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An effective quantum field theory description of graphene in the ultrarelativistic regime is given by
reduced quantum electrodynamics (QED) also known as pseudo QED also known as mixed-dimensional
QED. It has been speculated in the literature that reduced QED constitutes an example of a specific class of
hard-to-find theories: an interacting conformal field theories (CFT) in more than two dimensions. This
speculation was based on two-loop perturbation theory. Here, we give a proof of this feature, namely the
exact vanishing of the β-function, thereby showing that reduced QED can effectively be considered as an
interacting (boundary) CFT, underpinning recent work in this area. The argument, valid for both two- and
four-component spinors, also naturally extends to an exactly marginal deformation of reduced QED, thence
resulting in a nonsupersymmetric conformal manifold. The latter corresponds to boundary layer fermions
between two different dielectric half-spaces.

DOI: 10.1103/PhysRevD.99.045017

Conformal invariance has played an important role in
condensed matter physics and also high energy physics
since the 1980s, in particular after the ground breaking
work in d ¼ 2 dimensions of [1] and its paramount
relevance for string theory (world sheet dynamics).
Establishing conformal invariance in d > 2 turns out to
be a much harder job, in the sense that not many examples
are known of interacting (nonsupersymmetric) conformal
field theories (CFT) in d > 2, see [2,3] or [4] for a few
known examples and discussion.
In a recent work, it was investigated and proposed

that mixed-dimensional quantum electrodynamics (QED)
is another interacting (boundary) CFT [5], see also [6].
It arose in the context of new physics related to intro-
ducing a boundary into a CFT, in particular the appearance
of extra boundary-related anomalous terms in the energy-
momentum trace/correlation functions, and the latter
connection with the standard anomaly contributions.

One considers a four-dimensional bulk Abelian gauge
field with action

SQED4
¼

Z
d4x

�
−
1

4
FμνFμν þ ejμAμ

�
þ Sgf; ð1Þ

coupled to three-dimensional (massless four-component)
Dirac fermion matter via the conserved currents

jμ ¼
�
iψ̄γμψδðx3Þ for μ ¼ 0; 1; 2;

0 for μ ¼ 3;
ð2Þ

with the fermion fields living on the boundary sheet
x3 ¼ 0. Fermion dynamics can be included by adding the
kinetic contribution

R
d3xψ̄i=∂ψ to the system.As originally

discussed [7,8], upon integrating out the four-dimensional
bulk gauge field, followed by an integration over the third
spatial direction orthogonal to the boundary plane, one
ends with a nonlocal but fully three-dimensional gauge
theory, which reads1

SRQED3
¼

Z
d3x

�
1

2
Fμν

1ffiffiffiffiffiffiffiffi
−∂2

p Fμν þ ψ̄i=Dψ

�
þ Sgf ð3Þ

after the introduction of a novel, but now three-
dimensional, gauge field, that with a slight abuse of notion
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we denoted by Aμ again. As noted in [9], the gauge fixings
in (1)–(3) can be chosen independently, this is obviously
due to the gauge invariant nature of the whole setup. The
precise nature of the gauge fixing choice will be of little
concern in the current note.
This version of mixed-dimensional QED, also known as

reduced QED (RQED3) or pseudo QED [10,11], already
made its appearance in the literature before, as its physical
relevance is motivated from condensed matter. Indeed,
an effective quantum field theory description of the π
electrons in graphene, a two-dimensional plane of honey-
comb ordered carbon atoms, is exactly provided by mass-
less four-component Dirac spinors restricted to a plane,
which evidently still interact through virtual photons than
can propagate in the four-dimensional surrounding bulk
[12–15]. The unitarity of the unusual looking theory (3)
was established recently in [11]. Strictly speaking, for

graphene, the 2D ∇⃗-operator inside the =D is to be replaced

by vF
c ∇⃗ ≈ ∇⃗

300
with vF the Fermi velocity, but here we will

consider the Lorentz invariant version, that is with vF ¼ c,
the speed of light in vacuum.
Although RQED3 as described by the action (3) looks

very similar to QED3, there is one crucial difference. The
electromagnetic coupling e2 is still dimensionless now,
since it originates from the four-dimensional standard
gauge interaction,2 while in the three-dimensional case
the coupling carries an intrinsic dimension. The theory, for
massless Dirac fermions, is thus classically scale invariant.
Two-loop computations, [16,17] revealed that the coupling
e2 does not run, i.e., it does not get renormalized in a
massless renormalization scheme like MS. A similar one-
loop observation in the context of graphene was made in
[15,18] and up to second order in [19] for what concerns the
Thirring model in a large Nf expansion.
A non-relativistic version, for N species of two-

component spinors, of the model (3) was introduced and
analyzed in [20], also leading to the question whether the
theory is scale invariant (conformal invariant3) or not at
finiteN, in relation to the phase structure: can a gap open or
not? Even for genuine QED3 this question is still under
debate, [26] reported a dynamical gap for sufficiently small
N while recent lattice studies [27] found no evidence of
such for N ¼ 2.

Returning to RQED3, the authors of [5] motivated for
the coupling e2 to be an all orders fixed point of the
renormalization group equation, i.e., RQED3 would be an
example of an interacting nonsupersymmetric CFT, defin-
ing an at least perturbatively stable conformal manifold as
designated in [4] upon inclusion of an electromagnetic
interaction that “jumps” across the boundary x3 ¼ 0, as
considered in [6]. We will come back to this latter model
later on. CFT aspects of RQED were also highlighted
in [28].
The goal of the current paper is to give an affirmative

answer to the above. To be more precise, we will show that
the β-function for the RQED3 coupling e2 is exactly
vanishing in massless renormalization schemes, including
the case with the above deformation. Let us mention that for
standard QED3, with its massive coupling e2, the complete
IR and UV finiteness was proven in [29] using the BPHZL
framework. Notice that in [19], a similar line of reasoning
was employed to motivate the renormalizability (not finite-
ness) of the Thirring model at large Nf.
Let us depart from the would-be bare action in d ¼ 3 − ϵ

dimensions,

SRQED3
¼

Z
d3−ϵx

�
1

2
Z2
AFμν

1ffiffiffiffiffiffiffiffi
−∂2

p Fμν þ Zψ ψ̄i=∂ψ

þ ZΓψ̄i=Aψ

�
þ Sgf; ð4Þ

that is, including all renormalization Z-factors for the
photon field A, the fermion fields ðψ ; ψ̄Þ and the
fermion-photon vertex. Just as for normal QED4, current
conservation translates into a Ward identity [30], linking

the 1PI fermion-photon vertex Γð3Þ
μ to the inverse (1PI)

fermion propagator Γð2Þ
μ ,

qμΓ
ð3Þ
μ ðp; q; pþ qÞ ¼ Γð2Þðpþ qÞ − Γð2ÞðpÞ; ð5Þ

or, taking qμ → 0,

Γð3Þ
μ ðp; 0; pÞ ¼ ∂Γð2ÞðpÞ

∂pμ
: ð6Þ

At the level of the earlier Z-factors, this translates into
ZΓ ¼ Zψ , from which it then follows that

e2 ¼ μ−ϵZAe20 ð7Þ

with e0 the bare charge. So in principle it is sufficient to
prove the finiteness of the photon renormalization factor ZA
to have βe2 ¼ 0 for ϵ → 0. Considering the 1PI photon
propagator (self-energy) Πμνðp2Þ, power counting leads
to superficial degree of divergence ν at n-loops [5,16],
namely ν ¼ 1. As in general, gauge (or better said BRST)
invariance imposes the photon self-energy to be transverse,

2This can also be easily confirmed from the action (3) by
classical power counting of dimensions.

3We must note here that, from a strictly mathematical point of
view, scale invariance is a weaker condition than conformal
invariance [21]. In d ¼ 2 dimensions it was proven that scale
invariance implies conformal invariance [22]. However, once
scale invariance is determined, a sufficient condition for con-
formal invariance is attainable in d > 2 dimensions, providing the
nonexistence of an integrated operator transforming as a vector
under rotations with scale dimension −1 [23]. A similar condition
was proposed for the three-dimensional Ising model, see [24],
and more recently [25].
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one can factor out a δμνp2 − pμpν from Πμνðp2Þ, leading to
a superficially convergent diagram. Unfortunately, this
argument, used at one-loop in [5], does not help at a
generic order, since (i) there will be a sum of diagrams
contributing to Πμνðp2Þ with only the sum transverse and
(ii), any higher order diagram is superficially convergent
if and only all of its subdiagrams are [31,32], and the
latter subdiagrams also do not need to be transverse by
themselves.
In [17], it was pointed out that ZA ¼ 1 as it concerns the

renormalization of a non-local term in the free (quadratic)
part of action, incompatible with the observation that
counterterms must be local polynomials in the fields and
derivatives thereof. This rationale was based on [33].
However, the argument of [33] is based on adding on
top of a renormalizable theory a nonlocal term. For
example, consider

S ¼
Z

d4x

�
−
1

2
ϕ

�
∂2 þm4

∂2

�
ϕþ λ

4!
ϕ4

�
; ð8Þ

then this theory is a standard local renormalizable quantum
field theory for m4 ¼ 0, and it remains to be so when the
dipole term ∝ m4 is switched on; indeed the only change is

the propagator, now given by4 p2

p4þm4 ¼ 1
p2 − m4

p2ðp4þm4Þ, and
the second ultraviolet suppressed term will not generate
new infinities compared to the first original piece of the
propagator. As such, no counterterm for the dipole piece of
the action is necessary. The crux of the matter here is that
the underlying (local) quantum field theory is already
properly renormalized. The situation however changes
drastically if there is no such underlying renormalizable
theory. Consider for example

S ¼
Z

d4x

�
−
1

2
ϕ

� ∂2ffiffiffiffiffiffiffiffi
−∂2

p
�
ϕþ λ

4!
ϕ4

�
: ð9Þ

Dimensional counting learns that λ has negative mass
dimension. As such, we do not expect this model to be
renormalizable to all orders. Apart from that, the “setting
sun” self-energy diagram will anyhow require wave func-
tion renormalization, visible per power counting. The
problem of course is that the free ϕ-propagator now only
falls off like 1

p in the ultraviolet. Moreover, the fact that
counterterms are polynomials in the momentum has strictly
speaking only been proven when using free propagators of
the standard type, see [35–38].
Therefore, another technology is needed to prove that

ZA ¼ 1. Let us start with the action (4) and integrate out the
fermions à la [39], to get an effective theory for photons
only, from which we can also read off the ZA. Integrating
out the fermions leads to

Γ̃½A� ¼
Z

d3−ϵx

�
1

2
Z2
AFμν

1ffiffiffiffiffiffiffiffi
−∂2

p Fμν

�

þ ln detði=DÞ þ Sgf; ð10Þ

where A is here considered to be still external.5 Gauge
symmetry translates now into

∂μ1

δΓ̃½A�
δAμ1

¼ 0: ð11Þ

Taking further functional derivatives with respect to Ai ≡
AμiðxiÞ and setting external fields to zero at the end, we get

∂x1
μ1

δðnÞ

δA1…δAn
Γ̃½A�

����
A¼0

¼ ∂x1
μ1hjx1μ1…jxnμni ¼ 0; ð12Þ

expressing that Γ̃ðAÞ is actually solely depending on the
transverse projection of A, viz. Γ̃ðAÞ ¼ Γ̃ðATÞ where

AT
μ ¼

�
δμν −

∂μ∂ν

∂2

�
Aν: ð13Þ

This nonlocal variable AT
μ is gauge invariant, so unsurpris-

ingly, we can rewrite it in terms of Fμν via (d ¼ 3)

AT
ν ¼ ∂μ

∂2
Fμν ¼

Z
d3r
4π

ðx − rÞμ
jx − rj3 F

r
μν: ð14Þ

Next, we consider the all-order expansion of Γ̃ðAÞ, being

Γ̃ ¼
X
n≥1

Z
d3x1…d3xnAT

1…AT
nhjx1μ1…jxnμni

¼
X
n≥1

Z
d3r1…d3rnF

r1
μ1ν1…Frn

μnνnγ
r1;…;rn
μ1ν1;…;μnνn ð15Þ

with

4A similar partial fraction trick was used in [34] in a different
context.

5This determinant and the emergent Chern–Simons term plays
an important role in 3D bosonization and dualities, see [39–45].
Recently there has been an revived activity in such dualities, in
particular in relation to T-invariance and two-component spinor
theories, an interest sparked by papers like [46–48]. To avoid
confusion, although we relied on tools known in the bosonization
community, we do not derive a dual version of the four-
component spinor theory RQED3. The four-component nature
of our spinors makes that the theory (3) is not prone to a T-parity
anomaly. Moreover, thinking in terms of graphene, the four-
component language automatically emerges. Indeed, the honey-
comb lattice structure of graphene actually consists out of two
periodic sublattices as which creation/annihilation operators can
be inserted, leading to two Dirac points in the momentum space,
and the expansion around these points can be managed to form a
four-spinor structure in the continuum limit [13,49].
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γr1;…;rn
μ1ν1;…;μnνn ¼

Z
d3x1
4π

…
d3xn
4π

ðx1 − r1Þμ1
jx1 − r1j3

…

×
ðxn − rnÞμn
jxn − rnj3

hjx1ν1…jxnνni: ð16Þ

As charge conjugation invariance is also valid in three
dimensions and its operation switches the sign of the
current, Furry’s theorem still holds and we will just
encounter the even terms in the expansion (15). It is easy
to see that a diagram with n external photon legs will
behave in the ultraviolet as ∼

R
d3q 1

qn, so we need to only
consider the n ¼ 2 case for possible divergences, the other
diagrams are power-counting finite in d ¼ 3, as n ≥ 4. The
two-current expectation value is nothing else than the
transverse photon self-energy for which a standard com-
putation for a single four-component spinor, see also [8,42],
leads to a finite correction at one-loop in d ¼ 3 − ϵ
dimensions

ΠμνðpÞ ¼
e2p
8

�
δμν −

pμpν

p2

�
: ð17Þ

Putting everything back together, we will get as effective
action for the photon in RQED3

Γ̃½A� ¼
Z

d3−ϵx

�
1

2
Z2
AFμν

1ffiffiffiffiffiffiffiffi
−∂2

p Fμν

þ e2

8
Fμν

1ffiffiffiffiffiffiffiffi
−∂2

p Fμν þO
�

e4F4ffiffiffiffiffiffiffiffi
−∂2

p
5

��
þ Sgf; ð18Þ

From this expression, it is clear that the effective inter-
actions in the higher powers of the field strength F are
sufficiently ultraviolet-suppressed to only give power
counting finite corrections, as such it is evident that we
can actually set ZA ≡ 1, what we wanted to prove. To make
this explicit, consider e.g., the four-point vertex ∼ F4

p5 and

consider a diagram with N ≥ 2 external legs6 and V ≥ 1
insertions of the previous vertex. This means we are
looking at corrections to the photon two-point function
beyond the finite one-loop level. For a number of L loops
we have L ¼ P − V þ 1, with P the number of propaga-
tors. Each vertex counts 4 photon lines, hence
4V ¼ N þ 2P. Keeping in mind that the propagator falls
off as 1

p, the considered diagram will thus have a superficial
degree of divergence given by ν ¼ 3L − P − 3V ¼ −2V þ
3 − N < 0, i.e., it will be convergent. This means any (sub)
diagram is convergent, as such the corrections at any order
to the two-point function will be finite [31]. A similar
argument will apply if further UV suppressed vertices are
included, that is the higher order vertices present in the
action (18).

Having established the proof for the four-component
case, it is in fact immediately realized that the same line of
reasoning can be followed in case the fermion is two-
component. Indeed, the only change, up to the replacement
e2
8
→ e2

16
, in (18) will be the additional generation of a (finite)

T-odd Chern–Simons term ∝
R
d3xðe2ϵμνρAμ∂νAρÞ which

also respects gauge invariance [41–45]. Said otherwise, one
still finds that ZA ¼ 1.
Notice that, silently, we assumed during the above line of

reasoning that the fermions have a Fermi velocity vF ¼ c
with c the speed of light in the layer, i.e., to have full 3D
Lorentz (Euclidean) invariance. Though, in a realistic
condensed matter system, we should take into account
the fermions having a Fermi velocity vF < c. This is a
highly non-trivial addition to the setup, since vF generically
renormalizes (see e.g., [15,18,50] for theoretical consid-
erations or [51,52] for experimental evidence), which
indirectly also causes the interaction to run since the
effective “fine structure constant” is given by (restoring
all units) e2

4πℏvF
[15]. Though, the Lorentz invariant CFT

description should be effectively realized in the low energy
limit, where vF runs to the infrared fixed point vF ¼ c, viz.
the Lorentz invariant case [15,18,50].
We can now move to a further generalization of our setup

by looking at the theoretical model of [6], which we
generalize further by considering

Sins ¼
Z

dtd3x

�
θðx3Þ
4e2þ

F2
μν;þ þ θð−x3Þ

4e2−
F2
μν;−

�
þ Sgf

þ
Z

dt
Z

d2x½ψ̄ i=Dψ � ð19Þ

where θðxÞ is the Heaviside step function. We introduced
Aμ;� for the gauge field values above/below the x3 ¼ 0

boundary plane, with ½Aμ�x3¼0
¼ 1

2
½aμ;þAμ;þþaμ;−Aμ;−�x3¼0

where a0;� ¼ c�
vF
, a1;� ¼ a2;� ¼ 1. It is understood that =∂ ¼

γ0
1
vF

∂
∂t þ γ⃗ · ∇⃗ while current conservation is expressed via

1
vF
∂tj0 þ ∇⃗ · j⃗ ¼ 0. As before, jμ ≡ iψ̄γμψ for μ ¼ 0, 1, 2

and j3 ¼ 0, with jμ not depending on x3. The model is
gauge invariant, in particular due to how ½Aμ�x3¼0

is
introduced. The setup corresponds to a surface layer of
massless fermions between two different dielectric media
(insulators). We allowed for a different speed of light
in the two surrounding media (cþ and c−), so that F2

μν;� ¼
E2=c2� þ B2, next to a different interaction strength, incor-
porated in the e2þ and e2−. The description (19) is based on a
realistic model for an isotropic insulator [53, Sect. 16.10].
The special case cþ ¼ c− ¼ vFð¼ 1Þ matches to the exam-
ple given in [6] and this is the one wewill be discussing here.
The presented methodology can be adapted to the general
case, although matters get considerably more tedious. In any

6Vacuum diagrams in massless theories or one-point propa-
gators are vanishing anyhow.
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case, as before we only expect the model to be scale anomaly
free for cþ ¼ c− ¼ vF.
To prove that (19) enjoys an exact quantum scale

invariance for cþ ¼ c− ¼ vF ¼ 1, we will first reduce it
to a 3D model describing the interaction between the
planar fermions. As the gauge field appears at most
quadratically, we can integrate it out exactly, equivalent
to working on-shell to reformulate the partition func-
tion (path integral). The classical field equations read
∂2Aμ;�¼0 where we assumed Landau gauge ∂μAμ;�¼0.
There is an extra set of constraints as we must require the
boundary variation to vanish as well. With nμ ¼ ð0; 0; 0; 1Þ,
this leads to ½ 1e2þ n

μFμν;þ − 1
e2−
nμFμν;−�

x3¼0
¼ jν. Moreover,

requiring continuity of the Bianchi identity leads to
½nμϵμναβðFαβ;þ − Fαβ;−Þ�x3¼0

¼ 0, the homogenous boun-
dary conditions. Using a similar approach as in [54], we
can construct an explicit solution in terms of the Fourier-
transformed current ĵμ,

Aμ;� ¼ −
e2þe2−

e2þ þ e2−

Z
d3k
ð2πÞ3

eiðk0x0þk1x1þk2x2Þ∓k3x3

k3
ĵμ

for μ ¼ 0; 1; 2 and with k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ k21 þ k22

q
;

A3;þ ¼ A3;− ≡ 0; ð20Þ
which is easily checked to fulfill the gauge condition, the
field equations and the boundary conditions. Notice the
absence of an i in front of k3x3 in the exponent, related to
the fact that we work in Euclidean space time. Indeed, it
would be impossible to have, with real ki, that k20 þ k21 þ
k22 þ k23 ¼ 0 if it would have been ik3x3. The choice of
signs is dictated by demanding decaying rather than
exploding solutions at x3 → �∞. The choice A3;þ ¼
A3;− ≡ 0 is fine from the perspective that it gives a solution
to the equations of motion and all physical boundary
conditions, when combined with the given Aμ;�. More-
over, it is also consistent with demanding continuity of the
Landau gauge condition at the boundary surface.
The on-shell action becomes pure boundary, yielding

Sins ¼
Z

d3x
1

2
½Aμ;þ þ Aμ;−�x3¼0

jμ þ
Z

d3xψ̄i=∂ψ

þ
�
−

1

2e2þ

Z
d3xAμ;þ∂3Aμ;þ

þ 1

2e2−

Z
d3xAμ;−∂3Aμ;−

�
x3¼0

¼ −
e2þe2−

e2þ þ e2−

Z
d3k
ð2πÞ3 ĵμ

1

2k3
ĵμ þ

Z
d3xψ̄i=∂ψ

¼ −
e2þe2−

e2þ þ e2−

Z
d3k
ð2πÞ3 ĵμ

1

2k3
Pμνĵν þ

Z
d3xψ̄i=∂ψ ;

ð21Þ

with Pμν the 3D transverse projector. Returning to
configuration space, we can reformulate the mixed-
dimensional model (19) in terms of a new 3D gauge
field via

Sins ¼
Z

d3x

�
1

2ẽ2
Fμν

1ffiffiffiffiffiffiffiffi
−∂2

p Fμν þ ψ̄i=Dψ

�
þ Sgf ð22Þ

with ẽ2 ¼ 2ðe2þe2−Þ
e2þþe2−

the new effective 3D electromagnetic

coupling. This means that the two coupling constants e2�
will never enter separately, but always in the combination
ẽ2. As we recover RQED3, see Eq. (3), with appropriate
coupling, we can still conclude that the β-function of ẽ2 is
trivial, whatever the values of e2�. This proves the point
made in [6]. As a check, in the case of two identical
dielectrics, we recover the effective graphene model dis-
cussed earlier and derived in a different manner in
e.g., [7,8].
In separate work, we plan to come back to the original

model with c� and vF present. A particular interesting
question is whether by appropriate choices of e2�, c� and
vF, (non)trivial fixed points can be found, and if so, to what
extent these can be realized in Nature? We conclude by
discussing in short possible experimental realizations of the
above theoretical model. A first possibility is to consider a
sheet of graphene between two different dielectrics [55].
Another interesting setup is to make use of the massless
(chiral) fermions living on the three-dimensional edge
between the insulating vacuum and a (3þ 1)-dimensional
topological insulator, [53,56]. Interestingly, in the latter
case the four-dimensional description of the Z2 topological
insulator has a topological ∝θ

R
d4xFF̃∝θ

R
d4xE⃗ · B⃗ term

in the action with F̃μν ¼ 1
2
ϵμναβFαβ the dual field strength

tensor, with the angular variable θ ¼ π to respect T-
invariance. For thevacuum,wehave θ ¼ 0. Upon integration,
this jump in θ will exactly produce the 3D Chern–Simons
term on the boundary for the 3D dimensionally-
reduced photon, since

R
d4xFF̃∝

R
d4xϵμναβ×∂μðAν∂αAβÞ¼R

d3xϵναβAν∂αAβ assuming xμ ≡ x3 ¼ 0 is the boundary.
As such, topological insulators offer the possibility to
explicitly couple the Chern–Simons photon term also to
reduced QED, as recently discussed in [9], see also [57].
At least in the Lorentz invariant limiting case, this 3D model
will also have no β-function for the electromagnetic coupling,
following the analysis in our current note.
At last, having shown that in the ultrarelativistic limit

description of graphene there is no space for coupling
constant renormalization, this also means that a priori
massless fermions will never be able to generate a dynami-
cal mass given that there is no space for dimensional
transmutation with a vanishing β-function. This can be
circumvented by introducing external dimensionful quan-
tities (like background electromagnetic fields) or by taking
into account that realistic graphene has a natural ultraviolet
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cut-off inversely proportional to the cell size. These and
other issues deserve further attention in future research.
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