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We study the vacuum structure of a class of Lorentz-invariant field theories where the vacuum
expectation values are not constant but are (phase) modulated. The vacua are classified into spatial,
temporal, and lightlike modulation types according to the patterns of spontaneous breaking of translational
symmetry. The conditions for having temporal or lightlike modulated vacua imply severe constraints on the
models. We utilize the notion of generalized Nambu-Goldstone modes which appear in the modulated
vacua. Finally, we examine fluctuation modes around these vacua and discuss their dynamics and the
absence of ghosts.
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I. INTRODUCTION

Finding the vacuum structure is one of the most
fundamental issues in the course of understanding quantum
field theories. The true (false) vacuum in field theories is
defined by being the global (a local) minimum of the
energy functional (Hamiltonian). For models that consist of
a canonical kinetic term (quadratic with second-order
spacetime derivative) with a potential V, this is given by
a constant field configuration determined by a minimum of
V. In this case, the constant vacuum expectation value
(VEV) trivially satisfies the equation of motion and the
constant field configurations automatically yield the mini-
mum energy since varying a field costs gradient energy.
Contrary to this, the situation can generally become more
involved when we consider models that contain quartic or
higher-order kinetic terms in addition to the canonical one,
but only if not all terms appear in the energy functionalwith a
positive sign. Such models have terms with more than two
spacetime derivatives and are called higher-derivative mod-
els. In some cases, nonconstant field configurations can be
energetically favored and become the vacuum. Depending
on the symmetries of the potential, the energy may be

minimized by a field configuration that has nonvanishing
derivatives in the vacuum (lowest-energy state). The sym-
metry that will play an important role in this paper is shift
symmetry, which when possessed by the potential allows
for the field to be nonconstant. In this situation, the kinetic
term and the higher-order derivative terms can be seen as a
“potential” for the “velocity” of the field, that is, for a
nonvanishing gradient of the field. As mentioned above, if
not all terms enter the energy functional with a positive sign,
the “velocity” that minimizes the energy may be a non-
vanishing constant. Even if the canonical kinetic term has
the usual positive sign in the energy functional, a constant
VEV may be just a local vacuum, and instead a modulated
vacuum becomes the global vacuum. In this paper we will
study the situation where the “velocity” is the phase of a
complex field, although that is not necessarily the only
possibility in general.
In condensed matter physics as opposed to relativistic

quantum field theory, the lowest-energy state is not the
vacuum but is called the ground state. Modulated ground
states were originally discovered in nonrelativistic theories,
i.e., theories without Lorentz invariance, in the context
of superconductors. In such theories, spatially modulated
ground states can easily be found. For example, Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) states in superconduc-
tors were proposed a long time ago [1,2]. For the
Fulde-Ferrell (FF) state [1], the phase of a condensate in
the ground state is spatially modulated along one spatial
direction, while for the Larkin-Ovchinnikov (LO) [2], the
amplitude of the condensate is modulated. The LO state is
the ground state when an external magnetic field is applied
[3] (see also Ref. [4]), while the FF state can be the ground
state when a magnetic field penetrating a superconducting

*gudnason@keio.jp
†nitta@phys-h.keio.ac.jp
‡shin-s@kitasato-u.ac.jp
§ryokokur@keio.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 045011 (2019)

2470-0010=2019=99(4)=045011(19) 045011-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.045011&domain=pdf&date_stamp=2019-02-20
https://doi.org/10.1103/PhysRevD.99.045011
https://doi.org/10.1103/PhysRevD.99.045011
https://doi.org/10.1103/PhysRevD.99.045011
https://doi.org/10.1103/PhysRevD.99.045011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ring is present (see e.g., Ref. [5]). Recent experiments reveal
that these FFLO states are realized in several physical
systems [6–9]. In addition to condensed matter physics,
the FFLO states appear in a variety of fields. In the context of
QCD, spatiallymodulated chiral condensates of the FF type,
called a dual chiral density wave or chiral spiral [10,11], and
the LO type, called a real kink crystal [12,13], were
contemplated to appear in a certain region of the QCD
phase diagram. In the Gross-Neveu or Nambu-Jona Lasino
model in 1þ 1 dimensions, FFLO states for which both the
phase and the amplitude are modulated, called twisted kink
crystals [14,15], were discussed at finite temperature and
density [16]. The related issues were also discussed in the
context of the AdS=CFT correspondence [17–22].
On the other hand, temporal modulations have also been

studied recently. The idea of the time crystal [23,24]
proposes a time-dependent ground state in which the
continuous translational symmetry along the time direction
is spontaneously broken to a discrete subgroup. This is an
analogue of the ordinary crystalline structure of matter in
spatial directions, namely, a conventional crystal. Although
the time crystal cannot be realized in thermal equilibrium
states [25], it has been reported to be experimentally
realized in a nonequilibrium state [26,27]. A diffusive
Nambu-Goldstone mode corresponding to spontaneously
broken time translation in a time crystal was discussed in
Ref. [28]. A temporally modulated state was also studied in
QCD [29] and finite-density systems [30].
Further examples of time-dependent vacuum states have

also been studied in various contexts. A famous example
of such kind of vacuum is ghost condensation [31]. This
proposal causes a modification of the long-range gravita-
tional force by means of a Higgs mechanism giving mass
to the graviton and is studied mostly in the context of
cosmology. In ghost condensation, the VEV depends
linearly on time but is not modulated.
In all the examples in the literature that we mentioned so

far, i.e., in condensed matter physics or in QCD, Lorentz
invariance is either absent or explicitly broken by finite
density, temperature, and/or an external magnetic field with
the exception of ghost condensation [31]. In ghost con-
densation, Lorentz invariance is not broken but the kinetic
term of the scalar field has the “wrong” sign, thus yielding
a ghost.
On the other hand, modulated vacua in Lorentz-

invariant setups with a normal kinetic term had not been
studied until recently [32,33]. In Refs. [32,33], we
realized such a possibility in a simple Lorentz-invariant
model with higher-derivative terms, by studying the
vacuum structure possessing a nonconstant VEV.1 The
VEV that we analyzed is a function of a specific

direction in three-dimensional space. Such kind of
vacuum is called spatially modulated.
In this paper, we study modulated vacua in Lorentz-

invariant field theories. As a continuation of our previous
studies on spatially modulated vacua [32,33], we here focus
on temporally and lightlike modulated vacua. Nevertheless,
it proves instructive to include the spatially modulated case
here so as to put them all on equal footing. A temporally
modulated vacuum is characterized by the property that the
time derivative of fields develop a VEV. If the solution we
are looking for is timelike—due to the Lorentz invariance
of the class of theories we are considering—we can always
set the spatial derivatives to zero without loss of generality
simply by a change of Lorentz frame. Similarly, the
lightlike modulation is defined by a VEV for the derivative
of fields on the light-cone. A nontrivial problem for time-
dependent solutions is that the extrema of the Hamiltonian
do not necessarily coincide with all solutions to the
Lagrangian equation of motion. A subset of the solutions
to the Lagrangian equations of motion, as we will show in
this paper, do yield extrema of the corresponding
Hamiltonian; these are the states we are looking for. In
the class of theories we consider in this paper, we will
furthermore assume that there is no dependence on the
field, φ, itself in the Lagrangian and that the Lagrangian
only depends on the first derivatives of the field, ∂mφ.
In restricting our discussion to a Lagrangian that only

depends (nonlinearly) on the first time derivative of the
field, we sidestep the problem of the Ostrogradsky insta-
bility and related ghost [34,35]. As in the ordinary vacuum
in field theories, once the fields develop nontrivial VEVs,
some of the symmetries of the Lagrangian are sponta-
neously broken. In the modulated states in nonrelativistic
theories, there appears Nambu-Goldstone (NG) modes
associated with broken symmetries [28,36,37]. We will
show that there is an analogue of NG modes (generalized
NG modes) in our models. The generalized NG modes
correspond to the flat direction of the “potential” whose
quadratic kinetic term disappears in the Lagrangian for the
case of spatial modulation [32]. However, this turns out not
to be the case for temporal or lightlike modulation.
In this paper, we study the FF-type (phase) modulation

φ ∼ expðiωtÞ. One may wonder that this modulation is
rather usual in nonrelativistic theories. For instance, (non-
linear) Schrödinger systems, i∂tφ ¼ ∇φþ Vφ ði∂tφ ¼
∇φþ gjφj2φÞ have states with a time dependence of the
above type. Therefore, such a time dependence is not
usually called a temporal modulation. Note, however, that
this is not the case for Lorentz-invariant (relativistic)
theories discussed in this paper.
The organization of this paper is as follows. In the next

section, we discuss the general conditions for modulated
vacua. We classify the vacua into the spatial, temporal and
lightlike types. In Sec. II B 3, we introduce the notion of
generalized NG modes and discuss the relation between

1In this model, the trivial vacuum at the origin becomes
metastable, in contrast to the situation in ghost condensation
where it becomes unstable.
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them and the zero modes of the generalized mass matrix. In
Sec. III, by focusing on a higher-derivative model, we show
an example of the modulated vacua and the generalized NG
modes. We also examine the dynamics of the fluctuation
modes in the vacua and discuss the absence of ghosts.
Section IV is devoted to a summary and discussion.

II. GENERAL DISCUSSION ON
MODULATED VACUA

Throughout this paper, we consider Lorentz-invariant
theories of a single complex scalar field φ. We require that
the theory does not suffer from the Ostrogradsky instability
[34,35] which can be caused by fourth or higher order of
spacetime derivative terms. For simplicity of constructing
models, we assume that theories have shift symmetry of the
fields and a global Uð1Þ symmetry:

φ → φþ c; φ → eiθφ; ð1Þ

with constant parameters c and θ. The absence of the
Ostrogradsky instability then implies that the Lagrangian
consists of ∂mφ, ∂mφ̄ only:

L ¼ Lð∂mφ; ∂mφ̄Þ: ð2Þ

In general, vacua are defined as field configurations that
minimize the energy density and they satisfy the equation
of motion. The conventional vacua, which are characterized
by constant VEVs, trivially satisfy these conditions.
However, if we look for vacua where VEVs are not constant
but generally spacetime-dependent functions, the condi-
tions are not trivially satisfied. In the following, we write
down the general conditions for vacua in this theory and
discuss modulated vacua.

A. Conditions for modulated vacua

Starting from the Lagrangian (2), the equation of
motion is

0 ¼ ∂m
∂L

∂ð∂mφÞ
¼ ∂2L

∂ð∂mφÞ∂ð∂nφÞ
∂m∂nφ

þ ∂2L
∂ð∂mφÞ∂ð∂nφ̄Þ

∂m∂nφ̄;

0 ¼ ∂m
∂L

∂ð∂mφ̄Þ
¼ ∂2L

∂ð∂mφ̄Þ∂ð∂nφÞ
∂m∂nφ

þ ∂2L
∂ð∂mφ̄Þ∂ð∂nφ̄Þ

∂m∂nφ̄: ð3Þ

This is expressed in compact form as

Lmn

� ∂m∂nφ

∂m∂nφ̄

�
¼ L00

�
φ̈

̈φ̄

�
þ ðL0i þLi0Þ

� ∂i _φ

∂i _̄φ

�
þLij

� ∂i∂jφ

∂i∂jφ̄

�
¼ 0: ð4Þ

Here _φ ¼ ∂0φ and so on and the 2 × 2 matrices Lmn (m,
n ¼ 0, 1, 2, 3) are defined as

Lmn ≡
0@ ∂2L

∂ð∂mφ̄Þ∂ð∂nφÞ
∂2L

∂ð∂mφ̄Þ∂ð∂nφ̄Þ
∂2L

∂ð∂mφÞ∂ð∂nφÞ
∂2L

∂ð∂mφÞ∂ð∂nφ̄Þ

1A: ð5Þ

Note that only the symmetric part LðmnÞ contributes to
the equation of motion and L†00 ¼ L00, L†0i ¼ Li0,
L†ij ¼ Lji.
Any global or metastable vacuum of the theory satisfies

the equation of motion and it should be a local minimum of
the energy functional. The Hamiltonian (energy) density is
defined by

H ¼ ∂L
∂ _φ _φþ ∂L

∂ _̄φ _̄φ − L: ð6Þ

The Hamiltonian depends only on the spacetime derivative
of fields. Therefore it can be considered as a potential for
∂mφ. The extremal condition of the energy with respect to
∂mφ is then

∂H
∂ð∂mφÞ

¼ ∂2L
∂ _φ∂ð∂mφÞ

_φþ ∂L
∂ _φ δm0 þ

∂2L

∂ _̄φ∂ð∂mφÞ
_̄φ

−
∂L

∂ð∂mφÞ
¼ 0; ð7Þ

and its complex conjugate. More explicitly, we have

∂H
∂ _φ ¼ ∂2L

∂ _φ2
_φþ ∂2L

∂ _̄φ∂ _φ _̄φ ¼ 0;

∂H
∂ð∂iφÞ

¼ ∂2L
∂ _φ∂ð∂iφÞ

_φþ ∂2L

∂ _̄φ∂ð∂iφÞ
_̄φ −

∂L
∂ð∂iφÞ

¼ 0: ð8Þ

These together with their complex conjugates are
expressed as

L00

�
_φ

_̄φ

�
¼ 0; Li0

�
_φ

_̄φ

�
−

0@ ∂L
∂ð∂iφ̄Þ
∂L

∂ð∂iφÞ

1A ¼ 0: ð9Þ

One finds that the conventional vacuum configuration
which is characterized by a constant VEV trivially satisfies
the equation of motion (4) and the extremal condition of the
energy density (9). However as we will see in Sec. III, there
can be nontrivial solutions to these Eqs. (4), (9) where parts
of ∂mφ develop nonzero VEV h∂mφi ≠ 0.
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In order to examine whether a configuration that satisfies
Eqs. (4) and (9) is a stable vacuum, we consider the
fluctuation ϕ in the configuration. We consider a shift in the
field φ → hφi þ ϕ, or equivalently ∂mφ → h∂mφi þ ∂mϕ.
After the shift in the fields, the Hamiltonian is expanded as

Hðh∂mφi þ ∂mϕ; h∂mφ̄i þ ∂mϕ̄Þ

¼ H0 þ
∂H

∂ð∂mφÞ
����
0

∂mϕþ ∂H
∂ð∂mφ̄Þ

����
0

∂mϕ̄

þ 1

2
ϕ⃗†
mMmnj0ϕ⃗n þ � � � ; ð10Þ

where the symbol j0 means that they are evaluated in the
vacuum and we have defined the 2 × 2 matrices Mmn and
the vector ϕ⃗m as

Mmn≡
0@ ∂2H

∂ð∂mφ̄Þ∂ð∂nφÞ
∂2H

∂ð∂mφ̄Þ∂ð∂nφ̄Þ
∂2H

∂ð∂mφÞ∂ð∂nφÞ
∂2H

∂ð∂mφÞ∂ð∂nφ̄Þ

1A; ϕ⃗m≡
�∂mϕ

∂mϕ̄

�
:

ð11Þ

Note that M†00 ¼ M00, M†0i ¼ Mi0, M†ij ¼ Mji. The
second and the third terms in Eq. (10) vanish ∂H

∂ð∂mφÞ j0 ¼∂H
∂ð∂mφ̄Þ j0 ¼ 0 due to the extremal condition of the energy

density (8). The matrices Mmn are expressed by the
Lagrangian matrices (5):

Mmn ¼ ∂Lmn

∂ _φ _φþ ∂Lmn

∂ _̄φ _̄φþL0nδm0 þLm0δn0 −Lmn:

ð12Þ

More explicitly, we have

M00 ¼ ∂L00

∂ _φ _φþ ∂L00

∂ _̄φ _̄φþL00;

M0i ¼ ∂L0i

∂ _φ _φþ ∂L0i

∂ _̄φ _̄φ;

Mij ¼ ∂Lij

∂ _φ _φþ ∂Lij

∂ _̄φ _̄φ −Lij: ð13Þ

In order to define the Hessian matrix of the energy
functional, we rearrange the expression (10):

H ¼ H0 þ
1

2
ϕ⃗†
mMmnj0ϕ⃗n ¼ H0 þ

1

2
Φ⃗†Mj0Φ⃗; ð14Þ

where we have defined the vector

Φ⃗≡

0BBBBBBB@

∂0ϕ

∂0ϕ̄

∂1ϕ

..

.

∂3ϕ̄

1CCCCCCCA ¼

0BBBBB@
ϕ⃗0

ϕ⃗1

..

.

ϕ⃗3

1CCCCCCA; ð15Þ

and the generalized 2d × 2d mass matrix

M≡

0BBBBB@
M00 M01 � � � M03

M10 M11 � � �
..
. . .

.

M30 � � � M33

1CCCCCA: ð16Þ

Since M†mn ¼ Mnm, the 2d × 2d ¼ 8 × 8 matrix M is a
Hermitian Hessian matrix. In order for a vacuum h∂mφi ≠ 0
to be stable, the generalizedmassmatrix needs to be positive
semidefinite in the vacuum which we denote Mj0 ≥ 0.
Once a vacuum h∂m̂φi ≠ 0, for fixed m̂, that satisfies

Eqs. (4), (8) and Mj0 ≥ 0 is found, we consider the
dynamical (fluctuation) field ϕ around the vacuum. Then
the Lagrangian for the dynamical field is

L ¼ L0 þ
∂L

∂ð∂ _φÞ
����
0

∂0ϕþ ∂L
∂ð∂ _̄φÞ

����
0

∂0ϕ̄þ ∂L
∂ð∂iφÞ

����
0

∂iϕ

þ ∂L
∂ð∂iφ̄Þ

����
0

∂iϕ̄þ 1

2
ϕ⃗†
0L

00j0ϕ⃗0 þ
1

2
ϕ⃗†
0L

0ij0ϕ⃗i

þ 1

2
ϕ⃗†
iLi0j0ϕ⃗0 þ

1

2
ϕ⃗†
iLijj0ϕ⃗j þ � � � : ð17Þ

Here Lmn are the matrices defined in Eq. (5) and L0 is a
constant.
In the next subsection, we examine nontrivial solutions

to the conditions (4) and (9). Among other things, we focus
on vacuum configurations where the VEVs are modulated
with respect to spacetime coordinates. We first classify
the modulated vacua and then clarify the conditions for
the vacua.

B. Classification of modulated vacua

The modulated vacua are classified according to the
patterns of spontaneous breaking of the global and Poincaré
symmetries. When some components of ∂m̂φ develop a
nonzero VEV, they break translational symmetry2 along the
xm̂ directions as well as the rotational symmetry in a plane
spanned by the xm̂ coordinate. The shift and global Uð1Þ
symmetries are also spontaneously broken. If the VEV is a

2Recently, the spontaneous breaking of the translational
symmetry in a higher derivative model without the Ostrogradsky
instability was discussed [38].
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Fulde-Ferrell (FF, the phase modulated) type, i.e., h∂m̂φi ∝
eicx

m̂
with a constant c, then the symmetry breaking pattern

is classified by the vector generators Pm̂ associated with the
translational symmetry along the xm̂ direction into three
cases (1) spacelike, (2) timelike and (3) lightlike.
(1) When Pm̂ is spacelike, the vacuum is called spatially

modulated. In this case,we can choose m̂ ¼ 1without
loss of generality. The symmetry is spontaneously
broken as ISOð1; 3Þ × Uð1Þ × S → ISOð1; 2Þ⋊
½Uð1Þ × P1�diag. Here S is the shift symmetry group,
P1 is the translational group generated byP1 and diag.
stands for the diagonal subgroup corresponding to the
simultaneous transformation:

x1 → x1 þ a; φ → e−icaφ; ð18Þ

and ⋊ implies a semidirect product.
(2) When Pm̂ is timelike, the vacuum is called tempo-

rally modulated. In this case, we can choose m̂ ¼ 0
without loss of generality. In this vacuum, the
symmetry is spontaneously broken as ISOð1;3Þ×
Uð1Þ×S→ ISOð3Þ⋊½Uð1Þ×P0�diag where ISOð3Þ
is the Poincaré group in the spatial directions.3

(3) On the other hand, whenPm̂ is lightlike (null), we can
choose Pm̂ to be the light-cone directions P� ¼
P0 � P1. We call the vacuum lightlike modulated.
The breaking pattern is ISOð1; 3Þ × Uð1Þ × S →
ISOð2Þ × ½Uð1Þ × P��diag.

We will discuss a generalization of the NG modes
associated with these symmetry breakings in Sec. II B 3.
In the following, we examine the conditions for each
modulated vacuum.

1. Spatial modulation

In the case of the spatial modulation, the VEV is
characterized by

h _φi ¼ h∂2φi ¼ h∂3φi ¼ 0; h∂1φi ≠ 0: ð19Þ

Assuming the ansatz (19), we examine the conditions (4)
and (9). By this assumption, we look for static field
configurations. We first demand the following conditions:

∂L
∂ð∂iφÞ

����
0

¼ 0; ði ¼ 1; 2; 3Þ: ð20Þ

Note that j0 means that the conditions are satisfied in the
vacuum for any xi. If we impose the above conditions, the
energy extremal conditions in Eq. (9) are trivially satisfied.
The equation of motion (4) is also trivially satisfied since φ

is x0 independent and ∂L
∂ð∂iφÞ ¼ 0 for any xi. Indeed, for a

static field configuration, we have the relationH ¼ −L and
the condition δH ¼ 0 automatically implies δL ¼ 0. In
Refs. [32,33] we solved the condition (20) and found a
spatially modulated vacuum.
If the theory that we consider is Lorentz invariant, one

notices that only the combinations _φ2, _φ _̄φ appear in the
Lagrangian:

L ⊃ A _φ2; B _φ _̄φ; ð21Þ

where A, B are any Lorentz-invariant terms. Then, one can
show that the relations

∂L
∂ _φ
����
_φ¼0

¼ ∂2L
∂ _φ∂ð∂iφÞ

����
_φ¼0

¼ 0 ð22Þ

always hold for the spatial modulation ansatz (19). From
Eq. (13), we therefore find the relations

M00j0 ¼ L00j0; Mijj0 ¼ −Lijj0: ð23Þ

In particular one can show that L0ij0 ¼ Li0j0 ¼ M0ij0 ¼ 0
for the spatial modulation. The generalized mass matrix is
given by

Mj0 ¼
�L00j0 0

0 −diagðLijÞj0

�
: ð24Þ

This is completely block diagonal. The explicit expression
for M depends on the models under consideration. For the
vacuum (19), we require that Mj0 is positive semidefinite.
Once a vacuum is found, the Lagrangian for the

fluctuation in a spatially modulated vacuum becomes

L ¼ L0 þ
1

2
ϕ⃗†
0L

00j0ϕ⃗0 þ
1

2
ϕ⃗†
iLijj0ϕ⃗j þ � � � : ð25Þ

The matrices Lmnj0 govern the kinetic terms of the
fluctuation modes. For the spatial modulation, the zero
modes of Mmnj0 coincide with those of Lmnj0. This issue
will be discussed in Sec. II B 3.

2. Temporal modulation

The temporal modulation is characterized by the VEV:

h _φi ≠ 0; h∂iφi ¼ 0; ði ¼ 1; 2; 3Þ: ð26Þ

In the case of temporal modulations, it is not always true
that extrema of the energy are solutions to the equation of
motion. In order to look for a configuration characterized
by Eq. (26), we demand the following conditions:

3This kind of symmetry breaking in Lorentz-invariant theories
has been discussed in Ref. [39].
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L00j0 ¼ 0;
∂L

∂ð∂iφÞ
����
0

¼ 0: ð27Þ

Indeed, the second condition in Eq. (27) allows a solution

∂iφ ¼ 0 ð28Þ

in Lorentz-invariant models. This substantially implies
L0ij0¼0. Since the solution (28) implies that ∂i∂jφ ¼ 0

at any points, the conditions (4) and (9) necessary
for modulated vacua are now satisfied. By the ansatz (26),
we have

M00j0 ¼
�∂L00

∂ _φ _φ

�
0

þ
�∂L00

∂ _̄φ _̄φ

�
0

;

M0ij0 ¼
�∂L0i

∂ _φ _φ

�
0

þ
�∂L0i

∂ _̄φ _̄φ

�
0

;

Mijj0 ¼
�∂Lij

∂ _φ _φ

�
0

þ
�∂Lij

∂ _̄φ _̄φ

�
0

−Lijj0: ð29Þ

For Lorentz-invariant models, we can show ð∂L0i

∂ _φ _φÞ
0
¼

ð∂L0i

∂ _̄φ _̄φÞ
0
¼ 0, hence M0ij0 ¼ 0, in the case of temporal

modulation but M00j0 and Mijj0 are not equal to L00j0,
Lijj0, in general. Since L00j0 ¼ 0, the kinetic term of the
fluctuation along the time direction vanishes identically.
This distinguishes the temporal modulation from the
spatial one.

3. Lightlike modulation

We define the lightlike modulation as a vacuum char-
acterized by the VEV:

h _φi ≠ 0; h∂1φi ≠ 0; h∂2φi ¼ h∂3φi ¼ 0;

∂φ · ∂φ ¼ ∂φ · ∂φ̄ ¼ 0: ð30Þ

Here ∂φ · ∂φ ¼ ηmn∂mφ∂nφ and so on. The metric is
ηmn ¼ diagð−1; 1; 1; 1Þ. In order to look for the configu-
ration (30), we assume

_φ ¼ �∂1φ: ð31Þ

If we demand the following conditions:

L00j0 ¼ L0ij0 ¼ Lijj0 ¼ 0;

∂L
∂ð∂iφÞ

����
0

¼ 0; ð32Þ

then, both the conditions (4), (9) for modulated vacua are
satisfied. However, these conditions are generally too
strong and we will find relaxed conditions in a concrete
model of lightlike modulation in Sec. III.

III. GENERALIZED NAMBU-GOLDSTONE
MODES

In the previous section, we made a classification of
modulated vacua according to the spontaneous breaking of
symmetries. Along with the spontaneous symmetry break-
ings, we expect that NG modes appear in the spectrum.
Particular emphasis is placed on the rotational symmetry.
Since the rotations in the ðx1; x2Þ, ðx1; x3Þ planes are not
independent of the translation along the x1 direction [40],
there are no independent NG modes associated with
the spontaneous breaking of the rotational symmetries.
Therefore the only relevant part of our interest is Uð1Þ ×
Pm̂ → ½Uð1Þ × Pm̂�diag where Pm̂ is spacelike, timelike or
lightlike. The NG modes associated with these symmetry
breakings are well captured by the notion of the generalized
NG modes in Ref. [32]. In this section, we discuss a
generalization of the NG theorem in our setup. This
provides a relation between zero modes of the generalized
mass matrix (16) and spontaneous symmetry breaking.
Most of the analysis in this section has been already
discussed in Ref. [32]. We therefore provide a brief sketch
of the notion in the following.
We assume that the energy functional,H, depends on the

spacetime derivative of scalar fields only:Hðφm; φ̄mÞ. Here
we have defined φm ≡ ∂mφ, φ̄m ≡ ∂mφ̄. Vacua are defined
as extrema of H with respect to φm, φ̄m:

∂H
∂φm

¼ ∂H
∂φ̄m

¼ 0: ð33Þ

In these extrema, we assume φm, φ̄m have the following
VEVs:

h0jφmj0i≡vm¼ δm̂mv; h0jφ̄mj0i≡ v̄m ¼ δm̂mv̄: ð34Þ

Here m̂ is a fixed spacetime direction. The VEV vm can
depend on the spacetime coordinate in general. In that
case, the vacuum spontaneously breaks spacetime sym-
metries. Consider the fluctuations ϕ; ϕ̄ around the VEV.
As we have discussed in the previous section, the expansion
of the Hamiltonian around the vacua results in [Φ⃗ is defined
in Eq. (15)]

Hðvþ ϕ; v̄þ ϕ̄Þ ¼ Hðv; v̄Þ þ 1

2
Φ⃗†Mj0Φ⃗þ � � � : ð35Þ

In order that the vacua are local minima, we require that
Mj0 is positive semidefinite. The zero modes of Mj0
correspond to flat directions.
Let us clarify the relation between the zero modes of

Mj0 and symmetries of the theory. The fields φm, φ̄m
transform as

½iQA;φm� ¼ iðTAφÞm; ½iQA; φ̄m� ¼ −iðTAφ̄Þm: ð36Þ
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Here QA are generators of the symmetry group and TA is a
Hermitian matrix representation of the generators. As we
mentioned before, a part of φm, φ̄m develop VEVs (34).
Then the spontaneous breaking of symmetries by modu-
lations is defined if there exist operators φm̂ with vm̂ ≠ 0
such that

h0j½iQA;φm̂�j0i¼ iðTAvÞm̂; h0j½iQA; φ̄m̂�j0i¼−iðTAv̄Þm̂:
ð37Þ

If we define

ðTAv⃗Þm̂ ≡
� ðTAvÞm̂
−ðTAv̄Þm̂

�
; ð38Þ

then the symmetry corresponding to TÂ with TÂv⃗ ¼ 0 is
preserved in the vacuum while TA0

such that TA0
v⃗ ≠ 0 is

spontaneously broken.
The energy functionalH is invariant under the following

transformation:

φm →φmþ iεAðTAφÞm; φ̄m→ φ̄m− iεAðTAφ̄Þm; ð39Þ

where εA is an infinitesimal parameter. Namely, we have

δAH ¼ ∂H
∂φn

ðTAφÞn −
∂H
∂φ̄n

ðTAφ̄Þn ¼ 0: ð40Þ

By differentiating this relation with respect to φm, φ̄m, we
obtain

∂2H
∂φm∂φn

ðTAφÞnþ
∂H
∂φn

∂
∂φm

ðTAφÞn−
∂2H

∂φm∂φ̄n
ðTAφ̄Þn¼0;

∂2H
∂φ̄m∂φn

ðTAφÞn−
∂2H

∂φ̄m∂φ̄n
ðTAφ̄Þn−

∂H
∂φ̄n

∂
∂φ̄m

ðTAφ̄Þn¼0:

ð41Þ

If we consider these relations in the vacuum, the factor
∂H=∂φm vanishes and we find0BBB@

∂2H
∂φ̄m∂φn

����
0

∂2H
∂φ̄m∂φ̄n

����
0

∂2H
∂φm∂φn

����
0

∂2H
∂φm∂φ̄n

����
0

1CCCA
 

ðTAvÞn
−ðTAv̄Þn

!
¼ 0: ð42Þ

This results in the following relation:

Mmnj0ðTAv⃗Þn ¼ 0; ð43Þ

or equivalently

Mj0ðTAV⃗Þ ¼ 0: ð44Þ

Here we have defined h0jΦ⃗j0i ¼ V⃗ where Φ⃗ is defined in
Eq. (15). If TAV⃗ ≠ 0, namely, TA ¼ TA0

is a broken
generator, this is an eigenvector of the generalized mass
matrixMj0 associated with zero eigenvalue.4 We call these
zero modes TAV⃗ the generalized NG modes. Note that
since only parts of the component in V⃗ are nonzero, i.e.,

V⃗ ¼

0BBBBBBBB@

0

..

.

ðTAv⃗Þm̂
..
.

0

1CCCCCCCCA
; ð45Þ

only the subsector that corresponds to the nonzero VEV
directions m̂ are relevant to specify the zero modes.

IV. HIGHER DERIVATIVE SCALAR MODEL

In this section, we demonstrate the existence of
modulated vacua by focusing on a concrete model with
Lorentz invariance, and study fluctuations in each case
according to the classification of spatial, temporal and
lightlike modulation.

A. Model

The model that we will consider here, is based on the
global stability considerations presented in Ref. [32], which
we will briefly review. We consider a Lagrangian density
which only depends on ∂mφ and its complex conjugate,
Lð∂mφ; ∂mφ̄Þ and it contains a finite power of the deriva-
tive term, j∂φj2 ¼ ∂mφ∂mφ̄, hence the highest power of the
derivative takes the form:

L ⊃∓ j∂φj2N ¼∓ ð−j _φj2 þ j∇φj2ÞN; ð46Þ

withN ∈ Z>0 being a positive integer. The spacetime index
m has been contracted by the inverse metric ηmn ¼
diagð−1; 1; 1; 1Þ yielding the relative minus sign in the
last expression. _φ is the time derivative of φ and ∇φ is
the spatial gradient vector of φ. Let us now construct the
Hamiltonian by performing a Legendre transformation

π ¼ ∂L
∂ _φ ⊃∓ ð−1ÞNNj∂φj2N−2 _̄φ; ð47Þ

yielding

H ¼ π _φþ π̄ _̄φ−L ⊃∓ ð−1ÞNð2N − 1Þj _φj2N � j∇φj2N:
ð48Þ

4Note that this relation never implies that all the zero modes of
Mj0 are given by TAV⃗ but the inverse is true. Namely if TAV⃗ ≠ 0
exists, it should be a zero mode of Mj0.
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The global stability of the vacuum in this model is given
provided that there is no runaway direction. Considering
first the limit of j∇φj2 → ∞, we can conclude that we must
choose the upper sign. Similarly we consider the limit of
j _φj2 → ∞. Since we have chosen the upper sign, we see
from the above Hamiltonian that the largest power of the
derivative terms, N, must be odd. N ¼ 1 is just the
canonical kinetic term. Hence, the simplest nontrivial
example with global stability is N ¼ 3.
We will here consider a higher-derivative scalar field

model of the sixth order, corresponding toN ¼ 3. The most
general Lagrangian density of the Lorentz-invariant scalar
field theory with N ¼ 3 that is compatible with the
symmetries (1) and the absence of the Ostrogradsky
instability is given by

L¼−k∂φ ·∂φ̄þλð∂φ ·∂φÞð∂φ̄ ·∂φ̄Þþμð∂φ ·∂φ̄Þ2
þαð∂φ ·∂φ̄Þð∂φ ·∂φÞð∂φ̄ ·∂φ̄Þþβð∂φ ·∂φ̄Þ3: ð49Þ

The first term corresponds to the canonical kinetic term
and the other terms are higher-derivative corrections. The

parameters k, λ, μ, α, β are constants. When β ¼ μ ¼ 0, the
model reduces to the one studied in Ref. [32].5 The energy
density is

H¼ 2kj _φj2−4μj _φj2ð∂φ ·∂φ̄Þ−2αj _φj2ð∂φ ·∂φÞð∂φ̄ ·∂φ̄Þ
−6βj _φj2ð∂φ ·∂φ̄Þ2−2λ _φ2ð∂φ̄ ·∂φ̄Þ−2λ _̄φð∂φ ·∂φÞ
−2α _φ2ð∂φ ·∂φ̄Þð∂φ̄ ·∂φ̄Þ−2α _̄φð∂φ ·∂φ̄Þð∂φ ·∂φÞ
þkð∂φ ·∂φ̄Þ−λð∂φ ·∂φÞð∂φ̄ ·∂φ̄Þ−μð∂φ ·∂φ̄Þ2
−αð∂φ ·∂φ̄Þð∂φ ·∂φÞð∂φ̄ ·∂φ̄Þ−βð∂φ ·∂φ̄Þ3: ð50Þ

In order to examine the conditions (4), (9) for modulated
vacua, we evaluate the matrices Lmn. For the model (49),
we have

Lmn ¼
�
Lmn

φ̄φ Lmn
φ̄ φ̄

Lmn
φφ Lmn

φφ̄

�
; ð51Þ

where each component is calculated as

Lmn
φ̄φ ≡ −kηmn þ αηmnð∂φ · ∂φÞð∂φ̄ · ∂φ̄Þ þ 2α∂mφ̄∂nφ̄ð∂φ · ∂φÞ þ 2α∂mφ∂nφð∂φ̄ · ∂φ̄Þ

þ 4ðλþ α∂φ · ∂φ̄Þ∂mφ̄∂nφþ 2μf∂mφ∂nφ̄þ ηmnð∂φ · ∂φ̄Þg þ 3βð∂φ · ∂φ̄Þf2∂mφ∂nφ̄þ ηmnð∂φ · ∂φ̄Þg; ð52Þ

Lmn
φ̄ φ̄ ≡ 2αð∂φ · ∂φÞð∂mφ̄∂nφþ ∂mφ∂nφ̄Þ þ 2ηmnðλþ α∂φ · ∂φ̄Þð∂φ · ∂φÞ þ 2μ∂mφ∂nφþ 6βð∂φ · ∂φ̄Þ∂mφ∂nφ; ð53Þ

Lmn
φφ ≡ 2αð∂φ̄ · ∂φ̄Þð∂mφ∂nφ̄þ ∂mφ̄∂nφÞ þ 2ηmnðλþ α∂φ · ∂φ̄Þð∂φ̄ · ∂φ̄Þ þ 2μ∂mφ̄∂nφ̄þ 6βð∂φ · ∂φ̄Þ∂mφ̄∂nφ̄; ð54Þ

Lmn
φφ̄ ≡ −kηmn þ αηmnð∂φ · ∂φÞð∂φ̄ · ∂φ̄Þ þ 2α∂mφ∂nφð∂φ̄ · ∂φ̄Þ þ 2α∂mφ̄∂nφ̄ð∂φ · ∂φÞ

þ 4ðλþ α∂φ · ∂φ̄Þ∂mφ∂nφ̄þ 2μf∂mφ̄∂nφþ ηmnð∂φ · ∂φ̄Þg þ 3βð∂φ · ∂φ̄Þf2∂mφ̄∂nφþ ηmnð∂φ · ∂φ̄Þg: ð55Þ

Then, it is straightforward to calculate the other relevant quantities, such as ∂Lmn

∂ _φ and its complex conjugate:

∂Lmn
φ̄φ

∂ _φ ¼ −2αηmn _φð∂φ̄ · ∂φ̄Þ − 4α _φ∂mφ̄∂nφ̄þ 2αð∂φ̄ · ∂φ̄Þðηm0∂nφþ ∂mφηn0Þ − 4α _̄φ∂mφ̄∂nφþ 4ðλþ α∂φ · ∂φ̄Þ∂mφ̄ηn0

þ 2μðηm0∂nφ̄ − ηmn _̄φÞ − 3β _̄φf2∂mφ∂nφ̄þ ηmnð∂φ · ∂φ̄Þg þ 3βð∂φ · ∂φ̄Þf2ηm0∂nφ̄ − ηmn _̄φg; ð56Þ

∂Lmn
φ̄ φ̄

∂ _φ ¼ −4α _φð∂mφ̄∂nφþ ∂mφ∂nφ̄Þ þ 2αð∂φ · ∂φ̄Þð∂mφ̄ηn0 þ ηm0∂nφ̄Þ − 2αηmn _̄φ∂φ · ∂φ̄ − 4ηmn _φðλþ α∂φ · ∂φ̄Þ
þ 2μðηm0∂nφþ ηn0∂mφÞ − 6β _̄φ∂mφ∂nφþ 6βð∂φ · ∂φ̄Þðηm0∂nφþ ηn0∂mφÞ; ð57Þ

∂Lmn
φφ

∂ _φ ¼ 2αð∂φ̄ · ∂φ̄Þðηm0∂nφ̄þ ∂mφ̄ηn0Þ − 2αηmn _̄φð∂φ̄ · ∂φ̄Þ − 6β _̄φ∂mφ̄∂nφ̄; ð58Þ

∂Lmn
φφ̄

∂ _φ ¼ −2αηmn _φð∂φ̄ · ∂φ̄Þ − 4α _φ∂mφ̄∂nφ̄þ 2αð∂φ̄ · ∂φ̄Þðηm0∂nφþ ∂mφηn0Þ − 4α _̄φ∂mφ∂nφ̄þ 4ðλþ α∂φ · ∂φ̄Þηm0∂nφ̄

þ 2μðηn0∂mφ̄ − ηmn _̄φÞ − 3β _̄φf2∂mφ̄∂nφþ ηmnð∂φ · ∂φ̄Þg þ 6βð∂φ · ∂φ̄Þð2ηn0∂mφ̄ − ηmn _̄φÞ; ð59Þ

5This limit is also the bosonic part of the supersymmetric model studied in Ref. [33].
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∂Lmn
φ̄φ

∂ _̄φ ¼ −2αηmn _̄φð∂φ · ∂φÞ þ 2αð∂φ · ∂φÞðηm0∂nφ̄þ ∂mφ̄ηn0Þ − 4α _̄φ∂mφ∂nφ − 4α _φ∂mφ̄∂nφ

þ 4ðλþ α∂φ · ∂φ̄Þ∂nφηm0 þ 2μðηn0∂mφ − ηmn _φÞ − 3β _φf2∂mφ∂nφ̄þ ηmnð∂φ · ∂φ̄Þg
þ 3βð∂φ · ∂φ̄Þð2ηn0∂mφ − ηmn _φÞ; ð60Þ

∂Lmn
φ̄ φ̄

∂ _̄φ ¼ 2αð∂φ · ∂φÞðηm0∂nφþ ∂mφηn0Þ − 2αηmn _φð∂φ · ∂φÞ − 6β _φ∂mφ∂nφ; ð61Þ

∂Lmn
φφ

∂ _̄φ ¼ −4α _̄φð∂mφ∂nφ̄þ ∂mφ̄∂nφÞ þ 2αð∂φ̄ · ∂φ̄Þð∂mφηn0 þ ηm0∂nφÞ − 2αηmn _φð∂φ̄ · ∂φ̄Þ − 4ηmn _̄φðλþ α∂φ · ∂φ̄Þ
þ 2μðηm0∂nφ̄þ ηn0∂mφ̄Þ − 6β _φ∂mφ̄∂nφ̄þ 6βð∂φ · ∂φ̄Þðηm0∂nφ̄þ ηn0∂mφ̄Þ; ð62Þ

∂Lmn
φφ̄

∂ _̄φ ¼ −2αηmn _̄φ∂φ · ∂φþ 2αð∂φ · ∂φÞðηm0∂nφ̄þ ∂mφ̄ηn0Þ − 4α _̄φ∂mφ∂nφ − 4α _φ∂mφ∂nφ̄þ 4ðλþ α∂φ · ∂φ̄Þ∂mφηn0

þ 2μðηm0∂nφ − ηmn _φÞ − 3β _φf2∂mφ̄∂nφþ ηmnð∂φ · ∂φ̄Þg þ 3βð∂φ · ∂φ̄Þð2ηm0∂nφ − ηmn _φÞ: ð63Þ

We also have

∂L
∂ð∂iφÞ

¼ f−kþ αð∂φ · ∂φÞð∂φ̄ · ∂φ̄Þ þ 2μð∂φ · ∂φ̄Þ þ 3βð∂φ · ∂φ̄Þ2g∂iφ̄þ 2ðλþ α∂φ · ∂φ̄Þð∂φ̄ · ∂φ̄Þ∂iφ;

∂L
∂ð∂iφ̄Þ

¼ f−kþ αð∂φ · ∂φÞð∂φ̄ · ∂φ̄Þ þ 2μð∂φ · ∂φ̄Þ þ 3βð∂φ · ∂φ̄Þ2g∂iφþ 2ðλþ α∂φ · ∂φ̄Þð∂φ · ∂φÞ∂iφ̄: ð64Þ

Now that we have all the ingredients to examine the
conditions (4), (9), we will study the spatial, temporal
and lightlike modulations in turn.

B. Spatial modulation

We first consider the spatially modulated vacuum in the
model. As we will show in the following, the results in this
subsection are essentially the same with the ones in
Ref. [32], but Lagrangian here is more general. In order
to make the paper be self-contained, we rederive the results
in the more general setup (49).

For the spatial modulation, we employ the ansatz

hφi ¼ φ0eicx
1

; ð65Þ
where φ0, c are real constants and the VEV is of the FF-
type in the x1 direction. Following the general procedure
discussed in Sec. II B, we examine the spatially modulated
vacuum. The ansatz implies

h _φi¼h∂2φi¼h∂3φi¼0; h∂1φi¼ icφ0eicx
1 ≠0: ð66Þ

Then, we have

∂L
∂ð∂iφÞ

¼ ½−kþ αj∂1φj4 þ 2μj∂1φj2 þ 3βj∂1φj4�δi1∂1φ̄þ 2ðλþ αj∂1φj2Þð∂1φ̄Þ2δi1∂1φ: ð67Þ

We first study the condition (9). As discussed in Sec. II B, the nontrivial conditions boil down to ∂L
∂ð∂iφÞ ¼ 0. The conditions

for i ¼ 2, 3 in Eq. (20) are automatically satisfied. On the other hand, for i ¼ 1, we have

0 ¼ ∂L
∂ð∂1φÞ

¼ f−kþ αj∂φj4 þ 2μj∂1φj2 þ 3βj∂φj4g∂1φ̄þ 2ðλþ αj∂φj2Þj∂1φj2∂1φ̄

¼ ∂1φ̄½−kþ 2ðμþ λÞj∂1φj2 þ 3ðαþ βÞj∂1φj4�: ð68Þ

This determines the amplitude of the VEV:

j∂1φj2 ¼ jcφ0j2 ¼
−ðλþ μÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ μÞ2 þ 3kðαþ βÞ

p
3ðαþ βÞ : ð69Þ
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Next, we analyze the other condition, i.e., Eq. (4). The matrices Lmn for the spatial modulation are calculated as

L00 ¼
 
k − 2βj∂1φj2 − ðαþ 3βÞj∂1φj4 −2ð∂1φÞ2ðλþ αj∂1φj2Þ

−2ð∂1φ̄Þ2ðλþ αj∂1φj2Þ k − 2βj∂1φj2 − ðαþ 3βÞj∂1φj4
!
;

L11 ¼
 
−kþ 4ðλþ μÞj∂1φj2 þ 9ðαþ βÞj∂1φj4 2ð∂1φÞ2fðλþ μÞ þ 3ðαþ βÞj∂1φj2g
2ð∂1φ̄Þ2fðλþ μÞ þ 3ðαþ βÞj∂1φj2g −kþ 4ðλþ μÞj∂1φj2 þ 9ðαþ βÞj∂1φj4

!
;

L22 ¼ L33 ¼
 
−kþ 2μj∂1φj2 þ ðαþ 3βÞj∂1φj4 2ð∂1φÞ2ðλþ αj∂1φj2Þ

2ð∂1φ̄Þ2ðλþ αj∂1φj2Þ −kþ 2μj∂1φj2 þ ðαþ 3βÞj∂1φj4
!
; ð70Þ

and the others vanish. One immediately finds that the only nontrivial condition comes from the ði; jÞ ¼ ð1; 1Þ component of
the third term in Eq. (4). However, the term should vanish from the general discussion. Let us confirm this fact. Although
L11 ≠ 0, we have

L11

� ∂2
1φ

∂2
1φ̄

�
¼ ic

 ∂1φ½−kþ 2ðλþ μÞj∂1φj2 þ 3ðαþ βÞj∂1φj4�
−∂1φ̄½−kþ 2ðλþ μÞj∂1φj2 þ 3ðαþ βÞj∂1φj4�

!
: ð71Þ

This vanishes due to the condition (68) as expected.

1. Global aspects of the potential and
stability of the vacuum

Although we have confirmed that the spatially modu-
lated configuration (65) is a solution to the equation of
motion and the energy extremum condition, it is still
unclear whether the configuration is a (global or local)
minimum of the energy functional. As we will show below,
this holds true in a specific region of the parameters k, α, β,
λ, μ.
We first study the global stability in the ∂1φ direction.

The energy density for the ansatz (65) is

Esp ¼ kj∂1φj2 − ðλþ μÞj∂1φj4 − ðαþ βÞj∂1φj6: ð72Þ

This is a function of X≡j∂1φj2≥0: y¼kX−ðλþμÞX2−
ðαþβÞX3. From this expression the condition for the
existence of a local minimum is determined by the dis-
criminant condition of y0¼k−2ðλþμÞX−3ðαþβÞX2¼0:

D ¼ 4fðλþ μÞ2 þ 3kðαþ βÞg > 0: ð73Þ

This is the condition that the energy has a local minimum
at X ≠ 0. When these conditions are satisfied, one finds
that the solution (69) is a localminimumof the energy. Since
the energy is given in the form

Esp¼X½−ðαþβÞX2−ðλþμÞXþk�; X≡ j∂1φj2; ð74Þ

one finds that if fðXÞ≡ −ðαþ βÞX2 − ðλþ μÞX þ k ¼ 0
has no solution, then, the local minimum (69) is metastable.
If fðXÞ ¼ 0 has one solution, then the vacuum (69) is
degenerate with the trivial vacuum X ¼ 0. If fðXÞ ¼ 0 has
two solutions, then (69) becomes the global minimum. In
summary, we have the following conditions for the global
structures of the “energy potential” Esp (see Fig. 1):

metastable∶ ðλþ μÞ2 þ 4kðαþ βÞ < 0;

degenerate∶ ðλþ μÞ2 þ 4kðαþ βÞ ¼ 0;

global∶ ðλþ μÞ2 þ 4kðαþ βÞ > 0: ð75Þ
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FIG. 1. The energy density as a function of X ¼ j∂1φj2. The vertical axis represents the energy density while the horizontal axis
represents X. The parameters are: left (metastable): k ¼ 4, λþ μ ¼ 3.8, αþ β ¼ −1, middle (degenerate): k ¼ 1, λþ μ ¼ 2,
αþ β ¼ −1, right (global): k ¼ 1, λþ μ ¼ 3, αþ β ¼ −1.
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We now discuss the stability of the vacuum including
the _φ, ∂2φ, ∂3φ directions. The local stability is guaranteed
by the condition Mj0 ≥ 0. As discussed in Sec. II B, since
the “off-diagonal parts” of Lmn vanish and _φ ¼ _̄φ ¼ 0, the
matrices Mmn are simply given by Eq. (23) and the
generalized mass matrix is

Mj0 ¼

0BBBBB@
M00j0

M11j0
M22j0

M33j0

1CCCCCA; ð76Þ

which is totally block diagonal. One can easily find
eigenvalues of each sector. The eigenvalues of M00j0 are

A1¼
2ðβ−μÞϒ
3ðαþβÞ ;

A2¼
12αkðαþβÞ−2ð3βð−βþ2λþμÞ−αð3β−2λþμÞÞϒ

9ðαþβÞ2 ;

ð77Þ
where we have defined

ϒ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kðαþ βÞ þ ðλþ μÞ2

q
þ λþ μ; ð78Þ

and the eigenvalues of M11j0 are

B1 ¼ 0; B2 ¼ −
4ðλþ μÞϒ
3ðαþ βÞ − 4k: ð79Þ

The eigenvalues of M22j0 and M33j0 are

C1¼0; C2¼
12αkðαþβÞ−4ðαðλ−2μÞþ3βλÞϒ

9ðαþβÞ2 ; ð80Þ

respectively. The eigenvalue B1 ¼ 0 corresponds to the
expected zero mode. Later, we will confirm that B1 ¼ 0 is
indeed the generalized NG mode and discuss the meaning
of the other zero modes for C1 ¼ 0.
One finds a parameter region for which all the nonzero

eigenvalues become positive. For example, if we consider
β ¼ μ ¼ 0,6 the eigenvalues become

M00∶ A1¼ 0; A2¼
12α2k−4αλðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kαþλ2

p
Þ

9α2
;

M11∶ B1 ¼ 0; B2¼−
4

3α
f3αkþλ2þλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αkþλ2

p
g;

M22¼M33∶C1 ¼ 0; C2 ¼
12α2k−4αλðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kαþλ2

p
Þ

9α2
:

ð81Þ

One can easily show that all the nonzero eigenvaluesA2,B2,
C2 are positive in the region α < 0, λ > 0 and λ2 þ 3αk > 0,
and the generalized mass matrix Mj0 is positive semi-
definite. Thus in this region the spatially modulated con-
figuration (65) is a stable vacuum in the model (49).

2. Generalized NG modes

Next, we examine the generalized NG modes in the
spatially modulated vacuum (65). The field that has a
nonzero VEV is φ1 ¼ ∂1φ. The VEV is characterized by

h0jφ1j0i ¼ v1 ¼ icφ0eicx
1

: ð82Þ

As discussed in Sec. II B, the relevant symmetry break-
ing of the spatially modulated vacuum is Uð1Þ × P1 →
½Uð1Þ × P1�diag. The corresponding broken and unbroken
generators are given in Ref. [32] by

Tb ¼ P1 þ TUð1Þ; Tub ¼ P1 − TUð1Þ; ð83Þ

respectively, where each generator acts on the VEV
v ¼ icφ0eicx

1

as

P1v1¼ icφ0ceicx
1

; P1v̄1¼−icφ0ce−icx
1

;

TUð1Þv1¼ icφ0ceicx
1

; TUð1Þv̄1 ¼−icφ0ce−icx
1

: ð84Þ

Then, the unbroken generator acts on the VEVas Tubv⃗ ¼ 0.
For the broken generator, we have

Tbv⃗ ¼ 2ic2φ0

�
eicx

1

e−icx
1

�
: ð85Þ

On the other hand, the normalized eigenvector of M11j0
associated with B1 ¼ 0 is found to be

B1 ¼ 0∶ u⃗1 ¼
1ffiffiffi
2

p
�

eicx
1

e−icx
1

�
: ð86Þ

One then finds that

u⃗1 ∝ Tbv⃗ ð87Þ

is the generalized NG mode.
A comment on the extra zero modesC1 ¼ 0 appearing in

the i ¼ 2, 3 sectors is in store. We have chosen the x1

direction as a specific direction of the spatial modulation.
We have then found that the configuration h∂1φi ≠ 0 is a
(local) minimum of the energy density and there is a flat
direction corresponding to the zero modes of M11j0.
However, since the model that we consider is Lorentz
invariant, the spatial directions x1, x2, x3 are equivalent due
to the SOð3Þ ∈ SOð1; 3Þ rotational symmetry. Therefore
there should be flat directions even in the ∂2φ, ∂3φ

6This is also the supersymmetric limit [33].
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directions in the energy density. In this sense, the zero
modes corresponding to C1 ¼ 0 are accompanying NG
modes to the legitimate generalized NG mode in x1

direction. On the other hand, the zero mode A1 ¼ 0 in
Eq. (81) is genuinely accidental since it is nonzero for
general parameters and appears only for the specific choice
of parameters μ ¼ β ¼ 0.

3. Lagrangian for the fluctuation modes

We will now write down the Lagrangian for the fluc-
tuation modes in the spatially modulated vacuum. The
Lagrangian (17) becomes

L ¼ 1

2

X3
m¼0

ϕ⃗†
mLmmj0ϕ⃗m; ð88Þ

where we have ignored the irrelevant constant. The eigen-
values of L00 are positive and those of Lii ¼ −Mii (i ¼ 1,
2, 3) are negative or zero in the appropriate parameter
region. Therefore, the fluctuation fields have the correct

signs of their canonical kinetic terms and we expect that
there are no dynamical ghost modes in the Lagrangian.
Since M00 ¼ L00, Mii ¼ −Lii (no summation over i), the
zero modes ofLij andMij coincide. We therefore conclude
that the kinetic term of the generalized NG mode vanishes
for the spatially modulated vacuum.
As mentioned above, the results in this subsection are

essentially the same as those in Ref. [32]. However, the
situation drastically changes when we consider modula-
tions in the temporal and the lightlike directions, which we
shall turn to next.

C. Temporal modulation

For the temporal modulation, we assume the ansatz for
the VEV:

h∂1φi ¼ h∂2φi ¼ h∂3φi ¼ 0; hφi ¼ φ0eiωx
0

: ð89Þ

with real constants φ0, ω. Assuming this configuration, the
matrices Lmn can be evaluated as

L00 ¼
 
kþ 4ðλþ μÞj _φj2 − 9ðαþ βÞj _φj4 2 _φ2f−3ðαþ βÞj _φj2 þ ðλþ μÞg
2 _̄φ2f−3ðαþ βÞj _φj2 þ ðλþ μÞg kþ 4ðλþ μÞj _φj2 − 9ðαþ βÞj _φj4

!
;

L11 ¼ L22 ¼ L33 ¼
 
−k − 2μj _φj2 þ ðαþ 3βÞj _φj4 −2ð _φÞ2ðλ − αj _φj2Þ

−2ð _̄φÞ2ðλ − αj _φj2Þ −k − 2μj _φj2 þ ðαþ 3βÞj _φj4

!
; ð90Þ

and the others are zero. We also have the matrices

M00 ¼ ∂L00

∂ _φ _φþ ∂L00

∂ _̄φ _̄φþL00 ¼
 
kþ 12ðλþ μÞj _φj2 − 45ðαþ βÞj _φj4 6 _φ2½−5ðαþ βÞj _φj2 þ ðλþ μÞ�
6 _̄φ2½−5ðαþ βÞj _φj2 þ ðλþ μÞ� kþ 12ðλþ μÞj _φj2 − 45ðαþ βÞj _φj4

!
; ð91Þ

M11 ¼ M22 ¼ M33 ¼ ∂L11

∂ _φ _φþ ∂L11

∂ _̄φ _̄φ −L11

¼
 
3ðαþ 3βÞj _φj4 − 2μj _φj2 þ k 2 _φ2ð−λþ 3αj _φj2Þ

2 _̄φ2ð−λþ 3αj _φj2Þ 3ðαþ 3βÞj _φj4 − 2μj _φj2 þ k

!
: ð92Þ

Let us analyze the conditions (4), (9). Since ∂L
∂ð∂iφÞ ¼ 0 is

trivially satisfied, these conditions reduce to

L00

�
φ̈

̈φ̄

�
¼ 0; L00

�
_φ

_̄φ

�
¼ 0: ð93Þ

Since φ̈ ¼ iω _φ, ̈φ̄ ¼ −iω _̄φ, the above conditions can be
rewritten as

L00

�
_φ

− _̄φ

�
¼ 0; L00

�
_φ

_̄φ

�
¼ 0: ð94Þ

Hence, they are satisfied when L00 ¼ 0. This is consistent
with condition (32) in the general discussion. The condition
L00 ¼ 0 imposes that the two independent components of
L00 in Eq. (90) vanish. This is possible when the parameter
k is chosen as

k ¼ −
ðλþ μÞ2
3ðαþ βÞ : ð95Þ

For this choice of parameters, the solution to the condition
L00 ¼ 0 is
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j _φj2 ¼ jωφ0j2 ¼
λþ μ

3ðαþ βÞ : ð96Þ

Note that since k is the coefficient of the canonical
(quadratic) kinetic term, it should be positive k > 0.
Then we find αþ β < 0 and λþ μ < 0 are necessary for
the temporal modulation.

1. Global aspects of the potential and stability
of the vacuum

The energy density for the ansatz (89) is

Etemp ¼ kj _φj2 þ 3ðμþ λÞj _φj4 − 5ðαþ βÞj _φj6: ð97Þ

This is a function of X≡j _φj2≥0: y¼Xðkþ3ðμþλÞX−
5ðαþβÞX2Þ. Besides the trivial vacuum X ¼ 0, there
are nontrivial extrema. The discriminant D for y0 ¼ kþ
6ðλþ μÞX − 15ðαþ βÞX2 ¼ 0 is

D ¼ 36ðμþ λÞ2 þ 90ðαþ βÞk ¼ 16ðμþ λÞ2: ð98Þ
This is always positive D > 0. Therefore, there is a local
minimum in the (X ¼ j _φj2) direction, as expected. The
solutions to y0 ¼ 0 are

X ¼ j _φj2 ¼ μþ λ

15ðαþ βÞ ;
μþ λ

3ðαþ βÞ : ð99Þ

The former is a local maximum while the latter is the
temporally modulated vacuum (96). In order to clarify the
(meta)stability of the temporally modulated vacuum, we
examine the zeros of f which is defined by y ¼ Xf. Since
the discriminant of f≡−5ðαþβÞX2þ3ðμþλÞXþk¼ 0 is
always positive,

Df ¼ 9ðμþ λÞ2 þ 20kðαþ βÞ ¼ 7

3
ðλþ μÞ2 > 0; ð100Þ

the vacuum (96) is energetically favored compared with
the trivial vacuum X ¼ 0. Thus, it is the global minimum
at least in the j _φj direction (see Fig. 2). We note that the

situation is different from the spatial case. In order that the
temporally modulated vacuum is allowed, the coefficient k
of the canonical kinetic term should be related to those of the
higher-derivative terms via the relation (95) and αþ β < 0,
λþ μ < 0. Therefore, the model is severely constrained and
there are no possibilities for havingmetastable or degenerate
vacua as in the spatial modulation case.
Since ∂L0i

∂ _φ ¼ 0, ∂Lij

∂ _φ ¼ 0 (i ≠ j) for the ansatz (89), we
have the mass matrices (91), (92). Hence, the generalized
mass matrix is

Mj0 ¼

0BBBB@
M00j0

M11j0
M22j0

M33j0

1CCCCCA; ð101Þ

where k is given in Eq. (95). The eigenvalues of M00 are

A1 ¼ 0; A2 ¼ −
8

3

ðλþ μÞ2
αþ β

: ð102Þ

There is a zero mode and A2 > 0 as expected. The
eigenvalues of M11, M22, M33 are

B1 ¼ 0; B2 ¼
4ðλþ μÞðβλ − αμÞ

3ðαþ βÞ2 : ð103Þ

One can always choose the parameters so that B2 > 0 by
choosing αþ β < 0, λþ μ < 0.7

2. Generalized NG modes

The symmetry breaking pattern is essentially the same
with the spatial case: Uð1Þ×P0→ ½Uð1Þ×P0�diag. The
corresponding broken and unbroken generators are given by

Tb ¼ P0 þ TUð1Þ; Tub ¼ P0 − TUð1Þ; ð104Þ

respectively, where each generator acts on the VEV v0 ¼
h _φi ¼ iωφ0eiωx

0

as

P0v0¼ iωφ0ωeiωx
0

; P0v̄0¼−iωφ0ωe−iωx
0

;

TUð1Þv0¼ iωφ0ωeiωx
0

; TUð1Þv̄0¼−iωφ0ωe−iωx
0

: ð105Þ

Then, we have Tubv⃗ ¼ 0, and

Tbv⃗ ¼ 2ic2φ0

�
eiωx

1

e−iωx
1

�
: ð106Þ

On the other hand, the normalized eigenvector of M00

associated with the zero eigenvalue A1 ¼ 0 is found to be
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FIG. 2. The energy density as a function of X ¼ j _φj2. The X ≠
0 vacuum is the global minimum. Here αþ β ¼ −1, λþ μ ¼ −1.

7Note that in the supersymmetric limit μ, β → 0, we have an
extra zero mode B2 ¼ 0; see Ref. [33].
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A1 ¼ 0∶ u⃗1 ¼
1ffiffiffi
2

p
�

eiωx
0

e−iωx
0

�
: ð107Þ

One therefore finds that

u⃗1 ∝ Tbv⃗; ð108Þ

is a generalized NG mode.
The zero modes corresponding to B1 ¼ 0 are accidental

since the normalized eigenvectors ofM11¼M22¼M33 are

B1 ¼ 0∶ u⃗1 ¼
1ffiffiffi
2

p
�

eiωx
0

−e−iωx0

�
: ð109Þ

Hence, the zero modes in M11j0 ¼ M22j0 ¼ M33j0 do not
correspond to eigenvectors proportional to the vector gen-
erated by the broken generator Tbv⃗.

3. Lagrangian for fluctuation modes

For the temporal modulation, there are no direct corre-
spondences between the fluctuation modes and the zero
modes of Mj0, i.e., the generalized NG modes. This is
because the matrices Lmn are different from the compo-
nents of the generalized matrix Mmn.
Since the matrix L00 vanishes in the temporally modu-

lated vacuum, there is no canonical kinetic term for the
fluctuation in the temporal direction. Only the gradient
kinetic term survives in the fluctuation dynamics. The
Lagrangian (17) becomes

L ¼ 1

2

X3
i¼1

ϕ⃗†
iLiij0ϕ⃗i: ð110Þ

In order to clarify whether physically unacceptable modes
appear or not, we need the eigenvalues of the matrices

L11j0 ¼ L22j0 ¼ L33j0 ¼
 
−k − 2μj _φj2 þ ðαþ 3βÞj _φj4 −2 _φ2ðλ − αj _φj2Þ

−2 _̄φ2ðλ − αj _φj2Þ −k − 2μj _φj2 þ ðαþ 3βÞj _φj4

!
; ð111Þ

where k ¼ − ðλþμÞ2
3ðαþβÞ, j _φj2 ¼ λþμ

3ðαþβÞ. The eigenvalues/vectors

are found to be

s1¼ 0∶ u⃗1¼
1ffiffiffi
2

p
�

eiωx
0

−e−iωx0

�
;

s2¼
4ðλþμÞð2αλ−αμþ3βλÞ

9ðαþβÞ2 ∶ u⃗2 ¼
1ffiffiffi
2

p
�

eiωx
0

e−iωx
0

�
:

ð112Þ

We can always choose the parameters so that s2 < 0 by
obeying the conditions αþ β < 0, λþ μ < 0.8 Therefore
we can exclude unphysical ghost modes in appropriate
regions of parameters. An alternative discussion of the
fluctuations and NG modes in a time-dependent vacuum
can be found in Ref. [39].

D. Lightlike modulation

For the lightlike modulation, we assume the VEV:

h∂2φi ¼ h∂3φi ¼ 0; h∂0φi ¼ �h∂1φi ≠ 0;

hφi ¼ φ0eiωðx
0�x1Þ: ð113Þ

This implies

∂φ · ∂φj0 ¼ ∂φ · ∂φ̄j0 ¼ 0: ð114Þ

In the following, we can choose the þ sign in Eq. (69)
without loss of generality. With the ansatz (113), the
matrices Lmn can be evaluated as

L00¼
 
kþ4λj _φj2þ2μj _φj2 2μ _φ2

2μ _̄φ2 kþ4λj _φj2þ2μj _φj2

!
;

L01¼
 
−4λ∂1φ _̄φ−2μ∂1φ̄ _φ −2μ∂1φ _φ

−2μ∂1φ̄ _̄φ −4λ∂1φ̄ _φ−2μ∂1φ _̄φ

!
;

L10¼L†01¼
 
−4λ∂1φ̄ _φ−2μ∂1φ _̄φ −2μ∂1φ _φ

−2μ∂1φ̄ _̄φ −4λ∂1φ _̄φ−2μ∂1φ̄ _φ

!
;

L11¼
 
−kþð4λþ2μÞj∂1φj2 2μð∂1φÞ2

2μð∂1φ̄Þ2 −kþð4λþ2μÞj∂1φj2

!
;

L22¼L33¼
�−k 0

0 −k

�
; ð115Þ

and the others are zero. We further obtain

8For example, in the supersymmetric limit μ ¼ β ¼ 0, we find
s2 ¼ 8λ2

9α < 0 for α < 0, which corresponds to the correct sign of
the gradient kinetic term.
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∂L00

∂ _φ ¼
 

_̄φ½−8αj _φj2 − 6βj _φj2 þ 4ðλþ μÞ� _φ½4ðλþ μÞ − 8αj _φj2 − 6βj _φj2�
−6β _̄φ3 _̄φ½−8αj _φj2 − 6βj _φj2 þ 4ðλþ μÞ�

!
;

∂L01

∂ _φ ¼
 
4αj _φj2∂1φ̄þ 4α _̄φ2∂1φ − 2μ∂1φ̄þ 6βj _φj2∂1φ̄ 4αj _φj2∂1φþ 4α _φ2∂1φ̄ − 2μ∂1φþ 6βj _φj2∂1φ

6β _̄φ2∂1φ̄ 4αj _φj2∂1φ̄þ 4αj _φj2∂1φ̄ − 4λ∂1φ̄þ 6β _̄φ2∂1φ

!
;

∂L11

∂ _φ ¼
 
−4α _φð∂1φ̄Þ2 − 4α _̄φj∂1φj2 − 2μ _̄φ − 6β _̄φ2j∂1φj2 −8α _φj∂1φj2 − 4λ _φ − 6β _̄φð∂1φÞ2

−6β _̄φð∂1φ̄Þ2 −4α _φð∂1φ̄Þ2 − 4α _̄φj∂1φj2 − 2μ _̄φ − 6β _̄φj∂1φj2

!
;

∂L22

∂ _φ ¼ ∂L33

∂ _φ ¼
�−2μ _φ 0

−4λ _̄φ −2μ _φ

�
; ð116Þ

and the others are zero. Using these results, we can calculate

M00¼ ∂L00

∂ _φ _φþ∂L00

∂ _̄φ _̄φþL00¼
 
kþð12λþ10μÞj _φj2− ð16αþ12βÞj _φj4 _φ2½4λþ6μ− ð8αþ12βÞj _φj2�

_̄φ2½4λþ6μ− ð8αþ12βÞj _φj2� kþð12λþ10μÞj _φj2− ð16αþ12βÞj _φj4

!
;

M01¼ ∂L01

∂ _φ _φþ∂L01

∂ _̄φ _̄φ¼
 
−2μj _φj2−4λj _φj2þ4ð4αþ3βÞj _φj4 _φ2½−2μþð8αþ12βÞj _φj2�

_̄φ2½−2μþð8αþ12βÞj _φj2� −2μj _φj2−4λj _φj2þ4ð4αþ3βÞj _φj4

!
;

M11¼ ∂L11

∂ _φ _φþ∂L11

∂ _̄φ _̄φ−L11¼
 
k− ð4λþ6μÞj _φj2− ð16αþ12βÞj _φj4 _φ2½−4λ−2μ− ð8αþ12βÞj _φj2�

_̄φ2½−4λ−2μ− ð8αþ12βÞj _φj2� k− ð4λþ6μÞj _φj2− ð16αþ12βÞj _φj4

!
;

M22¼ ∂L22

∂ _φ _φþ∂L22

∂ _̄φ _̄φ−L22¼
�
−4μj _φj2þk −4λ _φ2

−4λ _̄φ2 −4μj _φj2þk

�
;

M33¼ ∂L33

∂ _φ _φþ∂L33

∂ _̄φ _̄φ−L33¼
�
−4μj _φj2þk −4λ _φ2

−4λ _̄φ2 −4μj _φj2þk

�
; ð117Þ

and the others are zero.
The conditions (4), (9) reduce to

L00

�
φ̈

̈̄φ

�
þðL01þL10Þ

�∂1 _φ

∂1
_̄φ

�
þL11

�∂2
1φ

∂2
1φ̄

�
¼0; ð118Þ

L00

�
_φ

_̄φ

�
¼ 0; ð119Þ

L10

�
_φ

_̄φ

�
−
� ∂L

∂ð∂1φ̄Þ
∂L

∂ð∂1φÞ

�
¼ 0: ð120Þ

Here we have used ∂L
∂ð∂2φÞ ¼ ∂L

∂ð∂3φÞ ¼ 0 by assuming the
ansatz. Since we have

∂L
∂ð∂1φÞ

¼−k∂1φ̄¼ 0;
∂L

∂ð∂1φ̄Þ
¼−k∂1φ¼ 0; ð121Þ

the condition (120) becomes

ðL10 þ k12Þ
�

_φ

_̄φ

�
¼
 

_φðk − 4λj _φj2 − 4μj _φj2Þ
_̄φðk − 4λj _φj2 − 4μj _φj2Þ

!
¼ 0:

ð122Þ
Again, by the ansatz we have j _φj2 ¼ j∂1φj2. Then, the
condition (119) becomes 

ðkþ 4μj _φj2 þ 4λj _φj2Þ _φ
ðkþ 4μj _φj2 þ 4λj _φj2Þ _̄φ

!
¼ 0: ð123Þ

These conditions are satisfied when

k ¼ λþ μ ¼ 0: ð124Þ
For the lightlike modulation, we have _φ ¼ ∂1φ. Therefore,
the condition (118) becomes

ðL00 þL01 þL10 þL11Þ
�
φ̈

̈φ̄

�
¼ 0: ð125Þ

However, this condition is automatically satisfied since the
matrixL00þL01þL10þL11 is identically zero by explicit
calculations. Therefore, the lightlike modulation is possible
when the parameters of the model satisfy Eq. (124).
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Evidently, the condition (124) is weaker than the condition
k ¼ λ ¼ μ ¼ 0 determined by the general discussion in
section II B. The lightlike modulation requires k ¼ μþ λ ¼
0 but α, β can be nonzero. Note that for the lightlike
modulation, the amplitude φ0 is not determined but is a free
parameter. This is different from the spatial and the temporal
modulation cases.
A comment is in order for the lightlike modulation. The

model seems to be a little bit strange since the canonical
kinetic term disappears in the Lagrangian (49). Although
the Lagrangian contains only the fourth and the sixth order
derivative terms, we will show that the dynamical (fluc-
tuation) field has quadratic kinetic term in the Lagrangian.

1. Global aspects of the potential and
stability of the vacuum

For the lightlike modulation, the energy density becomes
constant:

ELL ¼ 0: ð126Þ

Therefore, there is no “potential” when we consider the
ansatz (113). This is why the amplitude φ0 is not deter-
mined. The generalized mass matrix is

M ¼

0BBBBBB@
M00 M01

M10 M11

M22

M33

1CCCCCCA; ð127Þ

where each matrix is obtained from Eq. (117) by setting
k ¼ μþ λ ¼ 0 as

M00¼M11¼−M01¼−M10¼
 
2λj _φj2− ð16αþ12βÞj _φj4 _φ2½−2λ− ð8αþ12βÞj _φj2�
_̄φ2½−2λ− ð8αþ12βÞj _φj2� 2λj _φj2− ð16αþ12βÞj _φj4

!
;

M22¼M33¼
�
4λj _φj2 −4λ _φ2

−4λ _̄φ2 4λj _φj2
�
: ð128Þ

In contradistinction to the spatial and the temporal mod-
ulations, we have nonvanishing off-diagonal blocks M01,
M10. The eigenvalues of the submatrix

M̃ ≡
�
M00 M01

M10 M11

�
; ð129Þ

are

A1 ¼ 0;

A2 ¼ 0;

A3 ¼ −48ðωφ0Þ4ðαþ βÞ;
A4 ¼ −8ðωφ0Þ2ð2αðωφ0Þ2 − λÞ: ð130Þ

The eigenvalues of the matrices M22 ¼ M33 are

B1 ¼ 0; B2 ¼ 8λðωφ0Þ2: ð131Þ

In order that all the nonzero eigenvalues become positive,
we must require that

αþ β < 0; λ > 0; 2αω2φ2
0 < λ: ð132Þ

It is always possible to choose the parameters such that they
satisfy the above conditions.

2. Generalized NG modes

For the lightlike modulation, the symmetry breaking
pattern is Uð1Þ × P0 × P1 → ½Uð1Þ × P��diag where P�
represent the translational symmetry group along the light-
cone directions x� ¼ x0 � x1. The corresponding broken
and unbroken generators are given by

Tb ¼ P� þ TUð1Þ; Tub ¼ P� − TUð1Þ; ð133Þ

respectively. In the following, we choose the þ sign in P�.
The actions of these generators on the VEV h _φi ¼ h∂1φi ¼
vLL ¼ iωφ0eiωðx

0þx1Þ are given by

P�vLL¼ iωφ0ωeiωðx
0þx1Þ; P�v̄LL¼−iωφ0ωe−iωðx

0þx1Þ;

TUð1ÞvLL¼ iωφ0ωeiωðx
0þx1Þ;

TUð1Þv̄LL¼−iωφ0ωe−iωðx
0þx1Þ: ð134Þ

Thus, we find Tubv⃗ ¼ 0 and

Tbv⃗ ¼ 2iω2φ0

0BBB@
eiωðx0þx1Þ

e−iωðx0þx1Þ

eiωðx0þx1Þ

e−iωðx0þx1Þ

1CCCA: ð135Þ
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On the other hand, the zero eigenvalues A1 ¼ A2 ¼ 0 offM are degenerate and whose eigenvectors are

A1 ¼ 0∶ u⃗1 ¼

0BBB@
0

1

0

1

1CCCA; A2 ¼ 0∶ u⃗2 ¼

0BBB@
1

0

1

0

1CCCA: ð136Þ

It is clear that the following linear combination of u⃗1 and u⃗2
defines a zero mode of fM:

u⃗12 ≡ 1

2
ðe−iωðx0þx1Þu⃗1 þ eiωðx0þx1Þu⃗2Þ ¼

0BBB@
eiωðx0þx1Þ

e−iωðx0þx1Þ

eiωðx0þx1Þ

e−iωðx0þx1Þ

1CCCA:

ð137Þ

Hence, we find the generalized NG mode is a zero
mode of M̃:

u⃗12 ∝ Tbv⃗LL: ð138Þ

One finds that the zero modes corresponding to B1 ¼ 0
are not proportional to the vector Tbv⃗ and thus they are
accidental zero modes.

3. Lagrangian for fluctuation modes

For the lightlike case, since we have L22j0 ¼ L33j0 ¼ 0,
there are no gradient kinetic terms of the fluctuation in
them ¼ 2, 3 directions. Instead, we have a cross term in the
temporal and the remaining spatial directions. The
Lagrangian (17) becomes

L ¼ 1

2

X
i;j¼0;1

ϕ⃗†
iLijj0ϕ⃗j: ð139Þ

We calculate the eigenvalues of the following matrix:

L̃≡
�
L00j0 L01j0
L10j0 L11j0

�
; ð140Þ

where

L00j0 ¼ L11j0 ¼ 2λ

� j _φj2 _φ2

_̄φ2 j _φj2
�
;

L01j0 ¼ L10j0 ¼ −L00j0: ð141Þ

The eigenvalues of L̃ are

s1 ¼ s2 ¼ s3 ¼ 0; s4 ¼ 8λðωφ0Þ2: ð142Þ

Here we have ωφ0 ¼ j _φj. Since λ > 0, we have s4 > 0.
There is only one fluctuation mode whose kinetic term has
a positive coefficient. It is, however, not obvious whether
the mode is physical or unphysical. We can say that it is not
an unstable mode at least in the parameter region given
by Eq. (132).

V. SUMMARY AND DISCUSSION

In this paper, we have investigated modulated vacua in
Lorentz-invariant scalar field theories. Although, there are a
lot of studies on space- and time-dependent vacua based
on specific models of interest in the literature, we have here
performed a comprehensive analysis on spatial, temporal
and lightlike modulated vacua in generic scalar field
theories with appropriate properties. In particular, our
models are in some sense minimal (i.e., need only sixth
order in derivatives) and are globally stable. We have found
the general conditions for modulated vacua. We also have
discussed a generalization of the NG theorem and have
clarified the relation between the zero modes of the
generalized mass matrix and the generalized NG modes.
According to the spontaneous symmetry breaking patterns,
the modulated vacua have been classified into the spatial,
temporal and lightlike ones. For the spatial and temporal
modulations, the diagonal component of the Uð1Þ and
translational symmetries along the x1 or x0 direction are
preserved. For the lightlike case, the diagonal component of
the Uð1Þ and the translation along the light-cone direction
is preserved. We have presented the general procedure to
analyze each modulated vacuum. We have then demon-
strated these modulated vacua in a specific model where
up to sixth-order derivative terms of a complex scalar field
are included. The model is a generalization of the one
considered in Ref. [32] where the spatially modulated
vacuum was analyzed. We have shown that there are
models that allow for temporal and lightlike modulated
vacua. The global structure of the energy potential in the
temporal case is severely restricted, namely, the temporally
modulated state is a global vacuum at least in the j _φj
direction. This is different from the spatially modulated
case, for which there is a parameter region where the
vacuum is metastable, degenerate or global minimum. We
have found that the lightlike modulation is allowed in
the model where only the quartic and sextic terms remain.
We have then identified the generalized NG modes in each
modulation. We have also written down the Lagrangians for
the fluctuation modes in each modulated vacuum. As
discussed in the previous paper [32], the kinetic terms of
the generalized NG modes disappear in the spatial modu-
lation. The absence of ghosts is guaranteed due to the
positive semidefiniteness of the generalized mass matrix
M. In the temporal case, the kinetic term of the fluctuation
along the time direction vanishes, but this does not
correspond to the generalized NG mode in general. We
have found that there is a possible parameter choice for
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which no ghosts occur in the temporal modulation. For the
lightlike case, the gradient kinetic term along the x2, x3

directions are absent while there is only one mode that has a
nonzero kinetic term in the x0, x1 directions. There are no
obvious conditions for the absence of ghosts. However, we
have pointed out that there is a parameter region where no
ghosts appear in the fluctuation.
In this paper, we have considered only the FF-type

modulation, i.e., the modulation of the phase of fields. It
would be interesting to study a possibility of the LO-type
where the amplitude of the fields is modulated. This could
be realized by including a potential term. We have studied
only the quadratic order of the fluctuations. Even though,
part of the fluctuation modes are absent in each modulated
vacuum, there are possible kinetic terms at higher orders.
It would be interesting to study the dynamics based on
these modes.
The modulated vacua in a Lorentz-invariant setup

studied in this paper are relatively overlooked possibilities
of vacuum structures. As an application of the present
discussions, we will consider a supersymmetric extension
of the present model, which is possible for β ¼ μ ¼ 0, and
will investigate supersymmetry breaking in modulated
vacua [33,41]. To this end, we can embed our model in
higher-derivative chiral models formulated in Refs. [42–44].
A possibility to use such supersymmetry breaking vacua as a

hidden sector for phenomenological models is an interesting
future direction.
A generalization of the NG theorem in the classical

regime has been discussed in this paper. It would also be
important to investigate the quantum nature of the gener-
alized NG modes.
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