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It is well known that additional constraints emerge in light cone coordinates. We enumerate the number
of physical modes in light cone coordinates and compare it with conventional coordinates. We show that
the number of Schrödinger modes is divided by two in light cone coordinates. We study the effect of this
reduction in the number of ladder operators acting on physical states of a system. We analyze the scalar
spinor, and vector field theories carefully to see the effect of changes in the dynamical structure of these
theories from the view point of the reduction of Schrödinger modes in light-cone coordinates. In this way,
we propose an alternative expansion of dynamical variables which defer from other literatures.
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I. INTRODUCTION

Considering the various subgroups of the Poincaré
group, in a pioneer paper in 1949 [1], Dirac introduced
three forms for relativistic dynamics: instant form (I.F.),
front form (F.F.), and point form (P.F.). These forms are
related to the various choices of the time axis. The instant
form is the usual choice of the coordinate x0 as the time
coordinate, while in the front form, ðx0 þ x3Þ= ffiffiffi

2
p

is chosen
as the time coordinate. The front form has special features
with so many applications in theoretical physics, especially
in nonperturbative QCD [2], string theory [3], gravity [4],
and so on. In the literature of high-energy physics, the front
form is recognized by different names such as “light front,”
“infinite momentum frame,” and “light cone.” In this paper,
we use “light cone.” For a brief review of light-cone
quantization and its application in high-energy physics,
see Ref. [5].
In the light-cone formulation of physical systems,

the hyperplane xþ ¼ ðx0 þ x3Þ= ffiffiffi
2

p
acts as the equal time

hyperplane. The light-cone coordinates are x�¼ðx0�x3Þ=ffiffiffi
2

p ¼ðx0∓x3Þ=
ffiffiffi
2

p ¼x∓ and x⊥ ≡ ðx1; x2Þ. For an
arbitrary four-vector Aμ with components ðA0;AÞ, we
define the light-cone components as ðAþ; Ai; A−Þ ¼
ðAþ; ÃÞ, where i ¼ 1, 2 and A� ¼ ðA0 � A3Þ= ffiffiffi

2
p

and
Ã ¼ ðAi; A−Þ. So, for an invariant spacetime length element
in Minkowski space, we have

ds2 ¼ dx20 − dx23 − dx2i ¼ 2dxþdx− − dx2i ; ð1Þ

which shows that the metric has nondiagonal elements.
Historically, light-cone coordinates are well known for

particle physicists since they are used to derive some QCD
sum rules [6,7]. The large variety of applications of light-
cone coordinates comes from the advantage of the relativ-
istic dynamics of physical systems on the hyperplane of the
x0 þ x3 ¼ const. Dirac mentioned some of these advan-
tages. First, in light-cone coordinates, there are seven
kinematical Poincaré generators, while in the conventional
formulation, only six are kinematical. Second, the non-
diagonal form of the light-conemetric enables us to separate
the total energy of a system of relativistic particles into
center of mass energy and relative energy [5]. This is
different from the instant form, in the sense that the
appearance of the square root in the relation of energy,
P0 ¼ ðP⃗2 þM2Þ1=2, prohibits a similar separation of vari-
ables. These advantages, and especially the latter one, have
made the light-cone coordinates an appropriate tool for
calculating quantities such as wave functions.
One special feature of using light-cone coordinates is the

emergence of additional constraints compared to the con-
ventional coordinates. We call these additional constraints
light-cone constraints. This change in constraint structure
of the theory is well known [2]. However, the number of
light-cone constraints for a generic theory is not well
understood yet. Physically, we expect no change in the
dynamical content of the theory upon changing the coor-
dinates of spacetime. So, one needs to identify clearly the
role of light-cone coordinates in the dynamical behavior of
the system. This is the main task of this work.
We will show explicitly that the light-cone constraints sit

in place of half of the physical degrees of freedom (d.o.f.).
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Hence, the number of dynamical d.o.f. is divided by two,
compared to the conventional coordinates. Although this
phenomenon is met by physicists working on concrete
models [5], it is not clearly recognized as a general rule for
an arbitrary model. We will show that the light-cone
constraints together with the remaining half of the dynami-
cal equations of motion are equivalent to the whole
equations of motion in conventional coordinates.
The next problem is how to choose the physical modes to

be quantized in light-cone coordinates. For instance, some
authors divide the momentum space into two parts and
work with, say, the k− > 0 half of the momentum space [8].
This happens when one insists on expanding the fields with
the same combination as in conventional coordinates. In
this paper, we give another approach, in which we maintain
the whole momentum space but put away half of the
physical modes. In this approach, summation over spin in a
spinor field and/or summation over polarization in a gauge
field theory is no more necessary in light-cone coordinates.
In other words, a light-cone observer is able to observe only
one of the spin (polarization) states of an electron (photon).
In the remainder of this paper, we do the above task for

the major type of physical theories which are quadratic or
first order with respect to velocities. We show that, in both
types of theories, the phenomenon of halving the number of
dynamical modes is similar. In Sec. II, we find the general
form of the constraint structure of a theory in light-cone
coordinates and enumerate the number of dynamical
variables. We do this both for second-order and first-order
Lagrangians. Section III details the quantization procedure
based on the symplectic approach of quantization, which is
more or less a new approach in light-cone quantization.
Sections IV and V deal with the same procedure for the
special case of the spinor field theory and the vector field
theory. In Sec. VI, we discuss the case of Yang-Mills
theories and, at the end of this section, we try embedding
the non-Abelian Yang-Mills theories in light-cone coor-
dinates using the BFFT method. The last section provides
our conclusions.

II. NUMBER OF DYNAMICAL VARIABLES

As we mentioned earlier, formulation of theories in light-
cone coordinates leads to a different Hamiltonian structure
in comparison with conventional coordinates [5]. Since in
light-cone coordinates xþ is the time coordinate, the
conjugate momentum is defined as

πF:F: ¼
∂L

∂ð∂þϕÞ
; ð2Þ

which differs from the ordinary instant form momentum
πI:F ¼ ∂L

∂ð∂0φÞ in the sense that

πFF ¼ 1ffiffiffi
2

p ðπI:F − ∂3φÞ: ð3Þ

In addition to a different Hamiltonian structure, this point
leads to a different number of dynamical variables. We
investigate the problem in turns of two major important
field theoretic systems, i.e., quadratic Lagrangians and first-
order Lagrangians (with respect to the velocities).

A. Quadratic Lagrangian

Consider a typical theory described by a set of dynamical
fields ϕaða ¼ 1; 2;…; nÞ. Suppose the Lagrangian of the
theory is at most quadratic with respect to the partial
derivatives of the fields. Taking into account the Lorentz
invariance, the most general form of the kinetic term
is gab∂μϕa∂μϕb for some symmetric matrix g. In
conventional coordinates (instant form), we have
L ¼ gabð∂0ϕa∂0ϕb −∇ϕa:∇ϕbÞ þ � � �, and the definition
of momenta (i.e., πaI:F ≡ 2gab∂0ϕb) gives no constraint for
nonsingular g. In the light-cone coordinates (front form),
however, the kinetic term in the Lagrangian is written as
2gabð∂þϕa∂−ϕb − ∂⊥ϕa:∂⊥ϕbÞ, which gives the conjugate
momentum πaF:F ¼ 2gab∂−ϕb. Since there is no velocity in
this relation, we have the constraints

χa ≡ πaI:F − 2gab∂−ϕb ≃ 0: ð4Þ

Hence, the nondiagonal form of the light-cone metric
changes the constraint structure of the system. If the
original theory is not constrained (e.g., Klein-Gordon
theory), it will possess some new constraints, while a
system which is already a constrained system in conven-
tional coordinates (e.g., electromagnetism) will possess
additional constraints due to the linearity of the Lagrangian
with respect to the velocities ∂þϕa.
Suppose there are k first-class and m second-class

constraints on the phase space in conventional coordinates.
We also need k subsidiary conditions as gauge fixing
conditions to reach the reduced phase space. Hence, there
exist, all together, 2kþm≡ l conditions on the fields in
phase space. The number of d.o.f. is, therefore, 2n − l in
Hamiltonian formalism and n − l=2 in Lagrangian formal-
ism [9].
Now, by going to the light-cone coordinates, the number

of remaining d.o.f. in phase space should be divided by 2.
The reason is as follows: the n − l=2 physical d.o.f.
correspond to variables in the Lagrangian with truly quad-
ratic terms with respect to the velocities in the conventional
coordinates. As we showed, the quadratic terms with respect
to conventional velocities (i.e., ð∂0ϕaÞ2) are replaced by
terms ∂þϕa∂−ϕa in light-cone coordinates which are linear
with respect to velocities. Hence, in the light-cone formu-
lation of the theory, we will have 2n−l

2
additional constraints

which we call “light-cone constraints.”
The light-cone constraints are second class in the sense

that their consistency with time determines the correspond-
ing Lagrange multipliers. Since each second class con-
straint reduces one dynamical variable, we have
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N F:F
C ¼ lþ 2n − l

2
¼ nþ l

2
; ð5Þ

whereN F:F
C is the total number of constraints in front form.

In this way, half of the dynamical variables of the phase
space are omitted by the light-cone constraints and the
number of d.o.f. of the theory reduces to 2n−l

2
. In subsequent

sections, we will see this effect for Klein-Gordon and
electromagnetic field theories.
However, note that we have not restricted the physical

sector of the theory in phase space by going to the light-
cone coordinates. To see this, we may try to project the
additional constraints to the conventional phase space to
see if there is any possible reduction. For this reason, we try
to transform constraint πF:F − ∂−ϕ ¼ 0 from light-cone
coordinates to conventional coordinates. By using the chain
rule for πF:F, we obtain

πF:F ¼
∂L

∂ð∂0ϕÞ
∂ð∂0ϕÞ
∂ð∂þϕÞ

þ ∂L
∂ð∂3ϕÞ

∂ð∂3ϕÞ
∂ð∂þϕÞ

¼ 1ffiffiffi
2

p ð∂0ϕ − ∂3ϕÞ: ð6Þ

The right-hand side of this equation is the same as ∂−ϕ and
so we will get the trivial relation 0 ¼ 0. So any attempt to
find an equivalent hyperplane for the constraint surface due
to the light-cone constraints will lead to trivial equations in
the conventional coordinates. In other words, there is no
hyperplane in the conventional coordinate phase space
equivalent to the hyperplane of light-cone constraints.
Therefore the change in constraint structure in light-cone
coordinates does not mean that the classical phase space in
conventional coordinates is reduced.

B. First-order Lagrangian

The most well-known Lagrangian containing a
Lorentz invariant first-order dynamical term includes
ψ̄αγ

μ
αβ∂μψβðα; β ¼ 1; 2;…; nÞ as appears in the familiar

Dirac Lagrangian. To study the constraint structure of such
field theories, we investigate the symplectic matrix of this
theory in conventional coordinates as well as light-cone
coordinates. By considering ψ̄α and ψβ as the independent
variables of phase space, in conventional coordinates the
dynamical term ψ̄αγ

0
αβ∂0ψβ gives the symplectic matrix as

(see Appendix A)

ω ¼
�

0 γ0n×n

−γ0n×n 0

�
: ð7Þ

Since detðγ0Þ ≠ 0, so γ0 does not have any null eigen-
vector. In conventional coordinates, the number of phase
space d.o.f. is 2n. For example in ordinary Dirac fields,
n ¼ 4 and the number of phase space variables is 8.
In light-cone coordinates we set γμ∂μ ¼ γþ∂þ þ γ−∂− þ

γ⊥∂⊥ where

γ� ¼ 1ffiffiffi
2

p ðγ0 � γ3Þ; ð8Þ

The dynamical terms in the Lagrangian is ψ̄αγ
þ
αβ∂þψβ

which gives the symplectic matrix as

ω ¼
�

0 γþn×n

−γþn×n 0

�
: ð9Þ

In four-dimensional spacetime, all representations of Dirac
matrices are unitarily equivalent, so it is sufficient to
consider a specific representation and investigate the rank
of γþ. By choosing the chiral representation, we have [10],

γþ ¼ 1ffiffiffi
2

p

0
BBB@

0 0 2 0

0 0 0 0

0 0 0 0

0 2 0 0

1
CCCA: ð10Þ

which shows that γþ has two null eigenvectors. Hence, in
light-cone coordinates, the number of d.o.f. in the phase
space is n instead of 2n. In the case of the four-dimensional
Dirac field, it is four instead of eight.
Thus, similar to the case of the second-order Lagrangian,

the number of d.o.f. is divided by two in the light-cone
formulation of field theories with the first-order
Lagrangian. Therefore, the number of Schödinger modes
in light-cone coordinates are half of those in the conven-
tional coordinates.

III. QUANTIZATION PROCEDURE

Let us see the effect of change in the constraint structure
on the classical dynamics, as well as the quantization
procedure of the system. Classically, we want to know what
happens to half of the d.o.f. which are absent in the light-
cone coordinates. In conventional coordinates, we need to
solve 2n − l first-order differential equations for the
dynamical variables in phase space. However, in light-
cone coordinates, we have n − l=2 constraints together with
n − l=2 first-order differential equations with respect to
time. Hence, the total number of equations at hand is the
same in both formalisms, and the physical results are the
same, as it should be.
In fact, just the superficial features of the dynamical

equations are different in two approaches; i.e., in conven-
tional coordinates, all 2n − l equations of motion include
derivatives with respect to x0, while in light-cone coor-
dinates, n − l=2 constraints do not include derivatives with
respect to xþ and the remaining n − l=2 do include
derivatives with respect to xþ.
Our next goal is to find a suitable basis for the variables

of the reduced phase space in order to follow the dynamics
of the system. Suppose we are able to find a suitable basis
for the whole phase space of the system, in which imposing
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the constraints leads to omitting a number of redundant
variables. Such a basis is recognized in the literature of
constrained systems as the Darbeaux basis [9]. Hence, in
comparison with conventional coordinates, the additional
light-cone constraints lead to a smaller reduced phase space
with n − l=2 dynamical (xþ-dependent) modes. Then, we
should solve the equations of motion to find the
time dependence of physical modes in terms of n − l=2-
independent Schrödinger modes (see Appendix A).
In fact, in a Darbeaux basis, in light-cone coordinates,

the procedure of solving the dynamics of the system will
break into two steps: first, imposing the light-cone second
class constraints to omit half of the d.o.f., and, second,
solving the remaining equations of motion to find the
Schrödinger modes. Finally, one needs to write the expan-
sion of the fields in terms of the Schrödinger modes.
Since the Schrödinger modes play the role of creation

and annihilation operators in the quantum theory, one may
wonder if different number of Schrödinger modes in light-
cone coordinates lead to a different quantum space of
physical states. We expect the physical quantities should
not depend on the choice of coordinate basis.
To answer this question, we should consider the com-

mutation relations of ladder operators with the Hamiltonian
of the system and compare the results in light-cone and
conventional coordinates. As a familiar example, we
quantize the Klein-Gordon theory in light-cone coordinates
using the symplectic method. As we will see, in the light-
cone coordinates, according to Eq. (5), we expect one
constraint on the classical phase space of the theory which
affects the quantization procedure.
The Klein-Gordon theory is introduced by the

Lagrangian density

L¼ 1

2
ð∂μφ∂μφ−m2φ2Þ ¼ ∂þφ∂−φ−

1

2
ð∂⊥φÞ2 −

1

2
m2φ2:

ð11Þ

The conjugate light-cone momentum is

π ≡ ∂L
∂ð∂þφÞ

¼ ∂−φ; ð12Þ

which introduces the primary constraint χ ≡ π − ∂−φ ≃ 0
on the phase space. The total Hamiltonian [11] reads

HT ¼
Z

d3x̃

�
1

2
ð∂⊥φÞ2 þ

1

2
m2φ2 þ uðxÞχðxÞ

�
; ð13Þ

where uðxÞ is the Lagrange multiplier. Assume the equal
time fundamental Poisson brackets as

fφðx̃Þ;φðx̃0Þgxþ ¼ fπðx̃Þ; πðx̃0Þgxþ ¼ 0;

fφðx̃Þ; πðx̃0Þgxþ ¼ δðx− − x0−Þδ2ðx⊥ − x0⊥Þ: ð14Þ

Since the constraint χ considered at different points con-
stitutes a system of second class constraints, the consis-
tency condition ∂þχðxÞ ¼ fχðxÞ; HTgxþ ¼ 0 will not give
a secondary constraint; instead, it determines the Lagrange
multiplier via the equation

2∂−uðxÞ ¼ ð∂⊥∂⊥φ −m2φÞ: ð15Þ

To impose the single constraint χðxÞ on the fields, it is more
suitable to use the following Fourier expansions,

φ ¼ 1

ð2πÞ3=2
Z

d3k̃aðk̃; xþÞeik̃:x̃;

π ¼ 1

ð2πÞ3=2
Z

d3k̃cðk̃; xþÞe−ik̃:x̃: ð16Þ

The physical modes are aðk̃; xþÞ and cðk̃; xþÞ. Imposing
the light-cone constraint π − ∂−φ ¼ 0 on the expansions
(16) gives

cðk̃; xþÞ ¼ −ik−að−k̃; xþÞ: ð17Þ

In contrast with conventional coordinates where there are
two physical modes, in light-cone coordinates we have only
one independent physical mode which we assume to be
aðk̃; xþÞ. Equation (17) shows that cðk̃Þ is determined in
terms of aðk̃Þ. Now using Eq. (A2), in Appendix A, to a
construct symplectic two-form, we have

Ω ¼
Z

d3k̃ð−2ik−Þ dað−k̃; xþÞ ∧ daðk̃; xþÞ: ð18Þ

Hence, the Dirac brackets of the physical modes are

faðk̃; xþÞ; aðk̃0; xþÞgD:B ¼ −1
2ik−

δ3ðk̃þ k̃0Þ: ð19Þ

In terms of the physical modes aðk̃; xþÞ, the canonical
Hamiltonian is

Hc ¼
Z

d3k̃
1

2
ðk2⊥ þm2Þaðk̃; xþÞað−k̃; xþÞ: ð20Þ

Using the canonical Hamiltonian, we are able to write
equations of motion of the physical modes as

_aðk̃; xþÞ ¼ fa;Hg ¼ iωþaðk̃; xþÞ; ð21Þ

where

ωþ ≡ k2⊥ þm2

2k−
: ð22Þ

The solution of Eq. (21) is
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aðk̃; xþÞ ¼ aðk̃; 0Þeiωþxþ : ð23Þ

In contrast with the conventional coordinates where we deal
with two coupled first-order differential equations of
motion, in light-cone coordinates, we have only one
differential equation. As we mentioned earlier, imposing
the light-cone constraint (12), is equivalent to solving one
equation of motion of ordinary coordinates. The original
fields can be expanded in terms of the Schrödinger modes
aðk̃; 0Þ as

φðx̃; xþÞ ¼ 1

ð2πÞ3=2
Z

d3k̃aðk̃; 0Þeikx;

πðx̃; xþÞ ¼ 1

ð2πÞ3=2
Z

d3k̃ð−ik−Það−k̃; 0Þe−ikx: ð24Þ

By using Eq. (19) and the Dirac quantization prescription
f; g → −i½; �, the quantum commutators of the Schrödinger
modes as well as original fields can be written as

½aðk̃Þ; aðk̃0Þ� ¼ −1
2k−

δ3ðk̃þ k̃0Þ; ð25Þ

½φðx̃; xþÞ; πðỹ; xþÞ� ¼ 1

2
δ3ðx̃ − ỹÞ; ð26Þ

½φðx̃; xþÞ;φðỹ; xþÞ� ¼ 1

2
θðx− − y−Þδ2ðx⊥ − y⊥Þ: ð27Þ

where θðx− − y−Þ is the Heaviside step function.
In contrast to conventional coordinates, Eq. (27) shows

that the field ϕ does not commute with itself on an equal
light-cone time hyperplane. Let us investigate this property
carefully. We want to find the commutation relation (27)
from the nonequal time commutation relation of Klein-
Gordon fields in conventional coordinates. In conventional
coordinates, we have [10]

½φðxÞ;φðyÞ�I:F ¼
Z

d3k
1

2ωk
ð−e−ikðx−yÞ þ eikðx−yÞÞ; ð28Þ

which can be written covariantly as

½φðxÞ;φðy�I:F
¼

Z
d4kδðk2 −m2Þθðk0Þð−e−ikðx−yÞ þ eikðx−yÞÞ: ð29Þ

Note that the subscription I.F in Eq. (29) is no more
necessary in covariant form of the commutation relations.
Hence, we can transform this integral to a light-cone
coordinate. By transforming δðk2 −m2Þ to light-cone
coordinates and integrating over kþ, we have

½φðxÞ;φðyÞ� ¼
Z

dk−d2k⊥
1

2k−
ð−e−ikðx−yÞ þ eikðx−yÞÞ

× θ

�
kþ þ k−ffiffiffi

2
p

�����
kþ¼

k2⊥þm2

2k−

:

Putting xþ ¼ yþ, we can find the equal light-cone time
commutation relations as

½φðx̃; xþÞ;φðỹ; xþÞ� ¼ 1

2
θðx− − y−Þδ2ðx⊥ − y⊥Þ; ð30Þ

which is exactly the commutation relation (27) we obtained
by direct calculation in the light-cone coordinates. This
simple result which shows the consistency of formulation
of the Klein-Gordon theory in light-cone and conventional
coordinate systems, although expected intuitively, is not
shown explicitly in the literature yet. Note that the trans-
formation from light-cone to conventional coordinates is
not an ordinary Lorentz transformation.
Now we will turn back to the problem of interpreting a

different number of ladder operators in light-cone and
conventional coordinates. Let us see how we can interpret a
different number of Schrödinger modes in light-cone
coordinates.
Consider the commutation relation of ladder operators

with the Hamiltonian in both coordinates. In conventional
coordinates, we have

½AðkÞ; A†ðkÞ� ¼ ð2πÞ3δ3ðk − k0Þ; ð31Þ

½H;AðkÞ� ¼ −ωkAðkÞ; ð32Þ

½H;A†ðkÞ� ¼ ωkA†ðkÞ: ð33Þ

where ωk is the time component of the momentum
4-vector. As we see, the sign of the right-hand sides of
Eqs. (32) and (33) are different for the annihilation and
creation operators. In conventional coordinates, the on-
shell condition reads ω2

k ¼ k20 ¼ k2 þm2; hence, the sign
of the spacial components of momentum do not determine
the sign of ωk.
In the light-cone coordinates, however, the number of the

ladder operators is divided by 2 and the commutation
relations are

½aðk̃Þ; aðk̃0Þ� ¼ 1

2k−
δ3ðk̃þ k̃0Þ;

½H; aðk̃Þ� ¼ −ωk̃aðk̃Þ: ð34Þ

Remembering Eq. (22) shows that the sign of ωk̃ depends
on the sign of k−. This property divides the momentum
space into two parts, k− > 0 and k− < 0, where aðk̃Þ is a
creation operator in the k− > 0 region and an annihilation
operator in the k− < 0 region. This point of view differs
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from the conventional approach [12–14] which insists on
introducing two sets of ladder operators for creation and
annihilation on the price of restricting the physical domain
of momentum coordinate k− to the region k− > 0.
Let us investigate the effect of light-cone ladder

operators on the total momentum of the system. Using
the definition of the energy-momentum tensor,
Tμ
ν ¼ ∂L

∂ð∂μφÞ ∂νφ − Lδμν , the components of momentum in

the light-cone coordinates are

Pþ¼
Z

d3x̃π∂−φ¼
Z

d3k̃ðk2−Það−kÞaðkÞ;

Pi¼
Z

d3x̃ð−π∂−φÞ¼−
Z

d3k̃k−kiað−kÞaðkÞ; i¼1;2:

ð35Þ

Using commutation relation (25), we have

½Pþ; aðk̃Þ� ¼ ½P−; aðk̃Þ� ¼ k−aðk̃Þ: ð36Þ

½Pi; aðk̃Þ� ¼ −½Pi; aðk̃Þ� ¼ kiaðk̃Þ: ð37Þ

These relations verify the interpretation of aðk̃Þ with
k− > 0 (k− < 0) as creation (annihilation) operators.

IV. SYMPLECTIC LIGHT-CONE QUANTIZATION
OF SPINOR FIELDS

Dirac theory is introduced by the first-order Lagrangian
density

L ¼ ψ̄ðiγμ∂μ −mÞψ : ð38Þ

To quantize this theory in light-cone coordinates, it is
convenient to use a decomposition of spinor space by the
projection operators [8],

Λ� ¼ 1

2
γ∓γ� ¼ 1ffiffiffi

2
p γ0γ�; ð39Þ

which project the spinor field ψ to ψ� ¼ Λ�ψ . Using the
identities

γ0γþ ¼ γ−γ0; Λ�Λ∓ ¼ 0; ð40Þ

we have γ0ψþ ¼
ffiffi
2

p
2
γþψþ. Hence, the Lagrangian density

of the Dirac field decomposes as

L ¼ i
ffiffiffi
2

p
ψ†
þ∂þψþ þ i

ffiffiffi
2

p
ψ†
−∂−ψ−

− ψ†
−ðmþ iγi∂iÞγ0ψþ − ψ†

þðmþ iγi∂iÞγ0ψ−: ð41Þ

In this way, the Lagrangian (38) can be written as

L ¼ i
ffiffiffi
2

p
ψ†
þ∂þψþ − ψ†

−χ1 −Hc; ð42Þ

where the density of the canonical Hamiltonian is

Hc ¼
1ffiffiffi
2

p ψ†
þðmþ iγi∂iÞγ−ψ−: ð43Þ

In the above Lagrangian, the only dynamical variables are
ψþ and ψ†

þ, while the equations of motion for the variables
ψ†
− and ψ− give the constraints

χ1 ≡ i∂−ψ− −
1

2
ðmþ iγi∂iÞγþψþ ≈ 0;

χ2 ≡ i∂−ψ
†
− þ 1

2
ðmψ†

þ − i∂iψ
†
þγiÞγ− ≈ 0: ð44Þ

In order to write a suitable mode expansion of the fields ψþ
and ψ†

þ, we look for a complete set of eigenfunctions of the
Hamiltonian of the first quantized theory. In conventional
coordinates, uðkÞeik:x and vðkÞe−ik:x are the eigenfunc-
tions of Dirac Hamiltonian hD,

hD ¼ −iγ0γi∂i þmγ0 i ¼ 1; 2; 3; ð45Þ

with the energy eigenvalues Ek and −Ek, respectively [10].
Actually, the solutions of the eigenvalue equations
hDψðxÞ ¼ �EkψðxÞ can be considered as uðkÞe−ik:x and
vðkÞeik:x such as

ðγμkμ −mÞuðkÞ ¼ 0; ð46Þ

ðγμkμ þmÞvðkÞ ¼ 0: ð47Þ

Each of the equations (46) and (47) have two independent
solutions distinguished by the eigenvalues of the compo-
nent of spin operator, say in the third direction, i.e., Σ3.
Hence, for every solution of (46) and (47), we can
decompose u1 and u2 as well as v1 and v2 by using the
projection operators

S∓ ¼ 1

2
ð1� Σ3Þ: ð48Þ

In this way for the Dirac fields ψðxÞ and ψ̄ðxÞ with eight
independent phase space variables, we can set the eight
eigenspinors fus; vs; u†s ; v†sg for s ¼ 1, 2. So, the summa-
tion over spin indices is necessary in the conventional
coordinates.
On the other hand, in the light-cone coordinates, due to

additional constraints (44), the dimension of the reduced
phase space is four. So, in order to expand independent
phase space variables in term of energy eigenfunctions, we
need four energy eigenfunctions of the Hamiltonian oper-
ator. To do this, notice that the Dirac light-cone
Hamiltonian operator can be recognized from the canonical
Hamiltonian (43) as
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hL:CD ≡ 1ffiffiffi
2

p ðmþ iγi∂iÞγ−: ð49Þ

Using the plane wave solutions (46) and (47) we can
introduce u�ðkÞ ¼ Λ�uðkÞ and v�ðkÞ ¼ Λ�vðkÞ. Then it
is easy to see

hL:CD uþðkÞ ¼ kþuþðkÞ;
hL:CD u−ðkÞ ¼ 0;

hL:CD vþðkÞ ¼ −kþvþðkÞ;
hL:CD v−ðkÞ ¼ 0: ð50Þ

As is seen, spinors u−ðkÞ and v−ðkÞ are ruled out from the
eigenspinors of hL:CD . On the other hand, spinors
fuþ; vþ; u†þ; v†þg form a basis for the four-dimensional
space of variables ψþ and ψ†

þ. In other words, in light-cone
coordinates in contrast with conventional coordinates, there
is the natural projection operator Λ� for the energy
eigenspinors.
In this way there is no need to use the spin projection

operators (48) to distinguish the degenerate spinors. Hence,
there is no spin summation in expansion of the Dirac fields.
Now we are able to expand the dynamical fields ψþ and ψ†

þ
in the basis uþðkÞe−ik̃:x̃ and vþðkÞeik̃:x̃ and their conjugates
as follows:

ψþðx̃; xþÞ

¼
Z

d3k̃ðAðk̃; xþÞuþðkÞe−ik̃:x̃ þ B†ðk̃; xþÞvþðkÞeik̃:x̃Þ;

ð51Þ

ψ†
þðx̃; xþÞ

¼
Z

d3k̃ðA†ðk̃; xþÞu†þðkÞeik̃:x̃ þ Bðk̃; xþÞv†þðkÞe−ik̃:x̃Þ:

ð52Þ

Before going through the expansion of the fields, let us see
what has happened to the state of the eigenstates with
spinors uþðkÞ and vþðkÞ. For this reason, consider the spin
states of energy eigenfunctions in the rest frame
kr ¼ 1ffiffi

2
p ðm; 0; 0; mÞ. By choosing the rest frame in the

relations (46) and (47), we simply have the solutions

uþ ¼

0
BBB@

1

0

0

1

1
CCCA; vþ ¼

0
BBB@

1

0

0

−1

1
CCCA: ð53Þ

Compare these with the conventional basis u1 and u2 as
v1 and v2 in the rest frame as

u1¼

0
BBB@
1

0

1

0

1
CCCA; u2¼

0
BBB@
0

1

0

1

1
CCCA; v1¼

0
BBB@

1

0

−1
0

1
CCCA; v2¼

0
BBB@

0

1

0

−1

1
CCCA;

ð54Þ

where Σ3u1 ¼ u1, Σ3u2 ¼ −u2, Σ3v1 ¼ v1, and
Σ3v2 ¼ −v2. It is easy to see Λþu1 ¼ Λþv1 and
Λþu2 ¼ −Λþv2. This says that the spin states for positive
and negative frequency solutions of conventional coordi-
nates are no longer independent after projecting with the
operator Λþ. Hence, we can recognize the combination of
spin states as

uþ ¼ Λþðu1 þ u2Þ ¼ Λþðv1 − v2Þ;
vþ ¼ Λþðv1 þ v2Þ ¼ Λþðu1 − u2Þ: ð55Þ

So, energy eigenfunctions uþ and vþ are projections of
some combinations of spin states. Therefore, Schrödinger
modes (or equivalently ladder operators in quantum theory)
create and annihilate particles and antiparticles in specific
superposition of spin states. This property is in contrast to
the quantized Dirac fields in conventional coordinates.
For the dependent fields ψ− and ψ†

−, using the constraints
(44), we simply have

ψ−ðx̃; xþÞ

¼
Z

d3k̃ðAðk̃; xþÞu−ðkÞe−ik̃:x̃ þ B†ðk̃; xþÞv−ðkÞeik̃:x̃; Þ

ð56Þ

ψ†
−ðx̃; xþÞ

¼
Z

d3k̃ðA†ðk̃:x̃; xþÞu†−ðkÞeik̃:x̃ þ Bðk̃; xþÞv†−ðkÞe−ik̃:x̃Þ;

ð57Þ

where

u−ðkÞ ¼
mþ γiki
2k−

γþuþðkÞ;

v−ðkÞ ¼
m − γiki
2k−

γþvþðkÞ: ð58Þ

These relations are also consistent with the relations (46)
and (47). To find out the odd Poisson brackets of physical
modes, we construct the symplectic two-form Ω ¼R
d3xi

ffiffiffi
2

p
dψ†

þ ∧ dψþ by using Eqs. (4) and (52) as
follows:
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Ω ¼
Z

d3k̃i
ffiffiffi
2

p
ðdA†ðk̃; xþÞ ∧ dAðk̃; xþÞ

− dB†ðk̃; xþÞ ∧ dBðk̃; xþÞÞ: ð59Þ

So the odd Poisson brackets of physical modes read

fAðk̃; xþÞ; A†ðk̃0; xþÞgþ ¼ −iffiffiffi
2

p δ3ðk̃ − k̃0Þ;

fBðk̃; xþÞ; B†ðk̃0; xþÞgþ ¼ iffiffiffi
2

p δ3ðk̃ − k̃0Þ: ð60Þ

The canonical Hamiltonian (43) in terms of physical modes
can be written as

Hc ¼
Z

d3k̃
m2 þ k2i
2k−

ðA†ðk̃; xþÞAðk̃; xþÞ

− B†ðk̃; xþÞBðk̃; xþÞÞ: ð61Þ

Using the above Hamiltonian and the algebra (60), the
equations of motion of physical modes become

∂þAðk̃; xþÞ ¼ −iωþAðk̃; xþÞ;
∂þA†ðk̃; xþÞ ¼ iωþA†ðk̃; xþÞ;
∂þBðk̃; xþÞ ¼ −iωþBðk̃; xþÞ;
∂þB†ðk̃; xþÞ ¼ iωþB†ðk̃; xþÞ; ð62Þ

where ωþ ¼ m2þk2i
2k−

. By writing the solutions of Eq. (62) in
terms of Schrödinger modes and inserting them into the
Eqs. (4) and (52), we have

ψþðx̃; xþÞ ¼
Z

d3k̃ðAðk̃ÞuþðkÞe−ikx þ B†ðk̃ÞvþðkÞeikxÞ;

ψ†
þðx̃; xþÞ ¼

Z
d3k̃ðA†ðk̃Þu†þðkÞeikx þ Bðk̃Þv†þðkÞe−ikxÞ:

ð63Þ

Similar results can be written for ψ− and ψ†
− where u− and

v− are derived as in Eq. (58).
Using ψ ¼ ψþ þ ψ− and u ¼ uþ þ u−, the expansions

of original Dirac fields become

ψðx̃; xþÞ ¼
Z

d3k̃ðAðk̃ÞuðkÞe−ikx þ B†ðk̃ÞvðkÞeikxÞ;

ψ†ðx̃; xþÞ ¼
Z

d3k̃ðA†ðk̃Þu†ðkÞeikx þ Bðk̃Þv†ðk̃Þe−ikxÞ:

ð64Þ

As we mentioned earlier, in light-cone coordinates, the
summation over spin states is no longer necessary in the
expansions of the fields. This property is due to additional
constraints (44) which appears in light-cone coordinates.

Also, the same situation arises in light-cone electromag-
netic theory, where we need not choose any polarization
vector to quantize this theory.

V. SYMPLECTIC LIGHT-CONE QUANTIZATION
OF VECTOR FIELDS

The familiar electromagnetic theory is a gauge theory
with two first class constraints in the conventional coor-
dinates. Let us investigate the constraint structure of this
theory in light-cone coordinates.
The Lagrangian − 1

4
FμνFμν of electromagnetic theory

should be written in light-cone coordinates as

L ¼ 1

2
Fþ−Fþ− þ F−iFþi −

1

4
ðFijÞ2: ð65Þ

The conjugate momenta are

πþ ¼ ∂L
∂ð∂þAþÞ

¼ 0; ð66Þ

π− ¼ ∂L
∂ð∂þA−Þ

¼ Fþ−; ð67Þ

πi ¼ ∂L
∂ð∂þA−Þ

¼ F−i i ¼ 1; 2; ð68Þ

which give the primary constraints in the light-cone phase
space as follows:

χ0 ≡ πþ ≃ 0; ð69Þ

χi ≡ πi − F−i ≃ 0 i ¼ 1; 2: ð70Þ

The total Hamiltonian reads

HT ¼
Z

d3x̃

�
1

2
ðπ−Þ2 þ π−∂−Aþ þ πi∂iAþ

þ 1

4
FijFij þ uðxÞπþ þ viðxÞðπi − F−iÞ

�
; ð71Þ

where uðxÞ and viðxÞ are Lagrange multipliers. Assuming
the fundamental Poisson brackets as

fAμðx̃; xþÞ; πνðỹ; xþÞg ¼ δνμδ
3ðx̃ − ỹÞ; ð72Þ

the consistency condition of the constraint χ0 gives the
secondary constraint

ϕ0 ≡ ∂iπ
i þ ∂−π

− ≈ 0; ð73Þ

while the consistency of the constraints χi determines the
Lagrange multipliers vi via
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2∂−vi ¼ ∂iπ
− − ∂jFij: ð74Þ

The consistency of the secondary constraint ϕ does not lead
to a new constraint. Hence, we have two first class
constraints χ0 and ϕ0 and two second class constraints
χi. Comparing with our general discussion on the number
of d.o.f. in Sec. II, here we have n ¼ 4 physical fields Aμ

with k ¼ 2 first class constraints π0 and ∂iπiði ¼ 1; 2; 3Þ,
and no second class constraint in the conventional coor-
dinates. The first class constraints χ0 and ϕ0 above are
similar to the first class constraints in conventional coor-
dinates. The number of phase space d.o.f. in conventional
coordinates is 2n − 2k ¼ 4. However, the number of d.o.f.
is divided by two in light-cone coordinates due to two
additional constraints χi which does not have any counter-
part in conventional coordinates.
To construct the reduced phase space of the system, we

need two gauge fixing conditions conjugate to our two first
class constraints. We begin with the gauge fixing condition
ω1 ≡ A− ≈ 0, which is, in fact, conjugate to the secondary
constraint ϕ0. The consistency condition of this gauge, i.e.,∂þA− ≈ 0, gives

ω2 ≡ π− þ ∂−Aþ ≈ 0; ð75Þ

which is the second required gauge fixing condition.
Consistency of ω2 gives an equation to determine the
Lagrange multiplier uðxÞ. By imposing the four constraints
and two gauge fixing conditions, one obtains a reduced
phase space with only two field variables. To determine the
smallest set of independent physical modes, we should
write a suitable expansion of fields and conjugate momenta
and impose these constraint on them. As usual, the Fourier
expansion is the suitable one, i.e.,

AμðxÞ ¼
1

ð2πÞ3=2
Z

d3k̃eik̃:x̃aμðk̃; xþÞ; ð76Þ

πμðxÞ ¼ 1

ð2πÞ3=2
Z

d3k̃e−ik̃:x̃bμðk̃; xþÞ: ð77Þ

Imposing the constraints and gauge fixing conditions on the
physical modes aμ and bμ, we find the following six
conditions:

8>>>>>>>><
>>>>>>>>:

bþðk̃; xþÞ ¼ 0;

biðk̃; xþÞ ¼ −iðk−aið−k̃; xþÞ − kia−ð−k̃; xþÞÞ;
−ik−b−ðk̃; xþÞ ¼ ikibiðk̃; xþÞ;
a−ðk̃; xþÞ ¼ 0;

b−ðk̃; xþÞ ¼ ik−aþð−k̃; xþÞ:

ð78Þ

There remain two independent physical modes which can
be chosen as a1ðk̃; xþÞ and a2ðk̃; xþÞ. Here, noticing that

the field elements are real functions, we construct a linear
superposition of these independent modes in a conjugate
way as

aðk; xþÞ ¼ a1ðk; xþÞ þ ia2ðk; xþÞ ð79Þ

a†ðk; xþÞ ¼ a1ð−k; xþÞ − ia2ð−k; xþÞ: ð80Þ

Rewriting physical modes according to this set of inde-
pendent modes, we have

a−ðk;xþÞ¼ bþðk;xþÞ¼ 0

aþðk;xþÞ¼−
�
k1− ik2
2k−

�
aðk;xþÞ−

�
k1þ ik2
2k−

�
a†ð−k;xþÞ

b1ðk;xþÞ¼−ik−
2

ðað−k;xþÞþa†ðk;xþÞÞ

b2ðk;xþÞ¼−ik−
2

ðað−k;xþÞ−a†ðk;xþÞÞ

b−ðk;xþÞ¼ i
2
ððk1− ik2Það−k;xþÞ

þðk1þ ik2Þa†ð−k;xþÞÞ: ð81Þ

To this end, we can construct the symplectic two-form as

Ω ¼
Z

d3x̃2ðdπμ ∧ dAμÞ

¼
Z

d3kð−ik−Þðda†ðk; xþÞ ∧ daðk; xþÞÞ: ð82Þ

Using the inverse of the symplectic matrix (see the
Appendix B), we find the Dirac brackets of physical
modes as

faðk;xþÞ;a†ðk0;xþÞg¼ −1
ik−

δðk−−k0−Þδ2ðk⊥−k0⊥Þ: ð83Þ

The canonical Hamiltonian in terms of the physical modes
can be written as

Hc ¼
Z

d3k

�
k21 þ k22

2

�
ða†ðk; xþÞaðk; xþÞÞ: ð84Þ

In contrast to conventional coordinates [9], the Hamiltonian
(84) is diagonal in terms of the transverse modes aðk̃; xþÞ
and a†ðk̃; xþÞ. In other words, the transverse modes appear
in light-cone coordinates in a natural way and we need not
to choose any polarization direction to quantize the theory.
In fact, by eliminating the redundant modes due to the light-
cone constraints we need not to assume any polarization
direction (as is done for instance in light-cone spinor field
where the summation over spin indices has been
eliminated).
Using the Hamiltonian of Eq. (84) and the Dirac brackets

(83), the equations of motion of physical modes read
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∂þaðk̃; xþÞ ¼ fa;Hcg ¼ iωþaðk̃; xþÞ; ð85Þ

∂þa†ðk̃; xþÞ ¼ fa†; Hcg ¼ −iωþa†ðk̃; xþÞ; ð86Þ

where ωþ ¼ k2
1
þk2

2

2k−
. Inserting the solutions of Eqs. (85) and

(86) in the expansions (76) and (77) of fields, we find
nonvanishing components of electromagnetic fields as

AþðxÞ¼
1

ð2πÞ3=2
Z

d3kð−1Þeikx

×

��
k1þ ik2
2k−

�
aðkÞ−

�
k1þ ik2
2k−

�
a†ð−kÞ

�
; ð87Þ

A1ðxÞ ¼
1

ð2πÞ3=2
Z

d3keikx
1

2
ðaðkÞ þ a†ð−kÞÞ; ð88Þ

A2ðxÞ ¼
1

ð2πÞ3=2
Z

d3keikx
−i
2
ðaðkÞ − a†ð−kÞÞ; ð89Þ

where aðkÞ≡ aiðk; 0Þ are Schrödinger modes. For non-
vanishing components of momentum fields, we have also
the following expansions:

π− ¼ 1

ð2πÞ3=2
Z

d3ke−ikx
i
2
ððk1 − ik2Það−kÞ

þ ðk1 þ ik2Þa†ð−kÞÞ ð90Þ

π1 ¼ 1

ð2πÞ3=2
Z

d3ke−ikx
−ik−
2

ðað−kÞ þ a†ðkÞÞ ð91Þ

π2 ¼ 1

ð2πÞ3=2
Z

d3ke−ikx
−ik−
2

ðað−kÞ − a†ðkÞÞ: ð92Þ

Using brackets (83), we are able to calculate the Dirac
brackets of the fields and conjugate momenta which is in
complete agreement with known results [12]. These rela-
tions can be seen in Appendix B.

VI. LIGHT-CONE QUANTIZATION OF
YANG-MILLS THEORIES

In this section, we try to quantize non-Abelian Yang-
Mills theories using a symplectic method of quantization in
light-cone coordinates. We will show that we are not able to
impose constraints on the Fourier expansion of dynamical
fields, but this is not a light-cone quantization problem. We
will try to embed the light-cone non-Abelian Yang-Mills
theories using the BFFT method of quantization [15].
Yang-Mills theories describe the behavior of elementary

gauge particles intermediating the physical interactions
given by the Lagrangian density

L ¼ −
1

4
Fμν
a Fa

μν; ð93Þ

where Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcA

b
μAc

ν, in which g is the
coupling constant, and fcab are the structure constants of a
Lie group (i.e., the gauge group). The index a runs over
1; 2;…; N where N is the number of generators of the
gauge group.
In conventional coordinates, this theory includes N first

class primary constraints and N secondary first class
constraints. Taking into account 2N gauge fixing condi-
tions, there remain 8N − 4N d.o.f. [9]. However, in light-
cone coordinates according to Eq. (5), we expect to have
2N additional second class constraints which is half
number of dynamical d.o.f.
The Lagrangian density in the light-cone coordinate

reads

L ¼ 1

2
Faþ−F

aþ− þ Fa
−iF

a
þi −

1

4
ðFa

ijÞ2: ð94Þ

The conjugate momentums are similar to Eqs. (66)–(68)
with the additional subscript a on the momentum fields πμa
conjugate to the fields Aa

μ. Again, ϕ0
a ≡ πþa ≃ 0 and ϕi

a ≡
πia − Fa

−i ≃ 0 are primary constraints and the total
Hamiltonian reads

HT ¼
Z

d3x̃

�
1

2
ðπ−a Þ2 þ π−a ðD−ÞabAbþ þ πiaðDiÞabAbþ

þ 1

4
Fa
ijF

a
ij þ udðxÞπþd þ vei ðxÞðπie − Fe

−iÞ
�
; ð95Þ

where udðxÞ and vei ðxÞ are Lagrange multipliers and
ðDνÞab ≡ δab∂ν − gfabcA

c
ν is the covariant derivative.

Assuming the fundamental Poisson brackets as

fAa
μðx̃; xþÞ; πνbðỹ; xþÞg ¼ δνμδ

a
bδ

3ðx − yÞ; ð96Þ

the consistency condition ∂þϕ0
a ≈ 0 gives a set of secon-

dary first class constraints as

χa ≡ ðDiÞabπib þ ðD−Þabπ−b ≈ 0: ð97Þ

Consistency condition of this secondary constraints holds
identically. Consistency of the constraints ϕi

a determines
the Lagrange multipliers vei via the relations

2ðD−Þabvbi þ ðDjÞabFb
ij − ðDiÞabπ−a ¼ 0: ð98Þ

To construct the reduced phase space of the system, we
need 2N gauge fixing conditions conjugate to our 2N first
class constraints ϕ0

a and χa. To choose required gauge
fixing conditions, we simply generalize the electromagnetic
gauge fixing conditions and choose ωa

1 ≡ Aa
− ≈ 0 conjugate

to ϕ0
a. The consistency condition of ωa

1 gives another gauge
fixing condition as

ωa
2 ≡ π−a þ ∂−Aaþ ≈ 0: ð99Þ
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Hence, there are altogether 6N conditions on the fields and
conjugate momenta as

8>>>>>><
>>>>>>:

ϕ0
a ≡ πþa ≈ 0;

ϕi
a ≡ πia − Fa

−i ≈ 0 i ¼ 1; 2;

χa ≡ ðDiÞabπib þ ðD−Þabπ−b ≈ 0;

ωa
1 ≡ Aa

− ≈ 0;

ωa
2 ≡ π−a þ ∂−Aaþ ≈ 0:

ð100Þ

A. Symplectic method

In the scalar theory and electromagnetic field, we simply
choose Fourier expansions of fields to find the independent
physical modes. But in the non-Abelian Yang-Mills the-
ories, there are some nonlinear terms in constraints such as

ϕi
a ¼ πia − Fa

−i ¼ πia − ∂μAa
ν þ ∂νAa

μ − gfabcA
b
μAc

ν ¼ 0

ð101Þ
Due to the existence of nonlinear terms such gfabcA

b
μAc

ν we
are not able to impose this constraint on the Fourier
expansion of fields to construct the reduced phase space.
However, this problem is not the problem of light-cone
quantization and is the fundamental problem of quantiza-
tion of non-Abelian Yang-Mills theories. To quantize this
theory, one can set the limit g ¼ 0 and quantize the theory
perturbatively but attempt to quantize the theory directly
fails due to lack of an appropriate expansion of fields which
enables us impose the constraints.
In the next subsection, we try to embed non-Abelian

Yang-Mills theories to an extended phase space to see the
problem from another point of view.

B. BFFT method

In this subsection, we try to embed non-Abelian Yang-
mills theories in an extended phase space in which second
class constraints, i.e., ϕi

a become first class constraints
using BFFT method [15,16]. In this method, first of all, we
need to extend phase space by adding some extra fields
ðq; pÞ ⊕ η. the number of these auxiliary fields are equal to
the number of second classs constraints appear in original
phase space. By introducing ωαβ as the algebra of new

variables fηα; ηβg ¼ ωαβ and Δαβ ¼ fτð0Þα ; τð0Þβ g where
ταðq; p; ηÞ is our constraint in embedded phase space

and τðnÞα are the nth order of expansion of embedded
constraints according to new variables η, we have

τð1Þα ¼ χβαðq; pÞηβ; ð102Þ

Δαβ þ χγαωγλχ
λ
β ¼ 0: ð103Þ

We are able to choose η in such a way that the second class
constraints become first class in new phase space. To find

out these first class constraints, we have to solve the master
equation, Eq. (103), according to χγα. We have

Δab
αβ ¼

�
−αab 0

0 −αab

�
δ3ðx − yÞ; ð104Þ

αab ¼ 2ðD−Þab ¼ ð2δab∂− − gfabcA
c
−Þ: ð105Þ

In order to solve Eq. (103), we need to guess ωγλ. As shown
in [15] by choosing ωγλ as below, the BFFT method
become finite order. From now on, for simplicity, we drop
out gauge indices a and b.

ωγλ ¼
�
1 −1
1 1

�
; ð106Þ

To solve (103), we consider χγα as

χγα ¼
�
a1 a2
a3 a4

�
: ð107Þ

By putting these relations in (103), we see that we have 4
unknown parameters ai and 3 equations, so we need to
guess at least 1 of ais to solve equations. Actually, different
guess for these parameters and different solutions transform
to each other by canonical transformations. We have

a1 ¼ 0 & a4 ¼ 0 ⇒ a3 ¼ a2 ¼
ffiffiffiffiffiffiffi
αab

p
: ð108Þ

So first class constraints in embedded phase space at first
order can be written as

8<
:

τð1Þ1 ¼ ð2δab∂− − gfabcA
c
−Þ1=2ηb2:

τð1Þ2 ¼ ð2δab∂− − gfabcA
c
−Þ1=2ηb1:

; ð109Þ

By choosing ωγλ as Eq. (106), as shown in [15], the
embedding become truncated and higher order in expan-

sion ταðq; p; ηÞ ¼
P∞

n¼0 τ
ðnÞ
α vanishes. In relations (109),

we see the square root of operator ðD−Þab which does not
make sense well. To avoid this ambiguity, we are able to

expand perturbatively with the assumption
gfabcA

c
−

2δab∂− ≪ 1

which is a true assumption in QCD for large momentums.

Doing this and dropping out terms higher than
gfabcA

c
−

2δab∂− ≪ 1,

we have

8>><
>>:

τð1Þ1 ¼
�
ð2δab∂−Þ1=2 −

�
1
2

gfabcA
c
−

ð2δab∂−Þ1=2
��

ηb2

τð1Þ2 ¼
�
ð2δab∂−Þ1=2 −

�
1
2

gfabcA
c
−

ð2δab∂−Þ1=2
��

ηb1

ð110Þ

The above relations are embedded constraints in
extended phase space which are first class. Note that we
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obtained these constraint perturbatively and these are
not exact.
Comparing two methods discussed in this section, we see

that in the case of symplectic method for quantizing non-
Abelian Yang-Mills theories, due to nonlinear terms in
constraints (100), there is not any appropriate expansion
of fields which enables us to obtain the smallest set of
physical modes unless we put g ¼ 0. But in the BFFT
method, although we cannot find embedded constraint
exactly, we can find them perturbatively. This is remarkable
consequence.

VII. CONCLUSION

The appearance of additional constraints on a field
theory in light-cone coordinates is well known. How-
ever, for the expansions of fields and conjugate momenta
in light-cone coordinates according to physical modes,
authors use the usual expansions of conventional coordi-
nates with an extra Heaviside step function. This step
function divides the momentum space into two parts which
enables us to choose say k− > 0 part of the momentum
space. In this paper, we have proposed alternative expan-
sions of the fields and conjugate momenta on the whole
momentum space for the scalar, fermionic and vector fields.
Our expansion is based on the fact that the number of
independent physical modes must be equal to the number
of d.o.f. in phase space. To do this, we exactly have
investigated the dynamical structure of phase space vari-
ables by enumerating the number of d.o.f. as well as
independent physical modes as follows.
First of all, we have shown that nondiagonal form of the

light-cone metric causes changes in the constraint structure
of the field theories described by the quadratic and first-
order Lagrangians. We showed exactly that half of the
dynamical equations of motion are replaced by the light-
cone constraints, hence the number of dynamical d.o.f. is
divided by two, comparing with the conventional coordi-
nates. Although this phenomenon is met by physicists
working on concrete models [5], it is not clearly recognized
as a general role for an arbitrary model. We showed that the
light-cone constraints together with the remaining half of
the dynamical equations of motion are equivalent to the
whole equations of motion in conventional coordinates.
Second, since the number of independent physical

modes are equal to the number of d.o.f., using the
symplectic method of quantization, we chose the most
appropriate set of independent physical modes to expand
the phase space variables. By imposing the constraints on
the phase space variables to obtain the reduced phase space,
we priori have solved half of the equations of motion. By
solving the remaining equations of motion, we obtained
Schrödinger modes. Then we showed that each one of
Schrödinger modes can play the role of creation or

annihilation operator depending on the sign of the k−
component of the momentum vector.
At the end, using symplectic method of quantization and

analysing the dynamical structure of the phase space
variables, we have proposed alternative expansions of
the fields in the whole momentum space with true number
of physical modes. Notice that the number of independent
physical modes must be equal to the number of indepen-
dent phase space variables. In the case of the scalar field,
we have obtained relations (24) which shows that only one
set of Schrödinger modes, i.e., aðkÞ act as ladder operators.
In the cases of fermionic and vector fields, our expansions
have more significant remarks.
In the case of fermionic fields, we have obtained

relations (64) for phase space variables. Additional light-
cone constraints eliminate summation over spin indices in
these expansions. We showed that ladder operators in the
quantum theory create and annihilate particles and anti-
particles in a specific superposition of spin indices.
Similar situation arises in the case of the vector field. As

illustrated in the relations (87), (88), (89), the summation
over polarization states is no longer necessary in the
expansions of the fields and conjugate momenta.
We also investigated the constraint structure of the non-

Abelian Yang-Mills theories in light-cone coordinates and
showed that the number of d.o.f. is again half of those of
conventional coordinates. Due to the existence of nonlinear
terms such gfabcA

b
μAc

ν in the expressions of the constraints,
we are not able to impose the constraints on the Fourier
expansion of the fields to construct the reduced phase
space. However, this problem is not due to light-cone
quantization and is the fundamental problem of quantiza-
tion of non-Abelian Yang-Mills theories. To quantize this
theory, one can set the limit g ¼ 0 and quantize the theory
perturbatively. However, any attempt to quantize the theory
directly fails due to lack of appropriate expansions of the
fields which enable us to impose the constraints.
Same problem arose in BFFTembedding of non-Abelian

Yang-Mills Theories due to square root of operator
ð2δab∂− − gfabcA

c
−Þ1=2, so we are not able to quantize the

theory exactly and nonperturbatively.
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APPENDIX A: SYMPLECTIC METHOD OF
QUANTIZATION

In this Appendix, we briefly review the symplectic
method of quantization which was proposed originally
by Faddeev and Jackiw [17] and was shown to be
equivalent to Dirac‘s method of quantization of constrained
systems [18]. For a comprehensive review of this method,
see Ref. [19].
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For practical purposes, the symplectic method is based
on the following steps:
(A) First, we should determine the complete constraint

structure of systems [11]. This means that we
should determine the primary constraints by calcu-
lating conjugate momenta. Then by applying the
consistency conditions and defining fundamental
Poisson brackets of canonical variables, we should
obtain the secondary constraints. In this step, we also
need to construct the canonical Hamiltonian of the
system.
After investigating the constraint structure of the

system, we should classify constraints as first and
second class constraints using fundamental Poisson
brackets. According to a conjecture by Dirac [11],
first class constraints are the generators of gauge
transformations. In this way, we should fix the
gauges by imposing additional gauge fixing con-
ditions on the system. In Ref. [20], the essential
requirements for an appropriate gauge fixing con-
ditions are given.

(B) In the second step, we should propose appropriate
expansions of the fields and which enables us to
impose constraints and gauge fixing conditions to
get the reduced phase space. This step determines
physical modes as the smallest set of time-dependent
variables which uniquely describe every state of the
classical system. In many familiar cases the Fourier
expansion is an appropriate choice.

(C) This step is the most important part of the quantiza-
tion procedure in which we find the canonical
commutation relation of fields. The symplectic
two-form is defined as [19]

Ω ¼ 1

2

Z
d3x

X
i

dπi ∧ dϕi ðA1Þ

Where ϕi and πi are fields and conjugate momentum
fields respectively. By imposing constraints and
gauge fixing conditions on the field expansions,
we obtain them in terms of the physical modes.
Using the expansions of the fields in terms of a set of
physical modes, normally gives

Ω ¼
X
i;j

Z
d3kωijdaiðk; tÞ ∧ dajðk; tÞ ðA2Þ

where ai are physical modes and ωij is the sym-
plectic matrix. Finally by inverting the symplectic
matrix, we get the Dirac brackets of the physical
modes

faiðk; tÞ; ajðk0; tÞgD:B ¼ ωijδ3ðk − k0Þ ðA3Þ

where ωijωjk ¼ δik.
(D) In order to consider the dynamics of the theory, we

should construct the canonical Hamiltonian of the
system. Then we should write it in terms of physical
modes derived in step (B). By solving the equations
of motion of the physical modes based on the Dirac
brackets in Eq. (A3), one can write the physical
modes in terms of certain quantities at a given time,
e.g., aiðk; 0Þ. These quantities are called Schrö-
dinger modes. The basic Algebra of Dirac brackets,
i.e., Eq. (A3), can be written in terms of Schrö-
dinger modes.

(E) Finally, using Dirac prescription of quantization, we
quantize the theory according to

f ; g → −i½ ; �: ðA4Þ

Note that by converting Schrödinger modes to
operators, we will have the expansion of the fields
in terms of creation and annihilation operators.

APPENDIX B: DIRAC BRACKETS OF VECTOR FIELDS

Using brackets (83), we are able to calculate the Dirac brackets of the fields as

fAþðx̃; xþÞ; π−ðỹ; xþÞg ¼ i
2
jx− − y−jθðx− − y−Þ∂⊥∂⊥δ2ðx⊥ − y⊥Þ ðB1Þ

fAþðx̃; xþÞ; πiðỹ; xþÞg ¼ i
2
jx− − y−jθðx− − y−Þ∂i∂iδ

2ðx⊥ − y⊥Þ ðB2Þ

fAþðx̃; xþÞ; Aþðỹ; xþÞg ¼ 1

2
jx− − y−j2θðx− − y−Þ∂⊥∂⊥δ2ðx⊥ − y⊥Þ ðB3Þ

fAþðx̃; xþÞ; Aiðỹ; xþÞg ¼ i
2
jx− − y−jθðx− − y−Þ∂iδ

2ðx⊥ − y⊥Þ ðB4Þ
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fAiðx̃; xþÞ; Ajðỹ; xþÞg ¼ i
2
δjiθðx− − y−Þδ2ðx⊥ − y⊥Þ ðB5Þ

fAiðx̃; xþÞ; π−ðỹ; xþÞg ¼ 1

2
θðx− − y−Þ∂iδ

2ðx⊥ − y⊥Þ ðB6Þ

fAiðx̃; xþÞ; πjðỹ; xþÞg ¼ −1
2

δjiθðx− − y−Þ∂iδ
2ðx⊥ − y⊥Þ ðB7Þ

fπ−ðx̃; xþÞ; π−ðỹ; xþÞg ¼ i
2
θðx− − y−Þ∂⊥∂⊥δ2ðx⊥ − y⊥Þ ðB8Þ

fπ−ðx̃; xþÞ; πiðỹ; xþÞg ¼ −i
2
θðx− − y−Þ∂i∂iδ

2ðx⊥ − y⊥Þ ðB9Þ

fπiðx̃; xþÞ; πjðỹ; xþÞg ¼ i
2
δjiθðx− − y−Þ∂i∂iδ

2ðx⊥ − y⊥Þ: ðB10Þ

By transforming f ; g → −i½ ; � according to the Dirac prescription of quantization, we finally achieve the quantized
electromagnetic theory in light-cone coordinates.
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