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We readvocated the conjecture of indistinguishability between the quantum fluctuation observed from a
Rindler frame and a real thermal bath, for the case of a free massless scalar field. To clarify the robustness
and how far such is admissible, in this paper, we investigate the issue from two different noninertial
observers’ perspective. A detailed analysis is being done to find the observable quantities as measured by
two noninertial observers (one is Rindler and another is uniformly rotating) on the real thermal bath and
Rindler frame in Minkowski spacetime. More precisely, we compare thermal-Rindler with Rindler-Rindler
and thermal-rotating with Rindler-rotating situations. In the first model it is observed that although some of
the observables are equivalent, all the components of renormalized stress-tensor are not same. In the later
model we again find that this equivalence is not totally guaranteed. Therefore we argue that the
indistinguishability between the real thermal bath and the Rindler frame may not be totally true.
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I. INTRODUCTION

General relativity and quantum field theory are the two
pillars of modern physics and their coupling led to great
challenges which are yet to yield a fully satisfactory
solutions. One of them is the study of quantum field theory
in curved space-time which led many researchers to take
interest in it. One such topic is the well known Unruh effect
which has great importance in understanding the Hawking
effect [1]. In 1976, Unruh showed that even in flat space-
time the particle content of the state of a quantum field is an
observer dependent notion [2]. An observer moving with
uniform proper acceleration through Minkowski space-
time would see the Minkowski vacuum as a thermal bath of
particles, characterized by a temperature T ¼ a=2π, where
a is the proper acceleration of the observer (see [3] for a
review on this topic).
The origin of the effect in the zero-point fluctuations of

the quantum field which are present even in vacuo has been
investigated in [4]. It has been observed that for a detector
at rest, the excitations due to zero-point fluctuations are
precisely cancelled by its spontaneous emission rate and the
Lorentz invariance of the vacuum state ensures that there
is still no net excitation for uniform motion. But for the
accelerated detector, the correlations in the zero-point

fluctuations of the field along the detector’s world-line
plays the major role in the detector’ s response function (we
shall see this later) which is no longer being balanced by its
own zero-point fluctuations. The detector consequently
clicks. The same thing also being investigated by calculat-
ing the renormalized stress-tensor of the fields. Since hTabi
vanishes in the Minkowski frame, it must vanish in the
Rindler frame as this quantity is a covariant object. This
exactly has been shown in literature (see also [5,6] for more
details).
Apart from understanding this from the accelerated

detector’s perspective [7–9], recently it has been observed
that the force due to radiation as measured by the
accelerated frame satisfies quantum fluctuation-dissipation
theorem [10]. This observation is quite analogous to the
Brownian motion of a particle in a real thermal bath. This
led to the conjecture that the vacuum fluctuations seen by a
uniformly accelerated observer (Rindler) is equivalent to
the thermal fluctuations seen by a static observer in thermal
background.1 A much deeper analysis of this effect has
been investigated. It has been observed that the Unruh
effect is a microscopic effect rather than a macroscopic
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1Similar findings have also been obtained for conformal
vacuum, seen by the comoving observers, in the case of
de-Sitter (dS) Friedmann-Lamaître-Robertson-Walker (FLRW)
Universe. An extension to (1þ 1) Schwarzschild black hole
revels that the particles in Kruskal and Unruh vacuum states, seen
by the Schwarzschild static observer, exhibits same fluctuation-
dissipation theorem (see [11] for details).
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one [12]. Moreover, such a scenario is due to the systematic
quantum effect induced by the local coupling between the
vacuum and the thermometer [13].
In order to test such indistinguishability between the

quantum fluctuation seen by a noninertial observer and the
thermal fluctuation seen by an inertial observer in thermal
bath and how far such is valid, one must study this issue
more deeply. In this paper, we try to understand how
quantum fields behave in a real thermal bath and whether
it can mimic all the phenomena from the perspective of a
noninertial observer by computing different observable
quantities. More precisely, we are interested to examine if
another noninertial observer see the same phenomenon when
it looks the real thermal bath and the Rindler frame in
Minkowski frame, respectively. Naturally the question arises
whether both the situations can produce identical observ-
ables with respect to the final same noninertial frame.
There have been recent studies in this direction. In [14] it

has been shown that the reduced density matrix for a
Rindler observer (with acceleration a) in thermal bath is
symmetric under the interchange of temperature of the bath
and T ¼ a=2π; thereby implies such indistinguishability.
Calculation was based on the Unruh modes and has
been further elaborated in [15]. Subsequently, the particle
number, seen by the Rindler frame in thermal bath, was
calculated. Later the same authors demonstrated that the
particle number seen by the Rindler-Rindler observer in
the Minkowski vacuum is identical to this value [16] with
the bath temperature is identified as the temperature
perceived by the first Rindler frame. In this analysis they
studied both particle number computation by Bogoliubov
technique and detector response. This result shows that one
can use the Davies-Unruh bath as a proxy for a real thermal
bath not only for the initial stage, but also for the next stage
where the observer is a Rindler one.
Under this circumstances, the most natural question one

has to address is to find the robustness of this particular
conjecture. Particularly, one needs to investigate if the
indistinguishability is still valid with respect to any other
noninertial observer. Moreover, as we shall see later that the
systems (Rindler frame in Minkowski spacetime and real
thermal bath) seen from Rindler frame is not in thermal
equilibrium. Therefore, to be more sure of such resem-
blance, we need to concentrate on more observables. Our
aim of this paper is precisely the same.
Here we concentrate on two different models to study this

issue. In the first example we reinvestigate the comparison
between the Rindler frame in thermal bath and the Rindler
observer in Rindler frame. We observe that the Green
function for the thermal-Rindler case and that for the
Rindler-Rindler case are not invariant under time translation
and so both of them are not in equilibrium. In that case the
thermal flux which is basically the number of particles per
unit area is the good quantity for measurement. To measure
the thermal flux we adopt the idea of computing the

renormalized expectation value of stress tensor of that
system in null coordinates. However, we notice that for
both the cases the results are not exactly the same.
Finally, we explore this phenomena with another inter-

esting model introducing rotating frame in a thermal
background and shall compare the results with a
Rindler-rotating observer. The aim is to find the validity
of the indistinguishability with respect to another non-
inertial observer other than Rindler. So far we know this has
not been investigated in this regard. However, we notice
that the Wightman function for the thermal-rotating
observer is time translational invariant, whereas that for
the Rindler-rotating observer is not. We find that this has
an impact on the observables in these two situations and
interestingly, all of them are not exactly identical. The
implications are finally discussed.
The organization of the paper is as follows. In the

following section, i.e., Sec. II, we provide the expression
of thermal Green’s function in position space both in
(1þ 1) and (1þ 3) spacetime dimensions. A brief descrip-
tion of the detector response is also included in the later part
of the same section. These will all provide the main basis of
main analysis. Sections III and IV are devoted to calculate
different observable quantities for a Rindler observer in real
thermal bath and in Rindler-Rindler frame, respectively.
In Sec. V, we introduce a rotating observer in real thermal
bath and find out the detector response function for this
case. In the next section, we provide a comparative
description of the detector response for a Rindler-rotating
observer. Finally in Sec. VII, we summarize our findings
and draw a conclusion of our analysis.

II. FRAMEWORK

In this section, we shall summarize the expressions for
thermal Green’s function for the free scalar fields in
Minkowski spacetime which will be used later for our
main purpose. Here the Green’s function will be evaluated
in coordinate space, both in (1þ 1) and (1þ 3) dimen-
sions. We particularly use Cartesian and cylindrical coor-
dinates. A short discussion on the Unruh detector response
will also be given for the later use of it.

A. Thermal Green’s function in Minkowski frame

The thermal Wightman function (advanced time) for
massless scalar fields in Minkowski spacetime is given
by [17]:

GβðX2;X1Þ ¼
X
n

fnðX2Þf�nðX1Þ
2ωn

�
eiωnT

eβωn − 1
þ e−iωnT

1 − e−βωn

�

≡X
n

fnðX2Þf�nðX1Þ
2ωn

ΔβðT;ωnÞ; ð1Þ

where β and ωn are the inverse temperature of the thermal
bath and frequency of the nth mode, respectively. We used
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the notation T ¼ T2 − T1 > 0 and X ¼ ðT;XÞ. A deriva-
tion of the above expression is presented in Appendix A
by considering the thermal scalar fields as collection of
canonical ensemble of infinite number of harmonic oscil-
lators. In the above equation, fnðXÞ are the spacial part of
the mode solutions of Klein-Gordon equation. Later we
shall use this in different situations. Depending upon the
case, the relevant expression for fnðXÞ will be substituted
and then the sum (for continuum situation, integration) has
to be performed. Let us now evaluate this in required forms
which are needed for our main analysis.

1. (1+ 1)-dimensional spacetime

As far as we are aware of, in literature (1þ 1), dimen-
sional position space expression for thermal case has not
been explicitly mentioned. Therefore, here we shall be a
little exhaustive to obtain this. Our aim is to find the
expression in Cartesian coordinates for massless modes.
For that one needs to substitute fðXÞ ¼ ð1=2πÞeikX and
ω ¼ jkj, where k denotes the wave number. With this,
Eq. (1) transforms to

GβðX2;X1Þ ¼
Z

∞

−∞

dk
4πk

eikΔX

eβk − 1
ðeikΔT þ eβke−ikΔTÞ

¼ 1

4π

Z
∞

−∞

dk
kðeβk − 1Þ ½e

ikðΔTþΔXÞ þ eikðΔT−ΔXÞ�;

ð2Þ
where ΔX ¼ X2 − X1. The above integrations are of the
following form,

I2D ¼
Z

∞

−∞

dk
k

eikθ

eβk − 1
: ð3Þ

To evaluate this, we start with the integration below,

I ¼ i
Z

∞

−∞
dk

eikθ

eβk − 1
; ð4Þ

which after integration with respect to θ leads to our
required result. This can be performed by a method of
complex analysis. Assuming θ > 0, one finds that the
upper half of the complex plane is relevant and so the
relevant poles which contribute to the integration are at
k ¼ 2πni

β with n is positive integers. Then we find

I ¼ −
2π

β

X∞
n¼1

e
−2πnθ

β ¼ −
2π

β

1

e
2πθ
β − 1

: ð5Þ

Integrating this with respect to θ one obtains,

I2DðθÞ ¼ − log ½1 − e−
2πθ
β �: ð6Þ

Use of this in (2) yields the required form:

GβðX2;X1Þ ¼ −
1

4π

�
log½1 − e−

2π
β ðΔT−ΔXÞ�

þ log½1 − e−
2π
β ðΔTþΔXÞ�

�
: ð7Þ

In the limit β → ∞ the above reduces to the zero temper-
ature expression

ϕðU2;U1ÞϕðV2;V1Þ¼−
1

4π
log½ðU2−U1ÞðV2−V1Þ�; ð8Þ

where U ¼ T − X and V ¼ T þ X. A comment on the
β → ∞ which leads to the zero temperature Green’s
function has been given in Appendix B.

2. (1+ 3)-dimensional spacetime

We present thermal Green’s function, both in Cartesian
as well as cylindrical coordinates. First let us concentrate
on the Cartesian case.
In Cartesian coordinates, fðXÞ ¼ ð1=2πÞ3eik·X and so it

turns out to be

GβðX2; X1Þ ¼
Z

d3k
2ωk

eik·ΔXΔβðT;ωkÞ; ð9Þ

where for massless scalar we have ωk ¼ jkj. After
performing the integration one obtains [18]:

GβðX2; X1Þ

¼ 1

8πβjΔXj
�
coth

�
π

β
ðΔT þ jΔXjÞ

�

− coth

�
π

β
ðΔT − jΔXjÞ

��
; ð10Þ

where jXj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
1 þ X2

2 þ X2
3

p
with (X1, X2, X3) being

Cartesian space coordinates and ΔX≡X2 −X1. For
completeness and clarity, we present a detailed derivation
of the above in Appendix C. This also complements the
existing calculation, done in [18]. For a consistency check,
if one takes β → ∞ limit Eq. (10) reduces to the standard
zero temperature result,

GðX2;X1Þ ¼ −
1

ð2πÞ2
1

ðT2 − T1Þ2 − jX1 −X2j2
: ð11Þ

We now turn our attention the derivation in cylindrical
coordinates. From the Klein-Gordon equation in cylindrical
coordinates (ρ, ϕ, z), the normalized mode functions are
found out to be,

fnðXÞ≡ fmðρ; kzÞ ¼
1

2π
JmðqρÞ expðimϕþ ikzzÞ; ð12Þ
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with ω2 ¼ q2 þ k2z . Here, m denotes the modes along the
azumuthal directions (i.e., the conjugate variable of the
angular coordinate ϕ), q denotes the modes functions along
ρ direction while kz is for z direction. JmðqρÞ denotes the
Bessel function of the first kind of order m. Then (1) takes
the following form:

Gβðρ2;ϕ2; z2; ρ1;ϕ1; z1Þ

¼ 1

4π2
Xþ∞

m¼−∞

Z
∞

0

qdq
Z þ∞

−∞

dkz
2ω

Jmðqρ2ÞJmðqρ1Þ

× eimΔϕþikzΔz
�
eiωΔT

eβω − 1
þ e−iωΔT

1 − e−βω

�
: ð13Þ

We shall use the above results in the subsequent analysis.

B. Detector response: A brief review

Thermality can be observed in theories by studying the
detector-response of a Unruh-DeWitt detector. The simplest
system of this kind is when one considers a monopole like
detector whose motion is described by a classical worldline
(xðτÞ), with τ being the proper time of the detector. The
monopole moment of the detector is given by μðτÞ. The
detector is assumed to be a two-level system, which makes
a transition from some initial energy eigenstate jEii to a
final energy eigenstate jEfi, when it detects a scalar field.
Here we shall assume that the detector is linearly coupled to
the scalar field [ϕðxÞ] with the interaction Hamiltonian
being,

Hint ¼ μðτÞϕ½xðτÞ�: ð14Þ
The time evolution of the detector’s moment is governed
by its Hamiltonian H0, whose energy eigenstate are jEii
and jEfi:

μðτÞ ¼ eiH0τμð0Þe−iH0τ: ð15Þ
The initial and final state of the whole system (detector plus
field) is taken as a tensor product of the states of the
detector and the field, i.e.,

jIi ¼ jEii ⊗ j0i;
jFi ¼ jEfi ⊗ j1pi: ð16Þ

Here, j0i and j1pi denote vacuum and one particle state of
the scalar field with momentum p, respectively. Using this
information, we can compute the first order transition
amplitude of the system from its initial state to final state,

AðEÞ ¼ q
Z

∞

−∞
dτe−iEτh1pjϕ½xðτÞ�j0i: ð17Þ

Here, E ¼ Ef − Ei and q ¼ ihEfjμð0ÞjEii, which only
depends on the internal structure of the detector. From

this, we can obtain the transition probability by integrating
over all possible 1-particle states of the field,

PðEÞ ¼ jqj2
Z

∞

−∞
dτ1dτ2e−iEðτ2−τ1ÞGþ½xðτ1Þ; xðτ2Þ� ð18Þ

The positive sign indicates the positive frequency Green’s
function.
In the case when the Green’s function is time transla-

tional invariant, we can perform one of the integrals by
switching to the coordinates,

ŭ ¼ τ2 − τ1; τ̄ ¼ τ2 þ τ1; ð19Þ

and divide by,

jqj2T ¼ jqj2
Z

∞

−∞
dτ̄; ð20Þ

to obtain the response function of the system,

RðEÞ ¼
Z

∞

−∞
dŭeiEŭGþ½ŭ�: ð21Þ

The above is being used to find the response function in
different situations (see [19] for a review on this topic).
It must be emphasized that the applicability of the above

expression depends on the translational invariance property
of Gþ; i.e., Gþ depends only on the interval (ŭ ¼ τ2 − τ1)
of the detector’s proper time. This is usually called as
stationary or equilibrium system. But if this is not the case,
known as nonstationary or nonequilibrium system, then it
is not possible to use (21). In this case a complete analytical
analysis of detector’s response may not be always possible
and consequently any conclusion may not be drawn. Of
course, it is always possible to calculate a finite time
Detector response which is given by [20,21]

RðEÞ ¼ 2

Z
0

−∞
dŭRe½e−iEŭWRðτ1; ŭÞ�; ð22Þ

where WRðτ1; ŭÞ is the regularized Wightman function.
This can be used to see the features of the nonstationary
situations. We shall keep this in mind to discuss our main
purpose of the present paper.

III. RINDLER OBSERVER IN THERMAL BATH

We now consider one of our primary example for
understanding quantum effects from a noninertial frame.
The first example that we consider, is a Rindler observer,
who is moving through a thermal bath, with a uniform
acceleration. This model has been studied earlier not only
in the perspective of Unruh detector [16,22], but also the
calculation of particle number, seen from Rindler observer,
has been done [14,15]. Consequently it has been argued
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in [15] that both ways yield the same result. In the second
calculation the authors used the Unruh modes to mimic the
thermal particles in the Minkowski spacetime while in the
earlier one they used the Minkowski modes in determining
Green’s function. Therefore comparison of these two
results may not give the complete story. Keeping this in
mind we here calculate everything on the basis of the
Minkowski modes which is much more natural to study the
present issue.2

In this section, we revisit this model to deeply investigate
different quantities from the perspective of Rindler
observer. For simplicity, the calculations, in this section,
are confined in (1þ 1) spacetime dimensions. The coor-
dinate transformations from Minkowski to Rindler are
given by

T ¼ eaX

a
sinhðaT Þ;

X ¼ eaX

a
coshðaT Þ; ð23Þ

and under this the Rindler metric takes the form

ds2 ¼ −dT2 þ dX2

¼ e2aX ð−dT 2 þ dX2Þ: ð24Þ

A. Particle number

The standard methodology for establishing the phe-
nomenon of particle production in quantum field theory,
is the evaluation of the number operator in a particular
frame of reference. Since the fields can be represented by
infinite collection of Harmonic oscillators (HO), we evalu-
ate this by considering these oscillators immersed in a
thermal bath of inverse temperature β, which shall mimic
the effects of a free scalar field at finite temperature. Given
this similitude, we study the particle spectra (number
operator) as seen from an uniformly accelerating observer’s
(acceleration ¼ a) perspective, who is moving through the
scalar field (HO) placed in that thermal bath. In the initial
computation that we carry out, we shall assume that the
system is in thermal equilibrium and use the tools of
equilibrium statistical mechanics. The quantity of interest
for our calculation then becomes,

hN iβ ¼
1

Z

Z
∞

0

dP
2P

X∞
n¼0

hnjb†PbPe−βHω jni: ð25Þ

Here, bP and b†P are the annihilation and creation operators
from the Rindler observer’s perspective, respectively.
Hω ¼ ða†aÞω is the Hamiltonian of the single Harmonic

oscillator, with a and a† are its annihilation and creation
operators. Z indicates the partition function given by
Z ¼ P

nhnje−βHω jni. Evaluation of (25) is straightforward.
We present this in Appendix D, which yields

hNiβ ¼
1

4

Z
∞

0

dP
P

½2faðPÞfβðωÞ þ faðPÞ þ fβðωÞ�; ð26Þ

where fβðkÞ ¼ ðeβk − 1Þ−1 and faðkÞ ¼ ðe2πk=a − 1Þ−1
denote the Bose-Einstein factors. The same result was
obtained in [15] by constructing the thermal density matrix
which is being found by integrating out the left modes.
There the authors have used the Unruh modes to evaluate
the thermal density matrix. On the contrary here we have
used Minkowski modes and hence the Minkowski
Hamiltonian to evaluate the particle number perceived
from the accelerating observer. Although our present
procedure is similar in idea with the existing one, but
the quantity is slightly different as it has been constructed
differently. The significance of appearance of each term is
discussed in [15].
Let us now make some comment on this way of

evaluating the particle number. Although this is a simple
and interesting result, an issue is there as one used the
techniques of equilibrium statistical mechanics. To see this,
we shall use the Rindler-Null coordinates,

U ¼ T − X ; V ¼ T þ X ð27Þ

In this coordinate system, the metric transforms to

ds2 ¼ −e2aðV−UÞdUdV: ð28Þ

Interestingly, in these coordinates the Green’s function
decomposes into two parts: one corresponds to outgoing
mode and other one is for ingoing modes. The explicit
expression is

GβðU2;V2;U1;V1Þ ¼ hϕðU2ÞϕðU1Þiβ þ hϕðV2ÞϕðV1Þiβ
ð29Þ

where,

hϕðU2ÞϕðU1Þiβ ¼ −
1

4π
log½1 − e

2π
aβðe−aU2−e−aU1 Þ�;

hϕðV2ÞϕðV1Þiβ ¼ −
1

4π
log½1 − e−

2π
aβðeaV2−eaV1 Þ�: ð30Þ

Note that the above is not time translational invariant in
proper frame of observer and hence from the accelerated
observer’s frame the system is not in thermal equilibrium.
Therefore a question arises on the viability of the above
obtained result.

2A similar ideology has also been mentioned, although not
done, at the last paragraph of the paper [14].
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B. Components of renormalized
energy-momentum tensor

We observed that there exists a problem in the evaluation
of number of particles and therefore it is not a good quantity
to use for our later purpose. In this situation a better idea for
the number of quanta emitted, can be obtained from the
thermal flux as perceived by the accelerating observer. The
flux is effectively the number of particles emitted per unit
area. The measure of this is best understood, when we study
the expectation value of the stress tensor of the system in
the null coordinates, given by Eq. (27). Using the value of
Green’s function in these coordinates [see, Eq. (30)] and the
covariant expression of the energy-momentum tensor for
massless scalar fields in (1þ 1) dimensions,

Tab ¼ ∇aϕ∇bϕ −
1

2
gab∇cϕ∇cϕ; ð31Þ

we have a general formula for the renormalized energy-
momentum tensor in a background described by the metric,

ds2 ¼ CðU;VÞdUdV: ð32Þ

It is expressed in terms of the contribution arising from the
normal ordered value of the stress tensor and the contri-
butions arising from the parallel transport along the
direction of point splitting (which is necessary to maintain
the expectation values of the stress tensor covariant.3),

hTa
b½gcdðxÞ�iren ¼

ffiffiffiffiffiffi
−g

p hTa
b½ηcdðxÞ�i þ θba: ð33Þ

Here hTa
b½ηcdðxÞ�i is the renormalized stress tensor corre-

sponding to flat spacetime ηab, can obtained by performing
a simple point splitting as described in Appendix E and θab
is the term which ensures covariance. The components of
this term are given by

θUU ¼ −
�

1

12π

�
C1=2∂2

UC
−1=2;

θVV ¼ −
�

1

12π

�
C1=2∂2

VC
−1=2;

θUV ¼ θVU ¼ 0: ð34Þ

For the present case C is given by C ¼ −e2aðV−UÞ.
Consequently, we have

θUU ¼ −
a2

48π
; θVV ¼ −

a2

48π
: ð35Þ

Since the first term on the right-hand side of (33)
arises from the normal ordered expansions, for the ease
of notations, we shall describe it with h∶Ta

bðxÞ∶i.
Evaluating the same for this case (where we should keep
in mind that the expectation values are to be taken in the
thermal state) we get,

hTUUðUÞiβ ¼Renh∶TUUðUÞ∶iβ þ θUU

¼ a2

48π
þ π

12β2
e−2aU þ θUU ¼ π

12β2
e−2aU ;

hTVVðVÞiβ ¼Renh∶TVVðVÞ∶iβ þ θVV

¼ a2

48π
þ π

12β2
e2aV þ θVV ¼ π

12β2
e2aV ; ð36Þ

while hTUViβ vanishes trivially (see Appendix E for detail
derivation of these expressions including the normal
ordered expressions h∶TUU∶iβ and h∶TVV∶iβ). These are
the renormalized stress-tensor components for the scalar
field immersed in a thermal bath, when seen from an
accelerating frame of reference. We see that in the standard
limits, either a → 0 or β → ∞ leads us to the expected
standard results. By this we mean that upon taking the
a → 0 limit, we recover the expected result for the stress
tensor of a scalar field in thermal bath; and the limit for
β → ∞, gives us vanishing components which is expected
at zero temperature in flat spacetime. The first component
of Eq. (36) represents the outgoing flux whereas the later
one is related to ingoing flux.
Let us now concentrate on the first part of the above

equations which arise from the normal order expansion.
We see that these not only contain the standard factor of
a2=48π, but also contain a spacetime dependent term.
The last terms in these (i.e., second terms of the above
equations) are arisen due to the already existing particle in
the thermal bath. This can be understood in the following
way. In Minkowski frame in presence of thermal bath we
have h∶TUU∶iβ ¼ π=ð12β2Þ. With respect to the acceler-
ated frame this will be transformed to the second term of the
above equation which can be checked by using tensorial
transformation of h∶TUU∶iβ under Rindler transformation
of coordinates. This tells that the first terms are purely due
to the Unruh effect. The appearance of this spacetime
dependence is due to the lack of time translational
invariance of the Green’s function Eq. (30) which again
signifies the nonequilibrium situation of the system.
Moreover, the first expression of the above does not have
any resemblance with the particle number (26) which one
should expect. It implies that the application of the
equilibrium statistical method in preceding subsection is
not justifiable.
Before finishing this section, let us mention about the

detector response for this case. It has been discussed in the
previous subsection that the Wightman function is not time

3See Chapter 6 of [19] for details. Typically for curved
spacetime this expression also has a factor containing the Ricci
scalar, but since we are dealing with the case of flat spacetime,
that term naturally vanishes.
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translational invariant in the proper Rindler frame.
Therefore, one can not use (21) for analytical discussion
of detector response since it crucially depends on the time
translational invariance of the Wightman function. This is
also pointed out in [22]. Of course, one can study the finite
time detector response function (22) in this case. But we
leave out this discussion in this paper.

IV. COMPARISON WITH
RINDLER-RINDLER CASE

In the previous section, we considered a Rindler observer
moving through the thermal bath. In literature, it has
already been established that the spectrum as perceived
by a Rindler observer, is the same as that of a thermal bath.
To rigorously establish this, one must compute proper
observables and show that they give physically consistent
results. With this spirit we also want to investigate how far
such an indistinguishability between real thermal bath and
quantum fluctuations in noninertial frame exists. For that
let us now compare the thermal-Rindler situation with
Rindler-Rindler case. In this section, the Rindler-Rindler
case will be discussed.
The Rindler-Rindler trajectory deals with an acceleration

“on top of another acceleration.” By this, we mean give
another set of transformations in (23) of the form:

T ¼ ea2x

a2
sinhða2tÞ

X ¼ ea2x

a2
coshða2tÞ: ð37Þ

Note that we have used a different value of acceleration for
both the two separate transformations, a1 and a2. This leads
to the following form of the metric:

ds2 ¼ e2
a1
a2
ea2x coshða2tÞe2a2xð−dt2 þ dx2Þ; ð38Þ

where the acceleration a1, takes us from Minkowski to
Rindler, and a2 takes us from Rindler to Rindler-Rindler.
Evaluating the two point correlation of the Rindler-Rindler
fields squeezed between the Minkowski vacuum, we get,

hϕðu2; v2Þϕðu1; v1ÞiM ¼ hϕðu2Þϕðu1ÞiM þ hϕðv2Þϕðv1ÞiM
ð39Þ

Here, ðu; vÞ are the Rindler-Rindler null coordinates,
defined as

u ¼ t − x; v ¼ tþ x; ð40Þ

and h� � �iM denotes the expectation value taken between
the Minkowski vacuum. The values of the quantities on the
right-hand side are given by,

hϕðu2Þϕðu1ÞiM
¼ −

1

4π
log

�
1

a1

n
e
a1
a2
e−a2u1 − e

a1
a2
e−a2u2

o�
;

hϕðv2Þϕðv1ÞiM
¼ −

1

4π
log

�
1

a1

n
e
a1
a2
ea2v2 − e

a1
a2
ea2v1

o�
: ð41Þ

The above expressions are obtained by using two consecu-
tive Rindler transformations in (8). Thus, from Eqs. (30)
and Eq. (41), one can easily observe that, at the level of the
Green’s function, the Rindler-Rindler case is very different
from that of the thermal-Rindler. To perform an explicit
check of the equivalence of the two systems, one must
compare some of the observables measured in the theory.
The simplest of these include the number operator, the flux,
and the response function. However, we easily see that the
Green’s function obtained in (41) is also not time trans-
lationally invariant. Thus, we again face similar issues like
in the case of the thermal-Rindler Green’s function. Thus,
for comparison we compute the flux of the outgoing modes
of the scalar field in this spacetime and then compare it
against Eq. (36).
From Eq. (33), we can obtain the value of the renor-

malized stress-tensor of the outgoing and ingoing modes as,

hTuuðuÞiM ¼ h∶TuuðuÞ∶iM þ θuu

¼ a22
48π

þ a21
48π

e−2a2u þ θuu ¼ 0;

hTvvðvÞiM ¼ h∶TvvðvÞ∶iM þ θvv

¼ a22
48π

þ a21
48π

e2a2v þ θvv ¼ 0: ð42Þ

where θuu and θvv are given by

θuu ¼ −
a21e

−2a2u þ a22
48π

; θvv ¼ −
a21e

2a2v þ a22
48π

: ð43Þ

These are calculated from the expression (34) for the metric
(38), expressed in null coordinates. The one that we have
chosen preserves the covariance of the stress tensor, as
described in the previous section, and cancels with the other
term in the equation above, resulting in the final renor-
malized value to be vanishing. A detailed discussion is
given in Appendix E. It is clear that if one recognizes a1 ¼
2π
β and a2 ¼ a, we exactly get the same result for the normal
ordered stress tensor components as given in Eq. (36).
However the complete renormalized stress tensor does not
match as expected. This is an important consistency check,
because it is not immediately obvious from the structure of
the two Green’s functions [Eqs. (30) and (41)], that they
would lead to the same normal ordered stress tensors. Here,
like earlier, the appearance of two terms is due to the same
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reason. The first Rindler frame sees the Minkowski vacuum
as thermal which, with respect to the second Rindler frame,
transforms to the last terms of the above expressions. While
the first terms appear as if the second frame has an
acceleration a2 with respect to the first one.
The breakage of time translational invariance in the

system, on going to the proper frame of the Rindler-Rindler
observer (i.e., u1 ¼ v1 ¼ τ1, u2 ¼ v2 ¼ τ2) can be seen
more explicitly by computing the Bogoliubov coefficients
for the Minkowski to Rindler-Rindler transformation.
Using the Bogoliubov coefficients, one can evaluate the
expectation values,

hcqcriM; hc†qc†riM; hc†qcriM; hcqc†riM; ð44Þ

squeezed between the Minkowski vacuum. Here c and c†

depicts the annihilation and the creation operator corre-
sponding to the Rindler-Rindler observer, respectively. The
last two in Eq. (44) denote the number operator, and can be
evaluated, as done in [16]. In the standard case, when one
deals with Minkowski to Rindler transformation, it is found
that hcpcqiM and hc†pc†qiM disappear for positive frequen-
cies. However, it is seen that in the Rindler-Rindler case,
this is not the case (for explicit expressions of these, see
Appendix F). This distinctly shows that there is a breakage
of time translational invariance in the system.
We evaluate the components of the stress-tensor in both

cases, directly by using coordinate transformations and not
relying on the step-wise evaluation of the Bogoliubov
coefficients. Interestingly the renormalized components do
not match and hence the conjecture of equivalence is not
valid at this level of investigation. However, it has been
observed that first parts of (33) for both the situations are
same with the identification a1 ¼ 2π=β and a2 ¼ a. These
terms can be interpreted as the stress-tensor components for
an accelerating plane conductor. The same interpretation
has been adopted earlier in [23,24] for an accelerated
conducting plane on a Minkowski spacetime. Therefore it
must be noted that from this point of view, this equivalence
conjecture is well satisfied, although the renormalized ones
are not the same.

V. ROTATING OBSERVER IN THERMAL BATH

So far we have concentrated on thermal-Rindler and
Rindler-Rindler situations to investigate the issue of indis-
tinguishability. This topic again will be explored in another
very popular model. We shall here compare the rotating
frame in the thermal bath with the Rindler-rotating frame.
For that let us start calculating several observable quantities
in this section for the case of thermal-rotating frame. Here
we found that the detector response and number of particles
can be calculated. The renormalized components of energy-
momentum tensor are in principle calculable, but it turns
out that we are not getting any readable expressions due to

their huge structure (not even the package in Mathematica
10 can simplify them). Moreover, since the Rindler metric
in four dimensions is not conformally flat, we cannot use
the existing results to obtain them. Therefore we leave this
item in this paper. But it can be inferred that the compo-
nents of renormalized stress-tensor will be nonvanishing
due to the presence of real thermal bath and the contribution
due to coordinate transformation must vanish by the
“vacuum polarization” part as these are tensorial objects.
This is similar to the thermal-Rindler case. In the next
section the Rindler-rotating situation will be discussed.

A. Detector response

Although in literature there exists discussions [22,25] on
thermal-rotating case, here we shall investigate it in a much
more detailed way so that ultimately it serves our main
purpose. In this process some of the old results will again
be investigated, but in such a way that it will be helpful to
shed some light on our present aim. In addition, some new
aspects of this model will be explored whenever necessary.
It will be observed that the response function can be
calculated by conventional way [i.e., using Eq. (21)] as
the time translational invariance exists in the Green’s
function when expressed in rotating frame. We investigate
the current topic in Cartesian coordinates in rotating frame.
Analysis in cylindrical coordinates is also presented in
Appendix G for completeness.

1. Rotating frame in Cartesian coordinates

The timelike Killing vectors ξa which generate rotating
circular motion with respect to Minkowski spacetime is
given by [26],

ξa ¼ ðγ;−γΩY; γΩX; 0Þ; ð45Þ

where Ω is angular velocity of the detector and the term
γ ¼ ð1 − σ2Ω2Þ−1=2 is called the Lorentz factor. The
integral curve, in terms of rotating frame proper time,
obtained from the above Killing vector, turns out to be [26]:

x̃ðτÞ ¼ ½γτ; σ cosðγΩτÞ; σ sinðγΩτÞ; 0�: ð46Þ

Here, σ is the radius of the circular path. Using these, we
have

ΔT ¼ γðτ2 − τ1Þ≡ γŭ;

jΔXj ¼ 2σ sin

�
γΩðτ2 − τ1Þ

2

�
≡ 2σ sin

�
γΩŭ
2

�
: ð47Þ

Substitution of the above in (10) yields the positive
frequency Green’s function in rotating frame:
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Gþ
β ðŭÞ¼

cosecðΩγŭ
2
Þ

16πσβ

�
coth

�
π

β
ðγðŭ− iϵÞþ2σ sinðγΩŭ=2ÞÞ

�

−coth

�
π

β
ðγðŭ− iϵÞ−2σ sinðγΩŭ=2ÞÞ

��
: ð48Þ

Note that the above is time translational invariant as it
depends only on ŭ. Upon taking the limit Ω → 0, this
reduces to the familiar result for the Green’s function of a
stationary thermal bath,

lim
Ω→0

Gþ
β ðŭÞ ¼ −

1

4β2
1

sinh2½πβ γðŭ − iϵÞ� : ð49Þ

The regulator ϵ in the above expressions indicates a choice
of the positive frequency Green’s function.
Substituting the Green’s function (48) in (21), we get the

response function for an uniformly rotating detector in a
thermal bath. Such an integral is not doable analytically and
hence, we resort to using a numerical estimate. We also give
another expression for the response function in cylindrical
coordinates in Appendix G which is sometimes very useful
in certain situations. But here our whole analysis will be
done by using (48).

2. Numerical analysis

It is time to calculate the transition probability rateRðEÞ
for the rotating observer in thermal bath. We have got the
detector response function for this case after substituting
the thermal Green’s function (48) into Eq. (21). However, it
does not seem to be possible to evaluate it analytically.
Therefore, we solve the involved integration numerically to
understand the features. For that we use the Mathematica
10 package.
Here we define the dimensionless energy which is

Ē≡ E=γΩ. Using this one finds that the dimensionless
response function R̄ðĒÞ≡ σRðĒÞ depends only on the
dimensionless quantity σΩ. In Fig. 1 we plot the response
function Ē2R̄ðĒÞwith the variation of Ē for different values
of σΩ. We shall apply these notations in all the plots
through out our paper. One can see from Fig. 1 that the
distribution is similar to Planck. Note that the peak
increases as the angular velocity of the detector increases.
Moreover, the rotating detector has always greater response
than the static one. This can be reconfirmed by the
following analysis.
In the next Fig. 2 we plot the ratio of the response

function for an inertial detector and a uniformly rotating
detector. Here we can see that the response of thermal
rotating detector is almost equal with the thermal static case
when σΩ has lower value, but it starts dominating with the
increase of σΩ. This concludes that they are both equal in
the nonrelativistic regime, i.e., σΩ → 0 but in the ultra-
relativistic regime thermal rotating response function
dominates over the static case.

Now we plot the ratio of the response functions for a
static detector in a finite temperature background and a
uniformly rotating detector with zero temperature at its
background in Fig. 3. Here we can see the detector response
for a pure rotating detector always dominates the thermal
static one in the ultrarelativistic regime. But the later one
dominates for small value of σΩ. So, the ratio sharply falls
with the increase of angular velocity. Although this dis-
cussion is not needed for our purpose, but for the sake of
completeness of this section we present this one.
In the above we numerically studied different features of

the detector response function for the case of a rotating
detector in a real thermal bath. Also we studied its
properties at other limiting cases. The sole purpose of this
analysis is not only understanding the response function,
rather we compare this features with those for the Rindler-
rotating model to understand how similar is the real thermal

FIG. 1. The response function of a uniformly rotating detector
in cartesian coordinates has been plotted. To analyze the results
we have chosen two different values ðσΩÞ ¼ 0.35, 0.5 respec-
tively and then compared with the response of static case
[ðσΩÞ ¼ 0]. We fix inverse temperature β ¼ 2 and ϵ ¼ 0.01.

FIG. 2. The ratio of response function between inertial (Ω ¼ 0)
and uniformly rotating detector in real thermal bath of low
temperature. The response of rotating detector is almost equal
with static case in non-relativistic regime, i.e., ðσΩÞ → 0, but
dominating in ultrarelativistic regime, i.e., ðσΩÞ → 1. Here we
take β ¼ 2 and ϵ ¼ 0.01.
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bath and the thermal bath seen from accelerating frame with
respect to the rotating one. This will be done in the next
section. Therefore, although it seems that the above
graphical analysis contain a “limited” information; rather
it actually gives us a very important massage for the
paradigm of mimicking thermal bath by a noninertial
observer. It will help us to understand how far one can
use the accelerated frame as a “proxy” for a real thermal
bath. This topic is very important to understand the “Unruh
effect” and people are investigating this issue for different
situations (e.g., see [14–16]). Our present analysis is
completely in this direction.

B. Particle production

Now we want to calculate the particle number as
measured by the rotating frame in the thermal bath. This
can be easily evaluated by relating the operators in the
rotating frame to that of the Minkowski frame [27].
Denoting the annihilation and the creation modes in the
rotating frame of reference by ã, ã† respectively, and using
the relations between these with those for the static
observer, we find that the value of the number operator
in the thermal bath becomes,

hã†i ãiiβ ¼ ha†i aiiβ: ð50Þ

Here, the index i heuristically denotes the summation over
all the momenta modes, as we need in the case of the
number operator. The quantity ha†i aiiβ denotes the thermal
expectation value for the number operator of a free scalar
field with respect to the static observer. This takes the form
of the well known Bose-Einstein factor ∼fβðiÞ.
Let us now make some comments on this result. The

obtained result clearly shows that there are no new particles
produced in the case of a rotating detector, even when it is
placed in the thermal bath. Also it may be noted that the

response function of this system, obtained in the previous
section, behaves differently from this number operator. We
just observed that the response function increases with the
increase of rotational velocity of the detector, which clearly
indicates that the rotation in the observer affects its
detection. Whereas, the number of particles detected,
calculated by number operator, does not depend on the
rotational parameter.
In general, there is no reason to expect that the response

function, obtained here, will be equal to the number
operator’s expectation value. It is a coincidence, that in
even dimensional cases and for a uniformly accelerating
detector, they equate to the same value and give an
indication for the thermal spectrum. If one considers a
detector moving in a different trajectory, e.g., a uniformly
rotating trajectory, there is a conflict between the number of
particles detected (vacuum expectation value of the number
operator) and the response function [27]. For the case of a
uniformly rotating detector, we get a nonzero value for the
response function, but the number of particles evaluates to
zero. This clearly demonstrates that the uniformly rotating
detector does not detect any real particle, but does have a
finite response. To better understand this scenario, and to
see that the rotating detector truly never registers any new
particle, here we probe a thermal scalar bath with such a
uniformly rotating detector.

VI. COMPARISON WITH
RINDLER-ROTATING CASE

In the previous section we calculated the response
function for the rotating observer in thermal background.
Now in this section we shall demonstrate the calculation
for a rotating observer in a Rindler frame in Cartesian
coordinates. Our aim is to compare the detector’s response
between the thermal-rotating and the Rindler-rotating case
and finally draw a conclusion. As we shall notice that the
system is completely in nonequilibrium, we shall not
calculate the number of particles here. Also we find it
difficult to calculate the components of renormalized stress-
tensor for their huge structure (even the package in
Mathematica 10 fails to do that) and so we leave this
for the moment. But it can be argued that all the renor-
malized components must vanish as the corresponding
Minkowski values are zero.

A. Detector response

In order to calculate the detector response for the
Rindler-rotating observer we need to calculate the
Wightman function in Minkowski spacetime first, which
is given by (11).
To get the expression of the Wightman function in

Rindler-rotating frame first we have to get the form of
space-time interval ðΔT2 − jΔXj2Þ in the Rindler-rotating
frame. In the previous section we have got the form of the

FIG. 3. The ratio of response function between static detector
(Ω ¼ 0) with finite temperature (β ¼ 2) and uniformly pure
rotating detector (β → ∞). The response of the rotating detector
is always greater than the thermal static one and it highly
dominates in the ultrarelativistic regime. The value of the
regulator ϵ ¼ 0.01.
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integral curve in terms of rotating frame proper time from a
timelike Killing vector ξa which generates rotation with
respect to Minkowski spacetime [see Eq. (46)]. Now
applying this rotational transformation on the space-time
interval in the Rindler frame we have

ΔT2 − jΔXj2

¼ −
1

a2
ðe2aσ cos γΩτ1 þ e2aσ cos γΩðŭþτ1ÞÞ

þ
�
2

a2
e2aσ cos

γΩðŭþ2τ1Þ
2

cosγΩŭ
2

�
coshaγðŭ − iϵÞ

− 4σ2cos2
γΩðŭþ 2τ1Þ

2
sin2

γΩŭ
2

: ð51Þ

This procedure, however creates a problem as to the
definition of the Wightman function. As one can check
that the Wightman function for the Rindler-rotation case
which we have got is not invariant under the time trans-
lation. Therefore we need a prescription which is to
compute the value of the detector response for a finite
time interval. In that case we need to replace our Wightman
function by what we shall call the regularized Wightman
function which is defined by

WRðτ1; ŭÞ ¼ −
1

4π2

�
1

ΔT2 − jΔXj2 −
1

ðŭ − iϵÞ2
�
; ð52Þ

with the response function is given by (22). As it is
explained in [21] that this quantity (52) is well defined
as a function where the pole at ŭ ¼ 0 can be avoided
by subtracting the extra factor (A similar regularized
Wightman function for (1þ 1) dimensional case has been
advocated in [28] for a derivative type coupling).
We solve this integration (22) numerically for a finite

time interval taking the initial proper time (τ1) to be zero
and then plot it. This is presented in Fig. 4. Interestingly, we
can see from Fig. 4 that the response function of a Rindler

rotating detector have the Planck distribution for a finite
time which is analogous to the response of a rotating
detector in a thermal bath (see Fig. 1). This implies that
both thermal-rotating and Rindler-rotating behaves in a
similar way.
However, there exists a crucial difference between the

response functions in these two situations. This will be
elaborated in following discussion. For that below we plot
the response function with the variation of the initial proper
time in Fig. 5. We have found that the response function is
reaching its peak value with a certain periodicity which is a
unique observation not found in the case of the thermal
rotation case. It can be shown that the frequency of getting
the peak value by the response function is equal to the
frequency of the rotation of the detector which shows our
calculations are correct. One can check that the same is also
evident from the analytical expression.
Let us now explain the significance of our investigation

and how it serves our main goal. We have studied different
properties of the detector response function for two
scenarios which are the thermal rotating model and the
Rindler-rotating model. During the computation we have
found that the Green’s function for the thermal rotating
observer is invariant under the time translation but not in
the case for Rindler-rotating observer. As a result we
performed the integration numerically for the detector
response for the Rindler-rotating case within the finite
time interval unlike the thermal rotating case where we
performed the integration in the time limit from −∞ to ∞.
Next, we have performed different features of the detector
response function numerically and analyzed them with the
graphical representations for both the cases. The informa-
tion contained in each graph itself may seem to be very
“limited” at a first glance by the reader but the result is
interesting when one compare these two pictorial views
(Figs. 1 and 5) which shows a clear distinction between
them. But this distinction is not quite vivid to visualize
by comparing the numerical values for both the cases.
Therefore, the sharp contrast between these graphical

FIG. 4. The response function of a uniformly rotating detector
in Rindler coordinates versus Energy has been plotted. Taking the
initial proper time τ1 ¼ 0, σΩ ¼ 0.15, σa ¼ 1 and ϵ ¼ 0.5.

FIG. 5. The response function of a uniformly rotating detector
in Rindler coordinates with respect to the initial time has been
plotted by taking σΩ ¼ 0.15, σa ¼ 1 and ϵ ¼ 0.5.
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analysis raises many questions about the indistinguishabil-
ity between the real thermal bath and the thermal bath seen
from the accelerating frame with respect to the rotating one.
So this result is an important one as it resonates the fact that
the indistinguishability between the quantum fluctuation
seen from noninertial observer and the real thermal bath
itself may be an observer dependent statement. It will help
us to shed light on the fact that how far the accelerated
frame can used as a “proxy” for a thermal field and the vice
versa. Therefore we feel that the present graphical analysis
plays an important role to understand the issue, which is
under investigation in this paper.

VII. SUMMARY AND CONCLUSIONS

Let us now summarizewhatwe have done in this paper and
discuss its implications. Our aim was to investigate the
robustness of the indistinguishability between the quantum
fluctuation seen by a noninertial observer and the real thermal
bath. For this purpose, we looked at the thermal bath and the
Rindler frame in Minkowski spacetime from a noninertial
frame. Here two noninertial observers have been selected:
one is another Rindler observer and other one is a uniformly
rotating observer. To obtain a comparative study, we com-
puted different observables in these models and compared
them. In the following we summarize our observations.
First concentrate on the thermal-Rindler and Rindler-

Rindler model. This case has been studied earlier. But, as
stated earlier, it is needed to be looked at again. Here we
observed that at the level of the Green’s function, the
Rindler-Rindler case is very different from that of the
thermal-Rindler case and interestingly both of their Green’s
function are not invariant under time translation. So, the
problem arises for evaluating the number of particles as it is
dependent on the Green’s function. In that case the better
way is to calculate the expectation value of the stress tensor
of the system which basically tells us the number of quanta
emitted per unit area. Using the Green’s function we
obtained the value of components of the renormalized
stress tensor and found that they differ. Although one
cannot use this as a measure for distinguishing them
experimentally, it does tell us that there is some difference
between as scalar field living in Rindler space and it living
in a thermal bath. However, at the level of normal ordered
stress tensors, the two results exactly match.
Next we investigated the same in a different setup. Here

the thermal bath and the Rindler frame in Minkowski
spacetime have been studied from a uniformly rotating
frame. Here again at the Green’s function level we found
these two cases are different. Although the Green’s function
for the thermal rotating observer is invariant under time
translation but not in the case for the Rindler rotating
observer. As a result we found that the detector response
function for the Rindler rotating observer is dependent on
the initial proper time, whereas for the thermal rotating
observer it is independent of that. We plotted the response

function for both the cases and found that the thermal-
rotation and Rindler-rotation both give the standard Planck
distribution. But there is an additional feature presents in
the later case. The Green’s function is not time translational
invariant and there exists a certain periodicity in the
response function which is absent in for thermal bath case
as the system is in equilibrium.
To conclude, we mention that the thermal rotating case is

time translational invariant whereas Rindler-rotating is not.
Consequently detector response in the first case does not
show periodicity with time while the later one does
show this. This is clearly a difference between these
two. Whereas so far we see the thermal-Rindler and
Rindler-Rindler are equivalent in all aspects except the
values of the components of the renormalized stress-tensor.
Therefore it may be the case the equivalence between real
thermal bath and the Rindler frame is not totally guaran-
teed. Of course, this is not a conclusive statement, rather a
suggestive one. In this regard, it must be mentioned that
even the equivalence between the accelerated frame and the
real thermal bath at the level of their own proper frames
holds only in two and four dimensions (see the discussion
below Eq. (4.2.15) in Sec. 4.2 of [3]). Here we observed
that even in these dimensions they are not quite similar with
respect to a new set of noninertial observers. We hope the
present analysis shed some light in this particular issue.
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APPENDIX A: DERIVATION OF EQ. (1)

Consider the expansion of a scalar field ϕðT;XÞ in terms
of creation and annihilation operators,

ΦðT;XÞ ¼
X
n

fnðXÞffiffiffiffiffiffiffiffi
2ωn

p ðane−iωnT þ a†neiωnTÞ: ðA1Þ

The expectation value of two point function in thermal state
is give by,

GβðX2;X1Þ ¼ hΦðX2ÞΦðX1Þi ¼
1

Z
Tr½e−βHΦðX2ÞΦðX1Þ�:

ðA2Þ

Now since the scalar field is a collection of infinite number
of harmonic oscillators, to compute the above we choose
H ¼ a†aωn with a (a†) is the annihilation (creation)
operator. To take the trace, we choose the energy eigen-
states of the harmonic oscillator. Here Z is the partition
function which is given by
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Z ¼ Trðe−βHÞ ¼
X
n

hnje−βða†aÞωn jni

¼
X
n

e−nβωn ¼ ð1 − e−βωnÞ−1: ðA3Þ

Using this and the mode decomposition (A1) in (A2) one
obtains Eq. (1).

APPENDIX B: FINITE TEMPERATURE TO
ZERO TEMPERATURE PROPAGATOR

IN 2-DIMENSIONS

The thermal Green’s function in 2-dimensions has the
form as stated in Eq. (7). It can be seen that this gives back
the conventional result for the Wightman function in 2-
dimensions for a massless scalar field at zero temperature.
This result however, is not directly obvious, because on the
surface it looks as if it diverges in the limit β → ∞.
However, if the limit is taken carefully, then one can see
that, up to the divergences which are encountered in a 2D
massless scalar propagator, we get back the known
result (8).

The steps are as follows. First expand the exponential
factor within the logarithmic function in (7) and keep up to
first order in 1=β. This leads to

GβðX2; X1Þ ¼ −
1

4π

�
ln

�
2π

β
ðΔT − ΔXÞ

�

þ ln

�
2π

β
ðΔT þ ΔXÞ

��
: ðB1Þ

Now the finite term of the above is

GβðX2; X1Þ ∼ −
1

4π
½lnðΔT − ΔXÞðΔT þ ΔXÞ�; ðB2Þ

which in null-null coordinates transforms to Eq. (8).

APPENDIX C: DERIVATION OF EQ. (10)

Equation (9) can be evaluated in the following way.
Using the spherical polar coordinate representation of
momentum coordinates (k, θ, Φ) and using ω ¼ k we find:

GβðX2;X1Þ ¼
Z

k2 sin θdkdθdΦ
ð2πÞ3

eikjXj cos θ

2k
1

eβk − 1
½eikT þ eβke−ikT �

¼
Z

∞

0

dk
ð2πÞ2

k½eikT þ eβke−ikT �
2ðeβk − 1Þ

Z
1

−1
dðcos θÞeikjXj cos θ

¼ 1

ð2ijXjÞ
Z

∞

0

dω
ð2πÞ2

1

eβω − 1
ðeiωT þ eβωe−iωTÞðeiωjXj − e−iωjXjÞ

¼ 1

2ijXj
X∞
n¼1

Z
∞

0

dω
ð2πÞ2 e

−nβωðeiωT þ eβωe−iωTÞðeiωjXj − e−iωjXjÞ

¼ 1

2ijXj
1

ð2πÞ2 S; ðC1Þ

where

S ¼
X∞
n¼1

1

iðT − jXjÞ þ ðn − 1Þβ þ
1

iðT − jXjÞ − nβ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S1

þ i
ðT þ jXjÞ þ inβ

þ i
ðT þ jXjÞ − iðn − 1Þβ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S2

: ðC2Þ

It can be shown that,

S1 ¼ −
iπ
β
coth

�
π

β
ðT − jXjÞ

�
; S2 ¼

iπ
β
coth

�
π

β
ðT þ jXjÞ

�
: ðC3Þ

Substitution of this in (C1) yields (10).
Although the form of Green’s function (10) is enough for our purpose, but for completeness we shall see that the same

can be expressed in an another useful form. For this we rewrite S in (C1) by using ω ¼ k as
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S ¼
Z

∞

0

dk
eβk − 1

½eikðTþjXjÞ − eikðT−jXjÞ

þ eβke−ikðT−jXjÞ − eβke−ikðTþjXjÞ�

¼
Z

∞

0

dk
eβk − 1

½eikðTþjXjÞ − eikðT−jXjÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I1

þ
Z

0

−∞

dk
eβk − 1

½eikðTþjXjÞ − eikðT−jXjÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I2

ðC4Þ

where in I2, k has been replaced by (−k). Therefore one
obtains

S ¼ I1 þ I2

¼
Z

∞

−∞

dk
eβk − 1

½eikðTþjXjÞ − eikðT−jXjÞ�: ðC5Þ

The above integration can be done by Complex integration
technique. This has the simple pole at k ¼ ð2iπnÞ=β with
n ¼ 0;�1;�2…. Now since here we have T − jXj > 0
and T þ jXj > 0, the contour will in the upper half and
hence one should have k ¼ ð2iπnÞ=β with n ¼ 1; 2…. In
this situation, the above leads to

S ¼ −
2πi
β

X∞
n¼1

½e−2πn
β ðT−jXjÞ − e−

2πn
β ðTþjXjÞ�

¼ −
2πi
β

�
1

e
2π
β ðT−jXjÞ − 1

−
1

e
2π
β ðTþjXjÞ − 1

�

¼ −
4πi
β

sinh ð2πβ jXjÞ
cosh ð2πβ TÞ − cosh ð2πβ jXjÞ : ðC6Þ

Then the other form of the thermal Green’s function in
position space can be expressed as,

Gþ
β ðX2;X1Þ¼−

1

2πjXjβ
sinhð2πβ jXjÞ

coshð2πβ TÞ−coshð2πβ jXjÞ : ðC7Þ

APPENDIX D: DERIVATION OF EQ. (26)

One can express the creation and annihilation Rindler
operators in terms of Minkowski operators using the
Bogoliubov transformations as,

bR ¼
Z

∞

0

dsðαsRas þ β�sRa
†
sÞ ðD1Þ

b†Q ¼
Z

∞

0

dpðα�pQa†p þ βpQapÞ ðD2Þ

where the values of the Bogoliubov coefficients α and β for
positive frequencies are given by,

αpQ ¼ θðpÞ
2πa

ffiffiffiffi
Q
p

s
eπQ=2a

�
a
p

�iQ
a

Γ
�
iQ
a

�
;

βpQ ¼ −
θðpÞ
2πa

ffiffiffiffi
Q
p

s
e−πQ=2a

�
a
p

�−iQ
a

Γ
�
−iQ
a

�
: ðD3Þ

For simplicity in notations we have distinguished the
Rindler and the Minkowski frequencies by block letters
and small letters. a and a† denote the Minkowski creation
and annihilation operators respectively and b and b† denote
the Rindler creation and annihilation operators. In order
to evaluate equation (25) we let us first find the value of
hnjb†QbRjni. This can be evaluated in the following way.
Use of (D2) leads to

hnjb†QbRjni ¼
Z

∞

0

dpds½hnja†pasjniα�pQαsR
þ hnjapa†s jniβpQβ�sR�

¼
Z

∞

0

dp½ðnÞα�pQαpR þ ðnþ 1ÞβpQβ�pR�:

ðD4Þ

Now using (D3) one obtains

Z
∞

0

dpα�pQαpR ¼ eπQ=a

4 sinhðπQa Þ
δ

�
Q − R

a

�
; ðD5Þ

Z
∞

0

dpβ�pQβpR ¼ e−πQ=a

4 sinhðπQa Þ
δ

�
Q − R
a

�
: ðD6Þ

Then (D4) reduces to the following form:

hnjb†QbRjni ¼
1

2

�
n

1 − e−
2πQ
a

þ nþ 1

e
2πQ
a − 1

�
δ

�
Q − R

a

�
: ðD7Þ

Next we reexpress (25) as

hN iβ ¼
1

Z

Z
∞

0

dP
2P

X∞
n;m¼0

hnjb†PbPjmihmj exp½−βa†ωaω�jni

¼ 1

Z

Z
∞

0

dP
2P

X∞
n¼0

hnjb†PbPjnie−nβω; ðD8Þ

which after substitution of (D7) leads to
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hN iβ ¼
1

4Z

Z
∞

0

dP
P

X∞
n¼0

e−βωn½ðnÞð1þ faðPÞÞ

þ ðnþ 1ÞfaðPÞ�δð0Þ

¼ 1

4Z

Z
∞

0

dP
P

eβω

ðeβω − 1Þ2 ½faðPÞð1þ eβωÞ þ 1�δð0Þ

ðD9Þ

where we introduced notations like

faðPÞ ¼
1

e
2π
a P − 1

; fβðPÞ ¼
1

eβP − 1
ðD10Þ

which have the following properties

1þ fβðωÞ¼−fβð−ωÞ; eβωfβðωÞ¼1þ fβðωÞ: ðD11Þ

Finally, using

Z ¼
X∞
n¼0

hnj exp½−βa†ωaω�jni ¼
eβω

eβω − 1
¼ 1þ fβðωÞ

ðD12Þ

one obtains Eq. (26).

APPENDIX E: DERIVATION
OF EQS. (36) AND (42)

The stress tensor is a composite operator, and upon the
naive computation of its expectation value, it diverges.
Thus, one must follow a well-defined regularization
scheme in order to evaluate the expectation value of such
quantities. One of the common techniques used, is the
point-splitting method [29]. The point splitting method can
be described in the following steps:
(1) Evaluate the expectation value of the composite

operator by imagining it to be a nonlocal object,
i.e., a distribution across a few points.

(2) Carefully take the limit, where all the points (across
which the correlator is distributed) tend to a sin-
gle point.

(3) Extract the divergence piece and the finite term, and
identify the renormalized correlator.

This series of steps are better illustrated in the example of
the stress tensor, where we demonstrate the calculation for
the uu component explicitly. The other components can be
calculated by following the same procedure. The value of
hTuui is given as,

h∶Tuu∶i ¼ h∂uϕðuÞ∂uϕðuÞi: ðE1Þ

Now, according to the first step, we first separate the two
points by a small amount, i.e.,

h∶Tuu∶i ¼ lim
u0→u

h∂uϕðu0Þ∂uϕðu0Þi: ðE2Þ

Now, one can pull out the derivatives and use

h∶Tuu∶i ¼ lim
u0→u

∂u∂u0 hϕðuÞϕðu0Þi: ðE3Þ

Note that in the above, the quantity hϕðuÞϕðu0Þi is nothing
but the Green’s function expressed in that particular
coordinates. Therefore, depending on the value of the
Green’s function, we can compute the expectation value
of the stress-tensor explicitly. Remember that in the present
situation, the expectation value will be calculated in the
Minkowski state from the noninertial observer. This iden-
tical procedure is exploited in obtaining the standard
results, like Rindler observer in Minkowski spacetime or
static observer in black hole spacetime (see, e.g., [19]).
Thermal-Rindler: In this case, the Minkowski state is

thermal state with inverse temperature β and the observer is
the Rindler one. So we need to calculate h∶TUUðUÞ∶iβ ¼
limU 0→U∂U∂U 0 hϕðUÞϕðU 0Þiβ. Now since we are dealing
with massless scalers, the Green’s function is determined
by expressing the relevant Minkowski counterpart in the
Rindler coordinates. This has been done in (30).
Using (30) and upon carrying this computation we have,

h∶TUUðUÞ∶iβ ¼ lim
Ū→0

�
a2

48π
þ π

12β2
e−2aU −

1

4πŪ2

�
: ðE4Þ

Here we denoted Ū ¼ U − U 0. Finally, extracting the finite
part, we get first part of (36).
Rindler-Rindler: In this case the Minkowski state is

vacuum state and the observer is Rindler-Rindler one.
Proceeding in an exact similar manner, we would need to
evaluate,

h∶TuuðuÞ∶i ¼ lim
u0→u

∂u∂u0 hϕðuÞϕðu0Þi: ðE5Þ

The relevant Green’s function is given by (41). Substitution
of this in the above yields,

h∶TuuðuÞ∶i ¼ lim
ū→0

�
a2

48π
þ a21
48π

e−2a2u −
1

4πū2

�
; ðE6Þ

with ū ¼ u − u0. We again see that the finite part of gives us
the first part of stress tensor (42).
In these derivations we must keep in mind that the way

the point splitting technique has been chosen, it is not
covariant. We must actually displace the second operator by
an infinitesimal amount along the tangent on the manifold,
which is equivalent to writing it as a parallel transport
as explained in [19]. Doing this leads to an additional
contribution of terms like θuu, etc. in Eqs. (36) and (42).
This has been done in the main results of the renormalized
stress-tensor.
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APPENDIX F: NUMBER OPERATOR, ETC.

One can relate the creation and annihilation operators
of the Minkowski, Rindler, and Rindler-Rindler using the
Bogoliubov transformations,

cq ¼
Z

∞

0

dpðαð21Þpqbp þ β�ð21Þpqb
†
pÞ;

bq ¼
Z

∞

0

dpðαð10Þpqap þ β�ð10Þpqa
†
pÞ; ðF1Þ

where, aða†Þ, bðb†Þ, and cðc†Þ are the annihilation (cre-
ation) operators corresponding to Minkowski, Rindler,
and Rindler-Rindler, respectively. The values for α and
β, for positive frequencies are given by (D3). The subscripts
(21) and (10) in Eq. (F1) indicate that we are dealing with
transformations between Rindler (1) → Rindler-Rinder
(2) or Minkowski (0) → Rindler (1), respectively. The

Bogoliubov transformation relating the Minkowski and
Rindler-Rindler modes are

αð20Þpq ¼
Z

∞

0

dk½αð10Þpkαð21Þkq þ βð10Þpkβ�ð21Þkq�;

βð20Þpq ¼
Z

∞

0

dk½αð10Þpkβð21Þkq þ βð10Þpkα�ð21Þkq�: ðF2Þ

Using the Bogoliubov transformations, as illustrated in
Appendix D, we find the following values.

(i) hcqcriM:

hcqcriM ¼
Z

∞

0

dp

�αð21Þpqβ�ð21Þpr
e2πp=a1 − 1

þ
αð21Þprβ�ð21Þpq
1 − e−2πp=a1

�
;

ðF3Þ

where,

Z
∞

0

dp
αð21Þpqβ�ð21Þpr
e2πp=a1 − 1

¼
Z

∞

0

dp

e2πp=a1 − 1

�
−

1

4π2a22

� ffiffiffiffiffi
rq

p
p

e
π

2a2
ðq−rÞ

�
a2
p

�iðqþrÞ
a2 Γ

�
iq
a2

�
Γ
�
ir
a2

�

¼
�
−

ffiffiffiffiffi
rq

p
4π2a22

�
e

π
2a2

ðq−rÞ
�
a1a2
2π

�iðqþrÞ
a2 Γ

�
iq
a2

�
Γ
�
ir
a2

�
Γ
�
−
iðqþ rÞ

a2

�
ζ

�
−
iðqþ rÞ

a2

�
; ðF4Þ

and,

Z
∞

0

dp
αð21Þprβ�ð21Þpq
1 − e−2πp=a1

¼
�
−

ffiffiffiffiffi
rq

p
4π2a22

�
e

π
2a2

ðr−qÞ
�
a1a2
2π

�iðqþrÞ
a2 Γ

�
iq
a2

�
Γ
�
ir
a2

�
Γ
�
−
iðqþ rÞ

a2

�
ζ

�
−
iðqþ rÞ

a2

�
: ðF5Þ

(ii) hc†qcriM:

hc†qcriβ ¼
Z

∞

0

dp

�α�ð21Þpqαð21Þpr
e2πp=a1 − 1

þ
βð21Þpqβ�ð21Þpr
1 − e−2πp=a1

�
; ðF6Þ

where, Z
∞

0

dp
α�ð21Þpqαð21Þpr
e2πp=a1 − 1

¼
ffiffiffiffiffi
rq

p
4π2a22

eπðqþrÞ=2a2Γ
�
ir
a2

�
Γ
�
−
iq
a2

��
a1a2
2π

�
iðr−qÞ=a2

Γ
�
r − q
a2

�
ζ

�
r − q
a2

�
; ðF7Þ

and,

Z
∞

0

dp
βð21Þpqβ�ð21Þpr
1 − e−2πp=a1

¼
ffiffiffiffiffi
rq

p
4π2a22

e−πðqþrÞ=2a2Γ
�
ir
a2

�
Γ
�
−
iq
a2

��
a1a2
2π

�
iðr−qÞ=a2

Γ
�
r − q
a2

�
ζ

�
r − q
a2

�
: ðF8Þ

(iii) hcqc†riM: This is directly evaluated from the commutation relation,

½cq; c†r � ¼ cqc
†
r − c†rcq ¼ δqr: ðF9Þ
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(iv) hc†qc†riM:

hc†qc†riM ¼
Z

∞

0

dp

�α�ð21Þpqβð21Þpr
e
2πp
a1 − 1

þ
αð21Þpqβ�ð21Þpr

1 − e−
2πp
a1

�
; ðF10Þ

where,

Z
∞

0

dp
α�ð21Þpqβð21Þpr
e2πp=a1 − 1

¼ −
ffiffiffiffiffi
qr

p
4π2a22

�
a1a2
2π

�
−iðqþrÞ

a2 Γ
�
−
iq
a2

�
Γ
�
−
ir
a2

�
e

π
2a2

ðq−rÞΓ
�
−
iðqþ rÞ

a2

�
ζ

�
−
iðqþ rÞ

a2

�
; ðF11Þ

and,

Z
∞

0

dp
αð21Þpqβ�ð21Þpr
1 − e−2πp=a1

¼ −
ffiffiffiffiffi
qr

p
4π2a22

e−
π

2a2
ðq−rÞ

�
a1a2
2π

�iðqþrÞ
a2 Γ

�
iq
a2

�
Γ
�
ir
a2

�
Γ
�
iðqþ rÞ

a2

�
ζ

�
iðqþ rÞ

a2

�
: ðF12Þ

APPENDIX G: ROTATING FRAME IN
CYLINDRICAL COORDINATES

Previously we evaluated the Green’s function in the
rotating frame by substituting the trajectory of the detector
in the Minkowski Green’s function in Cartesian coordi-
nates. In this Appendix, we shall demonstrate the calcu-
lation of the same object, by expanding the field in the
cylindrical coordinate system, i.e., using (12). This does not
give any new information, but here we shall be able to give
the analytical expression of the response function in a much

more convenient way as the integration can be done. So for
completeness this will be discussed here which may be
useful in some situations.
In rotating frame proper time adopted to cylindrical

coordinates, the trajectory of the detector is given by [26]

x̃ðτÞ ¼ ðγτ; σ; γΩτ; 0Þ: ðG1Þ

Substituting of this in (13) yields

Gþ
β ðŭÞ ¼

1

4π2
X∞

m¼−∞

Z
∞

0

dq
Z

∞

−∞
dkz

q
2ω

J2mðqσÞeimγΩŭ
�

e−iγωŭ

1 − e−βω
þ eiγωŭ

eβω − 1

�
: ðG2Þ

Corresponding rate of the transition probability of the detector is then

RðEÞ ¼
Z

∞

−∞
dŭe−iEŭGþ

β ðŭÞ≡ I1 þ I2; ðG3Þ

where,

I1 ¼
1

ð2πÞ2
X∞

m¼−∞

Z
∞

−∞
dŭ

Z
∞

0

dq
Z

∞

−∞
dkz

�
q
2ω

J2mðqσÞ
exp ½−iγωŭ − iEŭþ imγΩŭ�

1 − e−βω

�
; ðG4Þ

and

I2 ¼
1

ð2πÞ2
X∞

m¼−∞

Z
∞

−∞
dŭ

Z
∞

0

dq
Z

∞

−∞
dkz

q
2ω

J2mðqσÞ
exp ½iγωŭ − iEŭþ imγΩŭ�

eβω − 1
: ðG5Þ

These integrations are evaluated in the following way.
Let us start with (G4). Performing the integral upon ŭ first we get,

I1 ¼
1

2π

X∞
m¼−∞

Z
∞

0

dq
Z

∞

−∞
dkz

�
q
2ω

J2mðqσÞ
δ½Eþ γω −mγΩ�

1 − e−βω

�
: ðG6Þ
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From the value delta function and the relation ω2 ¼ q2 þ k2z can write,

ω ¼ ðm − ĒÞΩ ¼ δ; Ē ¼ E=ðγΩÞ ðG7Þ

k0 ¼ �ðδ2 − q2Þ1=2 ðG8Þ

where k0 are the roots of kz. As E > 0 and ω > 0, the value of δ will be positive provided m > Ē. Keeping this in mind the
above is expressed as

I1 ¼
1

2π

X∞
m¼Ē

Z
∞

0

dq
Z

∞

−∞
dkz

q
2ωð1 − e−βωÞ J

2
mðqσÞ

�
δðkz − k0Þ
γjdω=dkzjk0

�
ðG9Þ

The two roots of kz give equal contribution, and as kz is real, the upper limit of q can be set to δ to evaluate the integral.

I1 ¼
1

2πγ

X∞
m¼Ē

Z
δ

q¼0

qdq
ð1 − e−βδÞ

J2mðqσÞ
ðδ2 − q2Þ1=2

¼ 1

2πγ

X∞
m¼Ē

�
δðσδÞ2m

Γð2mþ 2Þ
��

1

1 − e−βδ

�
1F2½ðmþ 1=2Þ; ðmþ 3=2Þ; ð2mþ 1Þ;−ðσδÞ2�: ðG10Þ

The second integral I2, also corresponds to positive frequency as is given by,

I2 ¼
1

ð2πÞ2
X∞

m¼−∞

Z
∞

−∞
dŭ

Z
∞

0

dq
Z

∞

−∞
dkz

q
2ω

J2mðqσÞ
exp ½iγωŭ − iEŭþ imγΩŭ�

eβω − 1
: ðG11Þ

Similarly we can write in terms of delta function,

I2 ¼
1

2π

X∞
m¼−∞

Z
∞

0

dq
Z

∞

−∞
dkz

q
2ω

J2mðqσÞ
δð−γωþ E −mγΩÞ

eβω − 1
ðG12Þ

and,

ω ¼ ð−mþ ĒÞΩ ¼ δ0; Ē ¼ E=ðγΩÞ ðG13Þ
k0 ¼ �ðδ02 − q2Þ1=2: ðG14Þ

As ω > 0 the value of δ0 will be positive when m < Ē. So, the sum will be

I2 ¼
1

2π

XĒ
m¼−∞

Z
∞

0

dq
Z

∞

−∞
dkz

q
2ωðeβω − 1Þ J

2
mðqσÞ

�
δðkz − k0Þ
γjdω=dkzjk0

�
: ðG15Þ

If we change m → −m the Bessel function J2−mðqσÞ ¼ J2mðqσÞ remains the same, as m is an integer. Using this fact, I2
can be written as,

I2 ¼
1

2πγ

X∞
m¼−Ē

Z
δ0

0

dq
q

ðeβδ0 − 1Þ
J2mðqσÞ

ðδ02 − q2Þ1=2

¼ 1

2πγ

X∞
m¼−Ē

�
δ0ðσδ0Þ2m
Γð2mþ 2Þ

��
1

eβδ
0 − 1

�
1F2½ðmþ 1=2Þ; ðmþ 3=2Þ; ð2mþ 1Þ;−ðσδ0Þ2�: ðG16Þ

Finally, the response function can be obtained by evaluating the sums in I1 and I2. One can check numerically that the
sum over m converges.
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