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We develop a new perspective on the discretization of the phase space structure of gravity in 2þ 1

dimensions as a piecewise-flat geometry in 2 spatial dimensions. Starting from a subdivision of the
continuum geometric and phase space structure into elementary cells, we obtain the loop gravity phase
space coupled to a collection of effective particles carrying mass and spin, which measure the curvature
and torsion of the geometry. We show that the new degrees of freedom associated to the particlelike
elements can be understood as edge modes, which appear in the decomposition of the continuum theory
into subsystems and do not cancel out in the gluing of cells along codimension 2 defects. These new
particlelike edge modes are gravitationally dressed in an explicit way. This provides a detailed explanation
of the relations and differences between the loop gravity phase space and the one deduced from the
continuum theory.
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I. INTRODUCTION

One of the key challenges in trying to define a theory of
quantum gravity at the quantum level is to find a regulari-
zation that does not drastically break the fundamental
symmetries of the theory. This is a challenge in any gauge
theory, but gravity is especially challenging, for two reasons.
First, one expects that the quantum theory possesses a
fundamental length scale, and second, the gauge group
contains diffeomorphism symmetry, which affects the nature
of the space on which the regularization is applied.
In gauge theories such as QCD, the only known way to

satisfy these requirements1 is to put the theory on a lattice,
where an effective finite-dimensional gauge symmetry
survives at each scale. One would like to devise such a
scheme in the gravitational context. In this paper, we
develop a step-by-step procedure achieving this in the
context of 2þ 1 gravity. We initially expected to find the
so-called holonomy-flux discretized phase space, which
appears in loop gravity and produces spin networks after
quantization. To our surprise, we discovered that there are
additional degrees of freedom (d.o.f.) that behave as a
collection of particles coupled to the gravitational d.o.f.

In the loop quantum gravity (LQG) framework, gravity is
quantized using the canonical approach, with the gravita-
tional d.o.f. expressed in terms of the connection and frame
field. The quantum states of geometry are known as “spin
networks.” In this framework, we can show that geometric
operators possess a discrete spectrum. This is, however, only
possible after one chooses the quantum states to have
support on a graph. Spin network states can be understood
as describing a quantum version of discretized spatial
geometry [1], and the Hilbert space associated to a graph
can be related, in the classical limit, to a set of discrete
piecewise-flat geometries [2,3]. This means that the LQG
quantization scheme consists at the same time of a quan-
tization and a discretization; moreover, the quantization of
the geometric spectrum is entangled with the discretization
of the fundamental variables. It has been argued that it is
essential to disentangle these two different features [4],
especially when one wants to address dynamical issues.
In [4,5], it has been argued that one should understand

the discretization as a two step process: a subdivision
followed by a truncation. In the first step one subdivides
the systems in fundamental cells, and in the second step one
chooses a truncation of d.o.f. in each cell which is
consistent with the symmetry of the theory. By focusing
first on the classical discretization, before any quantization
takes place, several aspects of the theory can be clarified.
Let us mention some examples:
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(i) The discretization scheme allows us to study more
concretely how to recover the continuum geometry
out of the discrete geometry which is the classical
picture behind the spin networks [4,5]. In particular,
since the discretization is now understood as a
truncation of the continuous d.o.f., it is possible
to associate a continuum geometry to the dis-
crete data.

(ii) It provides a justification for why in the continuum
case the momentum variables are equipped with a
zero Poisson bracket, whereas in the discrete case
the momentum variables do not commute with each
other [4,6,7]. These variables needs to be dressed by
the gauge connection and are now understood as
charge generators [8].

(iii) It permitted the discovery of duality symmetries that
suggests new discrete variables and a new dual
formulation of discrete 2þ 1 gravity [6]. While
the quantization of spin networks leads to spin foam
models, the quantization of these dual models can be
related to the Dijkgraaf-Witten model [9]. This also
allows one to understand, at the classical level, the
presence of new dual vacua as advocated by Dittrich
and Geiller [7,10].

In this work we revisit these ideas in the context of 2þ 1

gravity and deepen the analysis done in [4,6] by focusing
on what happens at the location of the curvature defects.
Since gravity in 2þ 1 dimensions is equivalent to a Chern-
Simons theory constructed on a Drinfeld double group, we
analyze the phase space truncation of any Chern-Simons
theory constructed on a Drinfeld double group and then
specialize the analysis to the case where the double group is
the inhomogeneous “Poincaré” group DG over a “Lorentz”
group G. This corresponds to the case of a zero cosmo-
logical constant when G is a 3D rotation group. The
variables of the theory are a pair of g-valued connection
A and frame field E, while the Chern-Simons connection
A is simply the sum A ¼ Aþ E.
The aim of the present work is to precisely evaluate such

effects in the 2þ 1 case. As already emphasized, the
procedure of discretization is now understood as a process
of subdivision of the underlying manifold into cells,
followed by a truncation of the d.o.f. in each cell. The
truncation we chose, and which is adapted to 2þ 1 gravity,
is to assume that the geometry is locally flat FðAÞ ¼ 0 and
torsionless T ¼ dAE ¼ 0 inside each cell. This means that
the continuum geometric data ðE;AÞ is now replaced by a
DG structure, that is, a decomposition of the 2D manifold Σ
into cells c with the transition functions across cells
belonging to the group DG preserving the local flatness
and torsionlessness conditions of the geometry.
We can think of DG as the local isometry group of our

locally flat structure, and hence an analogue of the Poincaré
group for flat space. If we allow possible violations of the
flatness condition at the vertices v of the cells, this DG

structure can be understood as a flat structure on ΣnV,
where Σ is the 2D manifold and V is the set of all vertices.
In this context, the locally flat geometry on Σ is encoded in
terms of discrete rotational and translational holonomies
which allow the reconstruction of the flat connection on the
punctured surface.
At the continuum level, the geometric data forms a phase

space with presymplectic structure Ω ¼ R
Σ δE · δA. The

main advantage of describing the discretization as a
truncation is the fact that one can understand the truncated
variables as forming a reduced phase space. This follows
from the fact that the truncation is implemented in terms of
first-class constraints and is therefore compatible with the
Hamiltonian structure. This philosophy has already been
applied to gravity in [4,6]. However, these works neglected
the contributions from curvature and torsion singularities
appearing at the vertices. In the current work we extend the
analysis to include these contributions.

A. A change of paradigm

A key result of this paper is conceptual. In the sub-
division process, some of the bulk d.o.f. are replaced by
edge mode d.o.f., which play a key role in the construction
of the full phase space and our understanding of symmetry.
The reason this happens is that we propose to implement
the procedure of discretization as a rewriting of the theory
in terms of specific subsystems. Dealing with subsystems
in a gauge theory requires special care with regards to
boundaries, where gauge invariance is naively broken and
additional d.o.f. must be added in order to restore it.
In other words, what is called a discretization should in

fact be seen as a proper way to extend the phase space by
adding extra d.o.f.—a generalization of Goldstone modes
needed to restore the gauge invariance—that transforms
nontrivially under new edge symmetry transformations.
The process of subdivision therefore requires a canonical
extension of the phase space and converting some momenta
into noncommutative charge generators.
The general philosophy is presented in [8] and exem-

plified in the 3þ 1 gravity context in [11–13]. An intuitive
reason behind this fundamental mechanism is also pre-
sented in [14] and the general idea is, in a sense, already
present in [15]. In the 2þ 1 gravity context, the edge
modes have been studied in great detail in [16,17]. This
phenomenon even happens when the boundary is taken to
be infinity [18], where these new d.o.f. are the soft modes.
One point which is important for us is that these extra d.o.f.,
which possess their own phase space structure and appear
as “dressings” of the gravitationally charged observables,
affect the commutation relations of the dressed observables.
In a precise sense, this is what happens with the fluxes in
loop gravity: the “discretized” fluxes are dressed by the
connection d.o.f., implying a different Poisson structure
compared to the continuum ones. A nice continuum
derivation of this fact is also given in [19].
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Once this subdivision and extension of the phase space
are done properly, one has to understand the gluing of
subregions as the fusion of edge modes across the boun-
daries. If the boundary is trivial, the fusion merely allows us
to extend gauge-invariant observables from one region to
another. When several boundaries meet at a corner, there is
now the possibility to have residual edge d.o.f. that come
from the fusion product. We witness exactly this phenome-
non at the vertices of our cellular decomposition, where
new d.o.f., in addition to the usual loop gravity ones, are
present after regluing.
In our analysis we rewrite the gauge d.o.f., after

truncation, as a collection of locally flat “Poincaré” con-
nectionsA ¼ Aþ E in each cell. The choice of collection
of cells corresponds to the subdivision, and the imposition
of the flatness condition inside each cell corresponds to the
truncation. Inside each cell, we introduce a DG-valued
0-form HcðxÞ that parametrizes the flat connection,
AðxÞ≡H−1

c ðxÞdHcðxÞ. The quantities HcðxÞ can be used
to reconstruct the holonomy of the connection, but they
contain more information. This comes from the fact that left
and right transformations of the holonomy have different
implementations at the level of the connection:

HcðxÞ ↦ GcHcðxÞ ⇒ AðxÞ ↦ AðxÞ; ð1Þ

HcðxÞ ↦ HcðxÞGðxÞ
⇒ AðxÞ ↦ G−1ðxÞAðxÞGðxÞ þ G−1ðxÞdGðxÞ: ð2Þ

In the last case, the standard gauge transformation is
expressed as a right action on HcðxÞ. However, the first
transformation, which acts on the left of HcðxÞ, leaves the
connection invariant. It therefore corresponds to an addi-
tional d.o.f. entering the definition of HcðxÞ which is not
contained in A. One can understand the presence of this
additional d.o.f. as coming from the presence of a boun-
dary, and the left translation as an edge mode symmetry that
has to be implemented when we reconstruct physical
observables.
We can now use the variables HcðxÞ to reconstruct our

truncated phase space. For each cell, we can express the
continuum symplectic potential in terms of the holonomy
variables, and the expression can be readily seen as only
depending on the fields evaluated at the boundaries of the
cell. Summing the symplectic potentials for each cell
simplifies the general expression, and the final symplectic
potential depends only on the fields evaluated across
boundaries.
One recovers, in particular, that holonomies from a cell

to its neighbor form a subset of the canonical variables.
Xc0

c ∈ g is the flux and hcc0 ∈ G is the holonomy, while the
symplectic potential reproduces the loop gravity potential
ΘLQG ¼ P

ðcc0Þ Trðδhcc0h−1cc0Xc0
c Þ, which gives the holon-

omy-flux algebra. We also find, however, that there are

additional contributions coming from the vertices v where
several cells meet. Each vertex carries the phase space
structure Θv of a relativistic particle, labeled by the
edge modes HvðvÞ ¼ ðhvðvÞ; yvðvÞÞ ∈ G ⋉ g� which are
nontrivially coupled to the gravity variables through con-
nectors hvc and Xc

v.
The mass and spin of the effective relativistic particles

are determined via a generalization of the Gauss constraint
and curvature constraint at the vertices. The appearance of
these effective particle d.o.f. from pure gravity is quite
interesting and unexpected. The usual loop gravity frame-
work is recovered when the edge mode d.o.f. labeled by
HvðvÞ are frozen.
The conceptual shift towards an edge mode interpretation,

while not modifying the mathematical structures at all,
provides a different paradigm to explore some of the key
questions of LQG. For example, the notion of the continuum
limit (in a 3þ 1-dimensional theory) attached to subregions
could be revisited and clarified in light of this new
interpretation, and related to the approach developed in
[20,21]. It also strengthens, in a way, the spinor approach to
LQG [22–24], which allows one to recover the LQG
formalism from d.o.f., the spinors, living on the nodes of
the graph. These spinors can be seen as a different para-
metrization of the edge modes (in a similar spirit to [25,26]).
Edge modes have recently been studied for the purpose

of making proper entropy calculations in gauge theory or,
more generally, defining local subsystems [15]. Their use
could provide some new guidance on understanding the
concept of entropy in LQG. They are also relevant to the
study of specific types of boundary excitations in con-
densed matter [27], which could generate some interesting
new directions to explore in LQG, just like [20,28].

B. Comparison to previous work

Discretization (and quantization) of 2þ 1 gravity was
already performed some time ago in the Chern-Simons
formulation [29–32]. While our results should be equiv-
alent to this formulation, we find them interesting and
relevant for several reasons.
Firstly, we work with the gravitational variables and the

associated geometric quantities, such as torsion and curva-
ture. Our procedure describes clearly how such objects
should be discretized, which is not obvious in the Chern-
Simons picture; see e.g., [33] where the link between the
combinatorial (quantization) framework and the LQG one
was explored.
Secondly, we are using a different discretization pro-

cedure than the one used in the combinatorial approach.
Instead of considering the reduced graph (flower graph), we
use the full graph to generate the spin network and assume
that the equations of motion are satisfied in the cells and the
disks containing the geometric excitations.
Thirdly, one of themost important differences is in the fact

that we derive the symplectic structure of the discretized
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variables from the continuum one, unlike the combinatorial
approach which postulates it (Fock-Rosly formalism). As
we will see, there will be some slight differences in the
resulting symplectic potential, which we will comment on
in Sec. VI.
Finally, our discretization will apply, with the necessary

modifications, to the 3þ 1 case as well [34], unlike the
combinatorial approach.

C. Outline

The paper is organized as follows. In Sec. II, we recall the
necessary ingredients to define piecewise-homogeneous
geometries. We construct the corresponding discrete
Chern-Simons connection and establish the first main
result: the expression of the Chern-Simons symplectic
structure around a curvature defect. In Sec. III, we focus
explicitly on a geometric structure suitable for 2þ 1
gravity with zero cosmological constant and characterize
the connection in terms of the holonomies, which are the
relevant variables to characterize the discrete geometry. In
Sec. IV, we explicitly determine the phase space structure
for the piecewise-flat geometry by discretizing the sym-
plectic potential. We obtain a structure corresponding to
classical spin networks coupled to torsion or curvature
excitations which behave like relativistic particles. In
Sec. V, we discuss constraints and symmetries.

II. PIECEWISE-DG-FLAT MANIFOLDS IN
TWO DIMENSIONS

In this section we define the concept of a piecewise-
DG-flat manifold. We describe the cellular decomposition,
which is the discrete structure we impose on our manifold.
We also define the (continuous) connection relevant to the
piecewise-flat geometry and show how it can be expressed
in terms of (discrete) holonomies. This allows us to
construct the relevant phase space structure in the next
section.

A. The cellular decomposition

Consider a two-dimensional manifold Σ without boun-
dary. We introduce a cellular decompositionΔ of Σmade of
0-cells (vertices) denoted v, 1-cells (edges) denoted e and
2-cells (cells) denoted c. The 1-skeleton Γ ⊂ Δ is the set of
all vertices and edges of Δ. The dual spin network graph Γ�
is composed of nodes c� connected by links e�, such that
each node c� ∈ Γ� is dual to a 2-cell c ∈ Γ and each link
e� ∈ Γ� is dual to an edge (1-cell) e ∈ Γ.
The edges e ∈ Γ are oriented, and we use the notation

e ¼ ðvv0Þ to mean that the edge e begins at the vertex v and
ends at the vertex v0. The inverse edge of e, denoted by e−1,
is the same edge with reverse orientation: e−1 ¼ ðv0vÞ. The
links e� ∈ Γ� are also oriented, and we use the notation
e� ¼ ðcc0Þ� to denote that the link e� connects the nodes c�
and c0�. If the link e� ¼ ðcc0Þ� is dual to the edge e ¼ ðvv0Þ,

as in Fig. 1, one can also write e ¼ ðcc0Þ≡ c ∩ c0, which
means that the edge e is the (oriented) intersection of
the cells c and c0. The orientation is such that e is a
counterclockwise rotation of the dual edge ðcc0Þ�. In Fig. 1
we show a simple triangulation; however, the cells can be
general polygons.
Let DG be a Lie group and dg be its Lie algebra. In this

section, DG represents the Chern-Simons group; later we
will specialize to the case where it is a Drinfeld double. We
use a calligraphic font, e.g., H, to denote DG-valued
differential forms and a bold calligraphic font, e.g., A,
to denote dg-valued differential forms. We define a dg-
valued connection 1-form A on Σ and its dg-valued
curvature 2-form2 F :

F ðAÞ≡ dA þ 1

2
½A;A�: ð4Þ

In order to define a piecewise-DG-flat geometry on Σ, we
assume that A is flat (F ¼ 0) inside each cell c, and the
curvature is restricted to the vertices v. We make this notion
precise in the following sections.

FIG. 1. A simple piece of the cellular decomposition Δ, in
black, and its dual spin network Γ�, in blue. The vertices v of the
1-skeleton Γ ⊂ Δ are shown as black circles, while the nodes c�
of Γ� are shown as blue squares. The edges e ∈ Γ are shown as
black solid lines, while the links e� ∈ Γ� are shown as blue
dashed lines. In particular, two nodes c� and c0�, connected by a
link e� ¼ ðcc0Þ�, are labeled, as well as two vertices v and v0,
connected by an edge e ¼ ðvv0Þ ¼ ðcc0Þ ¼ c ∩ c0, which is dual
to the link e�.

2The graded commutator of two Lie-algebra-valued differ-
ential forms A, B is given by

½A;B�≡A ∧ B − ð−1ÞdegA degBB ∧ A; ð3Þ
where deg is the degree of the form. In this case, ½A;A� ¼
2A ∧ A since degA ¼ 1.
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B. The DG connection inside the cells

As mentioned above, we make the assumption that the
curvature inside each cell c vanishes. Since c is simply
connected, this means that the connection 1-formA can be
expressed at any point x ∈ c as a (left-invariant) Maurer-
Cartan form:

Ajc ¼ H−1
c dHc; ð5Þ

whereHc is a DG-valued 0-form and the notation jc means
the relation is valid in the interior3 of the cell c. It is easy to
see that, indeed, F jc ¼ 0 for this connection.
Let G be a DG-valued 0-form. Right translations,

HcðxÞ ↦ HcðxÞGðxÞ; ð6Þ

are gauge transformations that affect the connection in the
usual way:

A ↦ G−1AGþ G−1dG: ð7Þ
We can also consider left translations,

HcðxÞ ↦ GcHcðxÞ; ð8Þ
acting on Hc with a constant group element Gc ∈ DG.
These transformations leave the connection invariant,
A ↦ A. On the one hand, they label the redundancy of
our parametrization of A in terms of Hc. On the other
hand, these transformations can be understood as sym-
metries of our parametrization in terms of group elements
that stem from the existence of new d.o.f. inHc beyond the
ones in the connection A.
This situation is similar to the situation that arises

any time one considers a gauge theory in a region with
boundaries [8]. As shown in [8], when we subdivide a
region of space we need to add new d.o.f. at the boundaries
of the subdivision in order to restore gauge invariance.
These d.o.f. are the edge modes, which carry a nontrivial
representation of the boundary symmetry group that
descends from the bulk gauge transformations.4

Now, we can invert (5) and write Hc using a path-
ordered exponential as follows:

HcðxÞ ¼ Hcðc�Þexp�! Z
x

c�
A; ð9Þ

where Hcðc�Þ, the value of Hc at the node c�, is the extra
information contained in the edge mode field Hc that
cannot be obtained from the connection A. Left trans-
lations can thus be understood as simply translating the
value of Hcðc�Þ without affecting the value of A.

C. The DG connection inside the disks

1. The punctured disk v�

The next step in defining our piecewise-DG-flat geom-
etry is to parametrize the connection around the vertices. In
our discrete geometrical setting, the set of vertices is the
locus where the curvature is concentrated. It is therefore
important to understand the local geometry of the con-
nection in a neighborhood of the vertices v ∈ Γ.
An open set containing v forms the interior of a disk,

denotedDv. In order to describe the connection aroundv in a
regularmanner, it will be necessary to excise an infinitesimal
neighborhood of v and consider Av ≡Dvnfvg, which has
the topology of an annulus. It will also be necessary to
introduce a cut denoted Cv that runs from v to the boundary
ofDv. This cut and punctured diskwill be denoted fromnow
on as v� ≡ AvnCv. It will sometimes be referred to as the
punctured disk for simplicity.
In order to understand the geometry at play on v�, it is

convenient to think of the punctured disk as the interior of a
cut annulus where the boundary around v is shrunk to a
point. In order to do so, let us introduce Cartesian
coordinates that parametrize the cut annulus. It is isomorphic
to a rectanglewith coordinates ðrv; ϕ̄vÞ such that rv ∈ ð0; RÞ
and ϕ̄v ∈ ½ᾱv − π; ᾱv þ π� where R, ᾱv ∈ R, and where the
line at ϕ̄ ¼ ᾱv − π is identified with the line at ϕ̄ ¼ ᾱv þ π.
We also identify the entire line at rv ¼ 0with the vertex v, in
the sense that any function fðrv;ϕvÞ evaluated at rv ¼ 0
reduces to a constant value fðvÞ regardless of the value of
ϕv. Then v� indeed describes a punctured disk of radius R,

5

with the puncture located at v.
The boundary ∂v� consists of two curves of length 2π,

one at rv ¼ 0 and another at rv ¼ R. We will call the one at
rv ¼ 0 the “inner boundary” ∂0v� and the one at rv ¼ R the
“outer boundary” ∂Rv�. In other words

∂v� ¼ ∂0v� ∪ ∂Rv�; ∂0v� ≡ fðrv; ϕ̄vÞjrv ¼ 0g;
∂Rv� ≡ fðrv; ϕ̄vÞjrv ¼ Rg: ð10Þ

We will also define a point v0 at rv ¼ R and ϕ̄v ¼ ᾱv − π;
then the line at ϕ̄v ¼ ᾱv − π, which extends from v to v0, is
the cut Cv where we identified the two edges of the
rectangle. Note that both v and v0 are on ∂v� and not
inside v�. The punctured disk is shown in Fig. 2.
For brevity of notation, we define a reduced angle

function ϕv such that

ϕv≡ ϕ̄v

2π
; αv≡ ᾱv

2π
ϕv ∈

�
αv−

1

2
;αvþ

1

2

�
; ð11Þ

which will be used from now on.
3That is, inside any open set that does not intersect the

boundary of c.
4As shown in [35], this group also contains the duality group.

5We assume that R is chosen small enough so that the
intersection of any two disks v� ∩ v0� is empty.
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2. The distributional curvature

We have assumed that the curvature is concentrated at
the vertex. Loosely, this means that the curvature on the full
(nonpunctured) disk Dv is distributional:

F jDv
¼ PvδðvÞ; ð12Þ

where Pv is some constant element of the Lie algebra dg
and δðvÞ is the 2-form Dirac distribution concentrated at v,
defined such that, for any 0-form f,

Z
Dv

fδðvÞ≡ fðvÞ: ð13Þ

However, such a formulation is too singular for our
purpose. Moreover, it contains some ambiguities. In par-
ticular, under the gauge transformation (7) the curvature at
v is conjugated: Pv ↦ G−1PvG.
It is possible to partially fix this ambiguity by choosing a

Cartan subgroup DH ⊂ DG, that is, an Abelian subgroup of
DG which can serve as a reference for conjugacy classes.
Then we demand thatPv is conjugate to an elementMv ∈
dh in the corresponding Lie subalgebra. The gauge sym-
metry is still acting on DH by Weyl transformations
W ∈ DW, where DW is the subgroup of residual trans-
formationsH ↦ W−1HW which map DH onto itself. The
quotient DH=DW then labels the sets on conjugacy classes.
This means that to every vertex v ∈ Γ we attach a
conjugacy class labeled by Mv ∈ dh.

3. Properly defining the connection and curvature

The proper mathematical formulation of the naive
condition (12) is to demand that we have instead a flat
connection on the punctured disk v�. That is,

F jv� ¼ 0: ð14Þ
Now, v� is not simply connected; it possesses a nontrivial
homotopy group π1ðv�Þ ¼ Z labeling the winding modes.
This means that the connectionAjv� possesses a nontrivial
holonomy,

Holv ¼ exp�! I
Sv

A; ð15Þ

where Sv is any circle in v� encircling the vertex v once and
not encircling any other vertices, and which starts at the cut
Cv. We demand that this holonomy be in the conjugacy
class labeled by Mv. We are therefore looking for a
connection on v� which satisfies

F jv� ¼ 0; ½Holv� ¼ ½expMv�; ð16Þ
where the brackets ½·� denote the equivalence class under
conjugation; that is, Holv is related to expMv via con-
jugation with some element W ∈ DW.
Such a connection can be conveniently written in terms

of a DG-valued 0-formHv and an elementMv ∈ dh in the
Cartan subgroup as

Ajv� ≡ ðeMvϕvHvÞ−1dðeMvϕvHvÞ
¼ H−1

v MvHvdϕv þH−1
v dHv: ð17Þ

It is important to note thatHv is defined on the full diskDv.
In particular, it is periodic when going around v and its
value HvðvÞ at v is well defined, while ϕv is defined only
on the cut disk and dϕv is defined on the punctured disk.
As for the cells, we again see that gauge transformations

are given by right translations

HvðxÞ ↦ HvðxÞGðxÞ; ð18Þ
while left translations by a constant element Gv in the
Cartan subgroup DH (which thus commutes with Mv),

HvðxÞ ↦ GvHvðxÞ; ð19Þ

leave the connection invariant.

4. Calculating the curvature

The curvature can now be obtained in a well-defined way
as follows. First, we note that Ajv� is, in fact, the gauge
transformation of a Lagrangian connection Lv by a DG-
valued 0-form Hv:

Ajv� ≡H−1
v LHv þH−1

v dHv; Lv ≡Mvdϕv;

½Lv;Lv� ¼ 0: ð20Þ

Now, the curvature of Lv is given by

F ðLvÞ ¼ dLv ¼ Mvd2ϕv: ð21Þ

FIG. 2. The punctured disk v�. The figure shows the vertex v,
cut Cv, inner boundary ∂0v�, outer boundary ∂Rv�, and reference
point v0.

FREIDEL, GIRELLI, and SHOSHANY PHYS. REV. D 99, 046003 (2019)

046003-6



Of course, since the exterior derivative satisfies d2 ¼ 0 on
v�, the curvature vanishes on v�, as required by (16).
However, since ϕv is not well defined at the origin v ∈ Dv,
the term d2ϕv might not vanish at v itself. Let us thus
perform the following integral over the full disk Dv:Z

Dv

F ðLvÞ ¼
Z
∂Dv

Lv ¼ Mv

Z
∂Dv

dϕv ¼ Mv; ð22Þ

since the integral over the circle is just 1. SinceF ðLvÞ ¼ 0
everywhere on Dv except at the origin, and yet its integral
over Dv is equal to the finite quantity Mv, we are well
within our rights to declare that the curvature takes the form

F ðLvÞ ¼ MvδðvÞ: ð23Þ
Next, we gauge-transform Lv ↦ Ajv� , obtaining the
expression (17). Then the curvature transforms in the usual
way:

F ðLvÞ ↦ F ðAÞjDv
¼ H−1

v F ðLvÞHv ≡PvδðvÞ; ð24Þ
where we have defined

Pv ≡H−1
v ðvÞMvHvðvÞ: ð25Þ

Thus, Eq. (12) is justified; the curvaturemay be thought of as
taking the form F jDv

¼ PvδðvÞ, with the element HvðvÞ
parametrizing the representative of the conjugacy class.

5. Holonomies

Furthermore, for some subset Kv ⊆ Dv we haveZ
Kv

F ðLvÞ ¼
Z
∂Kv

Lv ¼ Mv; ð26Þ

and by exponentiating and taking the gauge transformation
Lv ↦ Ajv� we see that the holonomy of the connection
along the loop ∂Kv starting at some point x ∈ ∂Kv and
winding once around v is given by

exp�! I
∂Kv

A ¼ H−1
v ðxÞeMvHvðxÞ; ð27Þ

which is indeed conjugate to eMv . The advantage of the
parametrization in terms ofHv is that even if the notion of a
loop starting at v and encircling v once is ill defined, the
right-hand side of (27) is still well defined when x ¼ v.
The pair ðMv;HvÞ determines the holonomy, but the

reverse is not true. The Cartan subgroup DH acts on the left
of Hv as a symmetry group HvðxÞ ↦ GvHvðxÞ, with Gv ∈
DH constant, which leaves the connection and the hol-
onomy invariant. However, there is also a left-action of the
Weyl group DW:

ðMv;HvÞ↦ ðW−1MvW;W−1HvÞ; W ∈DW; ð28Þ
which does not leave Mv invariant, but fixes its conju-
gacy class.

D. Continuity conditions between cells

Let us consider the link e� ¼ ðcc0Þ� connecting two
adjacent nodes c� and c0�. This link is dual to the edge
e ¼ ðcc0Þ ¼ c ∩ c0, which is the boundary between the two
adjacent cells c and c0. The connection is defined in the union
c ∪ c0, while in each cell its restriction is encoded inAjc and
Ajc0 as defined above, in terms ofHc andHc0 , respectively.
The continuity equation on the edge ðcc0Þ between the

two adjacent cells6 reads

Ajc ¼H−1
c dHc ¼H−1

c0 dHc0 ¼Ajc0 ; on ðcc0Þ ¼ c∩ c0:

ð29Þ
Since the connections match, this means that the group
elements Hc and Hc0 differ only by the action of a left
symmetry element. This implies that there exists a group
elementHcc0 ∈ DGwhich is independent of x and provides
the change of variables between the two parametrizations
HcðxÞ and Hc0 ðxÞ on the overlap:

Hc0 ðxÞ ¼ Hc0cHcðxÞ; x ∈ ðcc0Þ ¼ c ∩ c0: ð30Þ
Note that Hc0c ¼ H−1

cc0 . Furthermore, Hcc0 can be decom-
posed as

Hcc0 ¼ HcðxÞH−1
c0 ðxÞ; ð31Þ

as illustrated in Fig. 3. The quantity Hcc0 is invariant under
the right gauge transformation (6), since it is independent
of c. However, it is not invariant under the left symmetry (8)
performed at c and c0, under which we obtain

FIG. 3. To get from the node c� to the adjacent node c0�, we use
the group element Hcc0 . First, we choose a point x somewhere on
the edge ðcc0Þ ¼ c ∩ c0. Then, we take HcðxÞ from c� to x,
following the first red arrow. Finally, we take H−1

c0 ðxÞ from x to
c0�, following the second red arrow. Thus Hcc0 ¼ HcðxÞH−1

c0 ðxÞ.
Note that any x ∈ c ∩ c0 will do, since the connection is flat and
thus all paths are equivalent.

6Strictly speaking, one should consider open neighborhoods
Uc,Uc0 of c and c0 and consider the overlap condition on the open
set Uc ∩ Uc0 . We will not dwell too much on this subtlety here,
since this is not the main point of our paper, but keep in mind that
if necessary one might have to resort to open cell overlaps instead
of edges.
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Hc0c ↦ Gc0Hc0cG−1
c : ð32Þ

Since this symmetry leaves the connection invariant, this
means that Hcc0 is not the holonomy from c� to c0�, along
the link ðcc0Þ�, as it is usually assumed. Instead, from (9)
and (31) we have that

Hcc0 ¼ Hcðc�Þ
�
exp�! Z

c0�

c�
A

�
H−1

c0 ðc0�Þ ð33Þ

is a dressed gauge-invariant observable. It will be referred
to as a discrete holonomy, while it is understood that it is a
gauge-invariant version of the holonomy.
The mapA ↦ fHcc0 g can be formalized as follows. Let

VΓ, EΓ be the sets of vertices and edges, respectively, of the
1-skeleton Γ. Then we can either define the space
PðΣ;Γ;DGÞ=DG of DG-flat connections on ΣnVΓ (that
is, on the two-dimensional manifold Σ with a puncture at
each vertex) modulo gauge transformation, or we can
define the space

DðΣ;Γ;DGÞ¼DGEΓ=DGVΓ ¼fHcc0 ∈DGg=fGc ∈DGg
ð34Þ

of discrete holonomies at each edge e ¼ c ∩ c0 modulo
global symmetries. The main claim we want to expand
upon is that the map A=G ↦ fHcc0g=fGcg provides an
isomorphism between these two structures.
This means that we can think of the space of discrete

holonomies alone, before the quotient by the symmetry, as
a definition of the space of flat DG-connections modulo
gauge transformations that vanish at the vertices of Γ. The
latter space is only formally defined, while the space
fHcc0g of discrete connections is well defined.

E. Continuity conditions between disks and cells

A similar discussion applies when one looks at the
overlap v� ∩ c between a punctured disk v� and a cell c.
The boundary of this region consists of two truncated edges
of length R (the coordinate radius of the disk) touching v,
plus an arc connecting the two edges, which lies on the
boundary of the disk v�. In the following we denote this
arc7 by ðvcÞ. It is clear that the union of all such arcs around
a vertex v reconstructs the outer boundary ∂Rv� of the disk,
as defined in (10):

ðvcÞ≡ ∂Rv� ∩ c; ∂Rv� ¼ ⋃
c∋v

ðvcÞ; ð35Þ

where c ∋ v means “all cells c which have the vertex v on
their boundary.” It is also useful to introduce the truncated
cells:

c̃≡ cn⋃
v∈c

Dv; ð36Þ

where v ∈ c means “all vertices v on the boundary of the
cell c.” In other words, c̃ is the complement of the union of
disks Dv intersecting c. The union of all truncated cells
reconstructs the manifold Σ minus the disks:

⋃
c
c̃ ¼ Σn⋃

v
Dv: ð37Þ

In the intersection v� ∩ c we have two different descrip-
tions of the connection A. On c it is described by the DG-
valued 0-formHc, and on v� it is described by a DG-valued
0-form Hv. The fact that we have a single-valued con-
nection is expressed in the continuity conditions

Ajv� ¼ H−1
v MvHvdϕv þH−1

v dHv ¼ H−1
c dHc ¼ Ajc;

on ðvcÞ ¼ ∂v� ∩ c: ð38Þ
The relation between the two connections can be inte-
grated. It means that the elements HvðxÞ and HcðxÞ differ
by the action of the left symmetry group. In practice, this
means that the integrated continuity relation involves a
(discrete) holonomy Hcv:

HcðxÞ ¼ HcveMvϕvðxÞHvðxÞ; x ∈ ðvcÞ ð39Þ
where ϕvðxÞ is the angle corresponding to x with respect to
the cut Cv. Isolating Hvc ≡H−1

cv , we find

Hvc ¼ eMvϕvðxÞHvðxÞH−1
c ðxÞ; ð40Þ

which is illustrated in Fig. 4.
The quantity Hvc is invariant under right gauge trans-

formations (6) and (18):

HcðxÞ ↦ GcHcðxÞ; HvðxÞ ↦ GvHvðxÞ: ð41Þ

FIG. 4. To get from the vertex v to the node c�, we use the
group element Hvc. First, we choose a point x somewhere on the
arc ðvcÞ ¼ ∂v� ∩ c. Then, we use eMvϕvðxÞ to rotate from the cut
Cv to the angle corresponding to x (rotation not illustrated). Next,
we take HvðxÞ from v to x, following the first red arrow. Finally,
we take H−1

c ðxÞ from x to c�, following the second red arrow.
Thus Hvc ¼ eMvϕvðxÞHvðxÞH−1

c ðxÞ.
7The arc ðvcÞ is dual to the line segment ðvcÞ� connecting the

vertex v with the node c�, just as the edge e is dual to the link e�.
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However, under left symmetry transformations (8) and
(19), the connection is left invariant, and we get

Hvc ↦ GvHvcG−1
c : ð42Þ

Note also that the translation in ϕvðxÞ can be absorbed
into the definition of Hv, so that the transformation

ϕvðxÞ ↦ ϕvðxÞ þ βv; HvðxÞ ↦ e−MvβvHvðxÞ; ð43Þ
is also a symmetry under which (39) is invariant. The
connection Ajv� is also invariant under this symmetry.

F. Summary

In conclusion, the connection A is defined on every
point of the manifold Σ as follows. Inside each cell c, we
have a flat connection Ajc. Since the cell c is simply
connected, this connection can be written in terms of a DG-
valued 0-form Hc:

Ajc ¼ H−1
c dHc: ð44Þ

Inside each punctured disk v�, we have a flat connection
Ajv� parametrized by a DG-valued 0-form Hv and a
constant element Mv of the Cartan subalgebra dh:

Ajv� ¼ H−1
v MvHvdϕv þH−1

v dHv: ð45Þ

The continuity of the connection A along the boundaries
between cells and other cells or disks is expressed in the
relations

Hcc0 ¼ HcðxÞH−1
c0 ðxÞ; x ∈ ðcc0Þ≡ c ∩ c0; ð46Þ

Hvc¼ eMvϕvðxÞHvðxÞH−1
c ðxÞ; x∈ ðvcÞ≡∂v� ∩ c: ð47Þ

G. The Chern-Simons symplectic potential

The first goal of this paper is the construction of the
symplectic potential for the Chern-Simons connection in
terms of the discrete data fHcc0gc;c0∈Δ or the discrete data
fHcv;Mvgðc�;vÞ∈Γ�×Γ. In the continuum, the Chern-
Simons symplectic structure is given by8

ΩΣðAÞ ¼
Z
Σ
ωðAÞ; ωðAÞ ¼ δA · δA: ð49Þ

We are interested in the computation of the Chern-Simons
symplectic potential for a disk D, which has the symplectic
form ΩDðAÞ≡ R

D ωðAÞ. We refer the reader to [29,36]
for earlier references exploring the same question.
Omitting the subscript v for brevity, we consider the case

where the connection A inside D can be written as the

gauge transformation of a Lagrangian connection L by a
DG-valued 0-form H:

A ≡H−1LHþH−1dH; ð50Þ
where we assume thatL belongs to a Lagrangian subspace.
This means that δL · δL ¼ 0, so that ωðLÞ ¼ 0, and where
we have omitted the subscripts v for brevity. One first
evaluates the variation

δA ¼ H−1ðδLþ dLΔHÞH; ð51Þ
where dL denotes the covariant differential dL ≡ dþ ½L; ·�,
and we have used the shorthand notation

ΔH≡ δHH−1 ð52Þ
for the right-invariant Maurer-Cartan variational form,
described in more detail in Appendix A. Under this
assumption, we can evaluate the Chern-Simons symplectic
form:

ωðAÞ¼ 2δðF ðLÞ ·ΔHÞþdðΔH · dΔHÞ−2dδðL ·ΔHÞ;
ð53Þ

where F ðLÞ≡ dLþ 1
2
½L;L� is the curvature of L. The

derivation of this important formula is spelled out in
Appendix B. Furthermore, in the particular case considered
above, the Lagrangian connection satisfies

L≡Mdϕ; F ðLÞ ¼ MδðvÞ; M ∈ dh: ð54Þ
In this case, the symplectic form associated with a disk D
centered at v may be further simplified to

ΩDðAÞ ¼
I
∂D

ΔH̃ · dΔH̃

− 2

I
∂D

δðH−1ðvÞMHðvÞ · ΔH̃Þdϕ; ð55Þ

where we have defined H̃ðxÞ≡H−1ðvÞHðxÞ, such that
H̃ðvÞ ¼ 1, and used the “Leibniz rule” (A2) for the Maurer-
Cartan form,

ΔH̃ðxÞ ¼ H−1ðvÞðΔHðxÞ − ΔHðvÞÞHðvÞ: ð56Þ
This constitutes the first main technical result of this paper.
The goal of this paper is to study in depth this formula

and the consequences it has when one starts to glue together
different regions associated to a collection of topological
disks. In general this is a formidable task, and we will
pursue it under simplifying assumptions. Mainly, we will
need to choose a group DG such that the first term

H
∂D ΔH̃ ·

dΔH̃ can be written as an exact variational form, and thus
the symplectic form can be written as the variation of a
symplectic potential, ΩD ¼ δΘ.

8The dot product is defined for any two Lie algebra elements
A, B with components Ai ≡ TrðAτiÞ and Bi ≡ TrðBτiÞ, where
τi are the generators of the Lie algebra, as

A ·B≡ TrðA ∧ BÞ ¼ Ai ∧ Bi: ð48Þ
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III. GRAVITY: SPECIALIZING TO G ⋉ g�

A. Introduction

In order to move forward and explore the discretization
of the Chern-Simons symplectic form, we will focus on
theories for which the Chern-Simons group DG is specifi-
cally chosen to be a Drinfeld double which is locally of the
form DG≡G ×G�, with G� a group dual to G. At the Lie
algebra level, this means that the Lie algebra of the double,
dg, possesses the structure of a Manin triple: dg ¼ g ⊕ g�
is equipped with a nondegenerate pairing h; i which is ad-
invariant, i.e., h½A;B�;Ci ¼ hA; ½B;C�i, and which is such
that both g and g� are isotropic; i.e., the pairing restricted to
g or g� is null.
It turns out that all theories of Euclidean gravity in 2þ 1

dimensions correspond to the Chern-Simons theory of a
double where the factor G is simply the group SU(2), while
the factor G� is another SU(2), the 2D Borel group AN2, or
simply the Abelian group R3, depending on the sign of the
cosmological constant.
In this work we will focus, for simplicity, on the case of a

zero cosmological constant. This means that we will restrict
ourselves to the study of a double of trivial topology, where
G is a simple group and G� ¼ g� is an Abelian group. In
this case, the double is simply the semidirect product

DG≡ G ⋉ g�: ð57Þ
Note that DG is also isomorphic to the cotangent bundle
T�G, which shows that the natural pairing on DG descends
from the duality pairing of vector and covector fields
TG × T�G, since the Lie algebra of G can be viewed as
the set of right-invariant vector fields.
When G ¼ SUð2Þ or G ¼ SUð1; 1Þ, this group reduces

to the 3D Euclidean group ISU(2) or 2þ 1D Poincaré
group ISU(1,1), respectively, which is the group of iso-
metries of 2þ 1D flat gravity.9 Since we work at the
classical level, none of our derivations depends on the fact
that the G ¼ SUð2Þ, so we will keep G general; we just
need G to be equipped with a nontrivial trace, denoted Tr
and incorporated into the dot product:

A ·B≡ TrðA ∧ BÞ≡ Ai ∧ Bi;

Ai ≡ TrðAτiÞ; Bi ≡ TrðBτiÞ; ð58Þ

where τi are the generators of the Lie algebra. Keeping in
mind the applications to 2þ 1D gravity, we will call the
group DG the “Euclidean” group for reference.

B. The Euclidean group DG

The transformations between cells will be given by DG
group elements, and the connection 1-form A will be

valued in the Lie algebra dg. This algebra is generated by
the rotation generators Ji and the translation generators Pi,
where i ¼ 1;…; dim g. The generators have the Lie brack-
ets and Killing form

½Pi;Pj� ¼ 0; ½Ji; Jj� ¼ Cij
kJk;

½Ji;Pj� ¼ Cij
kPk; hJi;Pji ¼ δij: ð59Þ

Here Cij
k denotes the structure constants10 of g. We see that

both the rotation algebra g generated by Ji and the trans-
lation algebra g� generated by Pi are subalgebras of dg.
However, g is non-Abelian, while g� is Abelian and a
normal subalgebra. The pairing h; i identifies the translation
subalgebra with the dual of the Lie algebra (which is why
we denote the translation algebra by g�). The metric δij
involved in the definition of the pairing is a Killing metric;
the tensor Cijk ≡ Cij

lδlk is fully antisymmetric.
By exponentiating this algebra, we get

DG ≅ G ⋉ g�; ð60Þ

where g� is an Abelian normal subgroup. This means that
every element H ∈ DG may be uniquely decomposed,
using the so-called “Cartan decomposition,” into a pair

H≡ eyh; ðh; yÞ ∈ G × g�: ð61Þ

To avoid confusion, throughout the paper wewill be using a
calligraphic font (e.g., H) for DG elements, bold calli-
graphic font (e.g., M) for dg elements, Roman font
(e.g., h) for G elements and bold Roman font (e.g., y)
for g� elements.
The product rule is such that

eyey
0 ¼ eyþy0 ; hey ¼ ehyh

−1
h: ð62Þ

This means that products and inverse elements of DG
elements are given in terms of G and g� elements by

HH0 ¼ eyhey
0
h0 ¼ eyþhy0h−1hh0; ð63Þ

H−1 ¼ h−1e−y ¼ e−h
−1yhh−1; ð64Þ

and by combining them together we get

H−1H0 ¼ h−1e−yey
0
h0 ¼ eh

−1ðy0−yÞhh−1h0: ð65Þ

9See [37–39] for more details on the correspondence between
doubles and 2þ 1D gravity.

10For g ¼ suð2Þ we have Cijk ¼ ϵijk, the Levi-Civita tensor,
and δij the Euclidean metric. In this case we can define τi ≡
−iσi=2 to be the generators of suð2Þ, where σi are the Pauli
matrices. The generators satisfy the algebra ½τi; τj� ¼ ϵkijτk. The
normalized trace is Tr≡ −2tr where tr is the usual matrix trace,
and it satisfies TrðτiτjÞ ¼ δij.
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C. The G connection and frame field inside the cells

Our dg-valued connection 1-formA can be decomposed
in terms of the generators of the algebra as follows:

A ≡ AiJi þ EiPi: ð66Þ

Bearing in mind the Chern-Simons formulation of gravity,
it will be convenient to interpret A≡ AiJi as a g-valued
connection 1-form and E≡ EiPi as a g�-valued (co)frame
field. Accordingly, the curvature 2-form F of the DG
connection A can also be decomposed into the sum F ¼
Fþ T of a “rotational” curvature F (referred to as the G-
curvature) and “translational” curvature (referred to as the
G-torsion). The G curvature F and torsion T are 2-forms
defined as

FðAÞ≡dAþ1

2
½A;A�; TðA;EÞ≡dAE≡dEþ½A;E�:

ð67Þ

IfA is flat,F ðAÞ ¼ 0, we automatically get a vanishingG
curvature and torsion:

FðAÞ ¼ TðA;EÞ ¼ 0: ð68Þ

In other words, a flat DG geometry corresponds to a flat
and torsionless G geometry.
Now, recall from (5) that inside the cell c we have

Ajc ¼ H−1
c dHc; ð69Þ

where Hc is a DG-valued 0-form. The group element
H−1

c ðcÞHcðxÞ defines the DG holonomy of the connection
A from c� to x. We can decompose Hc in terms of a
rotation hc and a translation yc using the Cartan decom-
position:

Hc ≡ eychc; hc ∈ G; yc ∈ g: ð70Þ

Plugging it into A, we get

Ajc ¼ h−1c dychc þ h−1c dhc: ð71Þ

It is easy to see that the first term is a pure rotation, that is,
proportional to Ji, while the second term is a pure translation,
that is, proportional to Pi. Recalling thatA ¼ AiJi þ EiPi,
we deduce that the corresponding g-valued connection and
frame field are

Ajc ¼ h−1c dhc; Ejc ¼ h−1c dychc: ð72Þ

As before, we have two types of transformations. Gauge
transformations (right translations), labeled by DG-valued
0-forms ðg;xÞ and given by

A ↦ g−1Agþ g−1dg; E ↦ g−1ðEþ dAxÞg; ð73Þ

act on ðhc; ycÞ as follows from (6):

hcðxÞ↦hcðxÞgðxÞ; ycðxÞ↦ ycðxÞþðhcxh−1c ÞðxÞ: ð74Þ

Symmetry transformations (left translations), labeled by
constant DG elements ðgc; zcÞ assigned to the cell c, leave
the connection and frame invariant, ðA;EÞ ↦ ðA;EÞ, and
act on ðhc; ycÞ as follows from (8):

hcðxÞ ↦ gchcðxÞ; ycðxÞ ↦ zc þ gcycðxÞg−1c : ð75Þ

D. The G connection and frame field inside the disks

From (17), the connection A inside the punctured disk
v� is labeled by a DG-valued 0-form Hv and an element
Mv of the Cartan subalgebra dh. We may decomposeMv
as follows:

Mv ¼ Mv þ Sv; Mv ∈ h; Sv ∈ h�; ð76Þ

where h is the Cartan subalgebra of g. The connection A
inside the punctured disk v� is then given by

Ajv� ¼ H−1
v ðMv þ SvÞHvdϕv þH−1

v dHv: ð77Þ

Using the Cartan decomposition

Hv ≡ eyvhv; ð78Þ

we can unpack the dg-valued connection into the corre-
sponding g-valued connection and frame field in v�:

Ajv� ¼ h−1v Mvhvdϕv þ h−1v dhv;

Ejv� ¼ h−1v ððSv þ ½Mv; yv�Þdϕv þ dyvÞhv: ð79Þ

We may similarly decompose the momentum Pv defined
in (25):

Pv ≡H−1
v ðvÞMvHvðvÞ ¼ pv þ jv; ð80Þ

where pv; jv ∈ g represent the momentum and angular
momentum respectively:

pv ≡ h−1v Mvhv; jv ≡ h−1v ðSv þ ½Mv; yv�Þhv: ð81Þ

Then, by decomposing (12), we may obtain the (naive)
distributional g-valued curvature and torsion 2-forms:

Fjv� ¼ pvδðvÞ; Tjv� ¼ jvδðvÞ: ð82Þ

Finally, we see that gauge transformations (right trans-
lations) (18) labeled by DG-valued 0-forms ðg;xÞ act on
ðhv; yvÞ the same way they act on ðhc; ycÞ:
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hvðxÞ↦hvðxÞgðxÞ; yvðxÞ↦ yvðxÞþðhvxh−1v ÞðxÞ: ð83Þ

The symmetry transformations (left translations) (19),
labeled by constant elements ðgv; zvÞ of the Cartan sub-
group DH, leaveMv and Sv invariant, while they transform
ðhv; yvÞ by

hvðxÞ ↦ gvhvðxÞ; yvðxÞ ↦ zv þ gvyvðxÞg−1v : ð84Þ

We discuss these two types of transformations in the
context of the relativistic particle at v in Appendix C.
As we have seen, the boundary conditions between cells

and disks can be expressed as continuity equations either
across the edge ðcc0Þ≡ c ∩ c0 bounding two cells or across
the arc ðvcÞ≡ ∂v� ∩ c bounding the interface of a disk and
a cell. Although both continuity conditions are similar, the
one across the arcs is more involved.

E. Continuity conditions between cells

For x ∈ ðcc0Þ ¼ c ∩ c0 we have from (31)

Hc0 ðxÞ ¼ Hc0cHcðxÞ; x ∈ ðcc0Þ: ð85Þ

The holonomies Hcc0 and Hc can be decomposed into a
rotational and translational part using the Cartan decom-
position, as usual11:

Hcc0 ¼ ey
c0
c hcc0 ; Hc ¼ eychc: ð86Þ

Note that under the exchange of indices we have, from (64),

Hcc0 ¼H−1
c0c; hcc0 ¼ h−1c0c; yc

0
c ¼−hcc0ycc0hc0c: ð87Þ

Using these quantities and the rules (63) and (65), (85) can
be split into a rotational and translational part:

hc0 ðxÞ¼ hc0chcðxÞ; yc0 ðxÞ¼ hc0cðycðxÞ−yc
0
c Þhcc0 ; ð88Þ

for x ∈ ðcc0Þ. These relations show that the rotational and
translational holonomies ðhcc0 ; yc0c Þ are invariant under the
gauge transformation (74) (since it is independent of c). On
the other hand, the discrete “holonomies” ðhcc0 ; yc0c Þ trans-
form nontrivially under the global symmetries (75):

hc0c ↦ h̃c0c ≡ gc0hc0cg−1c ;

yc
0
c ↦ ỹc

0
c ≡ gcyc

0
c g−1c þ zc − h̃cc0zc0 h̃c0c: ð89Þ

This may also be obtained from the Cartan decomposition
of (32), H̃c0c ≡ Gc0Hc0cG−1

c .

F. Continuity conditions between disks and cells

For x ∈ ðvcÞ ¼ ∂v� ∩ c one has the continuity
condition (39):

HcðxÞ ¼ HcveMvϕvðxÞHvðxÞ; x ∈ ðvcÞ: ð90Þ
The holonomies Hcv and Hv can be decomposed into a
rotational and translational part as we did for Hcc0 and Hc
above, and given (76), we can write

eMvϕvðxÞ ¼ eSvϕvðxÞeMvϕvðxÞ; ð91Þ

where SvϕvðxÞ is the translational part and eMvϕvðxÞ the
rotational part.12 Using these quantities, the continuity
relations (90) can be split into a rotational and translational
part:

hcðxÞ ¼ hcveMvϕvðxÞhvðxÞ; x ∈ ðvcÞ; ð92Þ

ycðxÞ ¼ hcvðeMvϕvðxÞðyvðxÞ þ SvϕvðxÞÞe−MvϕvðxÞ − ycvÞhvc;
x ∈ ðvcÞ: ð93Þ

The quantities hvc and ycv are invariant under the gauge
transformation (right translation) (74) and (83). However,
under the symmetry transformation (left translation) (75) and
(84), with gc ∈ G and gv in the Cartan subgroup H,

hc ↦ gchc; yc ↦ zc þ gcycg−1c ; ð94Þ
hv ↦ gvhv; yv ↦ zv þ gvyvg−1v ; ð95Þ

we have

hvc ↦ h̃vc ≡ gvhvcg−1c ;

ycv ↦ ỹcv ≡ gvycvg−1v þ zv − h̃vczch̃cv; ð96Þ
where we have used the fact that eMv , Sv, gv and zv all
commute with each other. This follows from (42),
Hvc ↦ GvHvcG−1

c , using the Cartan decomposition.
Note also that the continuity relation on ðvcÞ and the

connection A are invariant under the symmetry trans-
formation (43):

ϕvðxÞ ↦ ϕvðxÞ þ βv; HvðxÞ ↦ e−MvβvHvðxÞ: ð97Þ

This transformation of HvðxÞ decomposes via (65) as
follows:

ϕvðxÞ ↦ ϕvðxÞ þ βv;

yvðxÞ ↦ e−MvβvðyvðxÞ − SvβvÞeMvβv ;

hvðxÞ ↦ e−MvβvhvðxÞ: ð98Þ
11The index placement in Hcc0 reflects that this is a trans-

formation mapping objects at c to objects at c0, while yc0c denotes
a transformation based at c.

12In comparison, when we decomposed H≡ eyh, the trans-
lational part was y and the rotational part was h.

FREIDEL, GIRELLI, and SHOSHANY PHYS. REV. D 99, 046003 (2019)

046003-12



Of course, by construction, the relations (92) and (93) are
invariant under this transformation. This transformation
turns out to be a special case of a more general class of
transformations, as shown in Appendix C.

IV. DISCRETIZING THE SYMPLECTIC
POTENTIAL FOR 2+ 1 GRAVITY

A. The symplectic potential

1. The BF action

Now that we have expressed the connection and frame
field in terms of discretized variables, we would like to
construct the phase space structure. For this we take
inspiration from the 2þ 1 gravity action, as given by
BF theory. The BF action is13

S ¼
Z
M
E · FðAÞ; ð100Þ

where M is a 2þ 1-dimensional spacetime manifold, and
the symplectic potential is

Θ ¼ −
Z
Σ
E · δA; ð101Þ

where Σ is a spatial slice. To get the discretized version of
the symplectic potential, we are going to express the
different components in terms of their associated holono-
mies, in the truncated cells c̃≡ cn⋃v∈cv

� and punctured
disks v�. In other words, we define

Θc ≡ −
Z
c̃
E · δA; Θv� ≡ −

Z
v�
E · δA; ð102Þ

and since ΣnVΓ ¼ ∪c c̃ ∪v v� the total symplectic potential
is simply the sum over all cells c and vertices v:

Θ ¼
X
c

Θc þ
X
v

Θv� : ð103Þ

We will first evaluate Θc and Θv� independently using
the flatness condition, and then take advantage of the
simplification that occurs thanks to the fact that the
transition maps between cells and adjacent cells or disks
are DG transformations.
For a quicker derivation using nonperiodic variables,

please see Appendix D.

2. Evaluation of Θc

For Θc, we have from (72) that Ajc ¼ h−1c dhc and
Ejc ¼ h−1c dychc, and we find

δAjc ¼ h−1c ðdΔhcÞhc: ð104Þ
Thus14

−E · δA ¼ −dyc · dΔhc ¼ dðdyc · ΔhcÞ; ð105Þ
and we may integrate to get Θc as an integral over the
boundary of the truncated cell:

Θc ¼
Z
∂c̃
dyc · Δhc: ð106Þ

In order to integrate this further, we will need to use the
continuity conditions, which we will do in Sec. IV B.

3. Evaluation of Θv�

For Θv�, we have from (79) that Ajv� ¼ h−1v dhv þ
h−1v Mvhvdϕv, and similarly for the frame field Ejv� ¼
h−1v ðdyv þ ðSv þ ½Mv; yv�ÞdϕvÞhv. Therefore one finds

δAjv� ¼ h−1v ðdΔhv þ ðδMv þ ½Mv;Δhv�ÞdϕvÞhv: ð107Þ

Thus, after some simplification (using ½Mv;Sv� ¼ 0),

−E · δA ¼ dðdyv · Δhv − ðyv · δMv

− ðSv þ ½Mv; yv�Þ · ΔhvÞdϕvÞ; ð108Þ

where we choose as above the polarization dyv · dΔhv ¼
−dðdyv · ΔhvÞ for the first term. Now we may integrate.
Remembering that ∂v� ¼ ∂0v� ∪ ∂Rv�, we get two con-
tributions, one from the inner boundary ∂0v� and one (with
opposite orientation and thus a minus sign) from the outer
boundary ∂Rv�:

Θv� ¼ Θ∂Rv� − Θ∂0v� ; ð109Þ

where

Θ∂Rv� ≡
Z
∂Rv�

ðdyv · Δhv − ðyv · δMv

− ðSv þ ½Mv; yv�Þ · ΔhvÞdϕvÞ: ð110Þ

As above, we will need some simplifications in order
to integrate Θ∂Rv� , which we will do in Sec. IV B. The
expression for Θ∂0v� is similar except that the boundary13We view both E and A as elements of g, and we define the

normalized trace Tr, which satisfies

TrðτiτjÞ ¼ δij; ð99Þ

where τi are the generators of g. Then the dot product is defined
as before, A ·B≡ TrðA ∧ BÞ ¼ Ai ∧ Bi.

14We call this choice the “LQG polarization.” One could
alternatively write this expression as a total differential using
dyc · dΔhc ¼ dðyc · dΔhcÞ, that is, with d on Δhc instead of yc.
This leads to the “dual polarization,” which we will explore
in [40].
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condition at r ¼ 0 implies that ðhv; yvÞjr¼0 are constant and
equal to ðhvðvÞ; yvðvÞÞ. The integrand may then be trivially
integrated, and we get

−Θ∂0v� ¼ yvðvÞ · δMv − ðSv þ ½Mv; yvðvÞ�Þ · ΔðhvðvÞÞ:
ð111Þ

4. Summary

The total symplectic potential now takes the form of a
sum of three contributions:

Θ ¼
X
c

Θc þ
X
v

Θ∂Rv� þ
X
v

Θ∂0v� ; ð112Þ

where

Θc ¼
Z
∂c̃
dyc · Δhc; ð113Þ

Θ∂Rv� ¼
Z
∂Rv�

ðdyv · Δhv − ðyv · δMv

− ðSv þ ½Mv; yv�Þ · ΔhvÞdϕvÞ; ð114Þ

Θ∂0v� ¼ yvðvÞ · δMv − ðSv þ ½Mv; yvðvÞ�Þ · ΔðhvðvÞÞ:
ð115Þ

B. Rearranging the sums and integrals

From the previous section, we see that the total sym-
plectic potential can be written in terms of the variables
ðHc;Hv;MvÞ purely as a sum of line integrals plus vertex
contributions. In order to simplify this expression, we can
break the line integrals into a sum of individual contribu-
tions along the boundaries.
Let us recall the construction of Sec. II E. Consider a cell

cwithN vertices v1;…; vN along its boundary. Each vertex
vi is dual to a punctured disk v�i , and the intersection of the
(outer) boundary of that disk with the cell c is the arc

ðvicÞ≡ ∂Rv�i ∩ c: ð116Þ

When we remove the intersections of the (full) disks with
the cell c, we obtain the truncated cells

c̃≡ cn ⋃
N

i¼1

Dvi: ð117Þ

Now, to the cell c there are N adjacent cells c1;…; cN ,
truncated into c̃1;…; c̃N , and each such truncated cell
intersects c̃ at a truncated edge, denoted with square
brackets:

½cci�≡ c̃ ∩ c̃i: ð118Þ

We thus see that the boundary ∂c̃ of the truncated cell may
be decomposed into a union of truncated edges and arcs:

∂c̃ ¼ ⋃
N

i¼1

ð½cci� ∪ ðvicÞÞ: ð119Þ

This is illustrated in Fig. 5. Similarly, given a punctured
disk v� surrounded by N cells c1;…; cN , its (outer)
boundary can be decomposed as a union of arcs:

∂Rv� ¼ ⋃
N

i¼1

ðvciÞ: ð120Þ

Accordingly, we can now rearrange the first two sums in
(112), decomposing the sums over the boundaries ∂c̃ and
∂Rv� into sums over individual truncated edges and arcs:

Θ ¼
X
½cc0�

Θcc0 þ
X
ðvcÞ

ΘðvcÞ þ
X
v

Θ∂0v� : ð121Þ

The first sum is over all truncated edges ½cc0� for all pairs of
adjacent cells c and c0, the second sum is over all the arcs
ðvcÞ for all pairs of adjacent vertices v and cells c, and the
third sum is over all the vertices v.
To find the contributions from the edges and arcs, we

assume that Σ is an oriented surface and choose the
counterclockwise orientation of the boundary of each cell.
Each edge ½cc0� is counted twice, once from the direction of
c as part of the integral over ∂c̃ from Θc and once from the

FIG. 5. The blue square in the center is the node c�. It is dual to
the cell c, outlined in black. In this simple example, we have
N ¼ 3 vertices v1, v2, v3 along the boundary ∂c, dual to three
disks v�1, v

�
2, v

�
3. Only the wedge v�i ∩ c is shown for each disk.

After removing the wedges from c we obtain the truncated cell c̃,
in dashed blue. The cell c is adjacent to three cells ci (not shown)
dual to the three nodes c�i , in blue. The boundary ∂c̃, in dashed
blue, thus consists of three arcs ðvicÞ and three truncated
edges ½cci�.
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direction of c0 as part of the integral over ∂c̃0 from Θc0 , with
opposite orientation resulting in a relative minus sign:

Θcc0 ¼
Z
½cc0�

ðdyc · Δhc − dyc0 · Δhc0 Þ: ð122Þ

Similarly, each arc ðvcÞ is counted twice, once from the
direction of v as part of the integral over ∂v� from Θ∂Rv�
and once from the direction of c as part of the integral over
∂c̃ from Θc, again with opposite orientation:

ΘðvcÞ ¼
Z
ðvcÞ

ðdyv · Δhv − ðyv · δMv

− ðSv þ ½Mv; yv�Þ · ΔhvÞdϕv − dyc · ΔhcÞ: ð123Þ

C. Simplifying the edge and arc contributions

1. The edge contributions

The calculation of the edge symplectic potential Θcc0 is
similar to [6] and will serve as a warmup to set the stage for
the evaluation of the arc symplectic potential below. One
first needs to recall the continuity relations (88):

hc0 ðxÞ ¼ hc0chcðxÞ; yc0 ðxÞ ¼ hc0cðycðxÞ − yc
0
c Þhcc0 ;

x ∈ ðcc0Þ: ð124Þ

Plugging this into (122), we get

Θcc0 ¼
Z
½cc0�

ðdyc · Δhc − hc0cdychcc0 · Δðhc0chcÞÞ; ð125Þ

where we used the fact that hc0c and yc
0
c are constant (do not

depend on x) and thus annihilated by d. Next, from the
useful identity (A4) we have

Δðhc0chcÞ ¼ hc0cðΔhc − Δhc0c Þhcc0 ; ð126Þ

where we have used the notation Δhc0c ≡ δhcc0hc0c, intro-
duced in (A6), which emphasizes that it is an algebra
element based at c. This allows us to cancel hcc0 using the
cyclicity of the trace and then cancel the first term,
simplifying this expression to

Θcc0 ¼ Δhc0c ·
Z
½cc0�

dyc; ð127Þ

where we took Δhc0c out of the integral since it is constant.
We will perform the final integration in Sec. IV D 2.

2. The arc contributions

We can now evaluate the arc contribution (123). One first
recalls the continuity relations (92) and (93):

hcðxÞ ¼ hcveMvϕvðxÞhvðxÞ; x ∈ ðvcÞ;
ycðxÞ ¼ hcvðeMvϕvðxÞðyvðxÞ þ SvϕvðxÞÞe−MvϕvðxÞ − ycvÞhvc;

x ∈ ðvcÞ:

From these relations, and using the fact that hvc and ycv are
constant, we find that

Δhc ¼ hcvðeMvϕvðΔhv þ δMvϕvÞe−Mvϕv − ΔhcvÞh−1cv ;
ð128Þ

dyc ¼ hcveMvϕvðdyv þ ðSv þ ½Mv; yv�ÞdϕvÞe−Mvϕvhvc;

ð129Þ

where we have denoted again Δhcv ≡ δhvchcv since the
variational differential is based at v. Recall that the arc
symplectic potential (123) was

ΘðvcÞ ¼
Z
ðvcÞ

ðdyv · Δhv − ðyv · δMv

− ðSv þ ½Mv; yv�Þ · ΔhvÞdϕv − dyc · ΔhcÞ: ð130Þ

Replacing the expressions for dyc and Δhc in the last term,
we get after simplification

ΘðvcÞ ¼ Δhcv ·
Z
ðvcÞ

dðeMvϕvyve−Mvϕv þ SvϕvÞ

− δMv ·
Z
ðvcÞ

d

�
yvϕv þ

1

2
Svϕ

2
v

�
: ð131Þ

We see that the first term depends on c, while the second
one does not. Thus we can perform the sum over arcs
around each disk in the second term [since we hadP

ðvcÞΘðvcÞ in (121)] and turn it instead into a sum over
vertices with an integral along the outer boundary ∂Rv� for
each vertex. In other words, we define

X
ðvcÞ

ΘðvcÞ ≡
X
ðvcÞ

Θvc þ
X
v

ΘðvÞ; ð132Þ

where

Θvc ≡ Δhcv ·
Z
ðvcÞ

dðeMvϕvyve−Mvϕv þ SvϕvÞ; ð133Þ

ΘðvÞ ≡ −δMv ·
Z
∂Rv�

d

�
yvϕv þ

1

2
Svϕ

2
v

�
: ð134Þ

3. The vertex contribution

In fact, we may easily integrate ΘðvÞ, bearing in mind the
definition of the punctured disk in Sec. II C 1:
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ΘðvÞ ¼ −δMv · ðyvðv0Þ þ αvSvÞ; ð135Þ

where the reader will recall that v0 was the intersection of
the cut with the boundary circle at rv ¼ R and ϕv ¼ αv − 1

2

defines the angle assign to the cut. We may now add this
contribution to the term Θ∂0v� from (113), obtaining

Θv ≡ Θ∂0v� þ ΘðvÞ ¼ ðyvðvÞ − yvðv0Þ − αvSvÞ · δMv

− ðSv þ ½Mv; yvðvÞ�Þ · ΔðhvðvÞÞ: ð136Þ

We can finally simplify this expression further. Let us first
decompose yvðv0Þ into a component parallel to Mv (with
M2

v ≡Mv ·Mv) and another orthogonal to it:

yvðv0Þ≡ ykvðv0Þ þ y⊥v ðv0Þ; ð137Þ

where

ykvðv0Þ≡
�
yvðv0Þ ·Mv

M2
v

�
Mv: ð138Þ

The term yvðv0Þ · δMv only depends on the component

ykvðv0Þ. On the other hand, the term ½Mv; yvðvÞ� is left
invariant if we translate yvðvÞ by any component parallel to
Mv. Hence, we can rewrite the vertex potential as

Θv ¼ Xv · δMv − ðSv þ ½Mv;Xv�Þ · ΔðhvðvÞÞ; ð139Þ

where we have introduced the particle relative position

Xv ≡ yvðvÞ − ykvðv0Þ − αvSv: ð140Þ

The term proportional to αv can be eliminated by a
symmetry transformation of the type (98).
The expression (139) is the usual expression for the

symplectic potential of a relativistic particle with mass
Mv and spin Sv [41,42]. In particular, if we introduce
the particle momentum pv, angular momentum15 jv and
position qv,

pv ≡ h−1v ðvÞMvhvðvÞ; jv ≡ h−1v ðvÞðSv þ ½Mv;Xv�ÞhvðvÞ;
qv ≡ h−1v ðvÞXvhvðvÞ; ð141Þ

we can show that the following commutation relations are
satisfied16:

fpvi;q
j
vg ¼ δji ; fjiv;qjvg ¼Cij

kqkv; fjiv;pvjg ¼−Cik
jpvk;

ð142Þ

where qiv, pvi, jiv are the components of qv, pv, jv with
respect to the basis τi of g or the dual basis τi of g�

(according to the index placement), and Cij
k are the

structure constants such that ½τi; τj� ¼ Cij
kτk. This shows

that, as expected, the momentum pv is the generator of
translations, the angular momentum jv is the generator of
rotations, and qv is the particle’s position.
It can be useful to express the effective particle potential

in terms of position and momentum:

Θv ¼ qv · δpv − Sv · ΔðhvðvÞÞ: ð143Þ

More properties of the vertex potential are presented in
Appendix C.

D. Final integration

In the previous section we have established that the total
symplectic potential is given by

Θ ¼
X
½cc0�

Θcc0 −
X
ðvcÞ

Θvc þ
X
v

Θv; ð144Þ

where Θcc0 and Θvc are simple line integrals

Θcc0 ¼ Δhc0c ·
Z
½cc0�

dyc;

Θvc ¼ Δhcv ·
Z
ðvcÞ

dðeMvϕvyve−Mvϕv þ SvϕvÞ; ð145Þ

while Θv is the relativistic particle potential (139). We are
left with the integration and study of the edge and arc
potentials.

1. Source and target points

We have obtained, in (145), two integrals of total
differentials over the truncated edges ½cc0� and the arcs
ðvcÞ. These integrals are trivial; all we need is to label the
source and target points of each edge and arc. One needs to
recall that the truncated edges are oriented form the point of
view of c, while the arcs are oriented from the point of view
of v so they have opposite relative orientations as shown
in Fig. 6.
These corner points are located along the edges of Γ and

are determined by the radius R of the disks. We will label
the source and target points of the edge ½cc0� as σcc0 and τcc0
respectively, and the source and target points of the arc ðvcÞ
as σvc and τvc respectively, where σ stands for “source” and
τ for “target.” In other words,

½cc0�≡ ½σcc0τcc0 �; ðvcÞ≡ ½σvcτvc�: ð146Þ

15The definition of jv given here agrees with the definition (81)
given earlier since Xv differs from yvðvÞ only by a translation in
the Cartan, which commutes with Mv.16To clarify the notation, the subscript v denotes the vertex as
usual, while i, j, k are the Lie algebra indices.
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Note that these labels are not unique, since the source
(target) of an edge is also the source (target) of an arc. More
precisely, let us consider a cell c ¼ ½v1;…; vN �, where vi
denote the boundary vertices. This cell is bounded by N
other cells c1;…;cN , which are such that c ∩ ci ¼ ðviviþ1Þ.
We then have that

σvic ¼ σcci ; τviþ1c ¼ τcci : ð147Þ
This labeling is illustrated in Fig. 6.

2. The holonomy-flux algebra

Using these labels, we can perform the integrations in
(145). We define fluxes associated to the edges ½cc0� and
arcs ðvcÞ bounding the cell c in terms of the corner
variables:

Xc0
c ≡

Z
½cc0�

dyc ¼ ycðτcc0 Þ − ycðσcc0 Þ; ð148Þ

Xc
v ≡

Z
ðvcÞ

dðeMvϕvyve−Mvϕv þ SvϕvÞ ð149Þ

¼ ðeMvϕvyve−Mvϕv þ SvϕvÞðτvcÞ
− ðeMvϕvyve−Mvϕv þ SvϕvÞðσvcÞ: ð150Þ

This allows us to write the edges’ potential simply as

Θcc0 ≡ Δhc0c ·Xc0
c ; Θvc ≡ Δhcv ·Xc

v: ð151Þ

We see that these two terms correspond to the familiar
holonomy-flux phase space for each edge and arc. Θcc0 is
associated to each link ðcc0Þ� in the spin network graph Γ�,
while Θvc is associated to each segment ðvcÞ� connecting a
vertex with a node. The holonomy-flux phase space is the
cotangent bundle T�G, and it is the phase space of
(classical) spin networks in loop quantum gravity in the
case G ¼ SUð2Þ.
One can prove a relation between a flux and its “inverse.”

First, note that σcc0 ¼ τc0c. Thus, we have from the con-
tinuity condition (88)

Xc
c0 ¼ yc0 ðτc0cÞ − yc0 ðσc0cÞ ¼ −ðyc0 ðτcc0 Þ − yc0 ðσcc0 ÞÞ
¼ −hc0cðycðτcc0 Þ − ycðσcc0 ÞÞhcc0 ¼ −hc0cXc0

c hcc0 :

Similarly, from (93) we find that the arc flux as viewed
from the point of view of the cell c is

Xv
c ≡ −

Z
ðvcÞ

dyc ¼ −ðycðτvcÞ − ycðσvcÞÞ ¼ −hcvXc
vhvc;

ð152Þ
where the minus sign comes from the opposite orientation
of the arc when viewed from c instead of v�.
In conclusion, the fluxes satisfy the relations

Xc
c0 ¼ −hc0cXc0

c hcc0 ; Xv
c ¼ −hcvXc

vhvc: ð153Þ

Note that, if we view ycðτcc0 Þ and ycðσcc0 Þ as the relative
position of the corner τcc0 from the node c� to the points τcc0
and σcc0 respectively, then the difference Xc0

c ¼ ycðτcc0 Þ −
ycðσcc0 Þ is a translation vector from σcc0 to τcc0 . In other
words, Xc0

c is simply a (translational) holonomy along the
truncated edge ½cc0� dual to the link ðcc0Þ�. Similarly, Xv

c is
a vector from σvc to τvc, along the arc ðvcÞ.
Let us label the holonomies hl ≡ hcc0 and fluxes

Xl ≡Xc0
c , where l≡ ðcc0Þ� is a link in the spin network

graph Γ�, dual to the edge ðcc0Þ ∈ Γ. Let us also decompose
the flux into components, Xl ≡ Xi

lτi. Then, from the first
term in Θ, one can derive the well-known holonomy-flux
Poisson algebra:

fhl; hl0 g ¼ 0; fXi
l; X

j
l0g ¼ δll0ϵ

ij
k X

k
l;

fXi
l; hl0 g ¼ δll0τihl: ð154Þ

This concludes the construction of the total symplectic
potential. It can be written solely in terms of discrete data
without any integrals, with contributions from truncated
edges, arcs, and vertices, as follows:

Θ ¼
X
½cc0�

Δhc0c ·Xc0
c −

X
ðvcÞ

Δhvc ·Xv
c þ

X
v

ðXv · δMv − ðSv þ ½Mv;Xv�Þ · ΔðhvðvÞÞÞ: ð155Þ

FIG. 6. The intersection points (red circles) of truncated edges
and arcs along the oriented boundary ∂c̃ (blue arrows).
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V. THE GAUSS AND CURVATURE
CONSTRAINTS

In the continuum theory of 2þ 1 gravity, we have the
curvature constraint F ¼ 0 and the torsion constraint
T ¼ 0. These constraints are modified when we add
curvature and torsion defects; as we have seen in (82),
at least naively, a delta function is added to the right-hand
side of these constraints: Fjv� ¼ pvδðvÞ and Tjv� ¼ jvδðvÞ.
We will now show how these constraints are recovered in
our formalism to obtain the discrete Gauss (torsion)
constraint and the discrete curvature constraint.

A. The Gauss constraint

1. On the cells

Recall that on the truncated cell c̃ we have

Ajc̃ ¼ h−1c dhc; Ejc̃ ¼ h−1c dychc; Tjc̃ ¼ dAEjc̃ ¼ 0:

ð156Þ

Using the identity

dðhcEh−1c Þ ¼ hcðdAEÞh−1c ; ð157Þ

we can define the quantity Gc, which represents the Gauss
law integrated over the truncated cell c̃:

Gc ≡
Z
c̃
hcðdAEÞh−1c ¼

Z
c̃
dðhcEh−1c Þ ¼

Z
∂c̃
hcEh−1c

¼
Z
∂c̃
dyc: ð158Þ

The Gauss law dAE ¼ 0 translates into the condition
Gc ¼ 0.
As illustrated in Fig. 5, the boundary ∂c̃ consists of

truncated edges ½cc0� and arcs ðvcÞ. Thus

Gc ¼
X
c0∋c

Z
½cc0�

dyc þ
X
v∋c

Z
ðvcÞ

dyc; ð159Þ

where c0 ∋ c means “all cells c0 adjacent to c” and v ∋ c
means “all vertices v adjacent to c.” Using the fluxes
defined in (148) and (152), we get

Gc ¼
X
c0∋c

Xc0
c −

X
v∋c

Xv
c ¼ 0; ð160Þ

where, as explained before, the minus sign in the second
sum comes from the fact that we are looking at the arcs
from the cell c, not from the vertex v, and thus the
orientation of the integral is opposite.
In the limit where we shrink the radius R of the

punctured disks to zero the points ycðτvcÞ and ycðτvcÞ
are identified, the arc flux Xv

c vanishes, and we recover the

usual loop gravity Gauss constraint. It is well known,
however, that under coarse-graining the naive Gauss con-
straint is not preserved [43,44]. In our context, this can be
interpreted as opening a small disk around the vertices,
which carries additional fluxes.

2. On the disks

Similarly, recall that on the punctured disks we have

Ajv� ¼ h−1v dhv þ ðh−1v MvhvÞdϕv;

Ejv� ¼ h−1v ðdyv þ ðSv þ ½Mv; yv�ÞdϕvÞhv; ð161Þ

and dAEjv� ¼ 0. It will be convenient in this section to
introduce nonperiodic variables

uv ≡ eMvϕvhv; wv ≡ eMvϕvðyv þ SvϕvÞe−Mvϕv ; ð162Þ

in terms of which the connection and frame field can be
simply expressed as Ajv� ¼ u−1v duv and Ejv� ¼ u−1v dwvuv.
Using the identity

dðuvEu−1v Þ ¼ uvðdAEÞu−1v ; ð163Þ

we can evaluate the Gauss constraint Gv inside the
punctured disk v�:

Gv ≡
Z
v�
uvðdAEÞu−1v ¼

Z
v�
dðuvEu−1v Þ ¼

Z
∂v�

uvEu−1v

¼
Z
∂v�

dwv: ð164Þ

This splits into contributions from the inner and outer
boundaries, with opposite signs, and (since we are now
using nonperiodic variables) from the cut:

Gv ¼
Z
∂0v�

dwv þ
Z
∂Rv�

dwv þ
Z
Cv

dwv: ð165Þ

On the inner boundary ∂0v�, we use the fact that yv takes
the constant value yvðvÞ to obtain

Z
∂0v�

dwv ¼ eMvϕvðyvðvÞ þ SvϕvÞe−Mvϕv

����αvþ
1
2

ϕv¼αv−1
2

¼ Sv þ eMvðαv−1
2
ÞðeMvyvðvÞe−Mv − yvðvÞÞ

× e−Mvðαv−1
2
Þ:

On the outer boundary ∂Rv�, we split the integral into
separate integrals over each arc ðvcÞ ¼ ðσvcτvcÞ around v�
and use the definition of the flux (149):

Z
∂Rv�

dwv ¼
X
c∈v

Z
ðvcÞ

dwv ¼
X
c∈v

Xc
v: ð166Þ
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On the cut Cv, we have contributions from both sides, one
at ϕv ¼ αv − 1

2
and another at ϕv ¼ αv þ 1

2
with opposite

orientation. Since dϕv ¼ 0 on the cut, we have

dwvjCv
¼ eMvϕvdyve−Mvϕv ; ð167Þ

and thus

Z
Cv

dwv ¼
Z

R

r¼0

ðeMvϕvdyve−Mvϕv jϕv¼αvþ1
2

ϕv¼αv−1
2

Þ

¼ eMvðαv−1
2
ÞðeMvðyvðv0Þ − yvðvÞÞe−Mv − ðyvðv0Þ

− yvðvÞÞÞe−Mvðαv−1
2
Þ;

since yv has the value yvðv0Þ at r ¼ R and yvðvÞ at r ¼ 0 on
the cut.
Adding up the integrals, we find that the Gauss con-

straint on the disk is

Gv ¼ Sv þ eMvðαv−1
2
ÞðeMvyvðv0Þe−Mv − yvðv0ÞÞe−Mvðαv−1

2
Þ

−
X
c∈v

Xc
v ¼ 0: ð168Þ

The validity of this equation can now be checked from the
definition of the fluxes. By performing the sum explicitly
and using the fact that τvci ¼ σvciþ1

where ci, i ∈ f1;…; Ng
are the cells around the disk v� and

ϕvðσvcNþ1
Þ≡ ϕvðσvc1Þ þ 1; ð169Þ

we see that this constraint is satisfied identically. Indeed,
using the fact that yv is periodic, choosing without loss of
generality ϕðσvc1Þ≡ αv − 1=2 (that is, the first arc start at
the cut), and recalling that yv ¼ yvðv0Þ at the cut, we obtainX
c∈v

Xc
v ¼ Sv þ eMvðαv−1

2
ÞðeMvyvðv0Þe−Mv − yvðv0ÞÞ

× e−Mvðαv−1
2
Þ: ð170Þ

Remember that we have the decomposition yvðv0Þ ¼
ykvðv0Þ þ y⊥v ðv0Þ. When Mv ≠ 0, the previous equation
defines the value of y⊥v ðv0Þ in terms of the sum of fluxesP

c∈vX
c
v.

B. The curvature constraint

In the previous section we have expressed the Gauss
constraints satisfied by the fluxes, which follow from the
definition of the fluxes in terms of the translational
holonomy variables. Here we do the same for the curvature
constraint. We want to find the relations between the
discrete holonomies hvc; hcc0 and the mass parameters
Mv which express that the curvature is concentrated on
the vertices.

The connection on the truncated cell c̃ is

Ajc̃� ¼ h−1c dhc ⇒ Fjc̃� ¼ 0: ð171Þ

Taking the rotational part of (9), we see that the associated
holonomies hc from a point x to another point y inside c are
given by exp�! R

y
x A ¼ h−1c ðxÞhcðyÞ. One can use the rela-

tions (88) to evaluate the holonomy along a path from x ∈ c
to y ∈ c0, where c and c0 are adjacent cells:

exp�! Z
y

x
A ¼ h−1c ðxÞhcc0hc0 ðyÞ: ð172Þ

Similarly, the connection on the punctured disk is

Ajv� ¼ ðeMvϕvhvÞ−1dðeMvϕvhvÞ; ð173Þ

and the associated holonomy from a point x ∈ v� to a point
y ∈ v� is given by

exp�! Z
y

x
A ¼ h−1v ðxÞeMvðϕvðyÞ−ϕvðxÞÞhvðyÞ; ð174Þ

while the holonomy between a point x ∈ v� and a point
y ∈ c in an adjacent cell c is

exp�! Z
y

x
A ¼ h−1v ðxÞe−MvϕvðxÞhvchcðyÞ: ð175Þ

Using this, we can evaluate in the holonomy of the curve
shown in Fig. 7. This curve goes from a point x ∈ c to a
point y ∈ c0, where both cells c, c0 are around v. By the
flatness condition we can evaluate the holonomy from x to
y in two ways, and we get

FIG. 7. The holonomy from c� to c0� going either directly or
through the vertex v.
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exp�!Z
y

x
A¼ h−1v ðxÞeMvϕ

cc0
v hvðyÞ¼ h−1v ðxÞhvchcc0hc0vhvðyÞ;

ð176Þ

where we denoted ϕcc0
v ≡ ϕvðyÞ − ϕvðxÞ. We conclude that

the flatness of the connection outside the cells implies the
following relationship among the discrete holonomies:

hcc0 ¼ hcveMvϕ
cc0
v hvc0 : ð177Þ

In particular, let the vertex v be surrounded by N cells
c1;…; cN , and take c1 ≡ cNþ1 ≡ c. If we form a loop
of discrete holonomies going from each cell to the next,
we find

hcc2 � � � hcNc ¼ hcveMvhvc; ð178Þ

since ϕcc2
v þ � � � þ ϕcnc

v ¼ 1. By moving all of the
terms to the left-hand side, we obtain the curvature
constraint:

Fv ≡ hvchcc2 � � � hcNchcve−Mv ¼ 1: ð179Þ

C. Generators of symmetries

In conclusion, we have obtained two Gauss constraints
on the cells c and disks v�,

Gc ≡
X
c0∋c

Xc0
c −

X
v∋c

Xv
c ¼ 0; ð180Þ

Gv ≡ Sv þ eMvðαv−1
2
ÞðeMvyvðv0Þe−Mv − yvðv0ÞÞe−Mvðαv−1

2
Þ

−
X
c∈v

Xc
v ¼ 0; ð181Þ

and a curvature constraint at the vertex v,

Fv ≡ hvchcc2 � � � hcNchcve−Mv ¼ 1: ð182Þ

Note that all of these constraints are satisfied identically
in our construction, as shown above. We will now see that
the Gauss constraint generates the rotational part of the
left translation symmetry transformation given by (75) and
(84). In order to do so, we look for transformations
ðδβc ; δβv ; δxvÞ such that

IδβcΩ ¼ −βc · δGc; IδβvΩ ¼ −βv · δGv;

IδxvΩ ¼ −xv · ΔFc: ð183Þ

Wewill need the explicit expression for the total symplectic
form Ω≡ δΘ:

Ω ¼
X
ðcc0Þ

Ωcc0 −
X
ðvcÞ

Ωvc þ
X
v

Ωv; ð184Þ

where the arc and edge contributions are

Ωcc0 ≡ 1

2
½Δhc0c ;Δhc0c � ·Xc0

c − Δhc0c · δXc0
c ;

Ωvc ≡ 1

2
½Δhcv;Δhcv� ·Xc

v − Δhcv · δXc
v;

while the vertex contribution is

Ωv≡δXv ·δMv−ðδSvþ½δMv;Xv�þ½Mv;δXv�Þ ·ΔðhvðvÞÞþ

−
1

2
ðSvþ½Mv;Xv�Þ · ½ΔðhvðvÞÞ;ΔðhvðvÞÞ�:

1. The Gauss constraint at the nodes

Consider the infinitesimal version of the symmetry
transformation (75) acting on hcc0 , hcv, yc and yv, with
gc ≡ eβc :

δðzc;βcÞhcc0 ¼ βchcc0 ; δðzc;βcÞhcv ¼ βchcv;

δðzc;βcÞyc ¼ zc þ ½βc; yc�; δðzc;βcÞyv ¼ 0: ð185Þ

From (148) and (152), we see that the fluxes Xc0
c and Xv

c
transform as follows:

δðzc;βcÞX
c0
c ¼ ½βc;Xc0

c �; δðzc;βcÞX
v
c ¼ ½βc;Xv

c�: ð186Þ

Note that the translation parameter zc cancels out, so this
transformation is in fact a pure rotation. Also note that this
transformation only affects holonomies and fluxes which
involve the specific cell c with respect to which we are
performing the transformation.
Applying the transformation to Ω, we find

Iδðzc;βcÞΩ ¼ −βc · δ
�X

c0∋c

Xc0
c −

X
v∋c

Xv
c

�
¼ −βc · δGc;

ð187Þ

and thus we have proven that the cell Gauss constraint Gc
generates rotations at the nodes. Since the translation
parameter zc cancels out in this calculation, the transla-
tional edge mode symmetry is pure gauge.

2. The Gauss constraint at the vertices

In order to analyze the Gauss constraint at the vertex one
first has to recognize that only the part of Gv along the
Cartan subalgebra is a constraint. The part orthogonal to it
can simply be viewed as a definition of y⊥v ðv0Þ, as
emphasized earlier. Therefore, at the vertex, the only
constraint is βv ·Gv ¼ 0 for βv ∈ h.
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We consider the infinitesimal version of the symmetry
transformation (84) acting on hc, hv, yc and yv, with
gv ≡ eβv :

δðzv;βvÞhc ¼ 0; δðzv;βvÞhv ¼ βvhv; δðzc;βcÞyc ¼ 0;

δðzv;βvÞyv ¼ zv þ ½βv; yv�: ð188Þ

Note that zv and βv are both in the Cartan subalgebra. From
(96), (148) and (149), we see that the holonomies hcc0 , hvc,
and hvðvÞ and the fluxes Xc0

c , Xc
v and Xv transform as

follows:

δðzv;βvÞhcc0 ¼ 0; δðzv;βvÞhvc ¼ βvhvc;

δðzv;βvÞhvðvÞ ¼ βvhvðvÞ; ð189Þ

δðzv;βvÞX
c0
c ¼ 0; δðzv;βvÞX

c
v ¼ ½βv;Xc

v�;
δðzv;βvÞXv ¼ ½βv;Xv�; ð190Þ

where we used the fact that zv and βv commute with Mv
and Sv. Again, the translation parameter zv cancels out, so
the transformation is in fact a pure rotation on the
holonomies and fluxes. Also note that this transformation
only affects holonomies and fluxes which involve the
specific vertex v with respect to which we are performing
the transformation.
Applying the transformation to Ω, we find

Iδðzv;βvÞΩ ¼ −βv · δ
�
Sv −

X
c∈v

Xc
v

�
; ð191Þ

where we have again used the fact that zv and βv commute
withMv and Sv, as well as the Jacobi identity. Importantly,
since ½βv; eMv � ¼ 0 and δβv ¼ 0, we have that

βv · δðeMvyv0ðvÞe−Mv − yv0ðvÞÞ ¼ 0; ð192Þ

where we used the fact that the trace in the definition of the
dot product is cyclic. Therefore we see that, in fact,

Iδðzv;βvÞΩ ¼ −βv · δGv: ð193Þ

Thus, we have proven that the disk Gauss constraint Gv
generates rotations at the vertices. Again, since the trans-
lation parameter zv cancels out in this calculation, the edge
mode translations at the vertices are pure gauge.

3. The curvature constraint

We are left with the translation symmetry generated by
the curvature constraint (182). As before, let the vertex v be
surrounded by N cells c1;…; cN , and take c1 ≡ cNþ1 ≡ c.
Then we define

Hvc ≡ hvchcc2 � � � hcNc; Hcv ≡H−1
vc ; ð194Þ

such that (182) becomes Fv ¼ Hvchcve−Mv ¼ 1. Now, let
xv be a transformation parameter, and let us consider the
transformation

δxv
Xc0

c ¼ −HcvxvHvc; δxvX
c
v ¼ xv − e−MvxveMv ;

δxvXv ¼ −xk
v; ð195Þ

where we denoted

xk
v ≡

�
xv ·Mv

M2
v

�
Mv; ð196Þ

and where the only fluxes affected are Xc
v, Xv and Xc0

c
corresponding to links surrounding the vertex v. Then we
find that

IδxvΩcc0 ¼ −xv ·HvcΔhc
0
c Hcv; IδxvΩv ¼ −xv · δMv;

ð197Þ

IδxvΩvc ¼ xv · ðΔhcv − eMvΔhcve−MvÞ; ð198Þ

and the total symplectic form transforms as

IδxvΩ ¼ −xv ·

�XN
i¼1

HvciΔh
ciþ1
ci Hciv

þ Δhcv − eMvΔhcve−Mv − δMv

�

¼ −xv · ΔFv;

which shows that δxv is the translation symmetry associated
with Fv. Quite remarkably, this symmetry can be used to
simplify the expression for Xv and the vertex Gauss
constraint. Let us consider the transformation parameter

xv ≡ −
1

Nv
ðeMvðαvþ1

2
Þy⊥v ðv0Þe−Mvðαvþ1

2
ÞÞ þ ykvðv0Þ; ð199Þ

where Nv is the number of cells around v. Note that

xv − e−MvxveMv ¼ x⊥
v − e−Mvx⊥

v eMv ; ð200Þ

since the parallel part xk
v commutes withMv. We define the

new set of fluxes X̃≡Xþ δxvX. Then from the expres-
sions (140) and (170), we can see that the transformed
fluxes at the vertices and arcs satisfy the simpler relations

X̃v ¼ yvðvÞ − αvSv;
X
c∋v

X̃c
v ¼ Sv: ð201Þ

Taking αv ¼ 0, which we can always do due to the
symmetry transformation (98), we may simplify even more
and obtain simply X̃v ¼ yvðvÞ.
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One has to beware that the transformed fluxes X̃c0
c on the

links no longer satisfy the inverse relations (153):
X̃c0

c ≠ −hcc0X̃c
c0hc0c, since the expressions on both sides

of this equation now involve the differences between xv
and xv0 .

VI. SUMMARY AND OUTLOOK

Two types of transformations acting on the group
elements arise in our discretization. Right translations
H ↦ HG, with G a group-valued 0-form, correspond to
the familiar gauge transformation of the connection.
However, left translations H ↦ GH, with G constant and
possibly restricted to the Cartan subgroup, are instead a
symmetry which leaves the connection invariant.
The appearance of gauge-invariant observables that

transform nontrivially under a new global symmetry is
understood in the continuum as the appearance of new edge
mode d.o.f. related to the presence of boundaries appearing
in the subdivision of a large gauge system into subsystems
[8,14]. This point is usually overlooked and it is often
assumed that we can work in “a gauge” where we fixed the
elements Hcðc�Þ and HvðvÞ to the identity.
What this procedure often ignores is the fact that gauge

transformations are transformations in the kernel of the
symplectic structure, while symmetries are not. So before
we can postulate that we can “gauge fix” a symmetry, we
have to ensure that the variable we are gauge fixing does not
possess a conjugate variable. Otherwise, “gauge” fixing
would imply reducing the number of d.o.f. This means that
we cannot decide beforehand if an edge mode variable can
be dismissed as a gauge variable—not until we understand
its role in the canonical structure.
We have established, from first principles, a connection

between the continuous 2þ 1 gravity phase space, con-
strained to be flat and torsionless outside defects, and the
loop gravity phase space. We have shown that the vertices
carry additional d.o.f., behaving as a collection of relativ-
istic particles coupled to gravity.
This provides a new picture, where pure 2þ 1 gravity

can be equivalently described using defects carrying
“Poincaré” charges. This opens a new perspective on
how one can address the continuum limit, similar to the
one proposed in [21], and opens up the possibility to
directly connect the holonomy-flux variables with the
torsion and curvature holonomies measuring the presence
of these defects.
This work opens many new directions to explore. One of

themain challenges is to develop a similar picture in the 3þ1-
dimensional case. We expect that it is possible to rewrite the
3þ1-dimensional loop gravity phase space in terms of
pointlike defects. Note that, in this case, the defects are
expected to be of codimension 3 instead of codimension 2.
The proof of this conjecture is left for future work [34].
Finally, it is interesting to revisit the choice of polari-

zation that we made when constructing the symplectic

potential. Another natural choice is the dual loop polari-
zation introduced in [6]. In that case, one expects the
piecewise-flat geometry phase space to reduce to that of
(the classical version of) group networks [9]. In this dual
picture, holonomies and fluxes switch places: the fluxes are
on the links and the holonomies are on their dual edges.
This dual formulation will be discussed in a companion
paper, in preparation [40].
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APPENDIX A: THE MAURER-CARTAN FORM
ON FIELD SPACE

We define the Maurer-Cartan form on field space as
follows:

Δg≡ δgg−1; ðA1Þ

where g is a Lie-group-valued 0-form and δ is the variation,
or differential on field space. Note the bold font on Δ,
denoting that Δg is valued in the corresponding Lie algebra.
Seen as an operator, Δ satisfies the “Leibniz rule”

ΔðhgÞ ¼ Δhþ hðΔgÞh−1; ðA2Þ

and the inversion rule

Δðg−1Þ ¼ −g−1ðΔgÞg: ðA3Þ

Combining them together, we get the useful identity

Δðh−1gÞ ¼ h−1ðΔg − ΔhÞh: ðA4Þ

Also, it is easy to see that

δðΔgÞ ¼ 1

2
½Δg;Δg�: ðA5Þ

Sometimes we will denote a holonomy as, e.g., hcc0 where c
is the source cell and c0 is the target cell for parallel
transport. In this case, our notational convention ensures
that the subscripts are always compatible with adjacent
subscripts, as in hc0cdyc

0
c hcc0 for example. However, since

we have Δhcc0 ¼ δhcc0hc0c, the proper subscript for this
expression is c, since it is located at c, while c0 is just an
internal point which the two holonomies happen to pass

FREIDEL, GIRELLI, and SHOSHANY PHYS. REV. D 99, 046003 (2019)

046003-22



through. We will thus employ, in such cases, the more
appropriate notation

Δhc0c ≡ Δðhcc0 Þ; ðA6Þ
where the internal point c0 is now a superscript, much like
in the notation for yc

0
c ; indeed, the latter was employed for a

similar reason.

APPENDIX B: EVALUATION OF THE
CHERN-SIMONS SYMPLECTIC POTENTIAL

The connection A inside the disk D is

A ¼ H−1LHþH−1dH; ðB1Þ
where L is the Lagrangian connection such that L ·L ¼ 0
and H is a G-valued 0-form. Its variation is

δA ¼ H−1ðδLþ dLΔHÞH; ðB2Þ

where dL denotes the covariant differential dL ≡ dþ ½L; ·�,
and we have used the shorthand notationΔH≡ δHH−1 for
the Maurer-Cartan form, introduced in Appendix A.
Let us evaluate the Chern-Simons symplectic form. We

have

ωðAÞ ¼ 2δL · dLΔHþ dLΔH · dLΔH; ðB3Þ

where we used the fact that δL · δL ¼ 0. Now, the
curvature associated to L is F ðLÞ≡ dLþ 1

2
½L;L�, its

variation is δF ðLÞ ¼ dLδL, and it satisfies the Bianchi
identity d2L ¼ ½F ðLÞ; �. Using the graded Leibniz rule, we
find

δL · dLΔH ¼ δF ðLÞ · ΔH − dðδL · ΔHÞ: ðB4Þ
In addition, we have on the one hand

dðΔH · dLΔHÞ ¼ dðΔH · dΔHÞ þ dðΔH · ½L;ΔH�Þ;
ðB5Þ

and on the other hand

dðΔH · dLΔHÞ ¼ dLΔH · dLΔHþ ΔH · ½F ðLÞ;ΔH�;
ðB6Þ

and thus

dLΔH · dLΔH ¼ dðΔH · dΔHÞ þ dðΔH · ½L;ΔH�Þ
− ΔH · ½F ðLÞ;ΔH�: ðB7Þ

Plugging in, we get

ωðAÞ ¼ 2δF ðLÞ · ΔH − 2dðδL · ΔHÞ
þ dðΔH · dΔHÞ þ dðΔH · ½L;ΔH�Þ
− ΔH · ½F ðLÞ;ΔH�: ðB8Þ

Now, from (A5) we know that

δΔH ¼ 1

2
½ΔH;ΔH�; ðB9Þ

and thus, this time using the graded Leibniz rule on field
space, we find

δL · ΔH ¼ δðL · ΔHÞ − 1

2
L · ½ΔH;ΔH�; ðB10Þ

δF ðLÞ · ΔH ¼ δðF ðLÞ · ΔHÞ − 1

2
F ðLÞ · ½ΔH;ΔH�:

ðB11Þ
Plugging into ωðAÞ, the triple products all cancel17 and we
get the general expression

ωðAÞ ¼ 2δðF ðLÞ ·ΔHÞ þ dðΔH · dΔHÞ− 2dδðL ·ΔHÞ:
ðB12Þ

Next, we specialize to the case where the Lagrangian
connection L is an Abelian connection of the form
considered above:

L≡Mdϕ; F ðLÞ ¼ MδðvÞ; M ∈ dh; ðB13Þ
where v is the center of the disk D. Integrating (B12) over
the disk, we get

ΩDðAÞ≡
Z
D
ωðAÞ ¼ 2δðM · ΔHðvÞÞ

þ
I
∂D

ðΔH · dΔH − 2δðM · ΔHÞdϕÞ: ðB14Þ

Using the useful identity (A4) we find

ΔH ¼ HðvÞΔðHðvÞ−1HÞHðvÞ−1 þ ΔHðvÞ; ðB15Þ
which allows us to write

ΩDðAÞ ¼ 2δðM · ΔHðvÞÞ þ
I
∂D

ΔH · dΔHþ

− 2

I
∂D

δðHðvÞ−1MHðvÞ · ΔðHðvÞ−1HÞ þM · ΔHðvÞÞdϕ:

17Since ΔH · ½L;ΔH�¼−L · ½ΔH;ΔH� and ΔH·½F ðLÞ;ΔH�¼−F ðLÞ·½ΔH;ΔH� due to graded commutativity on field space.
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Since δðM · ΔHðvÞÞ is a constant with respect to ϕ, the
second term in the second integral becomes trivial and we
see that it exactly cancels the first term (recall thatR
dϕ ¼ 1). We are thus left with

ΩDðAÞ ¼
I
∂D

ΔH · dΔH

− 2

I
∂D

δðHðvÞ−1MHðvÞ · ΔðHðvÞ−1HÞÞdϕ:

ðB16Þ

Next, we introduce the DG-valued 0-form H̃ðxÞ≡
HðvÞ−1HðxÞ, which satisfies H̃ðvÞ ¼ 1. Then we can write
the symplectic form as

ΩDðAÞ ¼
I
∂D

ΔðHðvÞH̃Þ · dΔðHðvÞH̃Þ

− 2

I
∂D

δðHðvÞ−1MHðvÞ · ΔH̃Þdϕ: ðB17Þ

Finally, from (A2) and (A4) we see that

ΔðHðvÞH̃Þ ¼ HðvÞðΔH̃ − ΔðHðvÞ−1ÞÞHðvÞ−1;
dΔðHðvÞH̃Þ ¼ HðvÞdΔH̃HðvÞ−1; ðB18Þ

since HðvÞ is constant. Thus we obtain

ΩDðAÞ ¼
I
∂D

ΔH̃ · dΔH̃ −
I
∂D

dðΔðHðvÞ−1Þ · ΔH̃Þ

− 2

I
∂D

δðHðvÞ−1MHðvÞ · ΔH̃Þdϕ: ðB19Þ

However, the second term vanishes since H̃ is a periodic
function on the circle ∂D, and thus we obtain the final
expression:

ΩDðAÞ ¼
I
∂D

ΔH̃ · dΔH̃

− 2

I
∂D

δðHðvÞ−1MHðvÞ · ΔH̃Þdϕ: ðB20Þ

APPENDIX C: THE RELATIVISTIC PARTICLE

In this Appendix we study the relativistic particle
symplectic potential

Θ≡X · δM − ðSþ ½M;X�Þ · Δh; ðC1Þ

with the symplectic form

Ω≡ δΘ ¼ δX · δM − ðδSþ ½δM;X� þ ½M; δX�Þ · Δh

−
1

2
ðSþ ½M;X�Þ · ½Δh;Δh�: ðC2Þ

We define the momentum p and angular momentum j of
the particle:

p≡ h−1Mh ∈ g�; j≡ h−1ðSþ ½M;X�Þh ∈ g; ðC3Þ

which have the variational differentials

δp ¼ h−1ðδMþ ½M;Δh�Þh; ðC4Þ

δj ¼ h−1ðδSþ ½δM;X� þ ½M; δX� þ ½Sþ ½M;X�;Δh�Þh:
ðC5Þ

We also define the “position”

q≡ h−1Xh ∈ g; ðC6Þ

in terms of which the symplectic potential may be
written as

Θ ¼ q · δp − S · Δh: ðC7Þ

1. Right translations (gauge transformations)

Let

H≡ ðX; hÞ ¼ eXh ∈ DG;

G≡ ðg;xÞ ∈ DG ⇒ HG ¼ eXþhxh−1hg: ðC8Þ

This is a right translation, with parameter G, of the group
element H, which corresponds to a gauge transformation:

h↦ hg; X↦Xþ hxh−1; M↦M; S↦ S: ðC9Þ

It is interesting to translate this action onto the physical
variables (p, q, j) which transform as

p → h−1ph; q → xþ h−1qh; j → h−1jh: ðC10Þ

This shows that the parameter h labels a rotation of the
physical variables, while x labels a translation of the
physical position q. Taking g≡ eα, we may consider
transformations labeled by xþ α ∈ dg with x ∈ g� a
translation parameter and α ∈ g a rotation parameter, given
by the infinitesimal version of the gauge transformation:

δðx;αÞh ¼ hα; δðx;αÞX ¼ hxh−1; δðx;αÞM ¼ 0;

δðx;αÞS ¼ 0: ðC11Þ

Let I denote the interior product on field space, associated
with the variational exterior derivative δ. Then one finds
that this transformation is Hamiltonian:

Iδðx;αÞΩ ¼ −δHðx;αÞ; Hðx;αÞ ≡ −ðp · xþ j · αÞ: ðC12Þ
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This shows that the variable conjugated to p is the
“position” q≡ h−1yh, while the angular momentum j
generates right translations on G. The Poisson bracket
between two such Hamiltonians is given by

fHðx;αÞ; Hðx0:α0Þg ¼ δðx;αÞHðx0;α0Þ ¼ Hð½α;x0�þ½x;α0�;½α;α0�Þ;

ðC13Þ
which reproduces, as expected, the symmetry algebra dg.

2. Left translations (symmetry transformations)

Similarly, let

H≡ ðh;XÞ ∈ DG;

G≡ ðg; zÞ ∈ DG ⇒ GH ¼ ezþgXg−1gh: ðC14Þ
This is a left translation, with parameter G, of the group
element H, which corresponds to a symmetry that leaves
the connection invariant:

h ↦ gh; X ↦ zþ gXg−1; M ↦ gMg−1;

S ↦ gðSþ ½z;M�Þg−1: ðC15Þ
Note that it commutes with the right translation. The
infinitesimal transformation, with g≡ eβ, is

δðz;βÞh ¼ βh; δðz;βÞX ¼ zþ ½β;X�; δðz;βÞM ¼ ½β;M�;
δðz;βÞS ¼ ½β;S� þ ½z;M�: ðC16Þ
Once again, we can prove that this transformation is
Hamiltonian:

Iδðz;βÞΩ ¼ −δHðz;βÞ; Hðz;βÞ ≡ −ðM · zþ S · βÞ: ðC17Þ

This follows from the fact that

δðz;βÞðSþ ½M;X�Þ ¼ ½β;Sþ ½M;X��; ðC18Þ
which implies that these transformations leave the momen-
tum and angular momentum invariant: δðz;βÞp ¼ 0 ¼ δðz;βÞj.

3. Restriction to the Cartan subalgebra

In the case discussed in this paper, where M ∈ h� and
S ∈ h are in the Cartan subalgebra, we need to restrict the
parameter of the left translation transformation to be in dh.
A particular class of transformations of this type is when
the parameter is itself a function of M and S, which we
shall denote FðM;SÞ. One finds that the infinitesimal
transformation

δFh ¼ ∂F
∂S h; δFy ¼ ∂F

∂Mþ
�∂F
∂S ;X

�
; δFM ¼ 0;

δFS ¼ 0; ðC19Þ
is Hamiltonian:

IδFΩ ¼ −δHF; HF ≡ −FðM;SÞ: ðC20Þ
In particular, taking

FðM;SÞ≡ ξ

2
M2 þ χM · S; ξ; χ ∈ R; ðC21Þ

we obtain the Hamiltonian transformation

δFh ¼ Mχh; δFX ¼ Mξþ ðSþ ½M;X�Þχ;
δFM ¼ 0; δFS ¼ 0; ðC22Þ
corresponding to (C16) with

z ¼ ∂F
∂M ¼ Mξþ Sχ; β ¼ ∂F

∂S ¼ Mχ: ðC23Þ

This may be integrated to

h ↦ eMχh; X ↦ eMχðMξþ Sχ þXÞe−Mχ ;

M ↦ M; S ↦ S: ðC24Þ
The Hamiltonians M2 and M · S represent the Casimir
invariants of the algebra dg.

APPENDIX D: A QUICKER DERIVATION OF
THE SYMPLECTIC POTENTIAL

Using the nonperiodic variables

uv ≡ eMvϕvhv; wv ≡ eMvϕvðyv þ SvϕvÞe−Mvϕv ; ðD1Þ
which were defined in Sec. VA, we may perform the
calculation of Sec. IV in a quicker and clearer way. The
symplectic potential is given as before by

Θ ¼
X
c

Θc þ
X
v

Θv� ; Θc ≡ −
Z
c̃
E · δA;

Θv� ≡ −
Z
v�
E · δA: ðD2Þ

On the cells, the calculation is the same, and we obtain as
before

Θc ¼
Z
∂c̃
dyc · Δhc: ðD3Þ

On the disks, we have

Ajv� ¼ u−1v duv; Ejv� ¼ u−1v dwvuv;

δAjv� ¼ u−1v ðdΔuvÞuv; ðD4Þ
and thus

Θv� ¼ −
Z
v�
E · δA¼ −

Z
v�
dwv · dΔuv ¼

Z
v�
dðdwv ·ΔuvÞ

¼
Z
∂v�

dwv ·Δuv: ðD5Þ
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The boundary of the punctured disk decomposes into
∂v� ¼ ∂0v� ∪ ∂Rv� ∪ Cv. Since our variables are now
nonperiodic, we must also integrate on the cut Cv, which
we did not need to do before. Thus

Θv� ≡ Θ∂Rv� − Θ∂0v� − ΘCv
; ðD6Þ

where

Θ∂Rv� ≡
Z
∂Rv�

dwv · Δuv; Θ∂0v� ≡
Z
∂0v�

dwv · Δuv;

ΘCv
≡

Z
∂0v�

dwv · Δuv: ðD7Þ

Now, we have

dwv ¼ eMvϕvðdyv þ ðSv þ ½Mv; yv�ÞdϕvÞe−Mvϕv ; ðD8Þ

and from (A2) we find

Δuv¼ΔðeMvϕvhvÞ¼eMvϕvðδMvϕvþΔhvÞe−Mvϕv : ðD9Þ

Thus we may write the integrand as

dwv · Δuv ¼ dyv · ðδMvϕv þ ΔhvÞ
þ ðSv · δMvϕv þ ðSv þ ½Mv; yv�Þ · ΔhvÞdϕv:

ðD10Þ

Integrating this over the inner boundary ∂0v� is easy, since
the integrand is evaluated at the vertex v, and yvðvÞ and
hvðvÞ are constant with respect to ϕv, by assumption. The
integral is from ϕv ¼ αv − 1=2 to ϕv ¼ αv þ 1=2, and we
immediately get

Θ∂0v� ¼ αvSv · δMv þ ðSv þ ½Mv; yvðvÞ�Þ · ΔðhvðvÞÞ:
ðD11Þ

On the cut Cv, we have contributions from both sides,
one at ϕv ¼ αv − 1=2 and another at ϕv ¼ αv þ 1=2, with
opposite orientation. Since dϕv ¼ 0 on the cut, only the
term dyv · ðδMvϕv þ ΔhvÞ contributes, and we get

ΘCv
¼

Z
R

r¼0

ðdyv · ðδMvϕv þ ΔhvÞ
���
ϕv¼αvþ1=2

− dyv · ðδMvϕv þ ΔhvÞ
���
ϕv¼αv−1=2

Þ

¼
Z

R

r¼0

dyv · δMv ¼ ðyvðv0Þ − yvðvÞÞ · δMv;

since yv has the value yvðv0Þ at r ¼ R on the cut and yvðvÞ
at r ¼ 0. The vertex symplectic potential is then obtained
by defining Θv ≡ −ðΘ∂0v� þ ΘCv

Þ:

Θv ¼ ðyvðvÞ − yvðv0Þ − αvSvÞ · δMv

− ðSv þ ½Mv; yvðvÞ�Þ · ΔðhvðvÞÞ: ðD12Þ
In this way, we have immediately obtained Θv right from
the beginning via the integration on the inner boundary and
the cut, without ever having to invoke the continuity
conditions or go through the trouble of collecting terms
from different arcs later on, as we did in the main text (see
Secs. IV C 2 and IV C 3).
To find the rest of the symplectic potential, we split it

into contributions from the edges and arcs:

Θ ¼
X
½cc0�

Θcc0 þ
X
ðvcÞ

Θvc þ
X
v

Θv; ðD13Þ

where

Θcc0 ≡
Z
½cc0�

ðdyc · Δhc − dyc0 · Δhc0 Þ;

Θvc ¼
Z
ðvcÞ

ðdwv · Δuv − dyc · ΔhcÞ: ðD14Þ

For the edges, we use the continuity conditions as we did in
Sec. IV C and get

Θcc0 ¼ Δhc0c ·
Z
½cc0�

dyc: ðD15Þ

For the arcs we may now use much simpler continuity
conditions formulated in terms of uv and wv,

hcðxÞ ¼ hcvuvðxÞ; ycðxÞ ¼ hcvðwvðxÞ − ycvÞhvc;
x ∈ ðvcÞ; ðD16Þ

and thus we may simplify Θvc in exactly the same way as
we did for Θcc0, and we immediately obtain

ΘðvcÞ ¼ Δhcv ·
Z
ðvcÞ

dwv: ðD17Þ

We have thus reproduced the result (145) without having to
go through the many steps we took in the main text.
However, the calculation in the main text is more explicit
and thus leaves less room for error; the fact that we have
obtained the same result in both calculations is a good
consistency check.
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