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We discuss spontaneous supersymmetry (SUSY) breaking mechanisms by means of modulated vacua in
four-dimensional N ¼ 1 supersymmetric field theories. The SUSY breaking due to spatially modulated
vacua is extended to the cases of temporally and lightlike modulated vacua, using a higher-derivative model
with a chiral superfield, free from the Ostrogradsky instability and the auxiliary field problem. For all the
kinds of modulated vacua, SUSY is spontaneously broken and the fermion in the chiral superfield becomes
a Goldstino. We further investigate the stability of the modulated vacua. The vacua are (meta)stable if the
vacuum energy density is non-negative. However, the vacua become unstable due to the presence of the
ghost Goldstino if the vacuum energy density is negative. Finally, we derive the relation between
the presence of the ghost Goldstino and the negative vacuum energy density in the modulated vacua using
the SUSY algebra.
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I. INTRODUCTION

Understanding the vacuum structure of the quantum
field theory under study is the starting point for any
analysis. Toy models may have a simple vacuum structure
in which the fields are energetically preferred to sit at the
origin of the field space, retaining the symmetries present in
the Lagrangian formulation.
Another example of vacua is that of QCD, which is

expected to be far from trivial and dynamically generate a
mass gap giving mass to the lightest glue state—the
glueball—and to the hadrons of the theory when coupled
to fermions.
In a recent series of papers, we have studied nontrivial

vacua in which the vacuum expectation value (VEV) is not
a constant but has a phase that winds along a spatial
direction [1–3], along a temporal direction [3], or along the
direction of the light cone [3]. Conceptually, we can think
of this construction as an intermediate situation between the
trivial vacua with a vanishing VEV and the enormously
complicated vacuum of QCD. Our construction is inspired
by the so-called Fulde-Ferrel (FF) state [4], which is the

lowest-energy state in certain condensed matter systems,
such as a superconducting ring with amagnetic field applied
perpendicularly [5] (for a review see, e.g., Ref. [6]). The FF
state also exists in QCD itself (Nambu-Jona–Lasino model)
at finite density and temperature and is called a dual chiral
density wave or a chiral spiral [7,8]. In these cases, Lorentz
invariance is absent due to the finite temperature and/or
density. In contrast, our construction works in a Lorentz
invariant theory at vanishing density; however, it relies on
the use of higher-derivative operators and the imposition of
shift symmetry. In Ref. [2], we have shown that the global
stability of this class of model dictates that the highest-
derivative term must have 2ð2lþ 1Þ derivatives with
l ∈ Z>0. The simplest class of models that contains a
phase-modulated (FF-type) vacuum in the spatial, temporal,
and lightlike directions has a sixth-order derivative term as
the highest-derivative term. This model interestingly has, as
a submodel, a supersymmetric extension [2].
It is well known that terms in the Lagrangian with more

than one spacetime derivatives on one field cause an
instability of the system. This is called the Ostrogradsky
instability [9], which substantially results in ghost states in
the quantum regime. At the classical level, it implies the
loss of a lowest-energy state. We therefore focus on models
where only higher-dimension operators given by the first-
order derivatives of fields appear such as ð∂φÞ2n for a scalar
field φ.
Higher-derivative terms in supersymmetric field theories

are quite nontrivial as they generically suffer from a
problem called the auxiliary field problem. More precisely,
in generic supersymmetric higher-derivative models, the
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equation of motion (EOM) for the auxiliary field F is not
necessarily algebraic [10,11]. The result is that eliminating
F and finding the on-shell Lagrangian is essentially
impossible. Usually, this auxiliary-field problem comes
with an Ostrogradsky ghost [12,13], but there is also an
exception [14,15].
We therefore look for supersymmetry (SUSY) models

that do not suffer from the Ostrogradsky instability nor
from the auxiliary field problem. A natural candidate for
such a model is the higher-derivative chiral SUSY model
studied in Refs. [2,16–22]. This latter model canonically
gives a supersymmetric fourth-order derivative term, multi-
plied by a function of the superfield, ΛðΦÞ. Because of the
fourth-order term being saturated in the nilpotent series of
Grassmann numbers, the Grassmannian integral only picks
up the bosonic component of the function Λ, and hence
it is straightforward to construct a sixth-order derivative
model this way. The model constructed this way turns out
to be exactly a submodel of the phase-modulated higher-
derivative scalar field theory models that we constructed in
Refs. [1,3]. One of the interesting features is that SUSY is
spontaneously broken due to derivatives of the field, ∂φ, in
contrast to the conventional cases in which a nonzero
SUSY auxiliary field, F term or D term, breaks SUSY.
In this paper, we study the SUSY breaking in all kinds of

the phase-modulated (FF-type) vacua, i.e., spatially, tem-
porally, and lightlike modulated vacua. First, we will
review the construction of the phase-modulated vacuum
solutions of Refs. [1–3] in the cases of spatially, temporally,
and lightlike modulated vacua. Then we will discuss the
fluctuations about these modulated vacuum solutions, for
both the scalar field and the fermion. The main new result
in this paper is that we derive a relation between the
Goldstino and the vacuum energy density of the vacua in
the models. After the discussion of the modulated vacua
and the ghost Goldstinos in a concrete model, we rederive
the same result in a model-independent way by using
only the SUSY algebra and the knowledge of the broken/
unbroken symmetries of the vacuum.
The plan of the paper is as follows. In Sec. II we review

the type of higher-derivative chiral SUSY model that is a
unique candidate for avoiding the Ostrogradsky problem
and auxiliary field problem and lies in the class of models
that can possess modulated vacua of Refs. [1–3] whose
construction we review in Sec. III. Section IV reviews the
bosonic fluctuation spectra and introduces the main new
result, which comes from studying the fermionic fluctua-
tions and finding the relation to the vacuum energy density.
This latter relation is then studied using the SUSY algebra
in Sec. V. Finally, Sec. VI concludes with a summary and a
discussion of the open problems.

II. HIGHER-DERIVATIVE SUSY MODEL

In this section, we introduce a supersymmetric model in
which modulated vacua of the FF-type is allowed. Since

modulated vacua are characterized by a nonzero VEV of
spacetime derivatives of a scalar field ∂mφ, it is necessary
to introduce a “potential” of the derivative term ∂mφ for it
to develop a nonzero VEV.1 This inevitably results in
models where the bosonic part of the Lagrangian consists
of terms with polynomials of ∂mφ, i.e., higher-derivative
SUSY models. In order to consider higher-derivative
models, it is convenient to work in the off-shell superfield
formalism. The four-dimensional N ¼ 1 superspace is
characterized by the bosonic spacetime coordinates ðxmÞ
(m ¼ 0, 1, 2, 3) and the fermionic coordinates given
by Grassmann numbers ðθα; θ̄ _αÞ. Here, the Greek letters
beginning with α; β;… and _α; _β;… denote undotted and
dotted spinors, respectively. We use the notation and
conventions of Ref. [24] throughout this paper.
We introduce a chiral superfield, Φ, which contains a

complex scalar field φ. This is utilized to describe VEVs
in modulated vacua. The component fields of the chiral
superfield, Φ, are defined as

φ ¼ Φj; ψα ¼
1ffiffiffi
2

p DαΦj; F ¼ −
1

4
D2Φj; ð1Þ

where Dα is the supercovariant derivative and the symbol j
denotes that the values are evaluated at θα ¼ θ̄ _α ¼ 0. The
field ψα is a Weyl fermion and F is an auxiliary field.
We now discuss the supersymmetric higher-derivative

chiral models. As already mentioned in the Introduction,
we here focus on models that only depend on the first
derivative of the fields. This will sidestep the issue of the
Ostrogradsky instability. Furthermore, to avoid the aux-
iliary field problem, we work in the higher-derivative chiral
SUSY model of Refs. [2,16–22,25,26], which is known to
be free from this problem as the EOM for F remains
algebraic. The Lagrangian is given by2

L ¼
Z

d4θKðΦ; Φ̄Þ þ
�Z

d2θWðΦÞ þ H:c:

�

þ 1

16

Z
d4θΛðΦ;Φ; ∂mΦ; ∂mΦ̄; D2Φ; D̄2Φ̄Þ

× ðDαΦÞðDαΦÞðD̄ _αΦ̄ÞðD̄ _αΦ̄Þ: ð2Þ

Here, K, W, and Λ are a Kähler potential, a superpotential,
and a real scalar function, respectively. The right-hand
side of the first line gives us a quadratic kinetic term and a

1A similar mechanism for nonzero VEVs of ∂mφ is discussed
in the context of ghost condensation [23], in which case, due to
the wrong sign of the canonical kinetic term, _φ develops a
nonzero VEV.

2The case of a constant Λ was first found long ago [27,28], the
dependence of Λ on Φ, Φ̄ was introduced in Refs. [16–19], the
dependence on ∂mΦ, ∂mΦ̄ was found in Refs. [20–22], and
finally the dependence on D2Φ, D̄2Φ̄ was found in Refs. [25,26].
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potential term for φ, while the second line leads to higher-
derivative terms.
As discussed in Ref. [3], in order to realize modulated

vacua in our construction, it is necessary to introduce at
least sixth-order derivative terms ð∂φÞ6. This is based on
the global stability of the vacua. For simplicity, we also
assume that the model possesses shift symmetry φ→φþc
where c is a complex constant. The simplest model that
accommodates these conditions is

K ¼ kΦΦ̄; W ¼ 0; Λ ¼ λþ α∂mΦ∂mΦ̄; ð3Þ

where k, λ, and α are real constants. Therefore, the model is
given by

L¼
Z

d4θkΦΦ̄

þ 1

16

Z
d4θðλþα∂mΦ∂mΦ̄ÞðDαΦÞðDαΦÞðD̄ _αΦ̄ÞðD̄ _αΦ̄Þ:

ð4Þ

The above model was proposed in Ref. [2] where SUSY
breaking in a spatially modulated vacuum is discussed.
In the Lagrangian, there is an auxiliary field F that does

not have physical degrees of freedom. We eliminate the
auxiliary field by the EOM. In order to obtain the EOM, it
is convenient to write out the component Lagrangian from
Eq. (4). The bosonic part of the Lagrangian is

Lboson ¼ −k∂mφ∂mφ̄þ kFF̄

þ ðλþ α∂mφ∂mφ̄Þðð∂nφ∂nφÞð∂pφ̄∂pφ̄Þ
− 2FF̄∂nφ∂nφ̄þ F2F̄2Þ; ð5Þ

where we have omitted the fermions, since the fermions
will be irrelevant to find the modulated vacua. Note that the
fermionic part will be used when we discuss the fluctuation
of the Goldstino. The EOM for the auxiliary field is

kF − 2Fðλþ 2α∂mφ∂mφ̄Þð∂nφ∂nφ̄ − jFj2Þ ¼ 0: ð6Þ

As advertised above, the equation is algebraic; i.e., it does
not involve terms with spacetime derivatives of F. We can
therefore easily find solutions to this equation, and they are

F ¼ 0; jFj2 ¼ −
k

2ðλþ α∂mφ∂mφ̄Þ
þ ∂mφ∂mφ̄: ð7Þ

We note that these are exact analytic solutions in the bosonic
sector, but including fermions is somewhat cumbersome.
They can be incorporated in the solutions perturbatively
as we will see in Sec. IV (see also Ref. [2] for the detailed
analysis). There are two distinct on-shell branches cor-
responding to these solutions. For the first solution, the
on-shell Lagrangian is

Lboson ¼ −k∂mφ∂mφ̄þ λð∂mφ∂mφÞð∂nφ̄∂nφ̄Þ
þ αð∂mφ∂mφ̄Þð∂nφ∂nφÞð∂pφ̄∂pφ̄Þ: ð8Þ

Thus, the model contains a fourth- and a sixth-order
derivative of the complex scalar field φ, as expected. On
this branch, the higher-derivative terms are introduced
perturbatively in addition to the canonical (quadratic) kinetic
term. This is the so-called canonical branch. Several super-
symmetric higher-derivative models are constructed using
this branch including Dirac-Born-Infeld models [29,30],
supersymmetric PðX;ϕÞmodels [16–18], higher-derivative
corrections to a low-energy effective theory [21], and so on.
For the second solution in Eq. (8), the on-shell

Lagrangian is

Lboson;nc ¼ ðj∂mφ∂mφj2 − ð∂mφ∂mφ̄Þ2Þðλþ α∂nφ∂nφ̄Þ

−
k2

λþ α∂mφ∂mφ̄
: ð9Þ

In this Lagrangian, the canonical (quadratic) kinetic term
vanishes. This branch is the so-called noncanonical branch
[16,18,20]. On this branch, the higher-derivative terms are
not introduced perturbatively because we cannot take the
limit λ → 0 or α → 0. On the noncanonical branch, super-
symmetric (baby-)Skyrme models have been discussed in
Refs. [19,31–34]. Since the model that allows modulated
vacua has a quadratic kinetic term, we use the first solution
and its on-shell Lagrangian in Eq. (8) rather than that
of Eq. (9).

III. MODULATED VACUA IN SUSY THEORIES

In this section, we examine modulated vacua in the
model (8). First, we will discuss the general arguments for
the modulated vacua. Second, we find the modulated vacua
as solutions to the EOMs and energy-extremum conditions.
We also calculate the energy density in the modulated
vacua, which will be used in the later discussion. This
section is mostly a review of the results in Ref. [3]. In the
following, we give a brief overview of the general dis-
cussion of modulated vacua in Lorentz-invariant field
theories. For more details, see Ref. [3].

A. General discussion

In the ordinary situation where VEVs are constants, they
are determined by the extremal condition of the energy
density. In this case, the VEVs solve the EOM automati-
cally. On the other hand, the latter condition is not trivial for
modulated vacua since in that case the VEVs depend on
spacetime coordinates. In the following, we will write down
the conditions for modulated vacua to solve both the
energy-extremal condition and the EOM.
To find vacua, we solve the EOM and the energy-

extremum condition for the complex scalar field φ using the
Ansatz hψαi ¼ hψ̄ _αi ¼ 0. The EOM for φ is generically
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0¼ ∂m
∂Lboson

∂∂mφ

¼ ∂2Lboson

∂ð∂mφÞ∂ð∂nφÞ
∂m∂nφþ

∂2Lboson

∂ð∂mφÞ∂ð∂nφ̄Þ
∂m∂nφ̄; ð10Þ

and the EOM for φ̄ is the complex conjugate of the above
equation. The EOM together with its complex conjugate
can be written in matrix form as follows:

0¼Lmn

�∂m∂nφ

∂m∂nφ̄

�

¼L00

�
φ̈

̈φ̄

�
þðL0iþLi0Þ

�∂i _φ

∂i _̄φ

�
þLij

�∂i∂jφ

∂i∂jφ̄

�
: ð11Þ

Here, Lmn is defined as

Lmn ≔

0
B@ ∂2L

∂ð∂mφ̄Þ∂ð∂nφÞ
∂2L

∂ð∂mφ̄Þ∂ð∂nφ̄Þ
∂2L

∂ð∂mφÞ∂ð∂nφÞ
∂2L

∂ð∂mφÞ∂ð∂nφ̄Þ

1
CA: ð12Þ

In Eq. (11), we have split the spacetime derivative ∂mφ into
the temporal direction ∂0φ ¼ _φ and the spatial directions
∂iφ (i ¼ 1, 2, 3), since we will discuss the temporally,
spatially, and lightlike modulated vacua. Vacua in field
theories are characterized by (local) minima of the energy
functional. The energy density (Hamiltonian) is defined as

H ≔
∂L
∂ _φ _φþ ∂L

∂ _̄φ _̄φ − L: ð13Þ

Since the energy density is written in terms of ∂mφ and its
conjugate, the minima of the energy satisfy the following
conditions:

0 ¼ ∂H
∂∂mφ

ð14Þ

and its complex conjugate. The conditions can be rewritten
in terms of Lmn as

0 ¼ L00

�
_φ

_̄φ

�
; 0 ¼ Li0

�
_φ

_̄φ

�
−

0
@ ∂L

∂∂iφ̄
∂L
∂∂iφ

1
A: ð15Þ

The modulated vacua are characterized by the solutions to
Eqs. (11) and (15).
In the vacua, spacetime or internal symmetries are

generally broken. The vacua can be classified by the broken
translational generators Pm̂. If Pm̂ is spacelike, timelike, or
lightlike (null), the vacua are called spatially, temporally, or
lightlike modulated vacua, respectively. In Ref. [3], the
conditions for the presence of the spatially, temporally, or
lightlike modulated vacua are studied systematically. Since

parts of the symmetries in the theory are broken, it is natural
to study the Nambu-Goldstone (NG) modes in the vacuum.
In the ordinary cases where VEVs are constants, the NG
modes correspond to the flat directions of the potential term.
The zero modes of the Hessian matrix associated with the
curvature of the potential correspond to the NGmodes. This
implies that the quadratic term of the NG modes—the mass
term—vanishes, and hence they are massless modes. In our
setup, however, there are no ordinary potential terms but
instead a “potential” for the derivatives of the fields.
Therefore, we found that it is useful to consider the notion
of the generalized Nambu-Goldstone modes to examine the
flat directions in the modulated vacuum [1,3]. Similar to
ordinary NG modes, the generalized NG modes correspond
to zero modes of the Hessian matrix (the generalized mass
matrix):

M ¼

0
BBBBB@

M00 M01 � � � M03

M10 M11 � � �
..
. . .

.

M30 � � � M33

1
CCCCCA; ð16Þ

where Mmn are given by

Mmn ¼
 ∂2H

∂ð∂mφ̄Þ∂ð∂nφÞ
∂2H

∂ð∂mφ̄Þ∂ð∂nφ̄Þ
∂2H

∂ð∂mφÞ∂ð∂nφÞ
∂2H

∂ð∂mφÞ∂ð∂nφ̄Þ

!
: ð17Þ

Now that we have the general conditions and material to
analyze modulated vacua, we will in the next subsection
solve the conditions Eqs. (11) and (15) in the cases of
temporally, spatially, or lightlike modulated vacua.

B. Spatially modulated vacua

First, we consider the spatially modulated vacua. We
employ the following Ansatz for solving Eqs. (11) and (15):

hφi ¼ φ0eicx
1

;

h _φi ¼ h∂2;3φi ¼ hψαi ¼ hψ̄ _αi ¼ hFi ¼ hF̄i ¼ 0: ð18Þ

Here, φ0 and c are complex and real constants, respectively.
Within the Ansatz, the energy-extremum condition in
Eq. (15) becomes

0 ¼ ∂1φ̄ð−kþ 2λj∂1φj2 þ 3αj∂1φj4Þ: ð19Þ

When λ2 þ 3αk > 0, there is a local minimum in the energy
potential for which φ0 is nonzero. In this case, the above
condition determines the amplitude of the VEV:

j∂1φj2 ¼ c2jφ0j2 ¼
−λ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 3αk

p

3α
: ð20Þ
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Since j∂1φj2 is positive, the parameter α should be negative.
As discussed in Ref. [3], for the Ansatz (18), we have the
relation H ¼ −L, and this implies that the extremal con-
dition of H is equivalent to the EOM given by the first
variation of the Lagrangian: δL ¼ 0. Therefore, solutions to
Eq. (11) automatically satisfy the condition (15). Indeed, in
the Ansatz (18), the right-hand side of the EOM in Eq. (11)
reduces to

L11

� ∂2
1φ

∂2
1φ̄

�
¼ ic

� ∂1φð−kþ 2λj∂1φj2 þ 3αj∂1φj4Þ
−∂1φ̄ð−kþ 2λj∂1φj2 þ 3αj∂1φj4Þ

�
;

ð21Þ

which automatically vanishes if the energy-extremum con-
dition is satisfied. In this vacuum, the VEVof the vacuum-
energy density Esp is

Esp¼ kj∂1φj2−λj∂1φj4−αj∂1φj6

¼−
1

27α2
ðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ3αk

p
Þð6αkþλðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ3αk

p
ÞÞ:
ð22Þ

The energy density can be positive, zero, or negative
depending on the parameters. If λ2 < −4αk, the energy
density is positive. In this case, the modulated vacuum is
metastable. If λ2 ¼ −4αk, the energy density is zero. In this
case, the trivial vacuum ∂1φ ¼ 0 and themodulated vacuum
has the same energy density. If λ2 > −4αk, the energy
density is negative. In this case, the modulated vacuum is
energetically favored.
Finally, we discuss the spontaneous breaking of the

symmetries in the spatially modulated vacuum. Because of
the nonzero VEV of φ ¼ φ0eicx

1

, the translational trans-
formation P1, the global Uð1Þ transformation, shift
transformation S, and the Lorentz transformations M1m

become broken generators. However, since the simulta-
neous transformation of P1 and the global Uð1Þ trans-
formation is preserved, the symmetry breaking pattern is
ISOð3;1Þ×Uð1Þ×S→ ISOð2;1Þ× ½Uð1Þ×P1�diag:. Here,
ISO denotes the Poincaré group, and Pm denotes the
spacetime translational group. We also note that, in
the vacuum (18), the SUSY variation of the fermion is
nonvanishing:

δψα ¼ i
ffiffiffi
2

p
ðσmÞα _αξ̄ _α∂mφþ

ffiffiffi
2

p
ξαF ¼ i

ffiffiffi
2

p
ðσ̄1Þα _αξ̄ _α∂1φ:

ð23Þ

Here ξ, ξ̄ are SUSY transformation parameters. Therefore,
SUSY is spontaneously broken in the spatially modulated
vacuum. We note that the condition (23) holds for any
values of the energy density. Namely, SUSY can be broken
even for zero vacuum energy density in supersymmetric
higher-derivativemodels. This is in contradistinction to the

ordinary situation in which vacua are given by the extrema
of potentials and VEVs are constants.

C. Temporally modulated vacua

For the temporally modulated vacua, we will solve
Eqs. (11) and (15) by using the following Ansatz:

hφi ¼ φ0eiωx
0

;

h∂iφi ¼ hψαi ¼ hψ̄ _αi ¼ hFi ¼ hF̄i ¼ 0: ð24Þ

Here, φ0 and ω are complex and real constants, respec-
tively. By the Ansatz, the condition for the extremum of the
energy in Eq. (15) is reduced to

L00

�
_φ

_̄φ

�
¼ 0; ð25Þ

while the EOM in Eq. (10) is

L00

� ̈φ
̈φ̄

�
¼ 0: ð26Þ

Here, the matrix L00 is calculated as

L00 ¼
 
kþ 4λj _φj2 − 9αjφj4 2 _φ2ð−3αj _φj2 þ λÞ
2 _̄φ2ð−3αj _φj2 þ λÞ kþ 4λj _φj2 − 9αjφj4

!
:

ð27Þ

These conditions are satisfied by L00 ¼ 0. The conditions
lead to the temporally modulated vacua

jh _φij2 ¼ λ

3α
; ð28Þ

with the condition on the parameter

k ¼ −
λ2

3α
: ð29Þ

If we further assume k > 0, both of the parameters λ and α
must be negative.
Now we calculate the vacuum energy of the temporally

modulated vacua. Since the parameters are restricted by
Eq. (29), in contrast to the spatially modulated vacua, the
energy density of the vacuum is determined to be the
following negative value:

Etemp ¼
λ3

27α2
< 0: ð30Þ

Finally, we discuss the symmetry breaking pattern. Within
the Ansatz (24), the broken symmetries are the temporal
translation P0, the Lorentz boost M0m, the global Uð1Þ
transformation, and the shift transformation. However, the
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simultaneous transformation of the temporal translation
and the global Uð1Þ transformation remains unbroken.
Thus, the symmetry breaking pattern is ISOð3; 1Þ ×Uð1Þ×
S → ISOð2; 1Þ × ½Uð1Þ × P0�diag:.
The SUSY variation of the fermion in the vacuum reads

δψα ¼
ffiffiffi
2

p
iðσ̄0Þα _αξ̄ _α _φ: ð31Þ

We find again that SUSY is spontaneously broken in the
temporally modulated vacuum, and in this case, the energy
density is not positive but negative.

D. Lightlike modulated vacua

For the lightlike modulation, we assume the following
Ansatz:

hφi ¼ φ0eiωðx
0þx1Þ;

h∂2φi ¼ h∂3φi ¼ hψαi ¼ hψ̄ _αi ¼ hFi ¼ hF̄i ¼ 0: ð32Þ

The Ansatz implies ∂mφ∂mφ ¼ ∂mφ∂mφ̄ ¼ 0. The con-
ditions (11) and (15) are satisfied if we demand that
L10 ¼ 0. Note that this condition is too strong, but it
is a sufficient condition for the lightlike modulated
vacua. Under the condition L10 ¼ 0, the energy-extremum
condition implies

∂L
∂∂1φ

¼ −k∂1φ̄ ¼ 0;
∂L
∂∂1φ̄

¼ −k∂1φ ¼ 0: ð33Þ

These equations are satisfied if

k ¼ 0: ð34Þ

Since k ¼ 0, the condition L10 ¼ 0 leads to 4λj _φj2 ¼ 0.
Therefore, the parameter λ vanishes:

λ ¼ 0: ð35Þ

With the conditions, k ¼ λ ¼ 0, the EOM is automatically
satisfied. We can now calculate the vacuum energy, and it
vanishes identically,

ELL ¼ 0; ð36Þ

since k ¼ λ ¼ 0 and ∂mφ∂mφ ¼ ∂mφ∂mφ̄ ¼ 0.
The SUSY variation of the fermion in the vacuum reads

δψα ¼
ffiffiffi
2

p
iðσ̄þÞα _αξ̄ _α∂þφ; ð37Þ

where σþ ¼ σ0 þ σ1, xþ ¼ x0 þ x1, and ∂þ ¼ ∂
∂xþ. Thus,

SUSY is spontaneously broken in the lightlike modulated
vacuum.

IV. FLUCTUATIONS AROUND
THE MODULATED VACUA

In this section, we consider fluctuations of both the
complex scalar field and the fermion around the modulated
vacua. In the previous section, we have studied the
modulated vacua that are configurations satisfying the
EOM and the energy-extremum condition. Here, we dis-
cuss the local stability of the modulated vacua by calculat-
ing the quadratic fluctuations of the dynamical fields about
the modulated vacua. First, we review the bosonic fluctua-
tions in the modulated vacua [3]. Second, we consider the
fermionic fluctuations. In the modulated vacua, the fermion
becomes a Goldstino since SUSY is spontaneously broken.
We will see that the Goldstino becomes a ghost if the
vacuum energy is negative in the modulated vacua.

A. Fluctuation of the complex scalar field

Here, we recapitulate the fluctuation of the complex
scalar field and its stability [3]. The fluctuation of the
complex scalar field ϕ is characterized by the value of the
complex scalar field around the VEV hφi,

φ → hφi þ ϕ: ð38Þ

In the previous section, the vacua have been characterized
by the energy-extremum conditions. In order to find
physical vacua, we should consider the stability of the
vacua. The local stability of the vacua can be seen from the
stability of the fluctuation spectrum at the second order.
Hence, we expand the energy density as follows:

Hð∂mφ; ∂mφ̄Þ ¼ Hj0 þ
∂H
∂∂mφ

����
0

∂mϕþ ∂H
∂∂mφ̄

����
0

∂mϕ̄

þ 1

2
ð∂mϕ̄ ∂mϕÞMmnj0

� ∂nϕ

∂nϕ̄

�
þ � � � :

ð39Þ

Here, the symbol j0 denotes the value at the vacuum, the
ellipses � � � mean the terms at the third order of the fluc-
tuation field or higher. The matrices Mmn are the second-
order derivatives of the energy density, defined in Eq. (17).
Note thatM†00¼M00,M†0i ¼ Mi0, andM†ij ¼ Mji. In the
modulated vacua, the energy-extremum condition implies

∂H
∂∂mφ

����
0

¼ ∂H
∂∂mφ̄

����
0

¼ 0: ð40Þ

Thus, the energy density can be rewritten as

Hð∂mφ;∂mφ̄Þ ¼Hj0 þ
1

2
ð∂mϕ̄∂mϕÞMmnj0

�∂nϕ

∂nϕ̄

�
þ � � � :

ð41Þ
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The local stability depends on the eigenvalues ofMmn. If all
the eigenvalues are non-negative, the vacua are locally
stable.
The dynamics of the fluctuations is determined by the

effective Lagrangian for the fluctuation fields, which is
found by expanding the original Lagrangian around the
vacua to second order:

L ¼ Lj0 þ
1

2
ð ∂mϕ̄ ∂mϕ ÞLmnj0

� ∂nϕ

∂nϕ̄

�
þ � � � : ð42Þ

Note that we have used that the first order variation
vanishes by the EOM: ∂L

∂∂mφ j0 ¼ ∂L
∂∂mφ̄ j0 ¼ 0. In the follow-

ing, we will consider the fluctuation Lagrangian’s corre-
sponding stability in each of the cases of spatially,
temporally, and lightlike modulated vacua in turn.

1. Spatially modulated vacua

For the spatially modulated vacua, the components of the
Mmn are

M00 ¼ −M22 ¼ −M33 ¼
 

k − αj∂1φj4 −2ð∂1φÞ2ðλþ αj∂1φj2Þ
−2ð∂1φ̄Þ2ðλþ αj∂1φj2Þ k − αj∂1φj4

!
; ð43Þ

M11 ¼
�
k − 4λj∂1φj2 − 9αj∂1φj4 −2ð∂1φÞ2ðλþ 3αj∂1φj2Þ
−2ð∂1φ̄Þ2ðλþ 3αj∂1φj2Þ k − 4λj∂1φj2 − 9αj∂1φj4

�
; ð44Þ

whereas the remaining components of Mmn vanish. Since
the generalized mass matrix M is totally block diagonal,
the local stability of the modulated vacua is determined
from the spectrum of eigenvalues of the matricesMmn. For
the matricesM00,M22, andM33, the eigenvalues A1, A2 are

A1 ¼ 0; A2 ¼
12αk − 4αλðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 3kα

p
Þ

9α2
; ð45Þ

whereas the eigenvalues B1, B2 of the matrix M11 are

B1 ¼ 0; B2 ¼ −
4

3α
ðλ2 þ 3αkþ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 3αk

p
Þ: ð46Þ

The zero eigenvalue of M11 corresponds to the generalized
NG mode due to the broken translational symmetry. The
zero eigenvalues of M22 and M33 originate from the
rotational symmetry SOð3Þ ⊂ SOð1; 3Þ of the original
Lagrangian. In the region where α < 0, λ > 0, and
λ2 þ 3αk > 0, the nonzero eigenvalues are positive. Since
there are no negative eigenvalues, the modulated vacua are
locally stable.
The fluctuations in the Lagrangian can also be computed.

The eigenvectors corresponding to the zero eigenvalues of
the matrixM00 are nondynamical up to the second order of
the fluctuations. Explicitly, the Lagrangian is

L ¼ Lj0 þ
1

2
ð _̄ϕ _ϕ ÞM00j0

� _ϕ

_̄ϕ

�
þ � � � : ð47Þ

Here, we have used M00j0 ¼ L00j0 in the spatially modu-
lated vacua. Therefore, the eigenvector associated with the
zero eigenvalue is not dynamical. Since the zero modes of
the generalized mass matrix and those of the matrices Lmn

coincide in the spatially modulated vacua in general, the
canonical kinetic terms for the generalized NG modes
disappear in those vacua [1]. It has been shown that this,
however, is not the case for temporal and lightlike modu-
lated vacua [3] as we will see below.

2. Temporally modulated vacua

For the temporally modulated vacua, the matrices Mmn

are calculated as

M00¼
�
kþ12λj _φj2−45αj _φj4 6 _φ2ðλ−5αj _φj2Þ

6 _̄φ2ðλ−5αj _̄φj2Þ kþ12λj _φj2−45αj _φj4
�
;

ð48Þ

M11 ¼ M22 ¼ M33

¼
�

kþ 3αj _φj4 2 _φ2ð−λþ 3αj _φj2Þ
2 _̄φ2ð−λþ 3αj _̄φj2Þ kþ 3αj _φj4

�
; ð49Þ

and the others vanish. Again, the generalized mass matrix
M is block diagonal. The eigenvalues of the matrices can
be calculated as follows. For the matrix M00, the eigen-
values A1 and A2 are

A1 ¼ 0; A2 ¼ −
8λ2

3α
: ð50Þ

The nonzero eigenvalue, A2, is positive because α must be
negative in temporally modulated vacua (see Sec. III C).
The zero mode, A1, is interpreted as a generalized NGmode
for the temporally modulated vacua.
For the matricesM11,M22, andM33, the eigenvalues B1

and B2 vanish,
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B1 ¼ B2 ¼ 0: ð51Þ

These zero modes are expected to be accidental, since
translational invariance along the spatial directions is not
broken in the temporally modulated vacua. Hence, there are
no unstable modes in the bosonic fluctuation spectrum up
to the second order in the fluctuations.
The dynamics of the bosonic fluctuations is determined

by the effective Lagrangian for the fluctuation. Since the
matrixL00 vanishes in the temporally modulated vacua, the
fluctuations are not dynamical up to second order in
derivatives. However, the fluctuations have a nonvanishing
spatial dispersion relation because there is a nonzero
eigenvalue in L11 ¼ L22 ¼ L33:

L11 ¼
� −kþ αj _φj4 −2 _φ2ðλ − 2αj _φj2Þ
−2 _̄φ2ðλ − 2αj _φj2Þ −kþ αj _φj4

�
: ð52Þ

The eigenvalues s1 and s2 are

s1 ¼ 0; s2 ¼
8λ2

9α
: ð53Þ

Since s2 is positive, there are no unstable modes in the
spatial-derivative sector.

3. Lightlike modulated vacua

For the lightlike modulated vacua, the matrices Mmn are

M00 ¼ M11 ¼ −M01 ¼ −M10

¼
�

−16αj _φj4 −8α _φ2j _φj2
−8α _̄φ2j _φj2 −16αj _φj4

�
; ð54Þ

and the remaining matrices, including M22 and M33,
vanish. Here, we have already used the condition k¼λ¼0
which is necessary for the existence of the lightlike
modulated vacua. Since the temporal and spatial modu-
lations are mixed in the lightlike modulated vacua, it is
convenient to switch to light-cone coordinates

�
xþ

x−

�
¼
�
1 1

1 −1
��

x0

x1

�
: ð55Þ

In these coordinates, the matrices Mmn are simply
expressed as

M−− ¼ M00 −M01 −M10 þM11

¼ 4

�
−16αj _φj4 −8α _φ2j _φj2
−8α _̄φ2j _φj2 −16αj _φj4

�
; ð56Þ

Mþþ ¼ Mþ− ¼ M−þ ¼ 0: ð57Þ

The eigenvalues A1, A2 of M−− are

A1 ¼ −32αω4jφ0j4; A2 ¼ −96αω4jφ0j4: ð58Þ

In order for all the eigenvalues to be positive, we require
that

α < 0: ð59Þ
With this condition, the lightlike modulated vacua are
locally stable.
Up to the second order in the fluctuation, there is no

dynamics of the fluctuations in the lightlike modulated
vacua. This is because all the matrices Lmn vanish in the
lightlike modulated vacua. For example, the matrices along
x0 or x1 directions are

L00¼L11¼−L01¼−L10¼ 2λ

� j _φj2 _φ2

_̄φ2 j _φj2
�
¼ 0: ð60Þ

Note that the fluctuations may become dynamical due to
higher-order terms than the quadratic ones.

B. Fluctuation of the fermion

Since we consider a supersymmetric theory, we should
consider the stability in the fermionic sector in the spatially,
temporally, and lightlike modulated vacua as well. We will
thus consider each case in turn in the following.

1. General arguments

We will now discuss the general arguments for the
fluctuations of the fermion in spatially, temporally, or
lightlike modulated vacua. The first observation is that
the fermion becomes a Goldstino in the modulated vacua.
This is due to the nonvanishing SUSY transformation of the
fermion in the modulated vacua:

hδψαi ¼
ffiffiffi
2

p
iðσmÞα _βξ̄_βh∂mφi ≠ 0: ð61Þ

Here, ξ̄_β is a SUSY transformation parameter, and we have
used that hFi ¼ 0 in the modulated vacua. The nonvanish-
ing SUSY transformation of the fermion implies the
existence of the Goldstino.
The kinetic term for the Goldstino can be found by

expanding the Lagrangian around the modulated vacua,
which up to the second order in the fluctuations reads

Lf.kin¼
Z

d4θ

�
kΦΦ̄þ 1

16
ðλþα∂mΦ∂mΦ̄ÞðDΦÞ2ðD̄Φ̄Þ2

�
¼−ikψ̄ σ̄m∂mψþðλþαj∂mφj2ÞΩ
− iαð∂mψσpψ̄Þð∂mφ̄Þð∂nφÞ2ð∂pφ̄Þ
− iαð∂mψ̄ σ̄pψÞð∂mφÞð∂nφ̄Þ2ð∂pφÞþ �� � : ð62Þ

Here, the ellipses � � � denote higher order terms in the
fluctuations and are hence irrelevant for the kinetic term of
the Goldstino. Ω is defined by
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Ω≡−
i
2
ðψσmσ̄nσp∂pψ̄Þð∂mφ∂nφ̄Þ

þ i
2
ð∂pψσ

pσ̄mσnψ̄Þð∂mφ∂nφ̄Þ
þ iðψσm∂nψ̄Þð∂mφ∂nφ̄Þ− ið∂mψσnψ̄Þð∂mφ∂nφ̄Þ: ð63Þ

In this expansion, we have used the fact that the fermion
appears only at second order in the auxiliary field: F ¼
0þOðψ2Þ on the canonical branch [2].
In the following, we will explicitly show the stability of

the fluctuation of the Goldstino in the modulated vacua up
to second order. The stability of the Goldstino in the
modulated vacua depends on the sign of its kinetic term. In
the Lagrangian, the sign of the time-derivative term
iψ̄ σ̄0∂0ψ of the Goldstino is given by that of the parameter
k, which we assume to be positive: k ≥ 0. However, the
sign of the kinetic term can be altered by the presence of the
VEVof the complex scalar field in the modulated vacua. If
the kinetic term has the correct (wrong) sign, the fluctuation
of the Goldstino is stable (unstable). For the spatially
modulated vacua, there are metastable, degenerate, and
unstable vacua. For the temporally modulated vacua, the
Goldstino becomes a ghost, and the vacua become unsta-
ble. For the lightlike modulated vacua, the Goldstino is not
dynamical. In the following, we will study the stability
explicitly for each case in turn.

2. Spatially modulated vacua

For the spatially modulated vacua, the sign of the kinetic
term depends on the model parameters as well as the
vacuum solution as follows:

Lf.kin ¼ ið−kþ λj∂1φj2 þ αj∂1φj4Þψ̄ _αðσ̄0Þ _αβ∂0ψα

¼ −i
Esp

jh∂1φij2
ψ̄ _αðσ̄0Þ _αβ∂0ψα: ð64Þ

The sign of the kinetic term is thus related to that of the
vacuum energy density (22). We can see that if the energy
density is positive (negative), the Goldstino has the correct
(wrong) sign for its kinetic term. This property was clarified
in Ref. [2]. In Sec. V we will see that this relation is
consistent with the analysis using the SUSY algebra.

3. Temporally modulated vacua

For the temporally modulated vacua, the kinetic term of
the Goldstino becomes

Lf.kin¼ ið−k−3ω2jφ0j2λþ5αω4jφ0j4Þψ̄ _αðσ̄0Þ _αα∂0ψαþ�� �

¼−i
Etemp

jh _φij2 ψ̄ _αðσ̄0Þ _αα∂0ψα; ð65Þ

where we have used the relations k ¼ − λ2

3α, ω
2jφ0j2 ¼ λ

3α,
and Etemp ¼ λ3

27α2
. Since the energy density is negative,

Etemp < 0, we can conclude that the Goldstino is a ghost
Goldstino in the temporally modulated vacua.

4. Lightlike modulated vacua

For the lightlike modulated vacua, however, the quad-
ratic kinetic term in Eq. (62) vanishes. This can be shown as
follows. The existence of the lightlike modulated vacua
requires k ¼ λ ¼ 0. Therefore, the Lagrangian up to second
order in fermionic fluctuations becomes

Lf.kin ¼ αj∂mφj2Ω − iαð∂mψσpψ̄Þð∂mφ̄Þð∂nφÞ2∂pφ̄

− iαð∂mψ̄ σ̄pψÞð∂mφÞð∂nφ̄Þ2∂pφþ � � � : ð66Þ

However, the VEVs of ∂mφ∂mφ and ∂mφ∂mφ̄ vanish in the
lightlike modulated vacua

h∂mφ∂mφi ¼ h∂mφ∂mφ̄i ¼ 0; ð67Þ

and thus the kinetic term of the Goldstino vanishes, too.
Thus, the Goldstino is not dynamical. This property is
consistent with the fact that the vacuum energy density
vanishes in the lightlike modulated vacua.

V. VACUUM ENERGY DENSITY VS STABILITY
OF GOLDSTINO

In this section, we will derive the relation between the
sign of the kinetic term of the Goldstino and that of
the vacuum energy density in the modulated vacua. In the
previous sections, we have used a specific model for the
modulated vacua, whereas the relation that we will dem-
onstrate in this section is model independent as it is based
entirely on the SUSYalgebra and the preserved symmetries
of the model (and corresponding modulated vacuum)
at hand.
Since the fermion becomes the Goldstino, the dynamics

of the fluctuation of the fermion can be kinematically
discussed by using the SUSY algebra, i.e., the relation
between SUSY and the Hamiltonian,

H¼ 1

4
ðQ1Q̄_1þQ2Q̄_2þ Q̄_1Q1þ Q̄_2Q2Þ≕

1

4

X
α∶spinors

Q̄αQα:

ð68Þ

By considering the vacuum expectation value of both sides,
one can show that there is a ghost Goldstino when the
vacuum energy is negative. We thus apply this to the
discussion of the modulated vacua.
However, the translational generators along spatial or

temporal directions may not be well-defined operators in
the modulated vacua. This problem is caused by the
divergence of the spatial integration of a charge operator.
Therefore, we should discuss the relation between SUSY
and the Hamiltonian in a system with finite (but large)
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volume V with periodic boundary conditions to preserve
translational invariance along spatial directions. The fol-
lowing discussion is similar to the one in Ref. [35].

A. Temporally modulated vacua

We will now show that the Goldstino is a ghost in the
temporally modulated vacua in the case where the model
has negative vacuum energy. First, we consider the vacuum
expectation value of the relation between the Hamiltonian
and the supercharges due to the SUSY algebra. For the
temporally modulated vacua, we should discuss the relation
in a finite volume. The vacuum expectation values read

hvac;boxjHjvac;boxi¼ 1

4

X
α∶spinors

hvac;boxjQ̄αQαjvac;boxi;

ð69Þ

where the ket jvac; boxi denotes the vacuum state of the
system in a box with the above discussed periodic boun-
dary conditions. We will show that the right-hand side of
Eq. (69) is the norm of the Goldstino one-particle state. We
expand the right-hand side by inserting multiparticle states
normalized by the finite volume jX; boxi as follows:

hvac;boxjHjvac;boxi¼ 1

4

X
X;α∶spinors

jhX;boxjQαjvac;boxij2:

ð70Þ

Now, we consider a case where the energy density has the
vacuum expectation value E:

hvac; boxjHjvac; boxi ¼ VE: ð71Þ

Relating the ket in a finite system to that of an infinite
system, we get

jX; boxi →
 ffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ3
V

r !
NX

jXi; ð72Þ

whereNX denotes the number of particles in the state X. By
this replacement, Eq. (70) can be rewritten as

VE ¼ 1

4

X
X;α∶spinors

ð2πÞ3NX

VNX
jhXjQαjvacij2: ð73Þ

We argue that only the zero-momentum state in jX; boxi
contributes on the right-hand side. This is because
Qαjvac; boxi belongs to the same eigenstate of the three-
momentum as jvac; boxi, since ½Q;Pi� ¼ 0 for i ¼ 1, 2, 3
holds. Therefore, only the eigenstates with zero three-
momentum jXðp ¼ 0Þi in jXi contribute to the right-hand
side of Eq. (70). Therefore, Qα ¼

R
d3xSm¼0

α ðx0;xÞ can be

reduced into the product of the volume V and the super-
current Smα ðx0; xÞ at x ¼ 0:

jhXjQαjvacij2

¼
����
Z

d3xhXðp¼ 0ÞjS0αðx0;xÞjvaci
����2

¼
����
Z

d3xhXðp¼ 0ÞjeiP·xS0αðx0;x¼ 0Þe−iP·xjvaci
����2

¼
����
Z

d3xhXðp¼ 0ÞjS0αðx0;x¼ 0Þjvaci
����2

¼V2jhXðp¼ 0ÞjS0αðx0;x¼ 0Þjvacij2; ð74Þ

where we have used that both the vacuum and the state X
are zero-momentum states and hence the integral, finally, is
independent of x and hence proportional to the volume. By
using the above equation, Eq. (73) can be written as

E ¼ 1

4

X
X;α∶spinors

ð2πÞ3NX

VNX−1
jhXðp ¼ 0ÞjS0αðx0; 0Þjvacij2: ð75Þ

In the limit V → ∞, the dominant but finite contributions to
the right-hand side come from the states with NX ¼ 1.
Note, that the contribution from the zero-particle state
should vanish since such a contribution diverges in the limit
V → ∞ while the left-hand side is finite. For the states with
NX ¼ 1, we find the relation

E¼ 1

4

X
X;α∶spinors

ð2πÞ3jhXðp¼ 0;NX ¼ 1ÞjS0αðx0;0Þjvacij2:

ð76Þ

If the vacuum energy density is nonzero E ≠ 0, the state
S0αðx0; 0Þjvaci carries one particle state with p ¼ 0, which
is identified as the Goldstino. Further, Eq. (76) can be seen
as a norm of the one particle state S0αðx0; 0Þjvaci. Therefore,
the norm of the Goldstino is negative if the vacuum energy
density is negative.

B. Spatially modulated vacua

We will now show the relation between the negative
vacuum energy and the ghost Goldstino in the spatially
modulated vacua. In the spatially modulated vacua, the
discussion is almost the same as in Sec. VA, except for the
fact that the spatial translation (P1) is broken, in spatially
modulated vacua.
If we assume the phase of the vacuum expectation value

of the complex scalar field is modulated as hφi ¼ φ0eicx
1

,
we can argue that the simultaneous transformation with P1

and the global Uð1Þ is preserved. Here, we assume that
Aφ ¼ qφ, where A is the Hermitian generator of the Uð1Þ
transformation, and q is the charge of the complex scalar
field. The unbroken operator is then given by
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PS
1 ≔ P1 −

c
q
A; ð77Þ

where P1 is the Hermitian generator of the translation along
the x1 direction: P1φ ¼ −i∂1φ. Thus, we should try to use
PS
1 instead of P1. The only fact we need is that the Uð1Þ

generator A commutes with the SUSY charge Qα,

½A;Qα� ¼ 0: ð78Þ

The state X that contributes in Eq. (74) is the one with
p2 ¼ p3 ¼ 0, but finite momentum and finite Uð1Þ charge
q: P1jXi ¼ cjXi and c

q AjXi ¼ cjXi, respectively. This is

because the conserved quantity is PS
1 , which corresponds to

a translation and simultaneous local Uð1Þ transformation.
Therefore, the relation between the supercurrent and the
vacuum energy becomes

jhXjQαjvacij2 ¼
����
Z

d3xhXðp2 ¼ p3 ¼ 0; p1 ¼ cÞjS0αðx0; xÞjvaci
����2

¼
����
Z

d3xhXðp2 ¼ p3 ¼ 0; p1 ¼ cÞjeix·Pe−ix1cA
q e

ix1cA
q S0αðx0; x ¼ 0Þe−ix·Pjvaci

����2

¼
����
Z

d3xhXðp2 ¼ p3 ¼ 0; p1 ¼ cÞjeix·Pe−ix1cA
q S0αðx0; x ¼ 0Þeix1cA

q e−ix·Pjvaci
����2

¼
����
Z

d3xhXðp2 ¼ p3 ¼ 0; p1 ¼ cÞjeix·PS
S0αðx0; x ¼ 0Þe−ix·PS jvaci

����2

¼
����
Z

d3xhXðp2 ¼ p3 ¼ 0; p1 ¼ cÞjS0αðx0; x ¼ 0Þjvaci
����2

¼ V2jhXðp2 ¼ p3 ¼ 0; p1 ¼ cÞjS0αðx0; x ¼ 0Þjvacij2; ð79Þ

where we have inserted a Uð1Þ transformation together
with its inverse on the left-hand side of the supercurrent and
commuted the inverse transformation to the other side of
the latter. The resulting vector PS ¼ ðPS

1 ; P2; P3Þ is a set of
operators for the unbroken symmetries.
By the same argument as in the case of the temporally

modulated vacua, we conclude that the one-particle state
jhXðp2¼p3¼0;p1¼c;NX¼1ÞjS0αðx0;0Þjvacij2 becomes
a ghost if the vacuum energy is negative.

C. Lightlike modulated vacua

For the lightlike modulated vacua, it will be convenient
to use the light-cone coordinates. The symmetry breaking
pattern in this case isUð1Þ × P0 × P1 → ½Uð1Þ × P��diag×
P∓, where the P� represents the translational symmetry
group along the light-cone directions x� ¼ x0 � x1. For the
VEV hφi ¼ φ0eiωðx

0þx1Þ, the symmetry breaking pattern
becomes Uð1Þ × P0 × P1 → ½Uð1Þ × Pþ�diag × P−. Note
that we define the Hermitian generator of the translational
group Pþ and P− as

Pþ ≔ P0 þ P1; P− ≔ P0 − P1; ð80Þ

respectively. We again assume that the Uð1Þ charge of the
complex scalar field is q: Aφ ¼ qφ. With this assumption,
the unbroken generator corresponding to the unbroken
group ½Uð1Þ × Pþ�diag can explicitly be written as

PLþ ≔ Pþ −
2ω

q
A; ð81Þ

where we have used Pþφ ¼ 2ωφ. Thus, the unbroken
translational operator along the x1 direction PL

1 can be
written in terms of unbroken generators as

PL
1 ¼ 1

2
ðPLþ − P−Þ ¼ P1 −

ω

q
A; ð82Þ

which is also an unbroken operator. Since A commutes
with the SUSY generator, we can repeat the argument of
Sec. V B by replacing c with ω. Thus, the relation between
the sign of the vacuum energy density and the norm of the
Goldstino also holds in the lightlike modulated vacua. In
particular, the Goldstino becomes a zero-norm state in the
vacua where the vacuum energy density vanishes, which
agrees with our result in Sec. IV B 4.

VI. SUMMARY AND DISCUSSION

In this paper, we have explored a new spontaneous
SUSY-breaking mechanism with spatially, temporally, or
lightlike modulated vacua. We have used a ghost-free
SUSY higher-derivative model with a chiral superfield,
which is a supersymmetric extension [2] of the model used
in Refs. [1,3].
In this model, all the spatially, temporally, or lightlike

modulated vacua are realized as the energy-extremum state

SUPERSYMMETRY BREAKING AND GHOST GOLDSTINO IN … PHYS. REV. D 99, 045012 (2019)

045012-11



and the solution to the EOM within the Ansatz of phase
modulation. We have calculated the vacuum energy density
of each of the modulated vacua. For the spatially modulated
vacua, the vacuum energy can be positive, zero, or negative,
depending on the choice of the parameter of the model. For
the temporally modulated vacua, the vacuum energy
density is always negative in our model. For the lightlike
modulated vacua, the vacuum energy density vanishes.
We have then investigated the stability of the fluctuation

around the modulated vacua. For the bosonic fluctuation
given by a complex scalar field, there are stable and
nondynamical fluctuations while there are no unstable
modes in any of the modulated vacua. This property
coincides with the non-SUSY case [3]. However, for the
fermionic fluctuations, there are unstable ghost modes in the
spatially or temporally modulated vacua. We have argued
that the ghost can be related to the negative vacuum energy
density of the modulated vacuum, using the SUSYalgebra.
There are several possible directions for future work.

One is to discuss the instability of the temporally modu-
lated vacua in supersymmetric theories. The temporally
modulated vacuum is unstable due to the negative vacuum
energy density in our SUSY model, in contrast to the non-
SUSY case [3], where the temporally modulated vacuum is
stable. It is plausible that this instability is model depen-
dent; however, future investigations are needed for such a
conclusion. It may also be possible that the vacuum energy
density is uplifted by higher-order terms such as ð∂ϕÞ8
and the Goldstino becomes a physical fluctuation. As
another possibility, SUSY might forbid stable temporally

modulated vacua. In such a case, we should discuss the
instability in a more model independent way. The appli-
cation of our model to more realistic phenomenological
models with metastable SUSY breaking modulated vacua
would be interesting. We have studied SUSY breaking in a
higher-derivative chiral superfield in this paper. An exten-
sion to a vector superfield would also be possible, since the
most general higher-derivative vector superfield action, free
from ghosts and the auxiliary field problem, is avail-
able [36]. We will leave these questions for future work.
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