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The general method introduced in a previous paper to build up a class of models invariant under
generalization of Carroll and Galilei algebra is extended to systems including a set of Grassmann variables
describing the spin degree of freedom. The models described here are based on a relativistic super-
symmetric algebra with vector and scalar generators (VSUSY). Therefore, in order to obtain dynamical
systems consistent with Carroll or Galilei, we will study the contractions of the anticommuting generators

compatible with the Poincaré contractions.
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I. INTRODUCTION

In a previous paper [1] we have introduced a general
strategy to build up a class of models invariant under
generalizations of Carroll and Galilei algebra with zero
central charge [2-10] A bonus of this approach is that it
allows a description in configuration space, whereas most
of the models invariant under Carroll or Galilei group
present in the literature are described by an action in phase
space. Furthermore, although the construction of these
nonrelativistic actions starts from a relativistic formulation,
the method in [1] does not require any limiting procedure
and redefinition of the parameters.

The aim of this work is to apply this method to systems
including a set of Grassmann variables describing the spin
degrees of freedom, exhibiting a Carroll or a Galilei
symmetry. The system we have in mind is one with a
SUSY symmetry described by vectorlike and scalar anti-
commuting generators (VSUSY). This algebra, which is a
relativistic one, was introduced in [11], in order to get a
“pseudoclassical” description of the Dirac equation. See
also [12—-14], where these pseudoclassical models have the
same set of Grassmann variables and lead to the Dirac
equation without rigid supersymmetry.
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VSUSY has been introduced in Ref. [1] in connection
with the idea of describing the spin degree of freedom in
terms of Grassmann variables. Correspondingly, VSUSY is
a nontrivial extension of the Poincaré group via the
introduction of anticommuting generators. By its very
nature VSUSY is applicable to particle-like objects. The
extension to field theory, considering the spin statistics
connection, is non trivial. The connection among ordinary
QFT and TQFT is based on the use of twisting where
spinorial charges are changed to vectors, scalars, and self-
dual tensors charges at the level of the superparticle with
N =2, see [15]. Also Costello constructed twisted super-
gravity [16]. The general algebraic properties of VSUSY
have been studied in Ref. [17]. In particular, the Casimir
operators have been constructed and the structure of the
multiplets has been investigated. Furthermore, it has been
shown that this algebra can be obtained from a contraction
of OSp(3,2|2).

Of course, the models we would like to construct here
should exhibit Carroll or Galilei supersymmetry counter-
part. To this end, we would need to construct specific
contractions of VSUSY algebra. Before doing that, we
would need to review the general strategy of [1].

The method consists in starting from a space-time in
D + 1 dimensions and partitioning it in two parts, the first
Minkowskian and the second euclidean. Then a Carroll or
Galilei invariant model can be obtained by introducing a
Minkowski invariant action, or Euclidean invariant action
respectively, in one of the partitions of the space-time
(the Minkowskian for Carroll or the euclidean for Galilei)
and, in the complementary partition, a system of lagrange
multipliers transforming in an appropriate way under the
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Euclidean or the Lorentz group such that to confine the
system to a region of the space-time. This system is such to
compensate the variations induced by the Carroll or Galilei
boosts of the action in the appropriate subspace. A simple
way to get this result, is to start with an action Poincaré
invariant in the total space, say S, and defining the action in
the Minkowski or euclidean subspace as

(S)Carroll = (S) |x“£0’ (1)

or

(S)Galilei = (S) x=0> (2)

where the x*’s and x*’s are the coordinates of the Euclidean
subspace where the system is confined respectively for the
Carroll and Galilei case.

It is important to notice that this procedure allows us to
obtain the action, for dynamical systems invariant under
Carroll or Galilei group without central charges, directly
from actions in configurations space invariant under
Poincaré without use of a limiting procedure. As we have
said one needs to introduce a set of Lagrange multipliers in
one of the two parts of the Lagrangian in which we divide
the space-time. These multipliers have not a clear inter-
pretation in configuration space. However, in general, these
Lagrange multipliers have a natural interpretation as
momenta in the phase space canonical action.

The paper is organized as follows: in Sec. Il we review
the k-contractions [18-22] [7-10] used in Ref. [I].
In Secs. IIT A-III B, we construct the k-contractions of
VSUSY algebra for the Carroll type and the Galilei type,
both in the case of the abstract algebra and in the case of the
realization of the algebra in the configuration space. In
Sec. IV, following the procedure illustrated in [1] we
construct the action and discuss the case for a VSUSY
Carroll particle. In particular we examine its k invariance
and its quantization respectively in Secs. IVA and IV B.
The same is done for a VSUSY Galilei particle in
Secs. V, VA, and V B In Sec. VI we draw our conclusions.
In the Appendix we show how the actions, for the VSUSY
Carroll and Galilei particle, can be derived by performing
the standard Carroll and nonrelativistic limiting procedures
in the Poincaré invariant phase space action.

IL. POINCARE CONTRACTIONS

In order to make explicit the partition of the space-time
in D + 1 dimensions we will introduce the following set of
coordinates

uw,v=0,1,...,D, nﬂy:(_;+’...,+)’
a,f=0,1,.... k-1, ;7”/}:(_;4_’...’_'_)’
a,b=k,....D, Hap = (A4 ), (3)

The Poincaré algebra in the total space is given by

[M/un Mpa] = _i(’/l/lpMI/O‘ + nl/UMﬂp - ’/thyp - ”vaﬂa)v
[M/wv Pp] = _i(’/l;tpPy - ’7pr )’
[P/uPb] =0, (4)

Then, consider the following two subgroups of ISO(1, D):
the Poincaré subgroup in k dimensions, /SO(1,k — 1) and
the Euclidean group of roto-translations in D+ 1 —k
dimensions, generated respectively by

ISO(1,k=1): My, Py af=0,1,...k=1, (5)

ISO(D+1—k): My,, P,, ab=k...D. (6)
In these notations the generators of /SO(1, D) are

ISO(1,D): My3, M, P, P,. My =By (7)
Note that the generators B, connect the two subalgebras.

In [1] we have considered two types of contractions,
both at the level of the Poincaré algebra and at the level of
the invariant vector fields. These contractions generalize
the Carroll [2,5-7] and the Galilei algebras [23] [18-22]
[8-10].

At the Lie algebra level the contractions are made on the
momenta and on the boosts; in the Carroll case:

- 1 - 1
PaziPav BaaziBaa (8)
w w

and then taking the limit @ — oo. In the Galilei case the
contractions are given by

1 - 1
Pa = _Pa’ Baa = _Baa' (9)
w w

The commutation relations resulting from the contrac-
tion process are
Carroll-type

Baa 0 0 iﬂabPa
, 10
P, 0 0 0 (10)
Pa _inubP/} 0 0
Galilei-type
| Bw Py Py
Baa 0 _ina Pa
. ’ (1)
P, iNapP 4 0 0
P, 0 0 0
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III. VSUSY CONTRACTIONS

Let us now consider the VSUSY algebra [11,24] which is
defined in terms of the generators G, and G5 and of their
anticommutation relations

[Gw Gv]+ = NwZ, [G/u G5]+ ==P,

[Gs,Gs], = Zs (12)

By using a decomposition analogous to the one used in the
Poincaré case

Gﬂ:(G(,,Ga), a=0,1,....k—1, a=k, ....D
(13)
The anticommutation relations become
[Gm Gﬁ]+ = ’7(1/32’ [Ga’ Gb]+ = nabZ’
[Gs,Gs), = Zs (14)
[Ga’ Ga]+ =0, [Gav G5]+ =-P,,
(G, Gs|, = P, (15)

Both G, and G, behave as vectors under the two groups
generated by M,; and M ;,. Therefore the corresponding
commutation relations are invariant under any rescaling of
G, and G,. This is not the same for the Lorentz boosts with
commutation relations

[Bam Gﬁ] = +i71a[)’Ga’ [Bam Gh] = _inabGa (16)

A. k-contractions of Carroll type

In the Poincaré case we have defined the contraction by a
rescaling of part of the momenta and for the boosts,
according to the Eq. (8) for the Carroll case and Eq. (9)
for the Galilei one, leaving unchanged all the other
generators. By doing so we have not changed the two
subalgebras ISO(1,k—1) and ISO(D + 1 —k). In the
case of VSUSY we would like to make use of an analogous
strategy. In particular, for the Carroll case, we would like to
maintain the VSUSY invariance in the Minkowski sector.
Therefore we will study k-contractions of Carroll type,
preserving the main anticommutation relation in this sector:

[GavGS]Jr =—P,. (17)
To this end we will define the contracted generators as

1 .1 s 1
Go=—G,  G,=—G,  Gs=——Gs. (18)
w

) a)l—r

With this choice we have

-~ Z S~ Z
[Gm G[J‘]-&- = naﬁﬁ ’ [Ga’ Gb}+ = Nab F’
- = Z
[GSv G5]+ = 0)2_52r (19)
- ~ = = 1
[Gm G5]+ = Pm [Ga» G5]+ = T 1S5+ Pa (20)

- i ~
[Boa» Gl = _eraﬂGa? [Bua.Gpl = +W’1abGa
(21)
where, for the moment being we have not done any choice
regarding the possible contractions of the central charges.

Asking to maintain the complete VSUSY algebra in the
Minkowski subspace, we should scale both Z and Zs

z . Z

Z= P Zs = PR (22)
Then, we have
. - . 7
[Ga’ Gﬁ]+ - 77(1,627 [Gm Gb}+ = Nab 200-r)°
[657 Gs]+ = Zs (23)
~ - ~ 1
[Gav G5]+ = Pa’ [GavGS]-&- = _TWP(I (24)

i = - o i ~
[Baa’Gﬁ]:_W’?aﬂGa’ [Baa’Gb]:—'—W’/]abGa'
(25)

Now, all these relations depend only on the difference r — .
To have a finite result, it is enough to require t — r > 0 [as it
follows from (23)] and, from (25), 1 4+ r — ¢t > 0. There are
only two possibilities to verify these conditions:

(1) t — r = 0, the relations become

[Gavéﬁ]+ :7711/}2’ [GavaL- :nabZ7 [Gs,ésh :Zs
(26)
[Gw GS]+ = Pm [Ga’ GS]+ =0 (27)

[B(m’ Gﬂ] =0, [Baa’ Gh] =0 (28)

Notice that the G,’s form a Clifford algebra (after renorm-
alization of the generators) which commute or anticommute
with all other generators of the previous list. The algebra is
VSUSY ® Clifford, with VSUSY in k-dimensions and the
Clifford in D + 1 — k dimensions.
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2)t—r =1, we get

[Gav Gﬂh— = 7]0(/327 [Ga’ Gb]+ = 07 [GS’ G5}+ = 25
(29)
[Gav GS]Jr = _Pm [Gaa GSL» =0 (30)
[Baa’ Gﬂ] = _irla/iGa’ [Eaa’ Gb] =0 (31)

Here the G,’s span a Clifford algebra with zero central
charge, or a Grasmmann algebra. In the case r =1,
corresponding to the model discussed in the following,
the boosts connect only the space-time variables among the
two sectors.

B. k-contractions of Carroll type in configuration space

The scaling of the algebra of the generators, implies the
following scaling in the configuration space realization
~a a ~a E

X = wx”, X = x, E=we, & = ',

55 — wl—rfS’ _ w2rc’ ES _ wZ—ZrCS (32)

o

We will make use of the vector field realization of the
VSUSY algebra, as given [24]:

_ (8 0 0 _ ;09 150
G =i (agﬁ o 25”&)’ O =15572% e,
(33)

with the generators of the Poincaré group in the D + 1
dimensional space:

. 0 0 . 0 0
=5 55) =1 (558525

0
P " = —i w (34)
Notice that the derivatives with respect to the Grassmann
variables are left-handed derivatives.
Performing the scaling on the vector fields according to
Egs. (18), (8), and (66) we get for the two cases
(D t—r=0,

6o it E e 3Eugy) 09
G =iz - 550 ) (36)

Gs =i 3E o (7)

By, = ix, i (38)

Implying the following variations for the coordinates
(omitting the tilde)

dc= —ie"tfa (39)

€G08 = €%,
i€*G,: 6% =¢ 5

Ox* =ie?8,

i€°G,: 6 =€, b6x*=0, 562—%6“&1 (40)
5Gs: 685 = €5, s = —56555 (41)

V% By, 0x* = —1v*x, (42)

2)t—r=1, we get

(0 0 i, 0
6o i( ot B tty) @)
~ .0
a — 8—5‘1 (44)
S )
GS_ 8—55 25 365 (45)

B (46)

0
aa — Xq a~(l ga é

Implying the following variations for the coordinates
(omitting the tilde)

i€?G,: 0% =e€%, 6x*=ieE, dc= —%e“cfa (47)
ie’G,: 68 = €, ox* =0, 6c=0 (48)
€Gs: 88 =€, dcs = —é65§5 (49)
iv%B,,: 6x% = —v*x,, 8&1 =v*g,  (50)

Note that the difference between the two types of trans-
formations is the action of the boosts. In the actual case, the
boosts depend also on the Grassmann variables, £* amd &4,
Furtermore the VSUSY algebra decomposes in the direct
product of a VSUSY in the Minkowski subspace times a
Grassmann algebra in the Euclidean part.

C. k-contractions of Galilei type

In this case the contraction at the level of the Poincaré
group is defined in Eq. (9). This time we want to maintain
the VSUSY invariance in the Euclidean subsector.
Therefore we will study the k-contractions of Galilei type,
preserving the main anticommutation relation:
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[G,.Gs], = —P,. (51)

To this end we will define the contracted generators as

~ 1 ~ ~ 1
Ga = G(n Ga = Gav G5 - 1=t GS' (52)
w
With this choice we have
~ Z -~ o~ VA
[Ga, Gﬂ]+ = I/]aﬂm s [Ga’ b]+ = Nab F ,
L Zs
(Gs,Gs, = P (53)
-~ 1 - ~ o~ ~
[Gm G5]+ = _WPUH [Gav G5]+ = _Pu (54)

i ~ -~ i -
[Bya» Gyl = _WnaﬁGm [Bua.Gpl = +W’7abGa~

(55)

Asking to maintain the complete VSUSY algebra in the
Euclidean sector, we need to scale both Z and Z;

. Z . Zs
Then we have
. s B 7 X B -
[Ga’ Gﬂ]+ - 77(1/} W ’ [ a» Gh]+ - nabz’
[GSv GS]+ = ZS (57)
-~ 1 - -~ -
(G, Gs] = EpET=Ls [Gu.Gs|, = =P, (58)
. - i - - - i ~
[Baa»Gpl = _WnaﬂGw [Bua.Gp) = +WnabGa~

(59)

Reasoning as in the Carroll case, we have only two
possibilities:
(1) r —t = 0, the relations become

[Gm Gﬁ]+ = 77{1/327 [Ga’ Gb]+ = nabZ’

G5, Gs). = Zs (60)
[Ga’ GS]+ = 0’ [Gas GS}+ = _Pa (61)
[Baa’ Gﬂ] = 0’ [Bam Gb] =0. (62)

Notice that the G,’s form a Clifford algebra (after renorm-
alization of the generators). The algebra is VSUSY ®
Clifford, with VSUSY in D + 1 — k-dimensions and the
Clifford in k dimensions.

2)r—t=1, we get

[Gav G/i]+ = O’ [Gm Gb]+ = nahzv [657 GS]+ = ZS
(63)

[Gav GS]+ = 07 [Ga’ GS]Jr = _Pa (64)

[B(mv G[)’} =0, [B(ms Gb] = ir]ubG(l' (65)

Here the G,’s span a Clifford algebra with zero central
charge, or a Grasmmann algebra. Then we can make
considerations analogous to the ones made in the Carroll
case. That is in the first case (corresponding to the model
discussed in the following), the boosts connect only the
space-time variables among the two sectors.

D. k-contractions of Galilei type
in configuration space

The scaling of the algebra of the generators, implies the
following scaling in the configuration space

Ea —_ a)rga’ Ea — a)’éa,

¢ =awc, &s = 0’ %cs (66)

x4 = wx*?,
B = o1
Recalling the expressions (33) and (34) we perform the

scaling on the expression of the generators according to
Egs. (52), (56), and (9). The result is

() r—t=0,
Go=-i(ygt E pa—ze) (O
Gsz—i;gs—;“(;; (69)
By = —i%a% (70)

Implying the following variations for the coordinates
(omitting the tilde)

i€"G,: 88 = ¢, S =0, Sc= —%eaga (71)
ieG,: 68 = e, Ox¢ = e, oc = —%e“fa
(72)

i5Gs: 68 =5, bes = —36555 (73)

V% B, 6x% = v%x, (74)
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2)r—t=1, we get

~a—-4§; 75)

G, = —i( 8(; +i& a?ca - éf %) (76)
cf=45;—gégé (77)
By = —m% —i&, a%,. (78)

Implying the following variations for the coordinates
(omitting the tilde)

i€°G,: 6E% = €, ox% =0, sc=0 (79)
i€?G,: 68 = €, ox = ie“8, oc = —ée“fd
(80)

ie5Gs: 885 = ¢35, S5 = —56555 (81)

V"B, ox* = v%x,, O0&* = v™E,. (82)

In the second case, the boosts depend also on the
Grassmann variables £* and &“. Furthermore the VSUSY
algebra decomposes in the direct product of a VSUSY in
the Euclidean subspace times a Grassmann algebra in the
Minkowski part.

IV. THE VSUSY CARROLL PARTICLE

We start with a Lagrangian invariant under the VSUSY
algebra on the total space-time in D 4 1 dimensions [24]

L =—M\/—(i* —ig&)? —ﬂ(é + é@,&”)
R (83)

This time we will consider a 1-contraction of Carroll type
in the case r — ¢t = 0. The Carroll invariant Lagrangian is
obtained restricting (83) to the one-dimensional space
spanned by x° and adding its variation under a boost times
a lagrange multiplier. Since in this case the boost is
operating only on x?, 6x° = —7 - ¥ [see Eq. (50)], we get

L= =My (<" = i8)? —ﬁ(é +§£o£'°)
—y<65+é§5é5> +A-X (84)

This Lagrangian is in fact VSUSY invariant under the
following rigid transformations (see [24])

6x0 = e, 880 =, 88 =¢€ (85)

i i
bc = —Eefo, des = —56555. (86)

The generators of these transformations satisfy the algebra

(Go,Gol, =2,  [Gs5,Gs]. =Zs,  [Gy,Gs], =—Py

(87)
where Z and Zs are two central charges. The variation of

(84) under Carroll boosts is given by (remember that X does
not transform under a Carroll boost)

SL = podi® + 61 -X = —poB-X++61-%  (88)

where p, is the canonical momentum associated to x°

oL _ (10 — i)

Po="%50~ . (89)
ox° 0 0
(a® = ig0¢)?
The Lagrangian is Carroll invariant assuming
51 = pob. (90)
The other canonical momenta are
oL i
Ty =— = — 91
0 (950 D) 50 ( )
OL iy s . .
”5:8755255 +ipoé”. (92)

From these equations the following constraints follow

¢ = py—M* (93)
p=r-Te—ip (94)
Xo =7y — ?50- (95)

We recall that the Poisson brackets for Grassmann variables
are defined by
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{”0750} =-L

The constraint (95) is second class. We then define Dirac
brackets in the usual way and, in particular, we find

(96)

(60 80} = —;.

We are now able to evaluate the Dirac brackets of the odd
constraint y with itself. We find

(97)

i

{xy = 5 (PG + Br)- (98)
Therefore, if we choose
yr=-p=M (99)

the constraints ¢ and y are first class and we expect, as in
the relativistic case, a local kappa symmetry of the
Lagrangian.

This model represents the spinning generalization of the
Carroll particle model studied in [6]. Although the two
cases t —r =0 and r — r = 1 correspond to two different
algebras, it is easy to check that the Lagrangian (84) is
invariant under also under the algebra corresponding
tor—rt=1.

A. k-invariance

As we have seen, the model has two local symmetries,
generated by the constraints ¢ and y. The local symmetry
generated by the odd constraint is a “k-symmetry.” The
transformations generated by y are given by

0
58 = k|

5xV =i 0’
X ix& i

585 =4k (100)

from which
5L = ix(po’ + ME) = Lpo Ly L (epy) - Lt
= IK\Po 2’<P0 ZOdTKPO ) K
—£M§51'c
c
i 0 Lo d i, s
= ——&— ——M -M
5KkPos” =3¢ dT(Kpo) 5 MEk + 3 Mg

9 le(po® + ME)).

- 101
2dr (101)

Therefore the Lagrangian (84) is quasi-invariant under this
k-transformation.

B. Quantization

To perform the canonical quantization we require the
following conditions for the operators corresponding to the
Grassmann variables [25]

S A

[;[5’;[5]+ = [551§S]+ = [%59%0]+

[ﬁ.s’és]+ = -, [éoﬂfoh =

= [A vﬁ5]+ =0,
1
U (102)

we give the following definitions

M s 2 A i
» =i\/=P, > = [ =Py, =
3 1 4 M 2 o \/2—M7075

(103)

where we define the matrix [26]

Vs = (‘0'"“7071 YD (104)

where m = (D + 1)/2, The matrx ys is Hermitian and
satisfies

75 =1

(105)
in any space-time of even dimension. The matrices P; and
P, are nilpotent and defined by

Yo~V
Plzio2 5, P,

_Yot7s

5 (106)

such that

P%:P%:O, [Pl,P2]+:—1 (107)
After substitution in the constraint y we find the

condition on the states

(=irop°rs — Mys)¥(p°) = 0. (108)
Multiplying by 75
(ivop” — M)¥(p°) = 0. (109)

This shows that the model describes at the same time
particles and antiparticles corresponding to the two eigen-
values +1 of iy.

Since there are only 3 operators, the lowest dimensional
representation is in terms of 2 x 2 matrices. For instance,
we can take the following representation which satisfied the
previous quantization conditions

. M (io3 — 05) 5 2 (io3 + 07)
.5 _ . [M(ios -0y s_ |2 lioston
T T M 2
~ i
= c 110
50 \/ml ( )

where the ;s are the Pauli matrices. Then the odd constrint
y becomes
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(=iMo, + plo,)¥(p°) = 0. (111)

Multiplying by o,

(P° + Mo3)¥(p®) = 0. (112)

Note that we have an ultralocal Dirac equation.

V. THE VSUSY GALILEI PARTICLE

We start with a Lagrangian (83) invariant under the
VSUSY algebra on the total space-time in D + 1 dimen-
sions [11,24], in its Euclidean version

L=y = ioEy -p(e+ 68 ) -1 (65569
(113)

Let us consider a D-contraction of the Galilei type for
r —t = 0. According to our philosophy, the Galilei invari-
ant Lagrangian is obtained by using the previous
Lagrangian in the euclidean subspace in D dimensions,
and then adding its variation under a boost times a
lagrangian multiplier. Since in this case the boost is
operating only on the space-coordinates, §x = 7x° [see
Eq. (74)], we get

L =M\/(x~ i) —ﬁ<é +5¢- E’) - y(és +§55&5>

+ Ax°. (114)

This Lagrangian is in fact VSUSY invariant under the
following rigid transformations (see [24])

SX=ies5,  SE=¢  sB5=¢& (115

[

oc = €-¢,

-3 (116)

i
Scs = —=e8.
5 > ¢
The generators of these transformations satisfy the algebra

G, Gl = Z5y;, (G5, Gs], = Zs,

[Gi, Gs], = —P; (117)

where Z and Zs are two central charges. The variation of

(114) under Galilei bosts is given by (remember thgat x°
does not transform under a Galilei boost)

SL =P -6%+04:% = p- i+ +6410  (118)

where p is the canonical momentum

LS 23
pom ) (19)
(X — iE8)?
Therefore the model is Galilei invariant if
SA=-p-v (120)
The other odd canonical momenta are
. ip=2
== 121
=2 (121)
s_ s, .o 2
7 —55 +ip-¢& (122)

From these equations the following constraints follow

¢b=p"-M (123)
y=r-Te-ip (124)
}:ﬁ—gé. (125)

The last constraint is second class. We then define Dirac
brackets in the usual way and, in particular, we find

(&6} = ;(sff (126)

We are now able to evaluate the Dirac brackets of the odd
constraint y with itself. We find

i

L
3 (P> = Pr)

{oay = (127)

Therefore, if we choose

pr =m? (128)
the constraints ¢ and y are first class and we expect, as in
the relativistic case, a local kappa symmetry of the
Lagrangian.

This model represents the spinning pseudoclassical
generalization of the Galileian massless model studied in
[3,4,10]. The model can be also obtained as the non-
relativistic limit of a tachyonic spinning particle, see the
Appendix.

Although the two cases r —¢t =0 and r—¢ =1 corre-
spond to two different algebras, it is easy to check that the
Lagrangian (114) is invariant also under the algebra
corresponding to r — ¢ = 1.
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A. k-invariance

As we have seen, the model has two local symmetries,
generated by the constraints ¢ and y, if the condition fy =
M? holds. We will satisfy this condition by the choice
p =y =M. The local symmetry generated by the odd
constraint is a “k-symmetry.” The reasons for this name are
twofold. First of all it is a gauge odd-symmetry as the usual
k-symmetry in SUSY. The second one is that, due to this
gauge symmetry, in VSUSY the model has BPS configu-
rations preserving 1/5 of the vector supersymmetry [24].

The transformations generated by y are given by

5% = iKé, 55:;%, 885 =k (129)
we find
5L:i;<(;3-§—MéS)—§K*E—%E di(KpH > MK€
+IMEk
- > d 5
5 Kkp- &+ Ed_(Kp) f—l— M.fK—I— MKfK
_id o2 5
_Ed_[ K(p-&—M&)] (130)

where we have used iy = M?. Therefore the Lagrangian
(114) is quasi-invariant under this x-transformation.

B. Quantization
To perform the canonical quantization we require the
following conditions for the operators corresponding to the
Grassmann variables [25]
7. 2],

=[8.8), = 8.8, =E.#,. =0,

7. 8], = —i, 8], =-—0; (131)

In this context we will suppose to be in a space-time of even
dimensions D + 1 = 2m. The y-matrices satisfy

[7/;(’ 7y]+ = 29;41/. (132)

Then, we see that the anticommutators in Eq. (131) are
satisfied by

M A
AS pm— [ _P 5 pu—
T l 2 1s 5

where P; and P, are defined in (106). Substituting these
expressions inside the constraint (124) we find that the
physical states must satisfy the equation

2 A i
Vatr =
T G T
(133)

(-7~ iMys)¥(p) = 0 (134)
or, multiplying by iys
(ip - 7ys — M)¥(F) = 0 (135)
Then, define
I, =iyirs (136)
which satisfy
[, T)], = 25,. (137)

Therefore the I';’s give a representation of the Clifford
algebra in a space of D dimensions equivalent to the one
spanned by the y;’s. In this way we get

(p-T-M)¥(p) =0 (138)
which is the Dirac equation in a Euclidean space of odd
dimensions D. After this equation is satisfied, the physical
states satisfy automatically the condition arising from the
even constraint ¢

(7 - M2)¥(P) = 0. (139)
Notice also that the lower dimensional representation of the
Clifford algebra in D odd dimensions is through 2(P~1)/2 x
2(P=1)/2 matrices. For instance in 3-dimensions the lowest
dimensional representation is by the 2 x 2 Pauli matrices.

VI. CONCLUSIONS

In this paper we have introduced two models of
pseudoclassical [25] spinning particles respectively invari-
ant under the Carroll and the Galilei groups with zero
central charge. The construction of these models has been
done through a generalization of the method introduced in
Ref. [1]. The method consists in starting from a space-time
in D + 1 dimensions and partitioning it in two parts, the
first Minkowskian and the second Euclidean. Then, in the
Carroll case an invariant model can be obtained by
introducing a Minkowski invariant action in the first part
of the space-time and in the second part a system of
Lagrange multipliers transforming in an appropriate way
under the Euclidean group such to confine the system to a
region of the space-time. An analogous procedure can be
followed in the Galilei case.

This procedure allows us to construct a class of Carroll
and Galilei invariant models, once given a relativistic action
in configuration space without performing a Carroll or
nonrelativistic limit. In the two particular cases discussed
here, we have started from an action in configuration space
invariant under the VSUSY algebra [11,24]. The two
models turn out to be the pseudoclassical spinning version
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of the Carroll particle described in Ref. [6] and of the
Galilei particle of Refs. [3,4,10]. We have also checked that
our results can be reproduced starting from the VSUSY
invariant model and performing the standard Carroll and
Galilei limiting procedure. The limiting procedure is
consistent with the generalized contractions of the
VSUSY algebra consistent with the contractions of the
Poincaré subalgebra discussed in [1].

We have performed a detailed analysis of these models,
showing that they preserve the same features of the VSUSY
invariant model. Namely, the presence of two constraints,
one even corresponding to the mass-shell condition and an
odd one, leading to the relevant analogous of the Dirac
equation, after quantization. We have also shown that with
a convenient choice of the parameters appearing in the
Lagrangians, the models both possess a x-symmetry.
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APPENDIX: NONRELATICISTIC LIMITS

In this Appendix we will show that for the two models
presented here, our strategy is equivalent to take the usual
Galilei and Carroll limit from the relativistic phase space
Lagrangian.

The canonical Lagrangian of a relativistic spinning
tachyon is given by

LE = p, (¥~ ig8) = p3EE — 1588 ~S (0 —m).

(A1)
or in symplectic form
LS = p,i* —ﬂéfﬂé" — 758 — g (p* —m?)
—p<@—7§?—na?>, (A2)
where
X5 = 75 = 7%55 —ip,é. (A3)

The Poisson-Dirac brackets are

{pwxy}* = -5, {&. &) = é’lﬂy,
{”5755}* =-1 (A4)

!
p

where ff =y = m. y5 generates the local kappa variation.

. 2ie
soxst =iy ——pupit* = —Ez( >—m?), (A5)

A. Nonrelativistic (Galilei) limit

We define the nonrelativistic limit as

E
X0 = wt, Po=——, &= &,
w
E=8, as=n;s (A6)
in the limit @ — oo we have the action
. N I . . e  _
LN = —Ei+ pX—p 8,8 —ns8 = (p* = m?)
i L=
—P<ﬂ5—7555—lpf), (A7)

which in the reduced space is equivalent to the Hamiltonian
form of (114). The structure of Poisson brackets is
maintained for the nonrelativisitic variables. Also the first
class character of constraints is maintained.

B. Carroll limit

The symplectic action of a relativistic particle is

. i . . e
LS = pi# = 68" =758 =5 (p* +m?)

i .
_P(”S _y§§5 _lpyéﬂ)’ (AS)
where ff = —m, y = m.
We define the Carroll limit as
xozlt po _a)E éﬂ:igﬂ
a) b b \/5 9,
1
& = ﬁfS, 75 = W7, m = oM (A9)

in the limit @ — oo we have the action
T A s
LCwoll — _Fi 4+ p¥ —ﬁifpf" — 75

(8 =) = (s =+ 88 (A10)

N ™

where & = —w?e, p = \/wp, which in the reduced space is
equivalent to the Hamiltonian form of (114). The Poisson-
Dirac brackets and the character of the constraints is
maintained.
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