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We propose a history state formalism for a Dirac particle. By introducing a reference quantum clock
system it is first shown that Dirac’s equation can be derived by enforcing a timeless Wheeler-DeWitt-like
equation for a global state. The Hilbert space of the whole system constitutes a unitary representation of the
Lorentz group with respect to a properly defined invariant product, and the proper normalization of global
states directly ensures standard Dirac’s norm. Moreover, by introducing a second quantum clock, the
previous invariant product emerges naturally from a generalized continuity equation. The invariant
parameter τ associated with this second clock labels history states for different particles, yielding an
observable evolution in the case of a hypothetical superposition of different masses. Analytical expressions
for both the space-time density and electron-time entanglement are provided for two particular families of
electron states, the former including Pryce localized particles.

DOI: 10.1103/PhysRevD.99.045008

I. INTRODUCTION

Time has been normally considered as an “external”
parameter in quantum mechanics. In 1983 Page and
Wootters [1] introduced a formalism for nonrelativistic
quantum mechanics where a reference quantum clock is
introduced and the system evolution arises from an
entangled system-clock history state satisfying a timeless
Wheeler-DeWitt-like equation. Such formalism has
recently received considerable attention and several exten-
sions and consequences have been explored [2–9]. In this
work our aim is to extend this approach to the relativistic
regime, and specifically to a Dirac particle. It is first
remarked that in this approach time operators act on the
clock and not on the system, so that the Pauli objection [10]
is circumvented. It is then shown that through a Wheeler-
DeWitt-like equation [11] for the global state, the Dirac
equation [12] naturally arises. The clock variable provides
the time parameter of the equation. As a consequence, a
difference between the present approach and the non-
relativistic case follows: the nonabsolute nature of time
is introduced by defining the action of Lorentz trans-
formations over global states. Lorentz symmetry is then
preserved by introducing an invariant product in the
complete Hilbert space. The usual transformation of the
wave function is then obtained, while the Hilbert space
containing the global state provides a unitary representation
of the proper Lorentz group. It is then shown that the
appropriate normalization of free particle states under the
four-dimensional product, leads to the standard Dirac
norm in ordinary three-dimensional space in any frame
of reference. These features allow a straightforward

computation of expectation values of observables at a
given time in a given frame of reference, completing the
connection with the usual theory.
The addition of a second quantum clock with a second

Wheeler-DeWitt-like equation enables to view the invari-
ant density associated with the previous product as that
emerging in a generalized continuity equation. This addi-
tion follows the Stückelberg approach to relativistic quan-
tum mechanics [13]. The time τ associated with this second
clock labels history states for different particles, and while
unobservable for fixed mass states, would lead to interfer-
ence effects in a superposition of different history states.
It is also explicitly shown that for a time- and mass-
independent potential, previous results remain valid, and
entail a special orthogonality relation for degenerate
eigenstates with different mass.
We finally discuss two features of the formalism: the

space-time density induced by the invariant product, and
the electron-time entanglement. For the former we prove
that the density is positive definite in a family of solutions
which include Pryce localized states [14] in one spatial
component. Moreover, we explicitly prove in the localized
limit that it becomes null in the space-like region of the
light cone with axes, say, t and z, where z is the direction of
localization. Furthermore, these properties extend to any
mass distribution when the second clock is introduced. We
also provide general expressions for the eigenvalues of the
reduced density matrix of the clock in the free particle case,
which enables to evaluate the system-clock entanglement
[6] in a given reference frame. These eigenvalues are frame
dependent which reflects that in the present formalism both
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space and time are secondary variables [15,16]. As an
example, analytical expressions for any Lorentz frame are
provided in a particular case.

II. FORMALISM

A. Nonrelativistic case

We first briefly review the Page-Wootters formalism
[1,2]. We set in what follows ℏ ¼ 1, c ¼ 1. Consider a
bipartite system with Hilbert space H ¼ HT ⊗ HS . The
“clock” space HT is spanned by the operator T which
satisfies the canonical commutation ½T; PT � ¼ i. The whole
system is assumed to be in a static pure state of the form

jΨi ¼
Z

dtjtijψðtÞi: ð1Þ

The state of the system is recovered by conditioning on the
clock state: jψðtÞi ¼ htjΨi. Considering now states which
satisfy the equation

J jΨi ¼ 0; ð2Þ

with

J ¼ PT ⊗ 1þ 1 ⊗ H; ð3Þ

where H is the Hamiltonian of the system, unitary
evolution is restored and the standard Schrödinger equation
is recovered:

htjJ jΨi ¼ 0 ⇒ i
d
dt

jψðtÞi ¼ HjψðtÞi: ð4Þ

This approach was recently examined in detail in Ref. [2],
where the implementation of measurements was also
considered. The Pauli objection [10] of a time operator
in quantummechanics is circumvented: the operator acts on
a different Hilbert space, and as a consequence it commutes
with the system Hamiltonian [2,8]. Moreover, the generator
of space translations PS commutes with the generator of
time translations PT , as it should, since space and time are
independent degrees of freedom (d.o.f.).

B. Free Dirac particle

We now examine the relativistic extension of the
previous scheme. The complete Hilbert space HT ⊗ HS
constitutes a natural representation of the Poincaré group
when the space of the system HS is L2ðR3Þ. On the
other side, in order to discuss an electron (positron) theory,
we set HS ¼ L2ðR3Þ ⊗ C4 in accordance with Ref. [17].
An adequate choice of the inner product will preserve
Lorentz symmetry.

A general state of the universe can be written as

jΨi ¼
X3
σ¼0

Z
d4pΨσðpÞjp; σi; ð5Þ

where jp; σi ¼ jp0iT jp; σiS are the improper eigenstates of
the operators Pμ (where for μ ¼ 0 the operator acts on the
clock space, while for μ ¼ 1, 2, 3 it acts on the system
space) and, say, of σ12 and γ0 (here σμν ¼ i

2
½γμ; γν�, where

ℏ
2
σμν ¼ ℏ

2
ϵμνρΣρ is the spin operator for μ, ν ¼ 1, 2, 3). The

states jpi, jσi satisfy hp0jpi ¼ δð4Þðp − p0Þ, hσjσ0i ¼ δσσ0 .
We introduce the adjoint system state hp; σj ≔ hp; ξjγ0ξσ.
Because d4p is a Lorentz-invariant measure we can
introduce unitary boost operators UðΛÞ in this space with
respect to the product

hΨ̄1jΨ2i≡
Z

d4pΨ̄1ðpÞΨ2ðpÞ; ð6Þ

where Ψ̄ðpÞ ¼ Ψ†ðpÞγ0:

UðΛÞjp; σi ¼ SσξðΛÞjΛp; ξi; ð7Þ

with Λμ
ν ¼ ew

μ
ν and SðΛÞ ¼ e−

i
4
σμνwμν

[18]. Unitarity fol-
lows from the property S†γ0S ¼ γ0 for time-preserving
Lorentz transformations. The transformed state is then

UðΛÞjΨi ¼
X3
σ¼0

Z
d4pΨ0

σðpÞjp; σi; ð8Þ

with

Ψ0
σðpÞ ¼ hp; σjUðΛÞjΨi ¼ SασΨαðΛ−1pÞ: ð9Þ

We may also define the states jx; σi ¼ jx0ijx; σi ¼
1

ð2πÞ2
R
d4peipxjp; σi with px¼pμxμ, which, using Eq. (7),

transform as UðΛÞjx; σi ¼ SσξðΛÞjΛx; ξi. If the jx; σi are
the eigenstates of operators Xμ, then the canonical com-
mutation rules for both the clock and the system can be
summarized as ½Xμ; Pν� ¼ iδμν .
The next step is to consider Eqs. (2) and (3) with

J now constructed with the free Dirac Hamiltonian
HD ¼ α · pþ βm,

J ¼ P0 ⊗ 1þ 1 ⊗ HD: ð10Þ

Then J jΨi ¼ 0 leads to (setting x0 ¼ t),

htjJ jΨi ¼ 0 ⇒ i
d
dt

jψðtÞi ¼ ðα · pþ βmÞjψðtÞi; ð11Þ

with jψðtÞi ¼ htjΨi ¼ 1ffiffiffiffi
2π

p
P

3
σ¼0

R
d3pe−ip0tΨσðpÞjp; σi.

Equivalently, by defining J ¼ −γμPμ, we may rewrite
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Eq. (2) (an eigenvalue equation for J with eigenvalue 0) as
an eigenvalue equation for J with eigenvalue m:

γ0J jΨi ¼ 0 ⇔ −γμPμjΨi ¼ mjΨi: ð12Þ

As a consequence of Pauli’s fundamental theorem [19],
S−1ðΛÞγμSðΛÞ ¼ Λμ

νγ
ν and hence U−1ðΛÞγμPμUðΛÞ ¼

γμPμ. Therefore, Eq. (12) defines an invariant sub-
space, i.e.,

ðγμPμ þmÞjΨi ¼ 0 ⇒ ðγμPμ þmÞUðΛÞjΨi ¼ 0: ð13Þ

We can also rewrite Eq. (12) in terms of ΨσðxÞ ≔ hx; σjΨi
to recover the covariant form of Dirac’s equation [12] [note
that hx; σjPμjΨi ¼ −i∂μΨσðxÞ]

hx;σjðγμPμþmÞjΨi¼ 0⇒ iγμσξ∂μΨξðxÞ¼mΨσðxÞ: ð14Þ

States satisfying Eq. (12) can be written in the form (in
what follows sums over σ, s and r are implied)

jΨmi ¼
Z

d4pδðpμpμ −m2ÞHþðp0ÞuspσasðpÞjp; σi

⊕
Z

d4pδðpμpμ −m2ÞH−ðp0Þvr−pσbrðpÞjp; σi;

ð15Þ

where, setting Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p

uspσ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ep þm
p � ðEp þmÞχs

p:σχs

�
σ

; ð16aÞ

vrpσ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ep þm
p �

p:σχr

ðEp þmÞχr
�

σ

; ð16bÞ

with s, r ¼ 0, 1. The presence of the fourth ket implies
orthogonality between particle and antiparticle subspaces
for nonzero mass. We also notice that the sign in jp0i
implies a different sign in the evolution parameter t
between particle and antiparticle spaces after conditioning,
reflecting the Feynman-Stückelberg interpretation [20,21].
In the subspace of solutions of Eq. (12) the previous
pseudoeuclidean inner product becomes isomorphic to two
euclidean products. This is a consequence of the following
relations [22]:

ūrpusp ¼ 2mδrs; ð17aÞ

v̄rpvsp ¼ −2mδrs: ð17bÞ

Since superpositions of particle and antiparticle states are
not realizable in nature [23], we will consider just one of the
two terms of Eq. (15). In the following, we will work in the

subspace of particles with positive mass. The overlap
between states of different masses but the same moment-
spin distribution yields (see Appendixes A and B)

hΨ̄m0 jΨmi ¼
Z

d3p
4Ep;m0Ep;m

δðEp;m − Ep;m0 Þūsp;murp;m0

× a�sðp; mÞarðp; m0Þ ð18Þ

¼ δðm −m0Þ
Z

d3p
2Ep

kaðpÞk2: ð19Þ

The normalization hΨ̄mjΨmi ¼ δðm −m0Þ then impliesR d3p
2Ep

kaðpÞk2 ¼ 1 and hence the Dirac norm (see below).

An electron-clock state can be written as (we omit the
subscript m)

jΨi ¼ 1ffiffiffiffiffiffi
2π

p
Z

d4xψσðxÞjx; σi; ð20Þ

ψσðxÞ ¼
1

ð2πÞ3=2
Z

d3p
2Ep

usσðpÞasðpÞe−ipxjp0¼Ep : ð21Þ

From the invariance of d4x it follows the transformation
law ψ 0

σðxÞ ¼ SασψαðΛ−1xÞ. Moreover, a simple calculation
(see Appendix A) shows that

R
d3xψ†ðx; tÞψðx; tÞ ¼R d3p

2Ep
kaðpÞk2 ¼ 1, and we recover the standard Dirac

norm [12].
The state of the electron can then be recovered by

conditional probability as

jψðtÞie ¼
htjΨiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hΨ̄jΠγ0
t jΨi

p ð22Þ

with Πγ0
t ¼jtihtj⊗γ0 and hΨ̄jΠγ0

t jΨi ¼ 1
2π

R
d3xψ†ðx; tÞ×

ψðx; tÞ ¼ 1
2π. The transformation law of the wave function

implies the invariance of this quantity (see Appendix A).
The correspondence with Dirac’s theory is complete after
noticing that the expectation value of an observableMe, at a
given time t, is obtained as follows:

hMeiðtÞ ¼
hΨ̄jΠγ0

t MjΨi
hΨ̄jΠγ0

t jΨi
¼ ehψðtÞjMejψðtÞie; ð23Þ

where M ≔ 1 ⊗ Me.
As a final remark we write the general relation between

the invariant product in four-dimensional space with
Dirac’s product in ordinary three-dimensional space with
fixed mass m:

hΦ̄m0 jΨmi ¼ δðm −m0Þðϕ;ψÞm; ð24Þ
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where we have defined ðϕ;ψÞm ≔
R
d3xϕ†

mðx; tÞψmðx; tÞ,
while hΦ̄m0 jΨmi ¼ 1

2π

R
d4xϕ̄m0 ðxÞψmðxÞ.

C. Bidimensional clock and proper time

We have seen that it is possible to enlarge the Hilbert
space of the particle by including a clock, preserving
Lorentz symmetry by defining an invariant product in this
new space. Moreover, for physical states satisfying a
timeless equation, the notion of orthogonality which
follows from this product, Eq. (19), yields the usual norm
of Dirac’s theory. In this section we will prove that the
product we have introduced motivated by symmetry argu-
ments arises naturally when a second clock is introduced.
The aim is to discuss the usual identification of time in the
Page-Wootters formalism with proper time [2]. While this
identification is clearly satisfactory in the nonrelativistic
case, the description of time evolution through Dirac’s
equation implies the necessity of introducing Lorentz
transformations as nonlocal. This leads us to interpret
the clock variable as time in a given reference frame.
One may ask if there is a different approach to follow, in
particular if it is possible to have an equation analogous to
Eq. (2) which after conditioning yields the evolution of the
system state parametrized by an invariant variable τ.
Obtaining such an equation would promote the role of t
to a dynamical variable, but this is exactly what the Page-
Wootters formalism already does. It is not surprising then
that by considering “proper time” in this way, an extension
of the formalism of the previous section ensues. We now
develop this extension.

1. Bidimensional clock

Consider a bidimensional clock with Hilbert spaceHC ¼
L2ðR2Þ and basis fjτi ⊗ jtig, such that hτ0jτi ¼ δðτ0 − τÞ
and ht0jti ¼ δðt − t0Þ, and the same Hilbert space HS for
the system as before. A state of the whole system can be
written as

jΦ⟫ ¼
Z

dτjτijΨðτÞi ¼
Z

dmϕðmÞjmijΨðmÞi; ð25Þ

where jτi¼ 1ffiffiffiffi
2π

p
R
dme−imτjmi and jΨðτÞi¼ 1ffiffiffiffi

2π
p

R
dmϕðmÞ×

eimτjΨðmÞi∈HT⊗HS, which is the Hilbert space of the
previous section. We will assume that the Hamiltonian of
the universe takes the form

J ¼ Pτ ⊗ 1þ 1 ⊗ γμPμ: ð26Þ

Notice that J has the same noninteracting form as before in
the partition proper time–rest, but is nonseparable in the
partition clock–rest.
Now, the equation

J jΦ⟫ ¼ 0; ð27Þ

implies hτjJ jΦ⟫ ¼ 0, i.e.,

i∂τjΨðτÞi ¼ γμPμjΨðτÞi; ð28Þ

and, in the conjugate basis,

ðγμPμ þmÞjΨðmÞi ¼ 0: ð29Þ

This is the universe equation of the previous section, which
determines an invariant subspace ofHT ⊗ HS with respect
to proper Lorentz transformations. This means that in the
whole space ŨðΛÞ ≔ 1τ ⊗ UðΛÞ leaves the form of
Eq. (28) invariant. In general, transformations leaving
the form of Eq. (28) invariant would also preserve its
square and hence a five-dimensional metric, which defines
a Snyder space [24].
By expanding the states jΨðτÞi in the jx; σi basis of

HT ⊗ HS we obtain

γμpμΨðx; τÞ ¼ i∂τΨðx; τÞ; ð30aÞ

Ψ̄ðx; τÞγμpμ ¼ i∂τΨ̄ðx; τÞ; ð30bÞ

with Ψσðx; τÞ ≔ hx; σjΨðτÞi and Ψ̄ðx; τÞ ≔ Ψ†ðx; τÞγ0.
Therefore,

∂μjμðx; τÞ ¼ −
d
dτ

Ψ̄ðx; τÞΨðx; τÞ; ð31Þ

where jμðx; τÞ ≔ Ψ̄ðx; τÞγμΨðx; τÞ, implying that for well-
behavedwave functions the quantity

R
d4xΨ̄ðx; τÞΨðx; τÞ ¼

hΨ̄ðτÞjΨðτÞi is conserved, i.e., the evolution operator
UðτÞ ¼ e−iγ

μpμτ preserves this norm.We see that the product
we have chosen in the space HT ⊗ HS is the one which is
preserved by τ evolution. Moreover if we now expand in the
mass basis and choose the normalization (19) we obtain

hΨ̄ðτÞjΨðτÞi¼
Z
dmdm0ϕ�ðm0ÞϕðmÞeiτðm−m0ÞhΨ̄ðm0ÞjΨðmÞi

¼
Z
dmjϕðmÞj2: ð32Þ

Then we may choose
R
dmjϕðmÞj2 ¼ 1 and interpret ϕðmÞ

as a mass distribution.

2. The meaning of τ

A scalar version of Eq. (30) with Hamiltonian pμpμ

has appeared several times in the literature [13,25],
and a corresponding second-order version was discussed
in Ref. [26], where τ was identified with proper time. In the
present case, the classical (relativistic) momentum/speed
relation for a free particle with proper time τ holds as an
average computed with the induced product:
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d
dτ

hxμi ¼
Z

d4xΨ̄ðx; τÞi½γνpν; xμ�Ψðx; τÞ

¼
Z

d4xΨ̄ðx; τÞγμΨðx; τÞ

¼
ZZ

dmd3p
2Ep;m

jϕðmÞj2kaðp; mÞk2
�
pμ

m

�
¼

�
pμ

m

�
;

ð33Þ

where he have used the Gordon identity [19]. Nevertheless,
for a particle with definite mass, the τ evolution is trivial.
As a consequence, the identification of τ with proper time is
misleading. We may think instead that τ is parametrizing
the relative phases of distinct particle stories whose
information is condensed into the states jΨðmÞi through
the value of the mass and the moment-spin distribution. In a
hypothetical superposition of different masses, i.e., differ-
ent particles, it would become possible to see interference
between separate stories and hence nontrivial evolution in
the parameter τ.

D. Dirac particle in an external field

A fully consistent description of interactions requires a
field theory. Here we simply deal with the original Dirac
theory of a particle in an external field. We introduce the
interaction by replacing J ¼ −γμPμ by

JA ¼ −γμðPμ þ eAμðXÞÞ; ð34Þ

with AμðXÞjxi ¼ AμðxÞjxi. Then a state jΨi ¼R
d4xΨσðxÞjx; σi satisfies

JAjΨi ¼ mjΨi; ð35Þ

if and only if the wave function ΨðxÞ satisfies

ðγμð−i∂μ þ eAμÞ −mÞΨðxÞ ¼ 0: ð36Þ

We now focus on the case of a time-independent Aμ in a
given frame of reference. We first define the (normalized)
eigenfunctions of HðmÞ ¼ α · ðpþ eAÞ þ βmþ eA0,

HðmÞφklðx; mÞ ¼ EkðmÞφklðx; mÞ; ð37Þ

where the subscript l labels the eigenstates with the
same energy. Then any solution of Eq. (36) is of the form
ΨðxÞ ¼ 1ffiffiffiffi

2π
p

P
k;lckle

−iEkðmÞtφklðx; mÞ, which leads to

jΨmi ¼
X
k

ckjEkðmÞijkðmÞi; ð38Þ

where ckjkðmÞi¼P
lckl

R
d3xφσ

klðx;mÞjx;σi, with jckj2 ¼P
ljcklj2 and hk0ðmÞjkðmÞi ¼ δkk0 , while jEkðmÞi ¼

1ffiffiffiffi
2π

p
R
dte−iEkðmÞtjti.

We now show that if potentials which depend on m are
excluded, e.g.,gravity, the condition hΨ̄m0 jΨmi ¼ δðm −m0Þ
implies the usual normalization 2π

R
d3xΨ†ðx; tÞΨðx; tÞ ¼P

kjckj2 ¼ 1.
Proof.—By using Eq. (38) we find,

hΨ̄m0 jΨmi ¼
X
k;k0

c�k0ckδðEkðmÞ − Ek0 ðm0ÞÞhk0ðm0ÞjkðmÞi:

ð39Þ

We will now prove the special orthogonality relation

δðEkðmÞ − Ek0 ðm0ÞÞhk0ðm0ÞjkðmÞi ¼ δðm −m0Þδkk0 ; ð40Þ

which implies hΨ̄m0 jΨmi ¼ δðm −m0ÞPkjckj2, where

hk0ðm0ÞjkðmÞi ¼
X
l0;l

c�k0l0ckl
c�k0ck

Z
d3xφ̄k0l0 ðx; m0Þφklðx; mÞ:

ð41Þ

We analyze the right-hand side of Eq. (41) separately for
k ¼ k0 and k ≠ k0.
We first note that for k ¼ k0 in Eq. (40),

δðEkðmÞ − Ekðm0ÞÞ ¼ δðm −m0Þ=jdEkðmÞ=dmj. Deriving
Eq. (37) with respect to m yields

ðHðmÞ − EkðmÞÞ dφklðx; mÞ
dm

¼
�
dEkðmÞ
dm

− β

�
φklðx; mÞ:

Multiplying on the left by φ†
kl0 ðx; mÞ and integrating over

all space leads to the important result that these eigen-
functions satisfy the additional orthogonality condition

Z
d3xφ̄kl0 ðx; mÞφklðx; mÞ ¼ dEkðmÞ

dm
δll0 ; ð42Þ

where we have used the Hermiticity of HðmÞ and the
orthonormality of its eigenstates with respect to the usual
product. The first part of the proof is complete assuming the
standard result dEkðmÞ=dm > 0 for EkðmÞ > 0.
The term with k ≠ k0 in Eq. (40) contributes only when

Ek0 ðm0Þ ¼ EkðmÞ. Since

HðmÞφklðx; mÞ ¼ EkðmÞφklðx; mÞ;
Hðm0Þφk0l0 ðx; m0Þ ¼ Ek0 ðm0Þφk0l0 ðx; m0Þ;

by multiplying the left-hand side of the first [second]
equation by φ†

k0l0 ðm0Þ [φ†
klðmÞ], and integrating over all

space and subtracting the results (conjugating one of them),
we find
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ðm−m0Þ
Z

d3xφ̄k0l0 ðx;m0Þφklðx;mÞ

¼ ½EkðmÞ−Ek0 ðm0Þ�
Z

d3xφ†
k0l0 ðx;m0Þφklðx;mÞ: ð43Þ

Hence, if EkðmÞ ¼ Ek0 ðm0Þ the first integral should vanish
form ≠ m0, implying that these eigenfunctions satisfy in this
case an extended orthogonality condition, which leads to the
vanishing of Eq. (41) for k ≠ k0. Note, however, that such
orthogonality does not hold in general for EkðmÞ ≠ Ek0 ðm0Þ.
Previous results then lead to Eq. (40). ▪
It is then proved that whenever a reference frame

where Aμ becomes t-independent exists, the invariant
product implies Dirac’s norm. We also mention that for
Aμ independent of t (and τ) the extension of the treatment of
Sec. II C is straightforward.

III. INVARIANT DENSITY
AND ENTANGLEMENT

The formalism relies on the concept of the invariant
product (6) and the entanglement between the system and
the reference clock. We now discuss some basic properties
and examples.

A. The invariant density

We now examine in more detail the space-time density
Ψ̄ðxÞΨðxÞ which corresponds to the invariant product
hΨ̄jΨi we have introduced. Such density is not positive
definite in either the particle or antiparticle subspace.
However, in the 1þ 1-dimensional case for the distribution
aðpÞ ¼ e−ϵEp and a mass m ≠ 0, it stays positive in all
space-time. Moreover in the limit ϵ → 0þ it becomes null in
the space-like region of the light cone centered at
ðx; tÞ ¼ ð0; 0Þ. We also notice that the chosen distribution
corresponds to the formal replacement t → t − iϵ in the
case of a flat momentum distribution. Moreover, for x → z,
it can be regarded as a 3d distribution ∝ δðpxÞδðpyÞe−ϵEp ,
in which case Ψðx; t; ϵÞ becomes for ϵ → 0þ and t → 0 an
eigenstate of the third component of the Pryce position
operator q ¼ xþ 1

2E2
p
ðp × Σþ imβαÞ [14].

Spinors in the 1þ 1-dimensional case have two com-
ponents (σ ¼ 0, 1) and fixed spin. The corresponding
(un-normalized) wave function is [Eq. (15)]

ψσðx;t;ϵÞ¼
Z

∞

−∞

dp
2Ep

e−iðt−iϵÞEpþipx 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Epþm

p �
Epþm

p

�
σ

;

ð44Þ

and satisfies the one-dimensional equation i∂tψðx; tÞ ¼
−iσ1∂xψðx; tÞ þmσ3ψðx; tÞ. Now σ3 replaces γ0 when
calculating Ψ̄ðx; tÞ. Thus, Ψ̄ðx;tÞΨðx;tÞ¼ 1

2π ½jψ0ðx;t;ϵÞj2−
jψ1ðx;t;ϵÞj2�.

By performing the integration in Eq. (44) [27] it can be
explicitly proved (see Appendix B) that such a difference is
positive ∀ x; t if ϵ > 0. And in the limit ϵ → 0þ, we obtain,
for both ψ̄ðx; tÞψðx; tÞ and ψ†ðx; tÞψðx; tÞ,

ψ̄ðx; tÞψðx; tÞ ¼
(

πffiffiffiffiffiffiffiffi
t2−x2

p x2 < t2;

0 x2 > t2;
ð45Þ

ψ†ðx; tÞψðx; tÞ ¼
8<
:

πjtj
t2−x2 x2 < t2;

πjxj
x2−t2 e

−2m
ffiffiffiffiffiffiffiffi
x2−t2

p
x2 > t2:

ð46Þ

Therefore, Eq. (45) is positive in the time-like sector
and vanishes in the space-like region (see Fig. 1). In contrast,
Eq. (46) stays positive in the latter [17]. It is also easy to show
that limt→0ðlimϵ→0 ψ̄ðx; t; ϵÞψðx; t; ϵÞÞ ∝ δðxÞ.
In Ref. [13] the Schrödinger-like density of the scalar

version of Eq. (30) was interpreted as a space-time
probability density. In the present case the analogous
quantity is given by Ψ̄ðx; τÞΨðx; τÞ ∝ R

dmdm0ϕ�ðm0Þ×
ϕðmÞeiðm−m0Þτψ̄m0 ðx; tÞψmðx; tÞ. In the 1þ 1-dimensional
case already discussed, and in the limit ϵ → 0þ we find

ψ̄m0 ðx;tÞψmðx;tÞ¼
(

πffiffiffiffiffiffiffiffi
t2−x2

p e−iðm−m0Þ
ffiffiffiffiffiffiffiffi
t2−x2

p
x2<t2;

0 x2>t2:
ð47Þ

As a consequence, Ψ̄ðx; t; τÞΨðx; t; τÞ vanishes outside the
light cone for any mass distribution ϕðmÞ. Inside the light

FIG. 1. Contour plot of the invariant space-time density (45)
(top) and the Dirac density (46) (bottom), for m≡mc=ℏ ¼ 1.
The first one vanishes in the space-like region (here x and t≡ ct
are in units of ℏ=mc).
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cone instead Ψ̄ðx;t;τÞΨðx;t;τÞ∝ 1ffiffiffiffiffiffiffiffi
t2−x2

p jΦðτ−
ffiffiffiffiffiffiffiffiffiffiffiffi
t2−x2

p
Þj2,

where ΦðτÞ indicates the Fourier transform of the function
ϕðmÞ. We see that the positive region of the density,
which corresponds to the inner part of the light cone, stays
positive under τ evolution, whereas the outer part stays null.
Moreover, in the general case ϵ > 0, Ψ̄ðx;t;τÞΨðx;t;τÞ>0
for any mass distribution, as shown in Appendix B.

B. Electron-time entanglement

It is clear from Eq. (1) that if there is no correlation
between time and space-spin d.o.f. the evolution is trivial.
In Ref. [6] the concept of system-time entanglement was
introduced as a measure of distinguishable quantum
evolution, based on the entanglement between a system
and the reference clock. In this section we apply these
concepts to a particle with fixed mass, say an electron. In
the following we adopt the convention that every trace
over the spin has an additional γ0 (i.e., the usual product
is replaced by hσ0jσi ¼ γ0σ0σ). In order to quantify entan-
glement in the partition HT ⊗ HS we introduce the
clock’s reduced density matrix ρT by tracing on space
and spin d.o.f.:

ρT ¼ 1

2π

Z
dtdt0d3xψ†ðx; t0Þψðx; tÞjtiht0j ð48aÞ

¼
Z

d3p
2Ep

jjaðpÞjj2jEpihEpj

≡
Z

dpλ2ðpÞjpihpj; ð48bÞ

where jEpi ¼ 1ffiffiffiffi
2π

p
R
e−iEpt jtidt, jpi ≔

ffiffiffiffiffiffiffiffiffi
dEðpÞ
dp

q
jEpi ¼ffiffiffiffiffiffiffi

p
EðpÞ

q
jEpi and λ2ðpÞ ≔ p

2

R
dΩjjaðpÞjj2, which are the

eigenvalues of ρT . It is now straightforward to compute
entanglement measures based on entropies of the reduced
density matrix of the clock.

1. Different Lorentz observers

Electron-time entanglement is not a Lorentz-invariant
quantity since boost operators act nonlocally. In the present
formalism space and time are both secondary variables
[15]. In order to calculate the clock density in a boosted
frame we first notice that Eq. (9) implies that the wave
function that corresponds to the new frame is

ψ 0
σðxÞ ¼

1

ð2πÞ3=2
Z

d3p
2Ep

SασðΛÞusαðΛ−1pÞasðΛ−1pÞe−ipx;

where we have used the invariance of both p:xjp0¼Ep and

the measure d3p
2Ep

. Then, using Eq. (48a),

ρ0T ¼
Z

d3p
ð2EpÞ2

a�s0 ðΛ−1pÞasðΛ−1pÞFs0s
Λ ðΛ−1pÞjEpihEpj;

ð49Þ

where Fs0s
Λ ðpÞ≡ us

0†
p S†ðΛÞSðΛÞusp. From the invariance of

Dirac’s normalization it follows that (see Appendix A)

Fs0s
Λ ðΛ−1pÞ ¼ us

0†
Λ−1p

S†ðΛÞSðΛÞusΛ−1p
¼ δss02Ep: ð50Þ

And finally the eigenvalues of ρ0T are simply

λ2ðp; vÞ ¼ p
2

Z
dΩkaðΛ−1pÞk2: ð51Þ

2. Proper frame

As an example, we now compute explicitly the relative
entanglement, measured through the purity ratio

RðvÞ ≔
R
dpλ4ðp; vÞR
dpλ4ðp; 0Þ ; ð52Þ

for an electron with the “proper” momentum distribution

kaðpÞk2 ¼ ϵ

4πmK1ðϵm=2Þ e
−ϵEp=2; ð53Þ

where K1 denotes the modified Bessel function, which
admits an analytic evaluation. Equation (51) allows
us to calculate Trðρ2TÞ in every reference frame, with

(γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
)

kaðΛ−1pÞk2 ¼ ϵ

4πmK1ðϵm=2Þ e
−ϵ
2
γðEp−vp cosðθÞÞ:

The result is, noting that λ2ðp; vÞ ¼ 1
mγvK1ðϵm=2Þ×

e−ϵγEp=2 sinhðϵγvp=2Þ and using the integrals of Ref. [27],

∋m 0

5

50
10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

v c

R

FIG. 2. The purity ratio (52) for an electron with the proper
distribution (53) in terms of v=c for different values of
ϵm (see text).

HISTORY STATE FORMALISM FOR DIRAC’S THEORY PHYS. REV. D 99, 045008 (2019)

045008-7



RðvÞ ¼ 2
γK1ðϵmÞ − K1ðγϵmÞ

γ2v2ϵmK2ðϵmÞ : ð54Þ

This ratio is a decreasing monotonic function of v,
approaching 0 for v → 1, reflecting the increasing energy
spread which leads to a vanishing purity ratio in this limit
(see Fig. 2). On the other hand, for ϵm → 0, RðvÞ → γ−1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
(and

R
dpλ2ðp; vÞ → 1).

IV. CONCLUSIONS

We have proposed a history state formalism for deriving
Dirac’s theory. The present approach enables to describe
the theory within an explicit Hilbert space in a consistent
manner, with an invariant norm which ensures the standard
Dirac norm for the wave function. The approach holds for a
free particle as well as for a particle in a time (and mass)-
independent external potential in a certain reference frame.
In the presence of gravity, the formalism suggests, in
principle, that curvature effects may need to be considered
even in the Newtonian limit.
The inclusion of a second clock and an ensuing extended

history state allowed us to derive the previous invariant norm
precisely as that preserved by the evolution in the additional
parameter. The latter would lead in principle to interference
effects in a superposition of different mass states. We have
also discussed some particular related aspects, like the
invariant density and its positivity in the example consid-
ered, which vanishes in the space-like sector in the limit of a
localized state (eigenstate of the Pryce position operator), in
contrast with the Dirac density. We have also discussed the
system-time entanglement for a free Dirac particle, and
obtained analytic results for the purity ratio of the reduced
clock density matrix according to different observers for a
particular momentum distribution.
The ideas developed in this work can be easily extended

to Klein-Gordon theory. It could also constitute a suitable
approach for a many-particle theory, by considering
a properly extended single-particle space within a
covariant field theory. These extensions are currently under
investigation.
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APPENDIX A: DIRAC’S NORM

The invariance of the Dirac norm follows from the
conservation of charge and the transformation law of the
current ψ̄γμψ [28]:Z

d3xψ†ðx; tÞψðx; tÞ ¼
Z

d3xψ 0†ðx; tÞψ 0ðx; tÞ; ðA1Þ

with ψ 0ðx; tÞ ¼ SðΛÞψðΛ−1xÞ. By expanding the wave
function of a free particle in the momentum basis, and
by using the property [22]

uðs
0Þ†

p uðsÞp ¼ δss
0
2Ep;

we find

Z
d3xψ†ðx; tÞψðx; tÞ ¼

Z
d3p
2Ep

kaðpÞk2;

with kaðpÞk2 ≔ ja0ðpÞj2 þ ja1ðpÞk2.
From the invariance of both p:xjp0¼Ep and the measure

d3p
2Ep

, the equality (A1) can be restated as

Z
d3p
2Ep

kaðpÞk2 ¼
Z

d3p
2Ep2EΛp

a�s0 ðpÞasðpÞFs0s
Λ ðpÞ;

implying the relation

Fs0s
Λ ðpÞ ¼ us

0†
p S†ðΛÞSðΛÞusp ¼ δss

0
2EΛp;

where we have defined Fs0s
Λ ðpÞ ¼ us

0†
p S†ðΛÞSðΛÞusp.

APPENDIX B: STATE EXPANSIONS
IN CONTINUOUS VARIABLES

We consider a complete continuous set of states fjpig
spanning a spaceH and satisfying hp0jpi ¼ δðp − p0Þ, and
a state of the form

jψi ¼
Z

ϕðpÞjpidp;

satisfying hψ jψi ¼ R jϕðpÞj2dp ¼ 1. If EðpÞ is a monoto-
nous function of p, we can rewrite jψi as

jψi ¼
Z

ϕðpðEÞÞjpðEÞi dp
dE

dE ðB1Þ

¼
Z

ΦðEÞjEidE; ðB2Þ

where ΦðEÞ ¼ ϕðpðEÞÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdE=dpjp
and jEi ¼ jpðEÞi=

j ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dE=dp

p j, such thatZ
jΦðEÞj2dE ¼ 1; hE0jEi ¼ δðE − E0Þ:

The extension to states defined in H⊗n is apparent:
the change from n variables pi to n new independent
variables EiðpÞ proceeds in the same way, where
jE1…Eni ¼ jp1…; pni=

ffiffiffiffiffiffijJjp
and J is the Jacobian

∂ðE1;…; EnÞ=∂ðp1;…; pnÞ. Note, however, that these
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states can be associated to different partitions of H⊗n: if
Pijpii ¼ pijpii, ½Pi; Pj� ¼ 0, we may write jp1;…; pni ¼
jp1i…jpni and similarly, jE1;…; Eni ¼ jE1i…jEni, with
HiðpÞjEii ¼ EiðpÞjEii and ½Hi;Hj� ¼ 0.
Considering now states in H ⊗ H of the form

jΨi ¼
Z

ϕðp; qÞjpqidpdq;

we obviously have hΨ1jΨ2i ¼
R
ϕ̄1ðp; qÞϕ2ðp; qÞdpdq.

And if ϕiðp; qÞ ¼ giðp; qÞδðfiðp; qÞ − ciÞ, we obtain a
finite overlap

hΨ1jΨ2i ¼
Z

ḡ1ðp; qÞg2ðp; qÞδðf1ðp; qÞ − c1Þ

× δðf2ðp; qÞ − c2Þdpdq
¼ ḡ1ðp; qÞg2ðp; qÞ=jJj; ðB3Þ

where J ¼ ∂ðf1; f2Þ=∂ðp; qÞ and the final result is
evaluated at the intersection of both curves (assumed here
to exist and be unique; the extension to the general case is
straightforward). On the other hand, if f1ðp; qÞ ¼
f2ðp; qÞ ¼ fðp; qÞ, we obtain,

hΨ1jΨ2i ¼
Z

ḡ1ðp; qÞg2ðp; qÞδðfðp; qÞ − c1Þ

× δðfðp; qÞ − c2Þdpdq

¼ δðc1 − c2Þ
Z

ḡ1ðp; qÞg2ðp; qÞdv=jJj; ðB4Þ

where the integral is along the curve fðp; qÞ ¼ c1, where
J ¼ ∂ðf; vÞ=ðp; qÞ and vðp; qÞ is any function such that

ðf; vÞ are independent variables. For instance dv=jJj ¼
dp=jfqj if v ¼ p. Proper normalization of these states
would then imply

R
ḡiðp; qÞgiðp; qÞdv=jJj ¼ 1.

Note that these states jΨii can be written as

jΨi ¼
Z

gðp; qÞδðfðp; qÞ − cÞjpqidpdq

¼
Z

gðp; qÞjpqidv=jJj ðB5Þ

¼
Z

gðp; qÞjpqidp=jfqj; ðB6Þ

with the last two integrals over the curve fðp; qÞ ¼ c,
which defines the function qðpÞ to be used in the last
integral. Moreover, we can also rewrite the last integral in
the more symmetric form [using jqðpÞi ¼ jpi= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdq=dpjp

,
Eqs. (B1) and (B2)],

jΨi ¼
Z

gðp; qÞjpijpidp=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfqfpj

q

¼
Z

gðp; qÞjqijqidq=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfqfpj

q
: ðB7Þ

These expressions represent continuous Schmidt decom-
positions of jΨi.

APPENDIX C: INVARIANT DENSITY

In order to prove that Ψ̄ðx; t; ϵÞΨðx; t; ϵÞ is positive
for ϵ > 0, it is sufficient to show that Fðx; t; ϵÞ ≔
jψ0ðx; t; ϵÞ=ψ1ðx; t; ϵÞj2 > 1. By performing the integration
in Eq. (44) [27] we find

ψ0ðx; t; ϵÞ ¼
ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ðt − iϵÞ2

p
þ iðt − iϵÞ

q
e−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−ðt−iϵÞ2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ðt − iϵÞ2

p ;

ðC1Þ

ψ1ðx; t; ϵÞ ¼
ffiffiffiffiffiffi
2π

p
ixe−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−ðt−iϵÞ2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ðt − iϵÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ðt − iϵÞ2

p
þ iðt − iϵÞ

q ;

ðC2Þ

and hence,

Fðx; t; ϵÞ ¼ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðx; t; ϵÞp ðt sinðγ

2
Þ þ ϵ cosðγ

2
ÞÞ þ fðx; t; ϵÞ − ðx2 − ϵ2 − t2Þ
x2

; ðC3Þ
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where fðx;t;ϵÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2−ϵ2−t2Þ2þ4x2ϵ2

p
and γðx; t; ϵÞ ≔

argðx2 þ ϵ2 − t2 þ 2iϵtÞ. Notice that Fðx; t; ϵÞ is indepen-
dent of m. For ϵ > 0 and t ≥ 0, 0 ≤ γ ≤ π while for t ≤ 0,
−π ≤ γ ≤ 0. In both cases t sinðγ

2
Þ ≥ 0; cosðγ

2
Þ ≥ 0. Then the

quotient in Eq. (C3) is clearly positive. On the other hand,
for ϵ ¼ 0, γ ¼ 0 and the quotient becomes
ðjx2−t2j−ðx2−t2ÞÞ=x2, implying Fðx; t; 0Þ ¼ 1 if jxj > jtj

and Fðx; t; 0Þ ¼ 2t2=x2 − 1 if jxj < jtj. From Eq. (44)
we notice, by performing the integral, that ψ�

0ðx; t;ϵ;m0Þ×
ψ0ðx;t;ϵ;mÞ−ψ�

1ðx; t;ϵ;m0Þψ1ðx;t;ϵ;mÞ ¼ ψ�
1ðx;t;ϵ;m0Þ×

ψ1ðx;t;ϵ;mÞðFðx; t;ϵÞ−1Þ, with Fðx; t; ϵÞ defined
in Eq. (C3). This implies Ψ̄ðx; t; τÞΨðx; t; τÞ ∝
j R dmϕðmÞeimτψ1ðx; t; ϵ; mÞj2ðFðx; t; ϵÞ − 1Þ > 0 since
Fðx; t; ϵÞ > 1.
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