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We define the coarse-grained entropy of a “normal” surface σ, i.e., a surface that is neither trapped nor
antitrapped. Following Engelhardt and Wall, the entropy is defined in terms of the area of an auxiliary
extremal surface. This area is maximized over all auxiliary geometries that can be constructed in the interior
of σ, while holding fixed the spatial exterior (the outer wedge). We argue that the area is maximized
when the stress tensor in the auxiliary geometry vanishes, and we develop a formalism for computing it
under this assumption. The coarse-grained entropy can be interpreted as a quasilocal energy of σ. This
energy possesses desirable properties such as positivity and monotonicity, which derive directly from its
information-theoretic definition.
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I. INTRODUCTION

The idea of coarse graining—of integrating out micro-
scopic degrees of freedom from an effective description of
a system—is fundamental to thermodynamics. The link
between thermodynamics and geometry has been a crucial
observation in the quest to understand quantum gravity since
the discovery of Hawking radiation and the Bekenstein-
Hawking entropy [1–6]. The development of the holographic
principle [7–11] and the AdS=CFT correspondence [12–15]
has led to further insights into the geometric nature of
gravitational entropy, including the Ryu-Takayanagi (RT)
formula [16–18] and its extension by Hubeny, Rangamani,
and Takayanagi (HRT) [19–21], as well as various entropy
bounds [10,11,22–24]. Nonetheless, an association of a
calculable, coarse-grained entropic quantity with arbitrary
surfaces has proved elusive. In this paper, we make progress
towards this goal, defining and calculating a coarse-grained
holographic entropy for a large class of surfaces.
A recent proposal by Engelhardt and Wall (EW) [25]

clarifies the coarse graining associated with the entropy of a
black hole. If a black hole is formed from a pure state and
we assume unitary evolution, then the fine-grained entropy
vanishes. To associate an entropy to the area of the black

hole, some form of coarse graining is required. The EW
proposal applies not to the event horizon, but to any leaf σ
of a spacelike holographic screen. That is, σ is marginally
trapped (or antitrapped), and a locally spacelike hypersur-
face is foliated by a family of surfaces that includes σ
[26,27]. Such a leaf can be thought of as a black hole
boundary. Unlike the event horizon, its defining properties
can be established from local data near σ.
EW propose to coarse grain by holding fixed the exterior

geometry of σ but allowing an arbitrary geometry in the
interior. One can then maximize the fine-grained entropy of
this new spacetime to define an “outer entropy.” This can be
made precise in the case where the exterior is asymptotic to
anti–de Sitter spacetime. In this case the entropy is a von
Neumann entropy of the full quantum gravity theory, the
boundary conformal field theory. It can be determined to
leading order from the bulk geometry as the area of any
stationary surface of minimal area that is homologous to
the boundary. Remarkably, the EW prescription naturally
extends beyond the context of AdS=CFT: we can think of
the coarse-grained entropy of any marginally trapped
surface σ as the largest area of any minimal-area stationary
surface that can be constructed when we allow the interior
of σ to vary.
In this paper, we will exploit another natural generali-

zation of the EW proposal. One can vary the geometry and
search for stationary surfaces inside of any surface σ,
whether or not σ is marginally trapped. To have a good
notion of “inside,”wewould like σ to not be strictly trapped
or antitrapped, but it need not be marginally trapped. The
remaining possibility is simply that σ is normal, i.e., that
one of the orthogonal future-directed null congruences has
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everywhere positive expansion and the other one has
everywhere negative expansion. In this case, the inside
direction is the spacelike region on the negative-expansion
side (see Fig. 1). Nomura and Remmen (NR) [28] pre-
viously formulated this generalization to normal surfaces in
the case of spherically symmetric spacetimes, but in this
work we will consider general normal surfaces without
assuming spherical symmetry.
An example of a normal surface is a sphere in empty

Minkowski space. In fact, in this case the exterior region
would be empty and the Arnowitt-Deser-Misner (ADM)
mass [30] would vanish. Positive global mass [31,32] then
guarantees that the interior is vacuumMinkowski, and there
cannot be another geometry with a nonzero stationary
surface. Another simple example is a round sphere outside
of a Schwarzschild black hole. In this case the interior that
maximizes the coarse-grained entropy is the maximally
extended (“two-sided”) Schwarzschild solution of the same
mass. The relevant stationary surface is the bifurcation
surface of this solution.
From these examples, we can glean some key properties

of the generalized construction that we will explore in this
work. First, the coarse-grained entropy associated with a
normal surface will not be equal to its area, but will be
smaller. Physically, this makes sense, as a normal surface is
normal because gravity is weaker. It does not enclose as
much mass as a marginally trapped surface of the same
area. The largest black hole that can sit behind such a
surface cannot be as large as the surface itself.
Since our construction will apply to normal surfaces, it

includes the case of dynamical event horizons. That is, we
will be associating a coarse-grained entropy to the event
horizon, though this entropy will not equal the horizon
area. This observation allows our construction to evade the
no-go result of Ref. [33].

We will give an explicit geometric construction that
identifies the stationary surface. Our construction can be
thought of as finding the biggest two-sided black hole that
might sit inside σ, if only the exterior is held fixed. This
naturally leads to a quasilocal definition of energy asso-
ciated with a normal surface σ, as an appropriate monotonic
function of the area of the bifurcation surface of that
black hole.
In the context of asymptotically anti–de Sitter (AdS)

spacetimes, the generalized EW prescription is still a
genuine coarse graining, and we again expect this to
generalize to other spacetimes. We will argue, though
not prove, that our geometric construction succeeds in
finding the interior geometry with the largest possible
stationary surface, for a large class of surfaces σ. Then,
as we consider a sequence σðrÞ of nested normal surfaces in
the same geometry, the associated areasmust be monotonic,
simply because we hold less exterior data fixed as we move
out to larger surfaces. The coarse-grained entropy, and
hence the area, cannot decrease under such an operation.
This establishes an important property that one would like
a quasilocal energy to obey. Interestingly, the property
does not hold for any obvious geometric reason at the level
of the details of the algorithm, but is established here based
on an information-theoretic argument.
This paper is organized as follows. In Sec. II, we review

the motivation and definition of the outer entropy as a
useful coarse-grained holographic quantity. After discus-
sing the characteristic initial data formalism, in Sec. III we
give our procedure for constructing a HRT surface interior
to a normal codimension-two surface. We conjecture that
this algorithm is optimal and therefore computes the outer
entropy, and we present evidence for this conjecture in
Sec. IV. In Sec. V, we use the outer entropy to define a
quasilocal energy quantity and explore its relationship with
other definitions of energy in general relativity. Finally, in
Sec. VI, we consider the example of a codimension-two
surface near which the geometry is locally that of the
Bañados-Teitelboim-Zanelli (BTZ) metric [34], which will
provide an illustrative example of our algorithm for a
spacetime with rotation that nonetheless can be treated
analytically. We conclude with a discussion of future
directions in Sec. VII.

II. OUTER ENTROPY

Before presenting our construction of the maximal HRT
surface, let us first carefully define our coarse-grained
entropy and identify our assumptions. Consider a quantum
state defined on the disjoint union of a collection of closed
spacelike manifolds having a classical bulk holographic
dual spacetime obeying the Einstein equations. The von
Neumann entropy S½ρ� ¼ −trρ log ρ associated with the
reduced density matrix ρ of some region Γ is then given for
the static case by the area of the RT surface and for general
time-dependent spacetimes by that of the HRT surface,

FIG. 1. Penrose diagram illustrating a normal codimension-two
surface σ, with θk > 0 and θl < 0, that splits a Cauchy surface
into an inner (Σþ) and outer (Σ−) portion. The light sheets NkðσÞ
(blue) and NlðσÞ (red) defined in Eq. (4) split the spacetime into
four pieces [29]: the past and future I�ðσÞ, the inner wedge
IWðσÞ ¼ D

∘ ðΣþðσÞÞ, and the outer wedge OWðσÞ ¼ D
∘ ðΣ−ðσÞÞ.
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S½ρ� ¼ A½HRT surface�
4Gℏ

: ð1Þ

The RT surface is simply the minimal-area surface on the
relevant bulk spatial slice anchored to the boundary of Γ,
while the HRT surface can be found using the maximin
prescription of Ref. [20]. If the boundary state is pure, the
entropy in Eq. (1) characterizes the entanglement between
the subregion Γ and the rest of the boundary state. A case of
particular interest is the entropy associated with an entire
boundary manifold for a spacetime containing a wormhole.
In this case, the HRT surface XHRT is homologous to the
entire boundary region and has area characterizing the
width of the wormhole throat. Specifically, XHRT is given
by the closed, boundaryless, codimension-two surface for
which the orthogonal null congruences have vanishing
expansion and that has the area equal to the minimal cross
section of some Cauchy slice.
A deeper understanding of coarse graining and renorm-

alization group flow is crucial to furthering our knowledge
of holography, both within the AdS=CFT correspondence
[35–39] and in the quest to generalize it to other space-
times [11,28,40–43]. A quantity of particular interest is
the outer entropy [25,28] associated with a codimension-
two surface σ,

SðouterÞ½σ� ¼ max
ρ̃

ðS½ρ̃�∶OWðσÞfixedÞ; ð2Þ

where OWðσÞ is the “outer wedge,” the subset of the
spacetime in the interior of the domain of dependence of
the partial Cauchy surface connecting σ with the boun-
dary. The maximization in Eq. (2) is computed over
conformal field theory (CFT) states ρ̃ defined on the
outer boundary of OWðσÞ for which the geometry in
OWðσÞ is fixed. In the case of a pure state defined on two
disconnected boundaries, the outer entropy of one of the
boundaries computes its maximum entanglement entropy
with the other boundary, subject to the constraint that the
relevant outer wedge have fixed geometry.
In geometric terms, the outer entropy is given by (1=4Gℏ

times) the area of the largest HRT surface one can put
inside1 the surface σ, given its fixed exterior geometry. The
outer entropy is a coarse-grained quantity in holography;
we have in effect coarse grained over all information about
the spacetime except for the geometry on OWðσÞ. Note that
we do not need the full apparatus of AdS=CFT for this
coarse-grained interpretation of the outer entropy. We only
need the assumptions of Refs. [25,28] that the HRT surface

constitutes a fine-grained (i.e., von Neumann) entropy
associated with the reduced density matrix in the relevant
region on the boundary.
EWargued that if σ is a marginally trapped or antitrapped

surface, then SðouterÞ½σ� ¼ A½σ�=4Gℏ. Given the area law for
holographic screens [26,27], this implies a thermodynamic
second law associated with the evolution of the entropy
along the holographic screen. NR [28] generalized the
concept of a holographic screen to a particular class of
surfaces that are not marginally trapped or antitrapped,
including the event horizon. It was shown there that these
generalized holographic screens also satisfy an area law
and, for spherically symmetric surfaces, a second law for
the outer entropy (despite the fact that SðouterÞ½σ� ≠
A½σ�=4Gℏ for surfaces that are not marginally trapped or
antitrapped). For a normal surface, one can show [28,44]
using the Raychaudhuri equation that the outer entropy is
upper bounded by the area

SðouterÞ½σ� < A½σ�
4Gℏ

: ð3Þ

In the following sections, we will compute the outer
entropy for a normal surface σ, subject to certain assump-
tions, providing an algorithm for computing this coarse-
grained holographic quantity in generality. Unlike in EW
[25], σ need not be marginally trapped or antitrapped, and
unlike in NR [28], we will not assume spherical symmetry.
Later, we will argue that the outer entropy can be viewed as
a compelling quasilocal energy in general relativity.

III. CONSTRUCTION OF THE SPACETIME

Having noted the general upper bound for SðouterÞ½σ�, we
will seek a lower bound on the outer entropy by explicitly
constructing a spacetime consistent with OWðσÞ and
computing the area of the HRT surface XHRT in this
spacetime. Later, we will argue that the choices we make
in this construction maximize A½XHRT�, so that this “lower
bound” actually equals SðouterÞ½σ� itself. The general
approach to the construction, as well as our notation, will
closely follow that of NR [28]. However, because of
important differences that occur in the nonspherical case
as well as for self-consistency, we will review the formal-
ism here before presenting the details of the construction.

A. Characteristic initial data formalism

Let us first review some notation and geometrical
formalism. Throughout, any spacetime ðM; gabÞ that we
consider will be taken to be globally hyperbolic, supple-
mented with appropriate boundary conditions for space-
times with boundary [45]. Given our codimension-two,
compact, boundaryless, acausal surface σ, there are two
future-directed orthogonal null congruences with tangent
vectors that we label k and l. We can arbitrarily label k to

1One can show that, if it is possible to construct a HRT surface
in a geometry while keeping OWðσÞ fixed, with σ being a normal
or marginally trapped surface homologous to the boundary and
for which a partial Cauchy surface exists connecting σ with the
boundary such that any slice subtending σ has greater area than σ,
then the HRT surface is in (the closure of) the domain of
dependence of the interior of σ [28].
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be the “outgoing” congruence and l the “ingoing” con-
gruence, and for any Cauchy surface Σ split by σ into two
pieces Σ� with σ ¼ _Σþ ¼ _Σ−, we take Σ− (the exterior) to
lie in the direction of k and Σþ (the interior) to lie in the
direction of l.2 In this notation, the outer wedge is

OWðσÞ ¼ D
∘ ðΣ−ðσÞÞ. We define the light sheets originating

from σ as in Refs. [27,28],

NþkðσÞ ¼ _IþðΣþÞ − Σþ ¼ _DþðΣ−Þ − I−ðDþðΣ−ÞÞ
N−kðσÞ ¼ _I−ðΣ−Þ − Σ− ¼ _D−ðΣþÞ − IþðD−ðΣþÞÞ
NþlðσÞ ¼ _IþðΣ−Þ − Σ− ¼ _DþðΣþÞ − I−ðDþðΣþÞÞ
N−lðσÞ ¼ _I−ðΣþÞ − Σþ ¼ _D−ðΣ−Þ − IþðD−ðΣ−ÞÞ ð4Þ

and define NkðσÞ ¼ NþkðσÞ ∪ N−kðσÞ and similarly
NlðσÞ ¼ NþlðσÞ ∪ N−lðσÞ. See Fig. 1 for a summary of
the definitions for how σ splits the spacetime. The vector k
is parallel transported along NkðσÞ and, similarly, l is
parallel transported alongNlðσÞ. AlongNkðσÞ, l is parallel
transported but continually rescaled such that k · l ¼ −1,
and k is similarly defined on Nl. Having made these
choices, we can define null vector fields everywhere in M
such that k and l are each parallel transported along
themselves and k · l ¼ −1.
The induced metric on σ is

qab ¼ gab þ 2kðalbÞ; ð5Þ

where throughout we use the normalized convention for
(anti-)symmetrization, TðabÞ ¼ 1

2
ðTab þ TbaÞ. Using the

induced metric as a projector (where we raise indices on
qab using the full metric gab), we can define the null
extrinsic curvature in the standard manner [46,47],

ðBkÞab ¼ qacqbd∇dkc

ðBlÞab ¼ qacqbd∇dlc; ð6Þ

from which we can define the null expansions

θk ¼ qabðBkÞab
θl ¼ qabðBlÞab ð7Þ

and the shears

ðςkÞab ¼ ðBkÞðabÞ −
1

D − 2
θkqab

ðςlÞab ¼ ðBlÞðabÞ −
1

D − 2
θlqab; ð8Þ

where D is the dimension of the spacetime. Since we are
considering hypersurface orthogonal geodesics, Bk and Bl
are symmetric tensors. We choose σ to be a normal surface,
i.e., one on which θk > 0 and θl < 0. For spacetimes with
boundary, we will further require that σ be chosen to be
homologous to the boundary and such that there exists a
Cauchy surface Σ for which every slice of Σ− subtending σ
has area larger than that of σ.
Given a Cauchy surface formed by a collection of null

surfaces, the characteristic initial data formalism [48–54]
guarantees that one can uniquely specify a spacetime from
data on the Cauchy surface alone, provided that the data
satisfy a set of constraint equations. In particular, for null
surfaces formed byNkðσÞ for some surface σ, the constraint
equations are [55–60]

∇kθk ¼ −
1

D − 2
θ2k − ς2k − 8πGTkk

qabLkωb ¼ −θkωa þ
D − 3

D − 2
Daθk − ðD · ςkÞa þ 8πGTak

∇kθl ¼ −
1

2
R − θkθl þ ω2 þD · ωþ 8πGTkl þ Λ:

ð9Þ

For NlðσÞ, the constraint equations are the same as in
Eq. (9), but with k ↔ l and ω → −ω. Here, ωa is the twist
one-form gauge field defined as [47,57]

ωa ¼
1

2
qabLklb ¼ −lbqac∇ckb; ð10Þ

R is the intrinsic Ricci curvature on slices of the con-
gruence at constant affine parameter, Da ¼ qab∇b is the
covariant derivative along σ, Lk denotes the Lie derivative
along k, and k and l as index subscripts denote indices
contracted into ka and la, respectively. The expansion and
twist are required to be continuous across junctions, but
the shears are not [44,46,61,62]. In Eq. (9), the first line is
the Raychaudhuri equation, the second is the Damour-
Navier-Stokes (DNS) equation, and the third is the cross-
focusing equation, where we have substituted in the
Einstein equations,

Rab −
1

2
Rgab þ Λgab ¼ 8πGTab: ð11Þ

B. Building a HRT surface

Let us use the formalism discussed in Sec. III A to
construct a spacetime that contains both OWðσÞ and a HRT

2We choose this notation for consistency with Refs. [27,28].
Throughout, we use the standard notation of I� for the chrono-
logical future and past, D� for the future and past domains of

dependence, DðSÞ ¼ DþðSÞ ∪ D−ðSÞ, and _S, S
∘
, and S̄ for the

boundary, interior, and closure of a set S, respectively. Our
notation for arguments is as follows: square brackets for a
quantity defined as a functional of some subset of points in
M (e.g., A½σ�), round brackets for arguments on objects that are
themselves subsets of M (e.g., DðSÞ), and round brackets for
scalar arguments in functions.
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surface. We will want to calculate the area of this HRT
surface. For reasons that will become clear later, we will
choose initial data in the interior of σ, specifically on
N−kðσÞ ∪ DðΣþÞ, to satisfy3

Tkk ¼ Tll ¼ Tkl ¼ ςk ¼ ςl ¼ 0: ð12Þ

The constraint equations (9) along NkðσÞ then become4

∂kθk ¼ −
1

D − 2
θ2k

∂kωa ¼ −θkωa þ
D − 3

D − 2
Daθk

∂kθl ¼ −
1

2
R − θkθl þ ω2 þD · ωþ Λ: ð13Þ

Let us define an affine parameter ν on NkðσÞ, with ν ¼ 0
corresponding to σ and normalized such that ka ¼ ðd=dνÞa.
We will write the coordinates on σ as xi. On constant-ν
slices YðνÞ of NkðσÞ, we can define coordinates xi via the
exponential map from σ. Namely, the xi coordinates of a
point y ∈ XðνÞ are defined to be the coordinates of the
point z ∈ σ for which the orthogonal null geodesic in the k
direction originating from z passes through y.5

We wish to construct a spacetime that has an extremal
surface XHRT, for which both of the null congruences
orthogonal to XHRT vanish. First, we use the constraint
equations to locate a surface Y0 along N−kðσÞ on which θl
vanishes. Note that, a priori, this condition does not make
Y0 a marginally antitrapped surface: the ingoing null
congruence orthogonal to Y0 has tangent vector l̃, which

is not in general the same as l, since the affine parameter
ν0ðxiÞ defining Y0 can vary as a function of xi, while l is
orthogonal to constant-ν slices of NkðσÞ. There should,
however, be some marginally antitrapped surface YMA near
Y0, on which θl̃ ¼ 0. The relation between θl½Y0� and
θl̃½Y0� can be written as a second-order differential equa-
tion for ν0ðxi) (see, e.g., Ref. [44] for how this works in the
special case of a light sheet with θk ¼ 0 everywhere). One
could then try to locate the surface YMA by solving this
equation and optimize its area.
There is, however, a different way to address the

problem. Since the computation of the outer entropy can
be performed under any gauge condition, we may choose a
convenient gauge. Specifically, we can require that Y0 be a
surface of constant affine parameter. The gauge freedom
allowing us to impose this condition is the xi-dependent
rescaling of ka on σ (and concomitant inverse rescaling of
la so as to keep k · l ¼ −1). With this condition, l ¼ l̃ on
Y0, so that Y0 is indeed a surface on which θl ¼ θl̃ ¼ 0;
namely, Y0 ¼ YMA in this gauge. Of course, we do not
know a priori the proper gauge condition to guarantee this.
However, we can still find Y0 under an arbitrary gauge
choice, optimize the area of Y0, and at the end select
the gauge condition that makes ν0 constant. Because of the
optimization involved, this is equivalent to finding the
optimal YMA using a prefixed gauge. This is the approach
we will follow in the remainder of this section.
Once YMA is found, we can follow a null congruence

toward the future along NþlðYMAÞ. Recalling our choices
in Eq. (12), the constraint equations along NþlðYMAÞ are

∂lθl ¼ −
1

D − 2
θ2l

∂lωa ¼ −θlωa −
D − 3

D − 2
Daθl

∂lθk ¼ −
1

2
R − θkθl þ ω2 −D · ωþ Λ: ð14Þ

On NþlðYMAÞ, we choose to hold R, ωa, and θl fixed
along l (the last of which vanishes). The Raychaudhuri and
DNS equations in Eq. (14) are then trivially satisfied. Then,
provided ∂lθk½YMA� < 0, we eventually reach a surface X0

on which θl ¼ θk ¼ 0. Define Σ1 ¼ N−kðσÞ ∩ NþkðYMAÞ.
Moving along Σ1 from YMA to σ, the area of cross sections
strictly increases (since θk > 0). Thus, recalling that σ is by
definition a surface of minimal cross section on Σ−, we find
that YMA is a surface of minimal cross section on Σ1 ∪ Σ−,
so YMA satisfies the conditions of a “minimar” surface as
defined in Ref. [44].
Even though θk and θl vanish there, we cannot conclude

that X0 is a HRT surface. Just as in the case of Y0, the
outgoing null geodesic congruence from X0 has some
tangent k̃, which may differ from k, so θk̃ does not
necessarily equal θk. However, using the time reverse of
the construction in Ref. [44], the fact that Y0 is a minimar

3As discussed in Ref. [28], we can set Tkk and Tkl to zero
along N−kðσÞ consistent with our energy conditions and energy-
momentum conservation via a limiting procedure, and a similar
argument applies for Tll. Moreover, we can set ςk and ςl to
zero discontinuously via a shock wave in the Weyl tensor [46],
which has no effect on Tab. As we will see in Sec. IV, a
consequence of the Λ-subtracted dominant energy condition is
that requiring Tkk ¼ Tkl ¼ Tll ¼ 0 implies that Tab ¼ 0 in all
components; see footnote 10.

4As shown in Ref. [58], qab∇kωb ¼ qabLkωb − ðBkÞabωb. By
definition, ∇kωa ¼ ∂kωa − Γb

akωb, where Γa
bc are the Christoffel

symbols. Since we are contracting Γb
ak with ωb and ultimately

projecting the lower index using q, we are interested in Γb
ak where

both a and b point along σ. Since gak ¼ 0 identically for a
pointing along σ (since ka is orthogonal to σ) and since gkk ¼ 0
and gkl ¼ −1, we have Γb

ak ¼ 1
2
gbc∂kgac. The partial k derivative

of the transverse components of the metric is dictated simply by
the expansion θk, so for a and b pointing along σ, ∂kgab ¼
2

D−2 θkgab and hence Γb
ak ¼ 1

D−2 θkδ
b
a. Thus, in our coordinate

system, qabLkωb ¼ qab∂kωb þ ðςk · ωÞa and similarly for
qabLlωb. Since every term on the right-hand side of the DNS
equation in Eq. (13) points along σ, we can drop the projector qab
from the left-hand side.

5By the theorem of Ref. [29], which characterizes NkðσÞ, this
map is bijective unless y is at a caustic or nonlocal intersection of
null geodesics.
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surface guarantees that, along NþlðY0Þ, there is some
surface X for which θk̃ vanishes and for which
A½X� ¼ A½X0� ¼ A½YMA�. (The details of how this con-
struction works involve inverting the stability operator
relating θk and θk̃.) To show that X is indeed a HRT
surface, it remains to exhibit a partial Cauchy surface
homologous to the boundary on which X is a minimal cross
section. Such a surface is Σ−

0 ¼ Σ− ∪ Σ1 ∪ Σ2, where Σ2 is
the portion of NþlðYMAÞ between YMA and X. It follows
that X is a bona fide HRT surface, with area equal to A½X0�.6
We will denote this fact by writing X as XHRT henceforth.
See Fig. 2 for an illustration of our construction.
To find the expression for A½XHRT�, we still need

to construct the appropriate surface Y0 by solving the
constraint equations on N−kðσÞ. We now turn to this
problem.

C. Solution to the constraint equations

Let us solve the constraint equations (13), given our
choice (12) of initial data. By inverting the Raychaudhuri

equation, we can solve θkðνÞ at xi as a function of θk½σ� at
the same xi,

θkðνÞ ¼
�

1

θk½σ�
þ ν

D − 2

�
−1
: ð15Þ

We will leave the xi arguments implicit everywhere. We
find it convenient to introduce a new variable ξ, a function
of ν and xi, to parametrize distance alongNkðσÞ, defined by

ξðνÞ ¼ θkðνÞ
θk½σ�

¼
�
1þ νθk½σ�

D − 2

�
−1
: ð16Þ

We note that ξ ¼ 1 corresponds to σ and ξ > 1 corresponds
to slices of N−kðσÞ. In terms of ξ, the derivative operator is

∂k ¼
∂ξ
∂ν ∂ξ ¼

∂kθk
θk½σ�

∂ξ ¼ −
1

D − 2
ξ2θk½σ�∂ξ: ð17Þ

We can write θk in the Raychaudhuri equation in Eq. (13)
as ξθk½σ� and, since

Diξ ¼ −
ν

D−2

½1þ νθk½σ�
D−2 �2

Diθk½σ� ¼ ðξ2 − ξÞDi log θk½σ�; ð18Þ

we have the nice expression

DiθkðξÞ ¼ ξDiθk½σ� þ θk½σ�Diξ ¼ ξ2Diθk½σ�: ð19Þ

Hence, the DNS equation in Eq. (13) becomes

ξ∂ξωi ¼ ðD − 2Þωi − ðD − 3ÞξDi log θk½σ�; ð20Þ

which has solution

ωiðξÞ ¼ ωi½σ�ξD−2 þ ðξ − ξD−2ÞDi log θk½σ�: ð21Þ

By Eq. (15) we have satisfied the Raychaudhuri equation
in Eq. (13), and by Eq. (21) we have satisfied the DNS
equation. It remains to compute the terms in the cross-
focusing equation to solve for θl as a function of ξ. Let us
consider each term in turn.
Since ∂kgij ¼ 2

D−2 θkgij, we have ∂k logR ¼ − 2
D−2 θk, or

equivalently, ξ∂ξ logR ¼ 2, so

RðξÞ ¼ ξ2R½σ�: ð22Þ

Similarly, ∂kgij ¼ − 2
D−2 θkg

ij as shown in footnote 4, so
ξ∂ξgij ¼ 2gij, which has solution gijðξÞ ¼ ξ2gij½σ�. (Here, i
and j are transverse indices, so we could write qij every-
where for gij in this statement.) Since ωiðξÞ ¼ gijðξÞωjðξÞ,
we therefore obtain

FIG. 2. Portion of a Penrose diagram illustrating our construc-
tion of a HRT surface realizing the outer entropy. Holding the
outer wedge (green) fixed, we choose data on N−kðσÞ (blue line)
as described in text until we reach a surface Y0 (blue dot) on
which θl ¼ 0. We choose a gauge such that Y0 is marginally
antitrapped, Y0 ¼ YMA. Again choosing data as described in
Sec. III B, we follow the light sheet NþlðY0Þ (red line) until we
reach a surface X0 on which θk ¼ 0, provided ∂lθk < 0 on YMA,
which we assume. As discussed in the text, the existence of X0

guarantees the existence of a HRT surface XHRT (white dot) on
NþkðY0Þ. The entire spacetime is completed (gray shading) by
CPT reflecting the initial value data on Σ− ∪ Σ1 ∪ Σ2.

6Let Σ0, formed by Σ−
0 and its CPT conjugate, be the Cauchy

surface for a spacetime that one constructs using the characteristic
initial data formalism. For any extremal surface X̂ in this
spacetime, with orthogonal null congruences with tangents k̂
and l̂, one would find by the Raychaudhuri equation and the null
energy condition (NEC) that slices of Nl̂ðX̂Þ have area at most
A½X̂�. Hence, A½X̂� ≥ A½X�.
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ω2ðξÞ ¼ ξ2gij½σ�ωiðξÞωjðξÞ
¼ ξ2ðD−1Þω2½σ� þ 2ðξ3 − ξDÞξD−2ωi½σ�Di log θk½σ�
þ ðξ2 − ξD−1Þ2Di log θk½σ�Di log θk½σ�: ð23Þ

We can similarly compute D · ω as a function of ξ.7

Recalling the expression in Eq. (18) for Diξ and the fact
that qabðξÞ ¼ ξ2qab½σ�, we have

D · ωðξÞ ¼ ðξ2 − ξÞ½ξ2 − ðD − 2ÞξD−1�ðDi log θk½σ�Þ2
þ ðD − 2ÞðξDþ1 − ξDÞωi½σ�Di log θk½σ�
þ ðξ3 − ξDÞ□ log θk½σ� þ ξDD · ω½σ�; ð24Þ

where □ ¼ D ·D.

Let us define qðν; xiÞ such that

θl ¼ θl½σ�
q
ξ
: ð25Þ

Then

∂kθl ¼ −
1

D − 2
ξ2θk½σ�∂ξθl

¼ −
1

D − 2
θk½σ�θl½σ�ðξ∂ξq − qÞ: ð26Þ

The right-hand side of the cross-focusing equation becomes

−
1

2
R − θkθl þ ω2 þD · ωþ Λ

¼ −
1

2
ξ2R½σ� − θk½σ�θl½σ�qþ Λþ ½ξ2D−2 −DξDþ1 þ ðD − 2ÞξD þ 2ξ4 − ξ3�ðDi log θk½σ�Þ2

− ½2ξ2D−2 −DξDþ1 þ ðD − 2ÞξD�ωi½σ�Di log θk½σ� þ ðξ3 − ξDÞ□ log θk½σ� þ ξDD · ω½σ� þ ξ2D−2ω2½σ�; ð27Þ

so we have

−
1

D − 2
ξ∂ξqþD − 1

D − 2
q ¼ −

1

2
ξ2

R½σ�
θk½σ�θl½σ�

þ Λ
θk½σ�θl½σ�

þ ½ξ2D−2 −DξDþ1 þ ðD − 2ÞξD þ 2ξ4 − ξ3� ðDi log θk½σ�Þ2
θk½σ�θl½σ�

− ½2ξ2D−2 −DξDþ1 þ ðD − 2ÞξD�ω
i½σ�Di log θk½σ�
θk½σ�θl½σ�

þ ðξ3 − ξDÞ□ log θk½σ�
θk½σ�θl½σ�

þ ξD
D · ω½σ�
θk½σ�θl½σ�

þ ξ2D−2 ω2½σ�
θk½σ�θl½σ�

: ð28Þ

We want to choose a gauge in which the zero ξ0ðxiÞ of q
[for q solving Eq. (28)] occurs at a uniform affine

parameter, ν ¼ ν0 for all xi [i.e., 1=ξ0ðxiÞ ¼ 1þ ν0θk½σ�
D−2 ,

where the xi dependence in ξ0 tracks the xi dependence in
θk½σ�], thus making Y0 a marginally antitrapped surface,
Y0 ¼ YMA. That is, computing the zero ξ0ðxiÞ along each
null generator, indexed by xi, we need

Diξ0 ¼ ðξ20 − ξ0ÞDi log θk½σ� ð29Þ
for all xi, as in Eq. (18). Let us first solve for q in Eq. (28)
without making any a priori choice of the normalization of
k and then subsequently use gauge freedom to guarantee
Eq. (29) so that ν0 is independent of xi. Let us define the

right-hand side of Eq. (28) to be a function fðξ; xiÞ, where
the xi dependence enters only through the dependence of
θk½σ�, θl½σ�,R½σ�, and ωa½σ� on their transverse position on
σ. The differential equation for q can be written as

f ¼ −
1

D − 2
ξD∂ξ

�
q

ξD−1

�
; ð30Þ

which has solution

qðξÞ ¼ −ðD − 2ÞξD−1
Z

dξ
f
ξD

; ð31Þ

where the integration constant is set by requiring q ¼ 1
at ξ ¼ 1.
Explicitly, defining ψ i½σ� ¼ ωi½σ� −Di log θk½σ�, we

have

qðξÞ ¼ ð1 − λ − ρ − ϵ1 − ϵ2 − ϵ3 − ϵ4 − ϵ5ÞξD−1

þ λþ ρξ2 þ ϵ1ξ
3 þ ϵ2ξ

4 þ ϵ3ξ
D

þ ϵ4ξ
Dþ1 þ ϵ5ξ

2D−2; ð32Þ

7For a one-form va pointing along σ, ∇avb ¼ ∂avb − Γc
bavc,

so qab∇avb contains only the transverse Christoffel symbols Γc
ab,

where a, b, c point along σ. But Γc
abðνÞ ¼ Γc

ab½σ� since gki ¼
gli ¼ gki ¼ gli ¼ 0 for transverse index i. Hence, ð∇avbÞðνÞ is
simply ∇aðvbðνÞÞ and so D · v ¼ qab∇avb changes only as a
result of the ν dependence of va.
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where

λ ¼ D − 2

D − 1

Λ
θk½σ�θl½σ�

ρ ¼ −
1

2

D − 2

D − 3

R½σ�
θk½σ�θl½σ�

ϵ1 ¼
D − 2

D − 4

□ log θk½σ� − ðDi log θk½σ�Þ2
θk½σ�θl½σ�

ϵ2 ¼ 2
D − 2

D − 5

ðDi log θk½σ�Þ2
θk½σ�θl½σ�

ϵ3 ¼ −ðD − 2ÞD · ψ ½σ� − ðD − 2Þψ i½σ�Di log θk½σ�
θk½σ�θl½σ�

ϵ4 ¼ −
DðD − 2Þ

2

ψ i½σ�Di log θk½σ�
θk½σ�θl½σ�

ϵ5 ¼ −
D − 2

D − 1

ψ2½σ�
θk½σ�θl½σ�

: ð33Þ

Note that ϵ1;2;3;4;5 vanish for spherically symmetric geom-
etries in an appropriate gauge, while ϵ3;4;5 vanish if
ψ i½σ� ¼ 0. In Eq. (33), we have taken D ≥ 6. For the
special cases ofD ¼ 3, 4, 5, we can derive the analogues of
Eqs. (32) and (33), which we now compute.

1. D= 3

For D ¼ 3, R vanishes, and the analogue of the right-
hand side of Eq. (28) is

fðξ; xiÞ ¼ Λ
θk½σ�θl½σ�

þ ξ3
D · ω½σ� − ωi½σ�Di log θk½σ�

θk½σ�θl½σ�

þ ξ4
ωi½σ�Di log θk½σ� þ ω2½σ�

θk½σ�θl½σ�
; ð34Þ

so

qðξÞ ¼ ð1 − λ − χ − τÞξ2 þ λþ χξ3 þ τξ4; ð35Þ

where

λ ¼ Λ
2θk½σ�θl½σ�

χ ¼ −
D · ω½σ� − ωi½σ�Di log θk½σ�

θk½σ�θl½σ�

τ ¼ −
ωi½σ�Di log θk½σ� þ ω2½σ�

2θk½σ�θl½σ�
: ð36Þ

2. D= 4

For D ¼ 4, the analogue of the right-hand side of
Eq. (28) is

fðξ; xiÞ ¼ −
1

2
ξ2

R½σ�
θk½σ�θl½σ�

þ Λ
θk½σ�θl½σ�

þ ðξ6 − 4ξ5 þ 4ξ4 − ξ3Þ ðDi log θk½σ�Þ2
θk½σ�θl½σ�

− 2ðξ6 − 2ξ5 þ ξ4Þω
i½σ�Di log θk½σ�
θk½σ�θl½σ�

þ ðξ3 − ξ4Þ□ log θk½σ�
θk½σ�θl½σ�

þ ξ4
D · ω½σ�
θk½σ�θl½σ�

þ ξ6
ω2½σ�

θk½σ�θl½σ�
; ð37Þ

so

qðξÞ ¼ ð1 − λ − ρ − ϵ23 − ϵ4 − ϵ5Þξ3 þ λþ ρξ2

þ ϕ1ξ
3 log ξþ ϵ23ξ

4 þ ϵ4ξ
5 þ ϵ5ξ

6; ð38Þ

where

λ ¼ 2Λ
3θk½σ�θl½σ�

ρ ¼ −
R½σ�

θk½σ�θl½σ�

ϕ1 ¼ −2
□ log θk½σ� − ðDi log θk½σ�Þ2

θk½σ�θl½σ�

ϵ23 ¼ −2
4ðDi log θk½σ�Þ2 þD · ψ ½σ� − 2ωi½σ�Di log θk½σ�

θk½σ�θl½σ�

ϵ4 ¼ −
4ψ i½σ�Di log θk½σ�

θk½σ�θl½σ�

ϵ5 ¼ −
2ψ2½σ�

3θk½σ�θl½σ�
: ð39Þ

Note that ϕ1 ¼ −limD→4ðD − 4Þϵ1, where ϵ1 is defined in
Eq. (33), and that ϵ23 ¼ ϵ2 þ ϵ3 evaluated at D ¼ 4.

3. D= 5

Finally, let us consider the special case of D ¼ 5. The
analogue of the right-hand side of Eq. (28) is

fðξ; xiÞ ¼ −
1

2
ξ2

R½σ�
θk½σ�θl½σ�

þ Λ
θk½σ�θl½σ�

þ ðξ8 − 5ξ6 þ 3ξ5 þ 2ξ4 − ξ3Þ ðDi log θk½σ�Þ2
θk½σ�θl½σ�

− ð2ξ8 − 5ξ6 þ 3ξ5Þω
i½σ�Di log θk½σ�
θk½σ�θl½σ�

þ ðξ3 − ξ5Þ□ log θk½σ�
θk½σ�θl½σ�

þ ξ5
D · ω½σ�
θk½σ�θl½σ�

þ ξ8
ω2½σ�

θk½σ�θl½σ�
; ð40Þ
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so

qðξÞ ¼ ð1 − λ − ρ − ϵ1 − ϵ3 − ϵ4 − ϵ5Þξ4 þ λþ ρξ2

þ ϵ1ξ
3 þ ϕ2ξ

4 log ξþ ϵ3ξ
5 þ ϵ4ξ

6 þ ϵ5ξ
8; ð41Þ

where

λ ¼ 3Λ
4θk½σ�θl½σ�

ρ ¼ −
3R½σ�

4θk½σ�θl½σ�

ϵ1 ¼ 3
□ log θk½σ� − ðDi log θk½σ�Þ2

θk½σ�θl½σ�

ϕ2 ¼ −6
ðDi log θk½σ�Þ2
θk½σ�θl½σ�

ϵ3 ¼ −3
D · ψ ½σ� − 3ψ i½σ�Di log θk½σ�

θk½σ�θl½σ�

ϵ4 ¼ −
15ψ i½σ�Di log θk½σ�

2θk½σ�θl½σ�

ϵ5 ¼ −
3ψ2½σ�

4θk½σ�θl½σ�
: ð42Þ

Note that ϕ2 ¼ −limD→5ðD − 5Þϵ2, where ϵ2 is given
in Eq. (33).

D. Gauge fixing

The surface Y0 occurs at the first zero ξ0 of q. To require
that the affine parameter ν ¼ ν0 at which this zero occurs be
the same along every generator of N−kðσÞ, which would
make Y0 a bona fide marginally antitrapped surface as
required, we need Eq. (29) to be satisfied. Suppose we first
compute ξ0 as a function of xi and find that it does not
satisfy Eq. (29), which would mean that q does not vanish
at constant affine parameter. We can subsequently gauge
transform the normalization of k to enforce Eq. (29). Let us
define a rescaling of the vectors on σ of the form

ka → eΓka

la → e−Γla: ð43Þ
Then the affine parameter transforms as ν → e−Γν. Our ξ
parameter is invariant under this gauge transformation,
ξ → ξ. However, the value of ξ at which q vanishes can
change, since our various curvature quantities transform as

θk½σ� → eΓθk½σ�
θl½σ� → e−Γθl½σ�
ωi½σ� → ωi½σ� þDiΓ

R½σ� → R½σ�
ψ i½σ� → ψ i½σ�: ð44Þ

Once we gauge fix so that Eq. (29) is satisfied, we are
guaranteed that Y0, the surface on which θl ¼ 0, is indeed
marginally antitrapped.
We can then construct a HRT surface by flowing along

NþlðY0Þ as described in Sec. III B. For this construction
to work, we need ∂lθk < 0 on Y0. The cross-focusing
equation gives

∂lθk ¼ −
1

2
R − θlθk þ ω2 −D · ωþ 8πGTkl þ Λ

¼ ∂kθl − 2D · ω: ð45Þ

At ξ0, we have ∂kθl ¼ − 1
D−2 θk½σ�θl½σ�ξ∂ξq ¼ θk½σ�θl½σ�f

by Eqs. (26) and (30). Since ξ0 by definition is the first zero
of q for ξ > 1 and qðξ ¼ 1Þ ¼ 1, we have ∂ξq ≤ 0 at ξ0, so
it follows that ∂kθl ≤ 0 at ξ0. By Eq. (45), the requirement
that ∂lθk < 0 is a slightly different condition. Provided this
condition is satisfied, the area of the HRT surface is
calculated from ξ0,

A½XHRT� ¼
I
σ

ϵ

½ξ0ðxiÞ�D−2 ; ð46Þ

where the integral is computed with the standard area
(D − 2)-form ϵ defined on σ (so the area of σ is just
A½σ� ¼ H

σ ϵ).
There are two conditions that must be satisfied for our

construction of this HRT surface to work:
(1) There must exist a gauge transformation (44) such

that a solution ξ0 of qðξ0Þ ¼ 0 exists everywhere on
σ for ξ0ðxiÞ satisfying Eq. (29).

(2) We must have ∂lθk½Y0� < 0.
Condition 1 guarantees that we reach a θl ¼ 0 surface
before θk diverges. If, in a given gauge, qðξÞ ¼ 0 cannot be
satisfied along some null generator, it means that the
geodesic in question hits a caustic before we reach a
surface where θl vanishes. That is, one can show that
condition 1 guarantees that we have a one-to-one mapping
along null generators from σ to Y0.

8 Moreover, the require-
ment in condition 1 that ξ0 satisfy Eq. (29) is necessary to
guarantee that the affine parameter corresponding to the
zero of q is independent of xi, so that Y0 is a marginally

8Specifically, suppose a geodesic from σ undergoes a nonlocal
intersection with another member of the congruence between σ
and Y0; smoothness guarantees that the set of nonlocal inter-
sections in the congruence is bounded by caustics [29]. Condition
1 guarantees that such a caustic cannot occur to the future of Y0

along one of the null geodesics. Moreover, if some part of Y0 is to
the past of some nonlocal intersection but to the future of the
caustic (and hence to the future of other nonlocal intersections),
then there must be some geodesic with a nonlocal intersection on
Y0 itself. This is forbidden by definition of Y0, since a nonlocal
intersection on Y0 in the k congruence would mean that both
future-directed null vectors have positive expansion, in contra-
diction with the requirement that one of the future-directed null
vectors have vanishing expansion on Y0.
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antitrapped surface as discussed in Sec. III B. Finally,
condition 2 is necessary to guarantee that Y0 is a minimar
surface in the sense of Ref. [44], so that we actually reach a
HRT surface by flowing along NþlðY0Þ. If one can freely
solve the algebraic equation for qðξÞ ¼ 0, then conditions 1
and 2 can all be checked using the data on σ.
These conditions act as vetoes for surfaces σ: if σ fails

any of these conditions, our construction does not apply,
and one must choose a different surface. For a surface on
which N−kðσÞ unavoidably encounters caustics before
reaching the θl ¼ 0 surface (see Fig. 3), we could imagine
relaxing condition 1 and instead merely find some maximal
subset of the generators on σ for which conditions 1 and 2
can be satisfied. That is, if any geodesic cannot solve
qðξÞ ¼ 0, we can drop that geodesic, since it must reach a
caustic before going through Y0. However, in this case, we
do not have the guarantee discussed in footnote 8, and we
cannot rule out the possibility that some geodesics go
through nonlocal intersections before encountering Y0. For
such surfaces, our algorithm would therefore give an upper
bound on the outer entropy [modulo the conjecture that the
choice in Eq. (12) is optimal].
More generally, one can compute the outer entropy for

an arbitrary surface σ failing condition 1 without using our
explicit algorithm, although such a computation would be
challenging in practice. For an arbitrary surface σ, consider
the extension of OWðσÞ to a spacetime M for which the
HRT surface interior to σ is maximized. Then rather than
using our explicit algorithm, one can define Y0 to be the
intersection of N−l̃ðXHRTÞ with N−kðσÞ, where l̃ is defined
to be the ingoing null geodesic congruence orthogonal to
XHRT, with zero shear. If, as we have assumed, choosing
Tab to vanish in D̄ðΣþðσÞÞ results in the optimal HRT

surface, then the surface Y0 exists in the spacetime, since
the light sheet N−l̃ðXHRTÞ never ends and always has cross
section with area equal to A½XHRT�. If conditions 1 and 2
are satisfied, then there is a one-to-one correspondence
between Y0 and σ induced by the geodesic congruence
from σ along the −k direction. If condition 1 fails, then one
must relate A½σ� and A½XHRT� in the full spacetime by
keeping track of which geodesics exit N−kðσÞ between σ
and Y0. Even in this case, however, condition 2 is still
needed, to guarantee that θk is positive on Y0 so that σ is a
normal surface.

IV. OPTIMIZATION

We now argue that our choices in Eq. (12) indeed give
the optimal HRT surface, so that the outer entropy is given
simply by Eq. (46),

SðouterÞ½σ� ¼ 1

4Gℏ

I
σ

ϵ

½ξ0ðxiÞ�D−2 : ð47Þ

This is one of the main results of this work: an algorithm for
computing the outer entropy (i.e., the area of the maximal
HRT surface) for general codimension-two surfaces in
general spacetimes. We will give plausible physical argu-
ments for why the choice (12) should maximize the area of
the HRT surface and hence conjecture that Eq. (47) holds,
leaving a formal mathematical proof to future work.
Throughout, we assume the NEC, along with the version
of the dominant energy condition that ignores the cosmo-
logical constant (dubbed the ΛDEC in Ref. [28]), which
requires that −Ta

btb be a future-directed causal vector for
all future-directed causal ta, so that the energy-momentum
flow (excepting the cosmological constant) is causal in
any reference frame. In particular, the ΛDEC implies that
Tkl ≥ 0, just as the NEC implies that Tkk and Tll are non-
negative.
In the spherically symmetric case, where the twist and

shear vanish identically, the optimality of the choice
Tkk ¼ Tkl ¼ 0, given the NEC and ΛDEC, was established
in detail in Ref. [28]. Here, we simply mention that the
reason for this can be inferred from the constraint equa-
tions (9): nonzero Tkk would cause θk to grow more positive
as we move toward the past along N−kðσÞ, and this would in
turn increase ∇kθl, which we want to engineer to be as
negative as possible in order to reach the surface X while
incurring the least change in area from σ.
An essentially identical argument motivates us to take

Tkk and Tkl to vanish in the general, nonspherical case.
Similarly, nonzero shear contributes to the Raychaudhuri
equation in such a way as to accelerate the growth of θk
along N−kðσÞ, counter to what we want for the construc-
tion, so we set ςk to zero. As for the twist ωa, theD · ω term
in the cross-focusing equation can contribute with either
sign, but since its integral over any slice of N−kðσÞ
vanishes, it has no average effect on ∇kθl (though it can

FIG. 3. Illustration of a choice of a codimension-two surface σ
(black line) that does not satisfy our veto condition 1. The light
sheet in the −k direction (blue arrows) unavoidably encounters a
caustic (green dot) along some generator before reaching the
marginally antitrapped surface YMA (black circle). Thus, the
surface (red dashed line) spanned by a slice of N−kðσÞ, defined
such that each generator either has θl ¼ 0 or encounters a
nonlocal intersection or caustic, has area larger than the HRT
surface.
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affect the global solution for ξ0 due to its variation over σ).
On the other hand, the ω2 term has definite sign, making θl
approach zero more slowly as we move along N−kðσÞ and
thereby decreasing A½Y0�, which we do not want. Once we
have chosen Tak ¼ ςk ¼ 0, the evolution of ωa from its
value on σ is fixed by the DNS equation. Therefore, to
combat the deleterious effect of ωa, we could only imagine
shutting off ωa immediately to the past of σ along N−kðσÞ
via a shock wave of nonzero Tak that cancels off ωa½σ�
precisely.9 However, as we will see below, this operation
comes at a cost.
Let us define va ¼ −Tak, which the ΛDEC implies must

be causal and future directed, so v2 ≤ 0. Since gkl ¼ −1,
this implies vivi ≤ 2vkvl. Thus,

gijTikTjk ≤ 2TkkTkl: ð48Þ

In particular, a consequence of the ΛDEC is that setting
Tkk ¼ Tkl ¼ 0 implies Tak ¼ 0 (and similarly, setting
Tll ¼ 0 and Tkl ¼ 0 implies Tal ¼ 0).10

Suppose that 8πGTikðνÞ ¼ δðνÞωi½σ�, corresponding to a
shell of rotating matter. By the DNS equation in Eq. (9), the
effect of this nonzero Tik is to zero out ω2 to the past of σ
along N−kðσÞ. We saturate the ΛDEC by taking 8πGTkk ¼
xffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
ω2½σ�

p
δðνÞ and 8πGTkl ¼ 1

x
ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
ω2½σ�

p
δðνÞ for some

parameter x. By the NEC, x ≥ 0. What does this shell of
nonzero Tkk and Tkl do to θk and θl? It shifts them from
their values on σ to new values immediately to the past
along N−kðσÞ. That is, with ν ¼ 0 corresponding to σ,
we have θkðν → 0−Þ ¼ θk½σ� þ Δθk and θlðν → 0−Þ ¼
θl½σ� þ Δθl, where

Δθk ¼ 8πG
Z

ϵ

−ϵ
dνTkkðνÞ

Δθl ¼ −8πG
Z

ϵ

−ϵ
dνTklðνÞ: ð49Þ

Moving further alongN−kðσÞ, to the past of these shifts, the
solution proceeds in the same way as before, with Tkk and
Tkl vanishing. Hence, the cost of zeroing out ω2 is to shift
θk and θl. Note that both shifts have signs that will decrease
the area of Y0, counter to our desired outcome.

A concrete example is illuminating. Let us take an
axisymmetric spacetime in D ¼ 3, with σ a circle centered
on the origin, so that ωa½σ� is a constant covector pointing
in the angular direction and we choose a gauge in which θk
and θl are constant over σ. In this case, the χ term in
Eq. (36) vanishes. With our choice of nonzero Tik to cancel
ωi, the τ term in Eq. (36) would also drop out, making
q ¼ ð1 − λ0Þξ2 þ λ0, so the zero ξ00 is given by

ξ00 ¼
�
1 −

1

λ0

�
−1=2

; ð50Þ

where λ0 is λ but with θk and θl shifted,

λ0 ¼ Λ
2ðθk½σ�þΔθkÞðθl½σ�þΔθlÞ

¼ Λ

2½θk½σ�θl½σ�−ω2½σ�
2

þ
ffiffiffiffiffiffiffiffi
ω2½σ�
2

q
ðxθl½σ�− 1

xθk½σ�Þ�
: ð51Þ

To minimize ξ00, we want λ
0 to be maximized, which occurs

when x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−θk½σ�=θl½σ�

p
, so

λ0 ¼ −
Λ

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−θl½σ�θk½σ�
p þ

ffiffiffiffiffiffiffiffi
ω2½σ�
2

q �2
: ð52Þ

In contrast, if we instead take the construction of Sec. III
with the choice of data given in Eq. (12), then we find the
zero of qðξÞ ¼ ð1 − λ − τÞξ2 þ λþ τξ4 (recalling that we
are still taking χ ¼ 0 by axisymmetry) at

ξ0 ¼
�
−ð1 − λ − τÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − λ − τÞ2 − 4λτ

p
2τ

�1=2
; ð53Þ

where λ ¼ Λ=2θk½σ�θl½σ� and τ ¼ −ω2½σ�=2θk½σ�θl½σ�
from Eq. (36). We choose the—branch of the � in
Eq. (53) since we are interested in the smallest solution
for ξ ≥ 1 [i.e., the first time N−kðσÞ goes through a θl ¼ 0
surface]. Such a solution with ξ0 ≥ 1 exists if and only if

λ ≥ ð1þ ffiffiffi
τ

p Þ2: ð54Þ

After some algebra, one can show using Eqs. (50)–(54),
along with the definitions of λ and τ, that ξ0 is always
strictly less than ξ00. Hence, the penalty in the shift of θk
and θl outweighs any benefit from canceling off ωi, which
means that our construction in Sec. III is better. We
conjecture that this example illustrates a general principle,
namely, that the HRT surface interior to σ is optimized by
taking the background to have vanishing energy-momen-
tum inside of σ.
Note that, given a minimar surface Y0 as described in

Sec. III B, the HRT surface XHRT that we eventually build

9We cannot in general cancel off ωa using nonzero ςk instead,
since the ðD · ςkÞa term appearing in the DNS equation integrates
to zero over any codimension-two surface, while ωa need not.

10Moreover, the purely spatial components Tij can be similarly
bounded. Define ta ¼ αla þ βka þ xa, where the unit vector xa
points in one of the transverse directions along σ (so
x · k ¼ x · l ¼ 0). The vector t is timelike provided 2αβ > 1.
Then defining ua ¼ −Tabtb, the ΛDEC implies that u2 ≤ 0. We
find that if we have chosen Tkk ¼ Tkl ¼ Tll ¼ 0, which means
Tak ¼ Tal ¼ 0, then u2 ≤ 0 implies that Tij ¼ 0 along all
transverse directions i, j. Hence, from the ΛDEC, we find that
choosing Tkk ¼ Tkl ¼ Tll ¼ 0 implies Tab ¼ 0.
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by moving along NþlðY0Þ must, by definition, have area
upper bounded by Y0, as a consequence of the
Raychaudhuri equation and the NEC. Hence, the choice
Tll ¼ ςl ¼ 0 in Eq. (12) was both necessary and sufficient
to guarantee that A½XHRT� ¼ A½Y0�. Moreover, while we
constructed the HRT surface consistent with OWðσÞ by
moving first along the k light sheet and then along the l
light sheet, we could have reversed the order, traversing
NþlðσÞ until we reached a surface Z0 on which θk ¼ 0,
choosing a gauge in which Z0 is in fact a (marginally
trapped) minimar surface ZMT, and then traversing along
N−kðZ0Þ until we reach XHRT. Under our assumption of
Eq. (12) that the HRT surface is optimized by choosing
Tkk ¼ Tkl ¼ Tll ¼ 0 on N−kðσÞ and NþlðY0Þ, we found
in footnote 10 that Tab must vanish identically on the past

boundary of the inner wedge IWðσÞ ¼ D
∘ ðΣþðσÞÞ of σ.

Causality and conservation of energy-momentum then
imply that Tab vanishes in the entirety of IWðσÞ.
Considering M to be an instantiation of a spacetime
realizing the maximal HRT surface XHRT, which as noted
in footnote 1 must be contained in ĪWðσÞ, we can write the
outgoing and ingoing orthogonal null congruences from
XHRT as k̃ and l̃, respectively, and define marginally
trapped and antitrapped surfaces ZMT ¼ Nþk̃ðXHRTÞ ∩
NþlðσÞ and YMA ¼ N−l̃ðXHRTÞ ∩ N−kðσÞ. We can then
choose a gauge in which ZMT ¼ Z0 or alternatively a
(generally different) gauge in which YMA ¼ Y0. Under
either gauge choice, we would manifestly construct the
same maximal HRT surface, whether we applied our
algorithm to the past or future boundary of IWðσÞ. Hence,
subject to the conclusions that we drew about the twist
in the above section—that is, our assumptions about the
optimality of requiring the vanishing of Tkk, Tkl and Tll—
we conclude that the outer entropy is indeed given by our
algorithm in Sec. III, so Eq. (47) holds for general space-
times.

V. QUASILOCAL ENERGY AND
BEKENSTEIN-HAWKING ENTROPY

As we have seen, our outer entropy SðouterÞ½σ� can be
computed entirely in terms of curvature quantities (R, θk,
θl, ωa) defined on the codimension-two surface σ. Hence,
the outer entropy is a quasilocal quantity (cf. Ref. [63] and
references therein); i.e., while not being a strictly locally
defined quantity, the domain on which it is computed is still
finite. Various other quasilocal quantities in general rela-
tivity can be defined. Through a Gauss law argument for
gravitational flux, such quasilocal quantities on codimen-
sion-two surfaces can be viewed as defining a notion of
gravitational mass. In this section, we will find that the
outer entropy itself admits an interpretation as such a
quasilocal energy. We will define the quasilocal energy in
Sec. VA and find that it exhibits several desirable features.
Subsequently, in Sec. V B we will explore the connections

between the outer entropy and previously defined quasi-
local energies, including the Hawking mass [64,65].

A. Definition of a quasilocal energy

Let us implicitly define a quasilocal energyM by formally
equating SðouterÞ½σ� with the Bekenstein-Hawking entropy of
a Schwarzschild black hole,11

SðouterÞ½σ� ¼ ΩD−2

4G

�
16πGM

ðD − 2ÞΩD−2

�D−2
D−3

; ð55Þ

recalling that the Schwarzschild radius of a D-dimensional
black hole of ADM mass M is ½16πGM=ðD − 2Þ
ΩD−2�1=ðD−3Þ and writing ΩD−2 for the area of the unit
(D − 2)-sphere. That is, we are definingM to be the mass of
a Schwarzschild black hole of area equal to that of the largest
HRT surface consistent with OWðσÞ. The expression in
Eq. (55) is defined precisely in analogy with the “irreducible
mass” mirr of a black hole with horizon area A [63,66],

A ¼ ΩD−2

�
16πGmirr

ðD − 2ÞΩD−2

�D−2
D−3

: ð56Þ

Thus, we can view the mass M defined in Eq. (55),
corresponding to the outer entropy, as a definition of a
new quasilocal energy in general relativity. In D ¼ 4

dimensions, Eqs. (55) and (56) reduce to 2GM ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GSðouterÞ½σ�=π

q
and 2Gmirr ¼

ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p
.

Remarkably, our quasilocal energy M is monotonic
under inclusion. This is a desirable property for an energy
quantity in general relativity, but it is highly nontrivial from
the perspective of the algorithm for computing M (through
SðouterÞ½σ�) presented in Sec. III. Rather, monotonicity under
inclusion for M arises as a consequence of the fact that M
defines an entropy. By definition, SðouterÞ grows monoton-
ically under inclusion: for any new codimension-two sur-
face σ0 containing σ [i.e., for which σ0 ⊂ OWðσÞ], we must
have SðouterÞ½σ0� ≥ SðouterÞ½σ�, since OWðσ0Þ ⊂ OWðσÞ and so
fewer degrees of freedom are being held fixed in SðouterÞ½σ0�
than in SðouterÞ½σ� (that is, SðouterÞ½σ0� involves a maximiza-
tion over a larger domain than SðouterÞ½σ�). Hence, assuming
that our construction in Sec. III correctly computes the
outer entropy, it follows that M also grows monotonically
under inclusion.
Our quasilocal energy M also possesses other features

one would want for a mass quantity in general relativity,
including positivity, conservation, binding energy, and
reduction to the irreducible mass for marginally trapped
surfaces (cf. Ref. [63]). Since SðouterÞ½σ� is by definition

11Throughout this section, we will work in D ≥ 4 spacetime
dimensions and will suppress ℏ.
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non-negative [and is manifestly so in Eq. (47)],M is always
real and non-negative. Further, sinceM is quasilocal, as it is
defined purely in terms of a codimension-two surface σ, it
is by definition conserved if viewed as some energy
integrated over a partial Cauchy slice passing through σ.
Moreover, since condition 1 in Sec. III guarantees that
points on Y0 are mapped bijectively to points on σ by the
null congruence in the k direction, it follows that XHRT is
topologically equivalent to σ. Hence, for σ consisting of
two disjoint, closed components σ1 and σ2, the maximal
HRT surface XHRTðσÞ is just the disjoint union of XHRTðσ1Þ
and XHRTðσ2Þ, so we have SðouterÞ½σ� ¼ SðouterÞ½σ1� þ
SðouterÞ½σ2�. Since M is a concave function of the black
hole entropy, we have the strict inequality for the associated
quasilocal energies,

M < M1 þM2: ð57Þ

Finally, for marginally trapped surfaces, ξ0 → 1 and so the
outer entropy computed in Sec. III C is simply A½σ�=4G
[25]. Hence, the quasilocal energy M associated with the
outer entropy in Eq. (55) simply becomes the irreducible
mass (56), i.e., M ¼ mirr for marginally trapped surfaces.

B. Hawking mass and beyond

It is instructive to compare M to other proposed
quasilocal energies in general relativity [63] and find limits
in which they agree. In D ¼ 4 spacetime dimensions, the
Hawking mass [64,65] is defined to be

mHaw½σ� ¼
1

8πG

ffiffiffiffiffiffiffiffi
A
16π

r I
σ
ϵðRþ θkθlÞ; ð58Þ

where A denotes the area of σ and as before the integral
over σ is computed with the standard area two-form ϵ. We
can infer the appropriate generalization of this expression to
D spacetime dimensions to be

mHaw½σ� ¼
1

8πðD − 3ÞG
�

A
ΩD−2

� 1
D−2

×
I
σ
ϵ

�
1

2
RþD − 3

D − 2
θkθl

�
; ð59Þ

where A is now the (D − 2)-area of σ. The Hawking mass is
straightforward to compute for any given codimension-two
surface, but, unlike our quasilocal energy derived from
SðouterÞ, mHaw is not in general positive or monotonic [63].
In the spherically symmetric limit, the four-dimensional

Hawking mass (58) becomes the energy quantity of Misner
and Sharp [67], Hernandez and Misner [68], and Cahill and
McVittie [69],

mMS½σ� ¼
1

2G
rRϕ

θϕθ ¼
1

8G
r3Rabcdϵ

abϵcd ¼ r
2G

ð1 − grrÞ:
ð60Þ

We can develop a natural generalization of Eq. (60) to D
spacetime dimensions, writing

mMS½σ� ¼
ΩD−2rD−1

32πðD − 3Þ!GRabcdϵ
abe1���eD−4ϵcde1���eD−4

¼ ðD − 2ÞΩD−2rD−3

16πG
ð1 − grrÞ: ð61Þ

We indeed find that our D-dimensional generalization
of the Hawking mass in Eq. (59) reduces to our D-
dimensional generalization of the Misner-Sharp energy
(61) in the spherical limit. One can verify, e.g., that by
plugging in the D-dimensional Schwarzschild metric for
which grr ¼ 1 − 16πGm

ðD−2ÞΩD−2rD−3, Eq. (61) yields simply the

Schwarzschild mass parameter, mMS ¼ m.
Let us compare the Hawking mass to our outer entropy

in the spherically symmetric case. Suppose we have a D-
dimensional, spherically symmetric spacetime (D ≥ 4)
filled with pressureless dust plus a cosmological constant,
with mass mðrÞ inside radius r, so that

−gttðrÞ¼grrðrÞ

¼1−
2Λr2

ðD−1ÞðD−2Þ−
16πGmðrÞ

ðD−2ÞΩD−2rD−3 : ð62Þ

We can identify a radius RðrÞ implicitly defined as the
largest solution of

1 −
2ΛR2ðrÞ

ðD − 1ÞðD − 2Þ −
16πGmðrÞ

ðD − 2ÞΩD−2½RðrÞ�D−3 ¼ 0: ð63Þ

That is, if we collapse all of the matter interior to r, RðrÞ
is the radius of the resulting (A)dS-Schwarzschild black
hole. Let us find the outer entropy for a codimension-two
shell at fixed r. From Sec. III C and Ref. [28], ξ0 is the
solution of

qðξ0Þ ¼ ð1 − ρ − λÞξD−1
0 þ ρξ20 þ λ ¼ 0: ð64Þ

Recalling the definitions of ρ and λ from Eqs. (33), (39),
and (42), we find ρ ¼ 1=grrðrÞ and λ ¼ r2=L2grrðrÞ,
where for convenience we have defined L2 ¼ −ðD −
1ÞðD − 2Þ=2Λ for Λ < 0. The solution to qðξ0Þ ¼ 0 is
ξ0 ¼ r=RðrÞ, as one can verify by plugging in the definition
of RðrÞ in Eq. (63) and rearranging using the definition of
grr. Hence, the outer entropy in Eq. (47) for this surface is

SðouterÞ½σ� ¼ ΩD−2½RðrÞ�D−2

4G
: ð65Þ
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Namely, the outer entropy for the surface at r is simply
the Bekenstein-Hawking entropy one would obtain if all
the matter (excluding the cosmological constant) were
collapsed into a black hole. The quasilocal energy M,
according to Eq. (55), is then just the mass of a
Schwarzschild black hole, with zero cosmological constant
and radius R,

M½σ� ¼ ðD − 2ÞΩD−2

16πG
½RðrÞ�D−3

¼ mðrÞ
�
1 −

2ΛR2ðrÞ
ðD − 1ÞðD − 2Þ

�−1
: ð66Þ

The generalized Hawking mass from Eq. (59) [or equiv-
alently, D-dimensional Misner-Sharp energy in Eq. (61)]
associated with σ is

mHaw½σ� ¼ mMS½σ� ¼ mðrÞ þ ρΛVD−1rD−1; ð67Þ

where ρΛ ¼ Λ=8πG is the vacuum energy density and
VD−1 ¼ ΩD−2=ðD − 1Þ is the Euclidean volume of the unit
(D − 1)-sphere. Thus, in the Λ → 0 limit, we have

M½σ� ¼ mHaw½σ� ¼ mMS½σ� ¼ mðrÞ: ð68Þ

Since our construction required Tab ¼ 0 interior to σ,
this matching is a consequence of Birkhoff’s theorem.
(For nonzero Λ, our quasilocal energy M takes the
cosmological constant into account differently than the
Hawking mass.) Specifically, if we take σ to be a surface
of arbitrary geometry subject to the constraint that it be
topologically equivalent to a single sphere, centered in
a spherical, static, asymptotically flat spacetime with
Tab ¼ 0 in OWðσÞ, Birkhoff’s theorem [70–72] then
guarantees that our quasilocal energy M matches the
ADM mass [30] (or, equivalently in this case, the Bondi
[73,74] or Komar [75] mass).
Hayward [65] introduced a modification of the Hawking

mass that has the virtue of vanishing in flat spacetime
(while the Hawking mass can be negative, even in
Minkowski space). The Hayward energy, mHay, in D ¼
4 is defined by simply adding − 1

2
ðςkÞabðςlÞab − 2ω2 to the

integrand for the Hawking mass in Eq. (58). Generically,
our quasilocal energy M will not match the Hayward
energy, since as we saw in Sec. III C, SðouterÞ½σ�—and hence
M—depends in a complicated manner on derivatives of
ωa, θk, etc. on σ, in addition to ωa, θk, etc. themselves.
However, M and mHay share an important characteristic.
Like mHay, M will vanish in flat spacetime or pure (A)dS.
Specifically, starting with a surface in a nonvacuum
spacetime that satisfies the conditions in Sec. III C, for
which our algorithm computes the outer entropy, and taking
the limit Tab → 0 in OWðσÞ, ξ0 will diverge and so SðouterÞ

will go to zero.12 On the other hand, while mHay is
superadditive [65]—for σ being the disjoint union of closed
surfaces σ1 and σ2, one hasmHay½σ�>mHay½σ1�þmHay½σ2�—
yielding a positive “binding energy,” the subadditive behavior
of our quasilocal energy M shown in Eq. (57) implies a
negative binding energy M −M1 −M2 < 0, as one would
physically expect.13

Finally, Liu and Yau [76] and Kijowski [77] have defined
a quasilocal energy mKLY in D ¼ 4 spacetime dimensions
that exhibits positivity. We will not discuss this energy in
detail, except to comment that it differs from our M in that
mKLY requires an embedding of σ into flat three-dimen-
sional space and furthermore, unlike M, does not equal the
irreducible mass for marginally trapped surfaces [63].

VI. BTZ GEOMETRY

An illuminating example in which the computation
of the outer entropy manifests aspects of nonspherical
spacetime while still maintaining tractability is the
BTZ black hole geometry [34]. The line element for the
(2þ 1)-dimensional black hole is ds2 ¼ −N2ðrÞdt2þ
dr2=N2ðrÞ þ r2ðNϕðrÞdtþ dϕÞ2, where N2ðrÞ ¼ −Mþ
r2

L2 þ J2

4r2, NϕðrÞ ¼ − J
2r2, and the cosmological constant

Λ ¼ −1=L2. The angular momentum J satisfies jJj≤ML
for physical black holes.
We will consider a spacetime that, near some surface σ at

constant r, has a metric matching that of the BTZ black
hole. We will remain agnostic about the geometry of the
spacetime inside or outside this surface. Considering the
geodesic congruences generated by the null vectors with
initial tangents ka and la orthogonal to σ, we can compute
the null expansions, θk½σ� ¼ −θl½σ� ¼ NðrÞffiffi

2
p

r
, while the

shears vanish identically for null congruences in D ¼ 3,
ςk ¼ ςl ¼ 0. Note that, if r corresponds to a zero of NðrÞ,
which occurs at the BTZ horizon

rþ ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
J

ML

�
2

s �vuut ; ð69Þ

then expansions θk and θl vanish. (The surface at
r ¼ rþ can correspond to either the past or the future
horizon.)
This spacetime exhibits a qualitative difference from the

spherically symmetric geometries considered by NR [28]:

12This calculation was done explicitly for the spherical case in
Ref. [28] for Minkowski, AdS, and dS. This conclusion follows
in general in the Minkowski case from the positive mass theorem
[31,32] and in the (A)dS cases from its generalization to space-
times that are not asymptotically flat; see Ref. [33] for an
AdS=CFT perspective.

13However, unlike typical notions of gravitational binding
energy, both this binding energy and that of Ref. [65] are
independent of distance for distantly separated surfaces.
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nonzero twist ωa. Computing the twist on σ according to
Eq. (10), we find

ωa½σ� ¼
�
J2

4r3
; 0;−

J
2r

�
: ð70Þ

Here, we have chosen the normalizations of ka and la such
that θk, θl, and ωa are constant across σ. Note that this is
not automatic; for example, we could replace ka → eΓðϕÞka

and la → e−ΓðϕÞla, for an arbitrary function ΓðϕÞ, which
would make the curvature quantities ϕ dependent.
To find the surface Y0 where θl ¼ 0, we must find the

first zero of qðξÞ for which ξ > 1. Here, qðξÞ is given in
Eq. (35) for D ¼ 3. Since ωa and θk are constant across σ
under our chosen gauge, we have χ½σ� ¼ 0 in Eq. (36), so
qðξÞ becomes

qðξÞ ¼ ð1 − λ − τÞξ2 þ λþ τξ4; ð71Þ

where λ and τ measure the cosmological constant and twist,
respectively, as defined in Eq. (36), which for the BTZ
metric are λ ¼ r2

L2N2ðrÞ and τ ¼ J2

4r2N2ðrÞ.
The location of the zero in qðξÞ is given by Eq. (53).

For a subextremal BTZ metric, the condition in Eq. (54)
is satisfied for r > rþ, so a zero exists. Plugging in the
values of λ and τ for our BTZ metric, we have ξ20 ¼
2Mr2f½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðJ=MLÞ2

p
�=J2g. As required by condi-

tion 1 in Sec. III D, ξ0 satisfies Eq. (29) everywhere on σ
in our gauge. The area of Y0, after some manipulation, is
given by

A½Y0� ¼
2πr
ξ0

¼ 2πrþ: ð72Þ

We recall by the argument below Eq. (45) that
∂kθl½Y0� ≤ 0. Moreover, for our chosen congruence in
this spacetime, D · ω ¼ 0, so by Eq. (45) it follows that
∂lθk½Y0� ≤ 0. More explicitly, the cross-focusing equation,
along with our choices of initial data in Eq. (12), implies
that, along NþlðY0Þ, we have ∂lθk ¼ ω2 þ Λ, which is
constant by the DNS and Raychaudhuri equations along
NþlðY0Þ. At Y0, we have, after some rearrangement,

ω2½Y0� þ Λ ¼ ξ40ω
2½σ� þ Λ

¼ 2M2

J2

"
1 −

�
J

ML

�
2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
J

ML

�
2

s #
≤ 0;

ð73Þ

with equality only in the extremal limit, jJj → ML. If
jJj < ML, θk is thus decreasing—at constant rate—along
NþlðY0Þ and will eventually reach a surface where θk ¼ 0.
Condition 2 in Sec. III D is thus satisfied. Since θk is
constant over Y0, the θk ¼ 0 slice of Nþl½Y0� occurs at

constant affine parameter and hence corresponds to a HRT
surface, as discussed in Sec. III B.14

Hence, the outer entropy associated with a surface σ,
near which the geometry looks locally like subextremal
BTZ, is just the Bekenstein-Hawking entropy of the
corresponding BTZ black hole,

SðouterÞ½σ� ¼ 2πrþ
4Gℏ

: ð74Þ

This was the result we expected. Indeed, in Ref. [78],
an analogue of Birkhoff’s theorem is proven for (2þ 1)-
dimensional AdS gravity, where it is shown that all
axisymmetric vacuum solutions of three-dimensional gen-
eral relativity with negative cosmological constant and no
timelike curves are either one of the BTZ geometries or the
Coussaert-Henneaux [79] spacetime.

VII. DISCUSSION

In this paper, we have considered an interesting coarse-
grained holographic quantity, the outer entropy, defined for
general codimension-two surfaces. Using the characteristic
initial data formalism describing the Einstein equations on
light sheets, we have formulated an algorithm for con-
structing the optimal HRT surface consistent with the outer
wedge, thereby calculating the outer entropy (Sec. III).
Motivated by examples, we have conjectured that the
correct outer entropy is calculated by requiring that the
interior of σ have vanishing energy-momentum, other than
the cosmological constant (Sec. IV). Interestingly, we have
found that the outer entropy offers a compelling definition
of a quasilocal energy in general relativity. As discussed in
Sec. V, this quasilocal energy possesses several desirable
features, including monotonicity under inclusion, positiv-
ity, binding energy, reduction to the irreducible mass for
marginally trapped surfaces, reduction to the Hawking and
Misner-Sharp masses on spherical surfaces, and reduction
to the BTZ mass for black holes in three dimensions.
This work leaves multiple promising directions for future

research. In our definition of the coarse graining for the
outer entropy, we have only held the spacetime degrees of
freedom in the outer wedge OWðσÞ fixed; that is, we have
coarse grained over all spacetime geometries outside of
OWðσÞ, subject only to the constraints that they satisfy the
Einstein equations, the NEC, and the ΛDEC. However,
it could be physically well motivated to somewhat fine
grain this requirement, depending on the matter sector
of the theory. In particular, if we add the further information
that there are conserved charges in the theory, arising
from some unbroken gauge field, then one could define
a modified outer entropy in which we vary over all

14In the extremal case, we have ∂lθk½Y0� ¼ 0, so the minimar
requirement of condition 2 does not hold and our algorithm does
not construct a HRT surface.
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spacetimes satisfying the Einstein equation, energy condi-
tions, and Maxwell’s equations. For example, if there is
nonzero flux through σ, the question of whether and how
quickly we can turn off Tkl along N−kðσÞ—and whether
doing so is to the benefit of our optimal HRT surface—
hinges not only on the presence of the gauge field, but also
on the spectrum of charged states in the matter sector. If the
theory contains an unbroken Uð1Þ gauge field but no
charged matter (which violates the weak gravity conjecture
[80,81]), then Tkl is unavoidably nonzero onN−kðσÞ if there
is flux through σ. Simultaneously solving the constraint
equations and Maxwell’s equations along the light sheet, one
would then find that the area of the optimal HRT surface, and
hence the outer entropy, would be lower. This is to be
expected, since adding information about the gauge field is
in effect a fine graining of the outer entropy definition, hence
reducing the entropy. It would be interesting to explore such
modifications of the outer entropy in more detail.
Inour constructionof theHRTsurface,wechose a gauge in

which the surface Y0 where θl vanished occurred at uniform
affine parameter. When the outer entropy was computed in
the special case of marginally trapped surfaces in Ref. [44],
such a gauge choice was not made; instead, the fact that the
congruence tangent l did not in general equal the orthogonal
null vector l̃ from the surfacewith θl ¼ 0was accounted for
by locating an alternative surface, on which θl̃ ¼ 0, by
relating θl and θl̃ via a particular stability operator and then
inverting it. In our case, in which we are computing the outer
entropy for more general surfaces, we could in principle
construct—instead of solving the consistency equations for
the gauge choice as described in Sec. III D—the appropriate
stability operator and solve the corresponding eigenvalue
problem to relate l̃ and l on Y0. However, the stability
operator in Ref. [44] is simplified by virtue of being anchored
to a marginally (anti-)trapped surface. The more general
stability operatorwould bemoremathematically complicated
to invert; this difficulty should correspond to the challenge of
solving the differential equations in Sec. III D. It could be
worthwhile to further elucidate the connections between
these two calculational methods.
By its definition as an entropy—or more specifically, as a

maximization under a constraint—the outer entropy must

satisfy a second law along the generalized holographic
screens defined for surfaces not marginally trapped in
Ref. [28]. This is a manifestation of the growth of our
quasilocal energy under inclusion, as discussed in Sec. V,
though demonstrating the entropy growth explicitly is
highly nontrivial from the perspective of the algorithm
given in Sec. III. In Ref. [28], the rate of growth of the outer
entropy along the generalized holographic screen was
explicitly computed in the special case of spherical (but
not necessarily marginally trapped) surfaces; in addition to
a second law, a Clausius relation was found, with the rate of
change of the entropy being proportional to a certain flux
in Tμν. Investigating whether such a Clausius relation arises
in the nonspherical case and more generally how to make
the second law explicit from our algorithm could lead to a
better understanding of the thermodynamic nature of the
outer entropy for general surfaces.
As a new entry in the holographic dictionary, it would be

interesting to investigate the CFT interpretation of the outer
entropy for general surfaces. In Ref. [25], it was shown that
the outer entropy for marginally trapped surfaces may be
viewed as dual to a maximization of the boundary state
under the action of certain “simple operators.” However,
this interpretation relied crucially on the marginal-trapped-
ness property of the surface under consideration. From the
perspective of the AdS=CFT dictionary, it would be good to
understand how these definitions in the boundary theory are
required to change for more general surfaces. We leave
consideration of the boundary interpretation of our general
outer entropy to future work.
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