþ2; ð3:23Þ

where 2ð8nþ6Þ=2 is the MW semispinor in ð8nþ 4Þ þ 4

space-time dimensions, while 2ð8nþ6Þ=2−1 and ð2ð8nþ6Þ=2−1Þ0
denote the MW spinor and its conjugate in ð8nþ 3Þ þ 3
space-time dimensions. (3.22) and (3.23) respectively
provide the nth generalization of (3.9) and (3.10) within
EP [13]. Again, in light of the discussion in Sec. III A,
this is tantalizing evidence for the possible existence of a
countably infinite tower (parametrized by n ∈ N) of novel,
exceptionalN ¼ ð1; 0Þ SYM’s in ð8nþ 3Þ þ 3 space-time
dimensions. This generalization of the work by Bars et al.
[4–6,23], briefly considered in Sec. III A, is the object of a
forthcoming paper [18].

2. M2 brane in ð8n+ 2Þ + 1 dimensions

Considering the Lie group associated to the reductive
(simple) part of eðnÞ

8ð−24Þ, namely, SOð8nþ 4; 4Þ, we observe
that a maximal symmetric subgroup of this reads

SOð8nþ 4; 4Þ ⊃ SOð3; 3Þ × SOð8nþ 1; 1Þ: ð3:24Þ

Once again, SOð3; 3Þ yields affine transformations of AdS4.
On the other hand, SOð8nþ 1; 1Þ can be regarded as the
affine symmetry of S8n, which is the sphere acquired from
T8;n
3 , the rank-3 T-algebra of special type [17] that provides

the nth generalization of the Albert algebra JO3 ≡ J83 ≡ T8;1
3

within EP (cf. Fig. 2). Fixing a rank-1 idempotent of T8;n
3

induces the following SOð8nþ 1; 1Þ-covariant Peirce
decomposition [13]:

T8;n
3 ¼ ð8nþ 2Þ ⊕ 24n ⊕ 1; ð3:25Þ

where 24n denotes the MW semispinor in signature
ð8nþ 1Þ þ 1, and 1 is the fixed rank-1 idempotent of
T8;n
3 . (3.25) can be regarded as a consequence of themaximal

embedding [13,46]

T8;n
3 ⊃ R ⊕ Γ8nþ1;1; ð3:26Þ

which in turn might give rise to a quasiconformal interpre-
tation of the definition (3.22) itself [14]. The (8nþ 2)-
dimensional Lorentzian spin factorΓ8nþ1;1 hasSOð8nþ1;1Þ
space-time symmetry, which is also the affine symmetry of
S8n, a sphere of the transverse directions with a fixed
idempotent point at infinity. It is here worth recalling that
this structure is seen in the 3-gradingof thenth generalization

eðnÞ
6ð−26Þ of e6ð−26Þ within EP [46],

eðnÞ
6ð−26Þ ¼ ð24nÞ0−3 ⊕ ðso8nþ1;1 ⊕ RÞ0 ⊕ 24nþ3; ð3:27Þ

which might enjoy a reduced structure symmetry interpreta-
tion, as well [14]. Hence, SOð8nþ 4; 4Þ contains maximally
(and symmetrically) the affine symmetries of AdS4 ⊗ S8n.
Considering the reduction to transversal rotations8

S8n → S8n−1, and the isometry group SOð8nþ 1Þ reduces
to SOð8nÞ. This corresponds to the two-step chain of
maximal symmetric embeddings into SOð8nþ 4; 4Þ,
SOð8nþ 4; 4Þ ⊃ SOð8nþ 3; 3Þ ⊃ SOð3; 3Þ × SOð8nÞ:

ð3:28Þ
Breaking down to isometries of AdS4 by a further maximal
and symmetric embedding yields

SOð8nþ 4; 4Þ ⊃ SOð8nþ 3; 3Þ ⊃ SOð3; 3ÞSOð8nÞ
⊃ SOð3; 2Þ × SOð8nÞ: ð3:29Þ

Alternatively, the following embedding also holds:

SOð8nþ 4; 4Þ ⊃ SOð3; 2Þ × SOð8nÞ × SOð1; 2Þ; ð3:30Þ
where SOð3; 2Þ × SOð8nÞ acts as isometries of AdS4 ⊗
S8n−1, which can thus be regarded as a generalization of the
near-horizon geometry of the M2 brane in ð8nþ 2Þ þ 1
space-time dimensions, i.e., up to arbitrarily high Lorentzian
space-times.

3. Mð8n− 3Þ brane in ð8n+ 2Þ+ 1 dimensions

Another maximal symmetric subgroup of
SOð8nþ 4; 4Þ is

SOð8nþ 4; 4Þ ⊃ SOð8n − 2; 3Þ × SOð6; 1Þ; ð3:31Þ
yielding that SOð8nþ 4; 4Þ maximally (and symmetrically)
includes the affine transformations of AdS8n−1 ⊗ S5.
Considering the reduction to transverse directions induces
S5 → S4, where the isometry group SOð6Þ of S5 breaks to
SOð5Þ of S4. This corresponds to the two-step chain of
maximal symmetric embeddings SOð8nþ 4; 4Þ,

8For n ≥ 3, the interpretation of S8n (or its reduced space
S8n−1) in terms of higher projective spaces, or (of stabilizers) of
Tits’ buildings, is generally lost. For further details, cf. [46].
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SOð8nþ 4; 4Þ ⊃ SOð8nþ 3; 3Þ ⊃ SOð8n − 2; 3Þ × SOð5Þ:
ð3:32Þ

Breaking down to isometries ofAdS7 by furthermaximal and
symmetric embedding yields

SOð8nþ 4; 4Þ ⊃ SOð8nþ 3; 3Þ ⊃ SOð8n − 2; 3Þ × SOð5Þ
⊃ SOð8n − 2; 2Þ × SOð5Þ: ð3:33Þ

Alternatively, the following embedding also holds:

SOð8nþ 4; 4Þ ⊃ SOð8n − 2; 2Þ × SOð5Þ × SOð1; 2Þ;

ð3:34Þ

whereSOð8n−2;2Þ×SOð5Þ acts as isometries ofAdS8n−1⊗
S4, which can thus be regarded as a generalization of the near-
horizon geometry of the M5-brane to an M(8n − 3)-brane,
which is the Hodge dual of M2.9 It is worth noting that the
magnetic (Hodge) dual branes ofM2-branes can be classified
by quaternions asMð4kþ 1Þ branes:M5 brane (k ¼ 1),M13
brane (k ¼ 3), M21 brane (k ¼ 5), etc. over odd k ¼ 2n − 1.
This provides a generalization of the observation of the
projective line in HP2, done above (2.15), in ð8nþ 2Þ þ 1
space-time dimensions, i.e., up to arbitrarily high Lorentzian
space-times.

D. The third level ðn= 3Þ∶ eð3Þ8ð− 24Þ, bosonic M-theory,
and monster AdS=CFT

1. N = ð1;0Þ SYM in 27+ 3 dimensions

As an interesting example, let us consider the generali-
zation of e8ð−24Þ provided by the n ¼ 3 level of EP [13],
namely,

eð3Þ
8ð−24Þ ≔ so28;4 ⊕ 215 ð3:35Þ

¼30−2⊕ ð214Þ0−1⊕ ðso27;3⊕RÞ0⊕214þ1⊕30þ2;

ð3:36Þ
where 215 is the MW semispinor in 28þ 4, while 214 and
ð214Þ0 denote the MW spinor and its conjugate in 27þ 3.
(3.35) and (3.36), respectively, are the n ¼ 3 elements of the
Bott-periodized countably infinite sequences of generaliza-
tions (3.22) and (3.23) within EP. As discussed in Sec. III A,
(3.35) and (3.36) intriguingly provide evidence for the
possible existence of a novel N ¼ ð1; 0Þ SYM in 27þ 3
[18], generalizing previous works of Bars et al. [4–6,23].

2. M2 brane in bosonic M-theory

Considering the Lie group associated to the reductive
(simple) part of eð3Þ

8ð−24Þ, namely, SOð28; 4Þ, we observe that
a maximal symmetric subgroup of this reads

SOð28; 4Þ ⊃ SOð3; 3Þ × SOð25; 1Þ; ð3:37Þ

where SOð3; 3Þ yields affine transformations of AdS4 and
SOð25; 1Þ can be regarded as the affine symmetry of S24,
or alternatively as the space-time symmetry of bosonic
string theory [19]. By specializing to n ¼ 3 the previous
n-parametrized treatment, SOð25; 1Þ can be regarded as the
affine symmetry of S24, which is the sphere acquired from
T8;3
3 , the rank-3 T-algebra of special type [17] that provides

the third generalization of the Albert algebra within EP
(cf. Fig. 2). Fixing a rank-1 idempotent of T8;3

3 induces the
following SOð25; 1Þ-covariant Peirce decomposition [13]:

T8;3
3 ¼ 26 ⊕ 212 ⊕ 1; ð3:38Þ

where 212 denotes the MW semispinor in signature 25þ 1,
and 1 is the fixed rank-1 idempotent of T8;3

3 . (3.38) can be
regarded as a consequence of the maximal embedding
[13,46]

T8;3
3 ⊃ R ⊕ Γ25;1: ð3:39Þ

The 26-dimensional Lorentzian spin factorΓ25;1 has bosonic
string theory space-time symmetry, which is also the affine
symmetry of S24, a sphere of the transverse degrees of
freedom with fixed idempotent point at infinity. The span of
this fixed idempotent can serve as a 27th dimension forD ¼
27 M-theory [19]. Note, bosonic string theory space-time
symmetry is seen in the 3-grading of the third generalization

eð3Þ
6ð−26Þ of e6ð−26Þ within EP [46],

eð3Þ
6ð−26Þ ¼ ð212Þ0−3 ⊕ ðso25;1 ⊕ RÞ0 ⊕ 212þ3: ð3:40Þ

Hence, SOð28; 4Þ contains maximally (and symmetrically)
the affine symmetries of AdS4 ⊗ S24.
Considering the reduction to transversal rotations,

S24 → S23, and the isometry group SOð25Þ reduces to
SOð24Þ. This corresponds to the two-step chain of maximal
symmetric embeddings into SOð28; 4Þ,

SOð28; 4Þ ⊃ SOð27; 3Þ ⊃ SOð3; 3Þ × SOð24Þ: ð3:41Þ

Breaking down to isometries of AdS4 by a further maximal
and symmetric embedding yields

SOð28; 4Þ ⊃ SOð27; 3Þ ⊃ SOð3; 3Þ × SOð24Þ ⊃ SOð3; 2Þ
× SOð24Þ: ð3:42Þ

9An Mð8n − 3Þ brane is expected to source the (8n − 1)-form
field strength, dual to the M2 4-form field strength in D ¼
ð8nþ 2Þ þ 1 space-time.
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Alternatively, the following embedding also holds:

SOð28; 4Þ ⊃ SOð3; 2Þ × SOð24Þ × SOð1; 2Þ; ð3:43Þ

where SOð3; 2Þ × SOð24Þ acts as isometries of AdS4 ⊗
S23, which can thus be regarded as a generalization of the
near-horizon geometry of the M2 brane in 26þ 1 space-
time dimensions. AdS4 ⊗ S23 might also serve as a
possible vacuum of bosonic M-theory [19].

3. M21 brane in bosonic M-theory

Another maximal symmetric subgroup of SOð28; 4Þ is

SOð28; 4Þ ⊃ SOð22; 3Þ × SOð6; 1Þ; ð3:44Þ

yielding that SOð28; 4Þ maximally (and symmetrically)
includes the affine transformations of AdS23 ⊗ S5.
Considering the reduction to transverse directions maps
S5 → S4, and the isometry group SOð6Þ of S5 breaks to
SOð5Þ on S4. This corresponds to the two-step chain of
maximal symmetric embeddings SOð28; 4Þ,

SOð28; 4Þ ⊃ SOð27; 3Þ ⊃ SOð22; 3Þ × SOð5Þ: ð3:45Þ

Breaking down to isometries of AdS23 by a further maximal
and symmetric embedding yields

SOð28; 4Þ ⊃ SOð27; 3Þ ⊃ SOð22; 3Þ × SOð5Þ ⊃ SOð22; 2Þ
× SOð5Þ: ð3:46Þ

Alternatively, the following embedding also holds:

SOð28; 4Þ ⊃ SOð22; 2Þ × SOð5Þ × SOð1; 2Þ; ð3:47Þ

where SOð22; 2Þ × SOð5Þ acts as isometries of AdS23 ⊗
S4, which can thus be regarded as a generalization of the
near-horizon geometry of the M5 brane to an M21 brane,
the Hodge dual of the M2 brane in 26þ 1 space-time
dimensions. In view of the considerations above and
Horowitz and Susskind’s conjectured M21 brane in [19],
AdS23 ⊗ S4 would also provide support for a possible
vacuum of bosonic M-theory, “dual” to AdS4 ⊗ S23.

4. Conway group and Witten’s monster AdS=CFT

By reducing to isometries of

AdS3 ¼ Oð2; 2Þ=Oð2; 1Þ; ð3:48Þ

the following embedding into SOð28; 4Þ is singled out:

SOð28; 4Þ ⊃ SOð2; 2Þ × SOð24Þ × SOð2; 2Þ; ð3:49Þ

where SOð2; 2Þ × SOð24Þ yields isometries of AdS3 ⊗ S23.

We note that the space AdS3 ⊗ S23 is especially
interesting, as it lends support for the monster AdS/
CFT for three-dimensional gravity proposed by Witten
[20]. If we suppose AdS3 ⊗ S23 is a possible vacuum of
bosonic string theory,10 where the expected R-symmetry
is SOð24Þ (from D ¼ 26þ 1 M-theory reduced to
D ¼ 2þ 1), we can identify the Conway group Co0 ⊂
M (where M is the monster group) in SOð24Þ as acting on
a discretized S23 with points given by vectors of the Leech
lattice [21,53], in which the first shell of 196,560 vectors
has norm 4 [21]. This allows a finite group action as the
Conway group Co0 is the automorphism group of the
Leech lattice [21], acting as isometries of the discretized11

S23. The appearance of the Conway group is more than
fortuitous, as every K3 sigma model has finite group
symmetry contained in Co0 [22]. This is a tantalizing hint
that, beyond the search for vertex operator algebras on
BPS states with exact M24 symmetry [22], one can move
to a larger vertex operator algebra (CFT) with manifest
Conway group symmetry and study its related K3 sigma
models. Intriguingly, a super vertex operator algebra with
Co0 Conway group symmetry has already been con-
structed in [54]. An AdS/CFT study of AdS3 ⊗ S23 might
involve this particular vertex operator algebra. In light of
this algebra, the monster group could be a finite symmetry
of the light cone little group of nonperturbative12 27-
dimensional M-theory.

IV. CONCLUSION

By relying on the maximal embedding (3.26) of semi-
simple rank-3 Jordan algebras into rank-3 T-algebras of
special class, we used 3- and 5-gradings of finite-
dimensional exceptional Lie algebras and their Bott-periodic
extensions within EP, in order to show that the near-horizon
geometries of the M2 branes and their Hodge (magnetic)
duals can be generalized to arbitrarily high dimensions.
Moreover, we showed how the EP generalizations of

the minimally noncompact, real form e8ð−24Þ of the largest
finite-dimensional exceptional Lie algebra e8 hint at novel,
exceptional SYM’s beyond 11þ 3 space-time dimensions,
with tantalizing signatures 17þ 1, 19þ 3, 25þ 1 and
27þ 3, suggesting a periodic ladder to the D ¼ 25þ 1

bosonic string (with an AdS3 ⊗ S23 vacuum) and D ¼
26þ 1 bosonic M-theory (with M2 AdS4 ⊗ S23 near-
horizon geometry), that can be generalized to arbitrarily
high dimension with 1, 2, 3 or 4 timelike dimensions.

10Thanks to Lubos Motl for comments on this construction.
11It is tempting to observe that the spherical parts of the

corresponding geometries for the levels n ¼ 1 and n ¼ 2 of EP,
namely, of AdS3 ⊗ S7 and AdS3 ⊗ S15, can be discretized by
using E8 and E8 ⊕ E8 lattices, respectively.

12Formally, such a formulation would exist at levels n ¼ 5 and
n ¼ 6 of EP, where a 24-dimensional even unimodular lattice
and its extensions can be constructed.
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This allowed us to argue that an EP/SYM correspondence
can be put forward [18], implying an infinite-dimensional
spectral extension of M-theory via cubic matrix T-algebras,
where D ¼ sþ t ¼ 10þ 1 is the maximal single-time
extension of SYM exhibiting manifest (SOð8Þ) triality.
The appearance of 19þ 3 and 20þ 4 signatures in

moduli spaces with K3 target space [47,48], and
Mathieu moonshine in K3 sigma models [22], with AdS
constructions descending from 28þ 4 exhibiting Conway
group Co0 symmetry, all yield evidence that higher dimen-
sional SYM’s in the EP context (whose existence has been
briefly discussed in Sec. III A and will be investigated

in detail in [18]) can help shed light on the “mysterious
duality” [55] of Iqbal, Nietzke, and Vafa, as well as on the
moonshine structure of M-theory and beyond.
Forthcoming companion papers and studies will explore

these issues in deeper detail [14,18,46].
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