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We study modular transformation of holomorphic Yukawa couplings in magnetized D-brane models.
It is found that their products are modular forms, which are nontrivial representations of finite modular
subgroups, e.g., S3, S4, Δð96Þ and Δð384Þ.
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I. INTRODUCTION

The origin of the flavor structure in the quark and lepton
sectors is one of the unsolved but important mysteries in
particle physics. The quark and lepton masses have a
hierarchy. The lepton mixing angles are large, while the
quark mixing angles are small. Many studies have been
done in order to understand this flavor structure. Among
them, non-Abelian discrete flavor symmetries are one of
the most interesting approaches. Indeed, many types of
model building have been studied by use of various non-
Abelian discrete groups such as SN , AN , DN , Δð3N2Þ,
Δð6N2Þ, etc. (See for review [1–3].)
Superstring theory is a promising candidate for a

unified theory of all the interactions including gravity and
matter particles such as quarks and leptons as well as the
Higgs particle. The four-dimensional (4D) low-energy effec-
tive field theory of superstring theory has several symmetries.
In particular, some non-Abelian discrete flavor symmetries
appear in the 4D effective field theory from superstring
theory within certain compactifications. That is, heterotic
string theory on orbifolds leads to non-Abelian discrete flavor
symmetries, e.g.,D4, andΔð54Þ [4]. (SeealsoRefs. [5–8].)1 In
addition, magnetized D-brane models as well as intersecting
D-brane models in type II superstring theory can realize
similar discrete flavor symmetries [10–14].
In addition, torus and orbifold compactifications

have the so-called modular symmetry. Recently, in
Ref. [15,16], the modular transformation behavior of
zero-modes was studied in magnetized D-brane models.
(See also Ref. [17].) Such behavior was also studied in

heterotic orbifold models [18–20]. These modular trans-
formations act nontrivially on zero-modes. In this sense,
the modular symmetry is a sort of flavor symmetry. How-
ever, the modular symmetry also transforms Yukawa
couplings as well as higher order couplings, while these
couplings are trivial singlets under the conventional flavor
symmetries.
One interesting aspect is that the modular group Γ

includes finite subgroups such as S3, A4, S4 and A5, which
have been used for flavor model building as mentioned
above. (See e.g., Ref. [21].) Inspired by these aspects,
recently a new approach to the lepton mass matrices was
proposed in Ref. [22]. The three generations of leptons are
assigned to non-trivial representations of the finite modular
subgroup A4. The couplings as well as neutrino masses are
also assigned to modular forms, which are nontrivial
representations under A4. Such an idea was extended in
Refs. [23–27] by use of other finite modular subgroups S3
and S4 in addition to A4.
In these studies, the key ingredients are the modular

forms of weight 2, which are non-trivial representations of
finite modular subgroups.2 Such modular forms are found
for S3 doublet, A4 triplet, and S4 doublet and triplet in
Refs. [22–24]. Our purpose of this paper is to study a new
type of constructions of modular forms for finite modular
subgroups. We study Yukawa couplings in magnetized
D-brane models. In particular, we study modular trans-
formation of holomorphic Yukawa couplings, which are
holomorphic functions of the modulus. Using them, we
construct modular forms of modular weight 2, which are
nontrivial representations of finite modular subgroups.
This paper is organized as follows. In Sec. II, we review

the modular symmetry in magnetized D-brane models
and study modular symmetry of holomorphic Yukawa
couplings. In Sec. III, we study products of holomorphic
Yukawa couplings. We show that they correspond to
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1In Ref. [9], a relation between gauge symmetries and non-
Abelian flavor symmetries is discussed at the enhancement point.

2See for modular forms, e.g., Refs. [28–30].
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modular forms of finite modular subgroups. Section IV is
conclusion and discussion.

II. MODULAR TRANSFORMATION IN
MAGNETIZED D-BRANE MODELS

In this section, we briefly review modular transformation
of zero-mode wave functions in magnetized D-brane
models. See for detail Refs. [15–17]. Then, we study
modular transformation of holomorphic Yukawa couplings.

A. Zero-mode wavefunction

Here, we give a brief review on zero-mode wave
functions on the two-dimensional torus T2 with magnetic
flux [17]. For simplicity, we concentrate on T2 with Uð1Þ
magnetic flux. We denote real coordinates by x and y, and
we also use the complex coordinate z ¼ xþ τy, where
τ is the complex modular parameter. The metric on T2 is
given by

gαβ ¼
�
gzz gzz̄
gz̄z gz̄ z̄

�
¼ ð2πRÞ2

�
0 1

2

1
2

0

�
: ð1Þ

In order to construct T2, we identify z ∼ zþ 1 and
z ∼ zþ τ.
We introduce the Uð1Þ magnetic flux F on T2,

F ¼ i
πM
Imτ

ðdz ∧ dz̄Þ; ð2Þ

which corresponds to the vector potential,

AðzÞ ¼ πM
Imτ

Imðz̄dzÞ: ð3Þ

Here we concentrate on vanishing Wilson lines.
We study the spinor field on T2, which has two

components,

Ψðz; z̄Þ ¼
�
ψþ
ψ−

�
: ð4Þ

On the above magnetic flux background, we solve the zero-
mode equation

i=DΨ ¼ 0; ð5Þ

for the spinor field with Uð1Þ charge q. The magnetic flux
should be quantized by the Dirac condition such that qM is
integer. Either ψþ or ψ− has zero-modes exclusively for
qM ≠ 0. If qM is positive, only ψþ has qM zero-modes,
while ψ− has no zero-mode. That is a chiral theory. Their
zero-mode profiles are given by

ψ j;qMðzÞ ¼ N eiπqMzImz
Imτ · ϑ

� j
qM

0

�
ðqMz; qMτÞ; ð6Þ

with j ¼ 0; 1;…; ðqM − 1Þ, where ϑ denotes the Jacobi
theta function,

ϑ

�
a

b

�
ðν; τÞ ¼

X
l∈Z

eπiðaþlÞ2τe2πiðaþlÞðνþbÞ: ð7Þ

The normalization factor N is given by

N ¼
�
2ImτqM

A2

�
1=4

; ð8Þ

with A ¼ 4π2R2Imτ.
The ground states of scalar fields ϕj;qM also have the

same profiles as ψ j;qM. We can compute the Yukawa
coupling including one scalar and two spinor fields, whose
wave functions are written by ϕi;M, ψ j;N , and ðψk;M0 Þ�, by
carrying out the overlap integral of these wave fuctions.
For simplicity, we have normalized the charges such as q in
a proper way and replaced qM by M. Note that gauge
invariance requires M þ N þM0 ¼ 0. That is, M0 must be
negative if both M and N are positive. That is the reason
why we consider the wave function ðψk;M0 Þ� [17]. Then,
their Yukawa couplings are given by the wave function
overlap integral [17],

Yijk ¼ g
Z

d2zϕi;Mψ j;Nðψk;M0 Þ�

¼ g

�
2Imτ

A2

�
1=4 X

m∈ZM0

δk;iþjþMm · ϑ

� Ni−MjþMNm
MNM0

0

�
ð0;MNM0τÞ; ð9Þ

where g is constant and ZM0 denotes the set of integers satisfying 0 ≤ m < M0. Similarly, we can compute higher order
couplings [31].
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B. Modular transformation

Here, we study modular transformation. First we briefly
review modular transformation of zero-modes [15,16].
(See also [17].)
The torus T2 is constructed by R2=Λ, where the lattice Λ

is spanned by the vectors ðα1; α2Þ, i.e., α1 ¼ 2πR and
α2 ¼ 2πRτ. The same lattice is obtained by the following
change of basis,

�
α02
α01

�
¼

�
a b

c d

��
α2

α1

�
; ð10Þ

where a, b, c, d are integer with satisfying ad − bc ¼ 1.
That is an SLð2; ZÞ transformation.
The modular parameter τ ¼ α2=α1 transforms as

τ ⟶ γτ ¼ aτ þ b
cτ þ d

; ð11Þ

under (10). This transformation includes two important
generators, S and T,

S∶τ ⟶ −
1

τ
; ð12Þ

T∶τ ⟶ τ þ 1: ð13Þ

They satisfy the following relations,

S2 ¼ 1; ðSTÞ3 ¼ 1: ð14Þ

If we impose further algebraic relations in addition to
Eq. (14), we can realize finite modular subgroups. For
example, when we impose

TN ¼ 1; ð15Þ

the modular subgroups are isomorphic to S3, A4, S4 and A5

for N ¼ 2, 3, 4, and 5, respectively. Also, we can obtain
other finite modular subgroups by imposing further alge-
braic relations.
Following [15,16], we restrict ourselves to even mag-

netic fluxes M (M > 0). Under S, the zero-mode wave
functions transform as [15–17]

ψ j;M →
1ffiffiffiffiffi
M

p
X
k

e2πijk=Mψk;M: ð16Þ

On the other hand, the zero-mode wave functions transform
as [15,16]

ψ j;M → eπij
2=Mψ j;M; ð17Þ

under T. Generically, the T-transformation satisfies

T2Mψ j;M ¼ ψ j;M; ð18Þ

on the zero-modes, ψ j;M. Furthermore, in Ref. [15] it is
shown that

ðSTÞ3ψ j;M ¼ eπi=4ψ j;M; ð19Þ

on the zero-modes, ψ j;M for generic case.
The holomorphic part of Yukawa couplings is given by

Xi;MðτÞ ¼ ϑ

� i
M

0

�
ð0;MτÞ: ð20Þ

We study modular transformations of Xi;MðτÞ. Hereafter,
we often denote Xi;MðτÞ by Xi;M. It is straightforward to
study the modular transformation behavior of Xi;M by using
Eqs. (16) and (17). That is, the holomorphic function Xi;M

transforms as

Xj;M →

ffiffiffiffiffiffiffi
−iτ
M

r X
k

e2πijk=MXk;M; ð21Þ

under S, and

Xj;M → eπij
2=MXj;M; ð22Þ

under T. Thus, the holomorphic Yukawa couplings as well
as physical Yukawa couplings Yijk transform nontrivially
under the modular group. Note that the T transformation is
diagonal in this basis.

III. MODULAR FORMS OF FINITE
MODULAR SUBGROUPS

Here, we study the construction of modular forms of
weight 2 for finite modular subgroups. The modular forms
of level N and weight w are holomorphic functions of the
modulus τ, which have the following modular transforma-
tion behavior:

fiðγτÞ ¼ ðcτ þ dÞwρðγÞijfjðτÞ; ð23Þ

where ρðγÞ is a unitary representation of ΓN ¼ Γ=ΓðNÞ
with a principal congruence subgroup ΓðNÞ. The weights w
are even and modular forms of weight 2 are important,
because other modular forms are obtained from their
products.
Such modular forms of weight 2 are expected to be

derived by productions of Xj;M like Xi;MXj;MXk;MXl;M as
seen from the behavior (21). In what follows, we study such
products concretely.
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A. M = 2

The S and T transformations are represented on Xj;2 with
j ¼ 0, 1 by

�
X0;2

X1;2

�
⟶

ffiffiffiffiffiffi
−τ

p
ρðSÞ

�
X0;2

X1;2

�
; ρðSÞ ¼

ffiffiffi
i
2

r �
1 1

1 −1

�
;

ð24Þ

and

�
X0;2

X1;2

�
⟶ ρðTÞ

�
X0;2

X1;2

�
; ρðTÞ ¼

�
1 0

0 i

�
: ð25Þ

They satisfy the following algebraic relations,

ρðSÞ2 ¼ iI2×2; ρðTÞ4 ¼ I2×2; ðρðSÞρðTÞÞ3 ¼ −I2×2;

ð26Þ

where IN×N denotes the (N × N) identity matrix. Similarly,
representations of S and T on generic Xj;M satisfy

ρðSÞ2¼ iIM×M; ρðTÞ2M¼ IM×M; ðρðSÞρðTÞÞ3¼−IM×M:

ð27Þ

Now, let us study quartic tensor products of Xj;M with
j ¼ 0, 2, i.e.,

ðX0;2Þ4; ðX0;2Þ3X1;2; ðX0;2Þ2ðX1;2Þ2;
X0;2ðX1;2Þ3; ðX1;2Þ4 ð28Þ

These are five-dimensional representation of S and T,
which satisfy ρðS2Þ ¼ 1, ρððSTÞ3Þ ¼ 1, and ρðT4Þ ¼ 1.
This five-dimensional representation is a reducible repre-
sentation, and we can decompose it to two irreducible
representations, a doublet and a triplet. The doublet
corresponds to

Z1¼ðX0;2Þ4þðX1;2Þ4; Z2¼2
ffiffiffi
3

p
ðX0;2Þ2ðX1;2Þ2: ð29Þ

Then, on ðZ1; Z2ÞT , S and T are represented by

ρðSÞ¼1

2

�
−1 −

ffiffiffi
3

p

−
ffiffiffi
3

p
1

�
; ρðTÞ¼

�
1 0

0 −1

�
: ð30Þ

They satisfy ρðS2Þ ¼ I2×2, ρðT2Þ ¼ I2×2, and
ρððSTÞ3Þ ¼ I2×2. That is nothing but S3. Thus, ðZ1; Z2Þ
are the modular forms corresponding to the S3 doublet.
The other three elements are written by

Z3 ¼ ðX0;2Þ4 − ðX1;2Þ4; Z4 ¼ 2
ffiffiffi
2

p
ðX0;2Þ3X1;2;

Z5 ¼ 2
ffiffiffi
2

p
X0;2ðX1;2Þ3: ð31Þ

On ðZ3; Z4; Z5ÞT , S and T are represented by

ρðSÞ ¼ 1

2

0
B@

0 −
ffiffiffi
2

p
−

ffiffiffi
2

p

−
ffiffiffi
2

p
−1 1

−
ffiffiffi
2

p
1 −1

1
CA;

ρðTÞ ¼

0
B@

1 0 0

0 i 0

0 0 −i

1
CA: ð32Þ

They satisfy ρðS2Þ ¼ I3×3, ρðT4Þ ¼ I3×3, and ρððSTÞ3Þ ¼
I3×3. That is isomorphic to S4. Thus, ðZ3; Z4; Z5Þ corre-
sponds to the S4 triplet.

B. M = 4

Similarly, we can study theM ¼ 4 case. Note that ðSTÞ3
is a trivial transformation on τ, but ðSTÞ3 transforms the
lattice vectors ðα1; α2Þ to ð−α1;−α2Þ. The wave functions
satisfy the following relation,

ψ j;Mð−zÞ ¼ ψM−j;MðzÞ: ð33Þ

Thus, forM > 2 it is convenient to use the following basis,

ψ j;M
� ¼ 1ffiffiffi

2
p ðψ j;MðzÞ � ψM−j;MðzÞÞ; ð34Þ

except j ¼ 0, M=2: in order to represent S. That is the Z2

orbifold basis [32]. The ψ j;M
þ are Z2 even modes, while

ψ j;M
− are Z2 odd. The ψ0;M is always Z2 even, and the

ψM=2;M is also Z2 even when M is even.
Similarly, we use the same basis for the Xj;M, i.e.,

Xj;M
� ¼ 1ffiffiffi

2
p ðXj;MðzÞ � XM−j;MðzÞÞ; ð35Þ

except j ¼ 0, M=2.
When M ¼ 4, only X1;4

− is Z2 odd, and it is a singlet
under the modular symmetry. Now, we study the other Z2

even elements, X0;4, X1;4
þ , and X2;4. On ðX0;4; X1;4

þ ; X2;4ÞT ,
S and T are represented by

ρðSÞ ¼
ffiffi
i

p

2

0
B@

1
ffiffiffi
2

p
1ffiffiffi

2
p

0 −
ffiffiffi
2

p

1 −
ffiffiffi
2

p
1

1
CA;

ρðTÞ ¼

0
B@

1 0 0

0 eπi=4 0

0 0 −1

1
CA: ð36Þ

Here, let us study quartic tensor products,

ðX0;4ÞlðX1;4
þ ÞmðX2;4Þn; ð37Þ
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with lþmþ n ¼ 4. In total, there are fifteen elements.
They provide us a reducible representation of S and T.
Thus, we decompose them into irreducible representations.
The simplest one is the singlet Z1, which is given by

Z1 ¼
2

ffiffiffi
2

p
ffiffiffi
3

p ððX1;4
þ Þ4 − 2ððX0;4Þ3X2;4 þ X0;4ðX2;4Þ3ÞÞ: ð38Þ

On this singlet, S and T are represented by

ρðSÞ ¼ −1; ρðTÞ ¼ −1: ð39Þ

The next simplest irreducible representation is the
doublet, ðZ2; Z3Þ, which are given by

Z2 ¼ ðX0;4Þ4 þ ðX2;4Þ4 þ 6ðX0;4Þ2ðX2;4Þ2;

Z3 ¼
4ffiffiffi
3

p ððX1;4
þ Þ4 þ ðX0;4Þ3X2;4 þ X0;4ðX2;4Þ3Þ: ð40Þ

On ðZ2; Z3ÞT , S and T are represented by the same ρðSÞ and
ρðTÞ as Eq. (30). Thus, this is the S3 doublet. Similarly,
there is the triplet ðZ4; Z5:Z6Þ, which are written by

Z4 ¼ ðX0;4Þ4 þ ðX2;4Þ4 − 2ðX0;4Þ2ðX2;4Þ2;
Z5 ¼ 2

ffiffiffi
2

p
ðX1;4

þ Þ2ððX0;4Þ2 þ ðX2;4Þ2Þ;
Z6 ¼ 4

ffiffiffi
2

p
X0;4ðX1;4

þ Þ2X2;4: ð41Þ

On ðZ4; Z5; Z6ÞT , S and T are represented by the same ρðSÞ
and ρðTÞ as Eq. (32). Thus, this is the S4 triplet.
At this stage, nine elements remain. Among nine

elements, the ðZ7; Z8; Z9Þ are a triplet, where

Z7 ¼ ðX1;4
þ Þ2ððX0;4Þ2 − ðX2;4Þ2Þ;

Z8 ¼ X0;4X1;4
þ ððX0;4Þ2 − ðX2;4Þ2Þ;

Z9 ¼ −X2;4X1;4
þ ððX0;4Þ2 − ðX2;4Þ2Þ: ð42Þ

On this triplet ðZ7; Z8; Z9ÞT , S and T are represented by

ρðSÞ ¼ −
1

2

0
B@

0
ffiffiffi
2

p ffiffiffi
2

p
ffiffiffi
2

p
1 −1ffiffiffi

2
p

−1 1

1
CA;

ρðTÞ ¼

0
B@

i 0 0

0 eπi=4 0

0 0 e−πi=4

1
CA: ð43Þ

The other 6 elements correspond to an irreducible repre-
sentation, ðZ10; Z11; Z12; Z13; Z14; Z15Þ, where

Z10 ¼ ðX0;4Þ4 − ðX2;4Þ4;
Z11 ¼

ffiffiffi
2

p
X0;4X1;4

þ ððX0;4Þ2 þ 3ðX2;4Þ2Þ;
Z12 ¼

ffiffiffi
2

p
X2;4X1;4

þ ð3ðX0;4Þ2 þ ðX2;4Þ2Þ:
Z13 ¼ 2X0;4X2;4ðX0;4Þ2 − ðX2;4Þ2;
Z14 ¼ 2

ffiffiffi
2

p
X0;4ðX1;4

þ Þ3;
Z15 ¼ 2

ffiffiffi
2

p
X2;4ðX1;4

þ Þ3: ð44Þ

On them, S is represented by

ρðSÞ ¼ −
1

2

0
BBBBBBBBB@

0 1 1 0 1 1

1 0 0 1 1 −1
1 0 0 1 −1 1

0 1 1 0 −1 −1
1 1 −1 −1 0 0

1 −1 1 −1 0 0

1
CCCCCCCCCA
; ð45Þ

and T is represented by

ρðTÞ ¼ diagð1; eπi=4;−eπi=4;−1; e3πi=4;−e3πi=4Þ: ð46Þ

Both representations on ðZ7; Z8; Z9Þ and ðZ10; Z11; Z12;
Z13; Z14; Z15Þ satisfy

ρðS2Þ ¼ IN×N; ρððSTÞ3Þ ¼ IN×N;

ρðT8Þ ¼ IN×N; ρððST−1STÞ3Þ ¼ IN×N; ð47Þ

for N ¼ 3 and 6, respectively. This is the Δð96Þ algebra.
In particular, ðZ7; Z8; Z9Þ correspond to the Δð96Þ triplet.

C. Larger M

Similarly, we can study the case with larger M. Quartic
tensor products of Xj;M would be modular forms of finite
modular subgroups. We have obtained modular forms
corresponding to S3 ≃ Δð6Þ, S4 ≃ Δð24Þ, Δð96Þ. These
are the Δð6N2Þ series. Thus, we may obtain modular forms
of Δð6N2Þ with larger N for larger M.
For example, we consider the case with M ¼ 8. Then,

we use the Z2 even orbifold basis, i.e., ðX0;8; X1;8
þ ; X2;8

þ ;
X3;8
þ ; X4;8Þ. On them, S is represented by

ρðSÞ ¼
ffiffiffi
i
8

r
0
BBBBBB@

1
ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p
1ffiffiffi

2
p ffiffiffi

2
p

0 −
ffiffiffi
2

p
−

ffiffiffi
2

p
ffiffiffi
2

p
0 −2 0

ffiffiffi
2

p
ffiffiffi
2

p
−

ffiffiffi
2

p
0

ffiffiffi
2

p
−

ffiffiffi
2

p

1 −
ffiffiffi
2

p ffiffiffi
2

p
−

ffiffiffi
2

p
1

1
CCCCCCA
; ð48Þ

and T is represented by
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ρðTÞ ¼ diagð1; eπi=8; eπi=2; e9πi=8; 1Þ: ð49Þ

Then, we consider quartic tensor products. For instance,
there is a triplet, ðZ1; Z2; Z3Þ, where

Z1 ¼ 2ðX0;8ðX1;8
þ Þ2X2;8

þ þ ðX1;8Þ2X2;8
þ X4;8

− X0;8X2;8
þ ðX3;8

þ Þ2 − X2;8
þ ðX3;8

þ Þ2X4;8Þ;
Z2 ¼ ðX0;8Þ3X1;8

þ − X1;8
þ ðX4;8Þ3 þ ðX0;8Þ2X1;8

þ X4;8

− X0;8X1;8
þ ðX4;8Þ2 þ 2X0;8ðX2;8

þ Þ2X3;8

− 2ðX2;8
þ Þ2X3;8

þ X4;8; ð50Þ

Z3 ¼ −ððX0;8Þ3X3;8
þ − X3;8

þ ðX4;8Þ3 þ ðX0;8Þ2X3;8
þ X4;8

− X0;8X3;8
þ ðX4;8Þ2 þ 2X0;8ðX2;8

þ Þ2X1;8

− 2ðX2;8
þ Þ2X1;8

þ X4;8Þ: ð51Þ

On them, S and T are represented by

ρðSÞ ¼ 1

2

0
B@

0
ffiffiffi
2

p ffiffiffi
2

p
ffiffiffi
2

p
−1 1ffiffiffi

2
p

1 −1

1
CA;

ρðTÞ ¼

0
B@

e6πi=8 0 0

0 e9πi=8 0

0 0 eπi=8

1
CA: ð52Þ

They correspond to the Δð384Þ triplet. Similarly, we can
discuss the case with larger M.

IV. CONCLUSION

We have studied modular transformation of holomorphic
Yukawa couplings in magnetized D-brane models. Their
products correspond to nontrivial representations of finite
modular subgroups. Explicitly, we have constructed modu-
lar forms of weight 2 for the S3 doublet, the S4 triplet, the
Δð96Þ triplet and sextet, and the Δð384Þ triplet. Similarly,
these products with largerM would give us representations
for Γ2M.
We have set vanishing Wilson lines. In our discussion,

the Z2 orbifold basis is important. The orbifold with
magnetic flux allows discrete Wilson lines [33]. It would
be interesting to extend our analysis to magnetized D-brane
models with discrete Wilson lines.
Our results would be useful to study model building for

the quark and lepton masses and mixing angles by
extending analyses in Refs. [22–27]. Although our purpose
is to construct modular forms of weight 2 for finite modular
subgroups, it is also a challenging issue to study string
compactifications, where our modular forms are realized as
Yukawa couplings.
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