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We propose a history state formalism for a Dirac particle. By introducing a reference quantum clock
system it is first shown that Dirac’s equation can be derived by enforcing a timeless Wheeler-DeWitt-like
equation for a global state. The Hilbert space of the whole system constitutes a unitary representation of the
Lorentz group with respect to a properly defined invariant product, and the proper normalization of global
states directly ensures standard Dirac’s norm. Moreover, by introducing a second quantum clock, the
previous invariant product emerges naturally from a generalized continuity equation. The invariant
parameter 7 associated with this second clock labels history states for different particles, yielding an
observable evolution in the case of a hypothetical superposition of different masses. Analytical expressions
for both the space-time density and electron-time entanglement are provided for two particular families of
electron states, the former including Pryce localized particles.
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I. INTRODUCTION

Time has been normally considered as an “external”
parameter in quantum mechanics. In 1983 Page and
Wootters [1] introduced a formalism for nonrelativistic
quantum mechanics where a reference quantum clock is
introduced and the system evolution arises from an
entangled system-clock history state satisfying a timeless
Wheeler-DeWitt-like equation. Such formalism has
recently received considerable attention and several exten-
sions and consequences have been explored [2-9]. In this
work our aim is to extend this approach to the relativistic
regime, and specifically to a Dirac particle. It is first
remarked that in this approach time operators act on the
clock and not on the system, so that the Pauli objection [10]
is circumvented. It is then shown that through a Wheeler-
DeWitt-like equation [11] for the global state, the Dirac
equation [12] naturally arises. The clock variable provides
the time parameter of the equation. As a consequence, a
difference between the present approach and the non-
relativistic case follows: the nonabsolute nature of time
is introduced by defining the action of Lorentz trans-
formations over global states. Lorentz symmetry is then
preserved by introducing an invariant product in the
complete Hilbert space. The usual transformation of the
wave function is then obtained, while the Hilbert space
containing the global state provides a unitary representation
of the proper Lorentz group. It is then shown that the
appropriate normalization of free particle states under the
four-dimensional product, leads to the standard Dirac
norm in ordinary three-dimensional space in any frame
of reference. These features allow a straightforward

2470-0010/2019/99(4)/045008(10)

045008-1

computation of expectation values of observables at a
given time in a given frame of reference, completing the
connection with the usual theory.

The addition of a second quantum clock with a second
Wheeler-DeWitt-like equation enables to view the invari-
ant density associated with the previous product as that
emerging in a generalized continuity equation. This addi-
tion follows the Stiickelberg approach to relativistic quan-
tum mechanics [13]. The time 7 associated with this second
clock labels history states for different particles, and while
unobservable for fixed mass states, would lead to interfer-
ence effects in a superposition of different history states.
It is also explicitly shown that for a time- and mass-
independent potential, previous results remain valid, and
entail a special orthogonality relation for degenerate
eigenstates with different mass.

We finally discuss two features of the formalism: the
space-time density induced by the invariant product, and
the electron-time entanglement. For the former we prove
that the density is positive definite in a family of solutions
which include Pryce localized states [14] in one spatial
component. Moreover, we explicitly prove in the localized
limit that it becomes null in the space-like region of the
light cone with axes, say, ¢ and z, where z is the direction of
localization. Furthermore, these properties extend to any
mass distribution when the second clock is introduced. We
also provide general expressions for the eigenvalues of the
reduced density matrix of the clock in the free particle case,
which enables to evaluate the system-clock entanglement
[6] in a given reference frame. These eigenvalues are frame
dependent which reflects that in the present formalism both
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space and time are secondary variables [15,16]. As an
example, analytical expressions for any Lorentz frame are
provided in a particular case.

II. FORMALISM

A. Nonrelativistic case

We first briefly review the Page-Wootters formalism
[1,2]. We set in what follows 2 =1, ¢ = 1. Consider a
bipartite system with Hilbert space H = Hy ® Hg. The
“clock” space H7 is spanned by the operator 7" which
satisfies the canonical commutation [T, Py| = i. The whole
system is assumed to be in a static pure state of the form

|%—/mwwm. (1)

The state of the system is recovered by conditioning on the
clock state: |y(1)) = (#|¥). Considering now states which
satisfy the equation

J¥) =0, (2)
with
J=P;1+1Q®H, (3)

where H is the Hamiltonian of the system, unitary
evolution is restored and the standard Schrodinger equation
is recovered:

(1T9) =0 = i S () = Hiy(). @

This approach was recently examined in detail in Ref. [2],
where the implementation of measurements was also
considered. The Pauli objection [10] of a time operator
in quantum mechanics is circumvented: the operator acts on
a different Hilbert space, and as a consequence it commutes
with the system Hamiltonian [2,8]. Moreover, the generator
of space translations Pg commutes with the generator of
time translations Py, as it should, since space and time are
independent degrees of freedom (d.o.f.).

B. Free Dirac particle

We now examine the relativistic extension of the
previous scheme. The complete Hilbert space H; ® Hg
constitutes a natural representation of the Poincaré group
when the space of the system Hg is L?(R*). On the
other side, in order to discuss an electron (positron) theory,
we set Hg = L?(R?) ® C* in accordance with Ref. [17].
An adequate choice of the inner product will preserve
Lorentz symmetry.

A general state of the universe can be written as

|%=2/WM@m¢ (5)
c=0

where |p, 6) = |po)r|P, 0) are the improper eigenstates of
the operators P, (where for 4 = 0 the operator acts on the
clock space, while for =1, 2, 3 it acts on the system

space) and, say, of o1, and y, (here 6, = %[y,.7,], where

h

0. %, is the spin operator for y, v = 1, 2, 3). The

= %eﬂyﬁ
states |p), o) satisfy (p'|p) = 8% (p = p'), (o]0’) = 6,y
We introduce the adjoint system state (p, ol := (p, £[y,.
Because d*p is a Lorentz-invariant measure we can
introduce unitary boost operators U(A) in this space with
respect to the product

Wls) = [ &), (6)
where ¥(p) = ¥'(p)y":

U(A)|p.o) = See(A)|Ap. &), (7)
with A¥, = " and S(A) = e~#%"" [18]. Unitarity fol-

lows from the property STy’S = y° for time-preserving
Lorentz transformations. The transformed state is then

wmwzilﬂm%@wnx (8)
=0

with

V5 (p) = (p.o|UN)Y) = See¥a(A'p).  (9)

We may also define the states |x,o) = [x")|x,0) =
wfd“pe""ﬂp,a) with px=p,x*, which, using Eq. (7),
transform as U(A)|x,0) = S,:(A)|Ax, &). If the |x, o) are
the eigenstates of operators X*, then the canonical com-
mutation rules for both the clock and the system can be
summarized as [X¥, P,] = i&,.

The next step is to consider Egs. (2) and (3) with
J now constructed with the free Dirac Hamiltonian
Hp=a-p+pm,

Then J|¥) = 0 leads to (setting x° = ?),

(1T19) =0 = i lw(0) = (@ p+ pm)ly(e). (1)

with |y (1)) = (t|¥) = \/% 3 o [dPpe P (p)|p, o).
Equivalently, by defining J = —y#P,, we may rewrite
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Eq. (2) (an eigenvalue equation for 7 with eigenvalue 0) as
an eigenvalue equation for J with eigenvalue m:

P’T|®) =0 —y"P,|¥) = m|P). (12)

As a consequence of Pauli’s fundamental theorem [19],
STHA)#S(A) = A*y* and hence U~'(A)y*P,U(A) =
y*P,. Therefore, Eq. (12) defines an invariant sub-
space, i.e.,

(y"P, +m)|¥) =0 = (y*P, +m)U(A)|¥) = 0. (13)
We can also rewrite Eq. (12) in terms of ¥, (x) = (x, o|¥)

to recover the covariant form of Dirac’s equation [12] [note
that (x,o|P,|¥) = —i0,¥,(x)]

(x,

States satisfying Eq. (12) can be written in the form (in
what follows sums over o, s and r are implied)

)W) =0 = iy,0,%:(x) = mW, (x).  (14)

¥,,) = / & p3(pp, — M) HH ()t (B) |- )

® [ ol p, = m)H (1)1,
(15)
where, setting E, = \/p* + m?
1 E,+m
u;m:i(( P S)” ) . (16a)
VEpt+m p.cy -
1 p.oy
S , 16b
P \/Ep+m<(Ep+m)x’>(, (160)

with s, r = 0, 1. The presence of the fourth ket implies
orthogonality between particle and antiparticle subspaces
for nonzero mass. We also notice that the sign in |p°)
implies a different sign in the evolution parameter ¢
between particle and antiparticle spaces after conditioning,
reflecting the Feynman-Stiickelberg interpretation [20,21].
In the subspace of solutions of Eq. (12) the previous
pseudoeuclidean inner product becomes isomorphic to two
euclidean products. This is a consequence of the following
relations [22]:

(17a)
Vpvp = (17b)
Since superpositions of particle and antiparticle states are

not realizable in nature [23], we will consider just one of the
two terms of Eq. (15). In the following, we will work in the

subspace of particles with positive mass. The overlap
between states of different masses but the same moment-
spin distribution yields (see Appendixes A and B)

- d3p
(W [¥) = W(s(Ep.m—Ep )ttty

x ag(p,m)a,(p.m') (18)

= 5(m — nt) / %namw. (19)

The normalization (¥, |¥,) = 8(m —m’) then implies

5 la(p

An electron-clock state can be written as (we omit the
subscript m)

) =¢12_ﬂ / ()|, o). (20)

1 & _
Vo) = o [ 5 ) (p)e

From the invariance of d*x it follows the transformation
law /), (x) = Syswo(A~1x). Moreover, a simple calculation
(see Appendix A) shows that [dxy’(x,t)y(x,1) =

Je2 " [la(
norm [12].

The state of the electron can then be recovered by
conditional probability as

)|I> = 1 and hence the Dirac norm (see below).

Plin (1)

p)||> =1, and we recover the standard Dirac

(1]'¥)

ly (1), = W (22)

with Hy°—|t><t|®y and (P|TI°|¥) =5 [ dPxy’(x, 1) x
w(x, 1) = ”. The transformation law of the wave function
implies the invariance of this quantity (see Appendix A).
The correspondence with Dirac’s theory is complete after
noticing that the expectation value of an observable M, at a
given time ¢, is obtained as follows:

(P M|¥P)

MO =)

= {w(OIM (1), (23)

where M =1 Q M,.

As a final remark we write the general relation between
the invariant product in four-dimensional space with
Dirac’s product in ordinary three-dimensional space with
fixed mass m:

(@ W) = 8(m —m') (. W), (24)
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where we have defined (¢, y),, = [ d>xp(x, )y, (X, 1),
while <q_)m’ |le> = ﬁ fd4xé5m' (X)Wm ()C)

C. Bidimensional clock and proper time

We have seen that it is possible to enlarge the Hilbert
space of the particle by including a clock, preserving
Lorentz symmetry by defining an invariant product in this
new space. Moreover, for physical states satisfying a
timeless equation, the notion of orthogonality which
follows from this product, Eq. (19), yields the usual norm
of Dirac’s theory. In this section we will prove that the
product we have introduced motivated by symmetry argu-
ments arises naturally when a second clock is introduced.
The aim is to discuss the usual identification of time in the
Page-Wootters formalism with proper time [2]. While this
identification is clearly satisfactory in the nonrelativistic
case, the description of time evolution through Dirac’s
equation implies the necessity of introducing Lorentz
transformations as nonlocal. This leads us to interpret
the clock variable as time in a given reference frame.
One may ask if there is a different approach to follow, in
particular if it is possible to have an equation analogous to
Eq. (2) which after conditioning yields the evolution of the
system state parametrized by an invariant variable z.
Obtaining such an equation would promote the role of ¢
to a dynamical variable, but this is exactly what the Page-
Wootters formalism already does. It is not surprising then
that by considering “proper time” in this way, an extension
of the formalism of the previous section ensues. We now
develop this extension.

1. Bidimensional clock

Consider a bidimensional clock with Hilbert space H, =
L*(R?) and basis {|7) ® |£)}, such that (7'|t) = (¢ —7)
and (7|t) = 6(r— '), and the same Hilbert space Hg for
the system as before. A state of the whole system can be
written as

o) = / d]2) ¥ (z)) = / dmgp(m)|m)[¥(m)). (25

2
™ |¥(m)) € Hy ® Hg, which is the Hilbert space of the
previous section. We will assume that the Hamiltonian of
the universe takes the form

where |7) =— [dme=""|m) and |¥(r)) :\/%fquﬁ(m)x

J=P.R1T+1Qy'P,. (26)

Notice that J has the same noninteracting form as before in
the partition proper time—rest, but is nonseparable in the
partition clock—rest.

Now, the equation

J|@) = 0. (27)

implies (z|J|®)) =0, i.e.,

i0.|¥(z)) = y"P,|¥(1)). (28)
and, in the conjugate basis,

(y*P, + m)|¥(m)) = 0. (29)

This is the universe equation of the previous section, which
determines an invariant subspace of Hy ® Hg with respect
to proper Lorentz transformations. This means that in the
whole space U(A):=1, ® U(A) leaves the form of
Eq. (28) invariant. In general, transformations leaving
the form of Eq. (28) invariant would also preserve its
square and hence a five-dimensional metric, which defines
a Snyder space [24].

By expanding the states |¥(z)) in the |x,o) basis of
Hr ® Hg we obtain

v p,¥(x, 1) =i0,¥(x, 1), (30a)

Y(x, )y p, = i0,¥(x,7), (30b)
with ¥, (x,7) = (x,06/¥(z)) and P(x,7):= ¥ (x,7)y"
Therefore,

d, " (x,7) = —%‘i‘(x, 7)¥(x, 1), (31)

where j#(x,7) == W(x,7)y*¥(x, 7), implying that for well-
behaved wave functions the quantity [ d*x¥(x,7)¥(x,7) =
(P(7)|¥(z)) is conserved, i.., the evolution operator
U(z) = e~"""P«* preserves this norm. We see that the product
we have chosen in the space H;y @ Hy is the one which is
preserved by 7 evolution. Moreover if we now expand in the
mass basis and choose the normalization (19) we obtain

(B(6) (2 = et ()= (o )
- /dm|¢<m>|2. (32)

Then we may choose [ dm|¢(m)|*> = 1 and interpret ¢)(m)
as a mass distribution.

2. The meaning of ©

A scalar version of Eq. (30) with Hamiltonian p*p,
has appeared several times in the literature [13,25],
and a corresponding second-order version was discussed
in Ref. [26], where 7 was identified with proper time. In the
present case, the classical (relativistic) momentum/speed
relation for a free particle with proper time 7 holds as an
average computed with the induced product:
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%<xﬂ> - /d“x‘i’(x, 7)ily’p,, X |¥(x, 1)

— / d*xP(x, 7)y"¥(x,7)

//dmd P\ p(m)P ”a(p,m)||2< ) - <%ﬂ>

(33)
where he have used the Gordon identity [19]. Nevertheless,
for a particle with definite mass, the 7 evolution is trivial.
As a consequence, the identification of = with proper time is
misleading. We may think instead that 7 is parametrizing
the relative phases of distinct particle stories whose
information is condensed into the states |¥(m)) through
the value of the mass and the moment-spin distribution. In a
hypothetical superposition of different masses, i.e., differ-
ent particles, it would become possible to see interference
between separate stories and hence nontrivial evolution in
the parameter 7.

D. Dirac particle in an external field

A fully consistent description of interactions requires a
field theory. Here we simply deal with the original Dirac
theory of a particle in an external field. We introduce the
interaction by replacing J = —y#P, by

\DA = _}/ﬂ(Py + EA;t(X))’ (34)
with A, (X)[x) = A,(x)|x). Then a state |¥)=
[ d*x¥,(x)|x, o) satisfies

Ja|¥) = m|'¥), (35)

if and only if the wave function W(x) satisfies

(r"(=i0, +eA,) —m)¥(x) = 0. (36)
We now focus on the case of a time-independent A* in a
given frame of reference. We first define the (normalized)
eigenfunctions of H(m) = a - (p + eA) + pm + eA,,

H(m)py(x,m) = Ex(m)py(x, m), (37)

where the subscript [ labels the eigenstates with the
same energy. Then any solution of Eq. (36) is of the form
¥Y(x) = ﬁzk_,ck,e‘iEk<"’>t¢k1(x, m), which leads to
¥,) = > el Ei(m)|k(m)), (38)
3

,0), with |c,]? =
while |E,(m)) =

where ck|k(m)>:Z,ck,fd%c(pgl(x,m)
Dleul and (K (m)|k(m)) = S,
\/_fdte"Ek ’It).

We now show that if potentials which depend on m are
excluded, e.g., gravity, the condition (\P,,|'¥,,) = 5(m — m')
implies the usual normalization 2z [ dx¥'(x, 1)¥(x,1) =

Dle? = 1.

Proof.—By using Eq. (38) we find,

W [¥,) =D cicrd(Ex(m) = Ey(m')) (K ()| k(m)).

k.k'
(39)

We will now prove the special orthogonality relation

S(Ei(m) = Ey (m')) (K (m')|[k(m)) = 6(m —m')5e,  (40)

which implies (P, |¥,,) = 6(m —m')>_;|ci|?, where

(K'(m’)|k(m)) =

C*”ckl

k'l 3.~ I

—— | @xppy(x,m )P (X, m).
71 Ck/Ck

(41)

We analyze the right-hand side of Eq. (41) separately for
k=k and k # k.

We first note that for k=4k in Eq. (40),
S(Ex(m) — Ex(m')) = 8(m —m')/|dE,(m)/dm|. Deriving
Eq. (37) with respect to m yields

(H(m) = Ey(my) 220m) (dEk<m)

dm dm —ﬁ) Pr(x,m).
Multiplying on the left by (pll,(x, m) and integrating over
all space leads to the important result that these eigen-
functions satisfy the additional orthogonality condition

dEi(m)

BPxpyy , Sy 42
/ XPyy (X, m)py (X, m) = dm s (42)

where we have used the Hermiticity of H(m) and the
orthonormality of its eigenstates with respect to the usual
product. The first part of the proof is complete assuming the
standard result dE;(m)/dm > 0 for E;(m) > 0.

The term with k # kK’ in Eq. (40) contributes only when
Ey(m') = Ei(m). Since

H(m)p(x,m) = Ex(m)py(x, m),
H(m")ppy(x,m') = Ep(m') gy (x,m'),

by multiplying the left-hand side of the first [second]
equation by ¢, (m') [g;,(m)], and integrating over all
space and subtracting the results (conjugating one of them),
we find
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(m —m/)/d3x¢k'1'<xvm')¢kl(x7m)
— (Ex(m) — ¢ (m)] / Pl (k) gp(xom).  (43)

Hence, if E;(m) = Ey(m’) the first integral should vanish
for m # m’, implying that these eigenfunctions satisfy in this
case an extended orthogonality condition, which leads to the
vanishing of Eq. (41) for k # k’. Note, however, that such
orthogonality does not hold in general for E;(m) # Ey (m').
Previous results then lead to Eq. (40). (]

It is then proved that whenever a reference frame
where A, becomes r-independent exists, the invariant
product implies Dirac’s norm. We also mention that for
A* independent of ¢ (and 7) the extension of the treatment of
Sec. II C is straightforward.

III. INVARIANT DENSITY
AND ENTANGLEMENT

The formalism relies on the concept of the invariant
product (6) and the entanglement between the system and
the reference clock. We now discuss some basic properties
and examples.

A. The invariant density

We now examine in more detail the space-time density
P(x)¥(x) which corresponds to the invariant product
(P|¥) we have introduced. Such density is not positive
definite in either the particle or antiparticle subspace.
However, in the 1 + 1-dimensional case for the distribution
a(p) = eEr and a mass m # 0, it stays positive in all
space-time. Moreover in the limit e — 07 it becomes null in
the space-like region of the light cone centered at
(x,7) = (0,0). We also notice that the chosen distribution
corresponds to the formal replacement ¢t — ¢ — ie in the
case of a flat momentum distribution. Moreover, for x — z,
it can be regarded as a 3d distribution « 5(p,)5(p,)e %,
in which case ¥(x, 7, €) becomes for € - 0" and 7 — 0 an
eigenstate of the third component of the Pryce position
operator q = X + ﬁ (p X T+ impa) [14].

Spinors in the 1+ 1-dimensional case have two com-
ponents (6 =0, 1) and fixed spin. The corresponding
(un-normalized) wave function is [Eq. (15)]

©dp i ioE i
Ys(x,t,€ :/ L pmilt—ie)E,+ipx
wre= | Lk,

),
(44)

and satisfies the one-dimensional equation 0w (x,t) =
—ic10p(x,t) + mosy(x,1). Now o3 replaces y° when
calculating W (x, 7). Thus, ¥(x,1)¥(x,1) =5-[jwo(x.1.€)|*—
|W1 (x9t1€)|2}'

By performing the integration in Eq. (44) [27] it can be
explicitly proved (see Appendix B) that such a difference is
positive ¥ x, tif € > 0. And in the limit e — 0", we obtain,
for both ¥ (x, t)w(x,t) and w' (x, )y (x, 1),

z_ X2 <
(e, Dy (x, 1) = 4 7 (45)
0 X2 > 7,
tf_‘t)‘ﬁ x? <2,
i (x Dy (x. 1) = (46)

%E—Zm\/xz——? 2> 2
Therefore, Eq. (45) is positive in the time-like sector
and vanishes in the space-like region (see Fig. 1). In contrast,
Eq. (46) stays positive in the latter [ 17]. Itis also easy to show
that lim,_o(lim._o @ (x, 1, €)y(x, 1, €)) x (x).

In Ref. [13] the Schrodinger-like density of the scalar
version of Eq. (30) was interpreted as a space-time
probability density. In the present case the analogous
quantity is given by ¥(x,7)¥(x,7) x [ dmdm'¢*(m')x
d(m)e!" ") (x, 1)y, (x,1). In the 14 1-dimensional
case already discussed, and in the limit ¢ - 0" we find

27[ ze—i(m—m’)\/tz—)r2 X2<l2,
lpm’(x’[)l//in(x’t>: Ot —x (47)

2>

As a consequence, ‘i’(x, t,7)¥(x, t, ) vanishes outside the
light cone for any mass distribution ¢(m). Inside the light

100
80
60
40
20

FIG. 1. Contour plot of the invariant space-time density (45)
(top) and the Dirac density (46) (bottom), for m = mc/h = 1.
The first one vanishes in the space-like region (here x and ¢ = ct
are in units of A/mc).
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cone instead ¥(x.1.7)¥(x.1,7) x| @(r =V —x%) %,
where ®(7) indicates the Fourier transform of the function
¢(m). We see that the positive region of the density,
which corresponds to the inner part of the light cone, stays
positive under z evolution, whereas the outer part stays null.
Moreover, in the general case € > 0, ¥(x,t,7)¥(x,t,7) >0
for any mass distribution, as shown in Appendix B.

B. Electron-time entanglement

It is clear from Eq. (1) that if there is no correlation
between time and space-spin d.o.f. the evolution is trivial.
In Ref. [6] the concept of system-time entanglement was
introduced as a measure of distinguishable quantum
evolution, based on the entanglement between a system
and the reference clock. In this section we apply these
concepts to a particle with fixed mass, say an electron. In
the following we adopt the convention that every trace
over the spin has an additional y° (i.e., the usual product
is replaced by (¢’|o) =¢%, ). In order to quantify entan-
glement in the partition Hy @ Hg we introduce the
clock’s reduced density matrix pr by tracing on space
and spin d.o.f.:

1
pr=y- / drdt Pyt (x, Oy (x. 0|0 (7] (48a)

_ / %|a<p>||2|Ep><Epl

- / dp?(p)|p)p], (48b)
where  |E,) == [e7Eult)dr, |p) = [LE,) =

/$|Ep> and 2(p) =2 [dQ||a(p)||>, which are the

eigenvalues of py. It is now straightforward to compute
entanglement measures based on entropies of the reduced
density matrix of the clock.

1. Different Lorentz observers

Electron-time entanglement is not a Lorentz-invariant
quantity since boost operators act nonlocally. In the present
formalism space and time are both secondary variables
[15]. In order to calculate the clock density in a boosted
frame we first notice that Eq. (9) implies that the wave
function that corresponds to the new frame is

1 43 .
v (x) = / D 5o (M) (A~'p)ay (A1 p) i7",

(27)3% ] 2E,

where we have used the invariance of both p.x|,_g, and
& -
the measure ﬁ Then, using Eq. (48a),

El

3
= [ e (Rl ) () )
(49)

where F3*(p) = up'ST(A)S(A)uy. From the invariance of
Dirac’s normalization it follows that (see Appendix A)

F(A'p) = uy | ST(A)S(A)uy ) = 8,02y (50)

s
A'p

And finally the eigenvalues of p/ are simply
P -
P(p.0) =5 [a@ar o 61

2. Proper frame

As an example, we now compute explicitly the relative
entanglement, measured through the purity ratio

_ Jdp¥(p,v)

RO = Fapi(p.0)°

(52)

for an electron with the “proper” momentum distribution

€
la(p)]? ~ 4zmK, (em/2)

e—eEp/2’ (53)
where K; denotes the modified Bessel function, which
admits an analytic evaluation. Equation (51) allows
us to calculate Tr(p7) in every reference frame, with

(y=1/V1-1%)

A-lp)|2 = € ~$1(Ep—vpcos(0))
e T

The result is,
—eyEp /2

noting that A%(p,v) = mx

e sinh(eyvp/2) and using the integrals of Ref. [27],

1.0

0.8

0.6
a4

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

v/c

FIG. 2. The purity ratio (52) for an electron with the proper
distribution (53) in terms of wv/c for different values of
em (see text).
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27/[( 1(em) — K (yem)
y*vemK,(em)

R(v) =

This ratio is a decreasing monotonic function of v,
approaching 0 for » — 1, reflecting the increasing energy
spread which leads to a vanishing purity ratio in this limit
(see Fig. 2). On the other hand, for em — 0, R(v) — y~! =

V1—=12* (and [dpA*(p,v) = 1).

(54)

IV. CONCLUSIONS

We have proposed a history state formalism for deriving
Dirac’s theory. The present approach enables to describe
the theory within an explicit Hilbert space in a consistent
manner, with an invariant norm which ensures the standard
Dirac norm for the wave function. The approach holds for a
free particle as well as for a particle in a time (and mass)-
independent external potential in a certain reference frame.
In the presence of gravity, the formalism suggests, in
principle, that curvature effects may need to be considered
even in the Newtonian limit.

The inclusion of a second clock and an ensuing extended
history state allowed us to derive the previous invariant norm
precisely as that preserved by the evolution in the additional
parameter. The latter would lead in principle to interference
effects in a superposition of different mass states. We have
also discussed some particular related aspects, like the
invariant density and its positivity in the example consid-
ered, which vanishes in the space-like sector in the limit of a
localized state (eigenstate of the Pryce position operator), in
contrast with the Dirac density. We have also discussed the
system-time entanglement for a free Dirac particle, and
obtained analytic results for the purity ratio of the reduced
clock density matrix according to different observers for a
particular momentum distribution.

The ideas developed in this work can be easily extended
to Klein-Gordon theory. It could also constitute a suitable
approach for a many-particle theory, by considering
a properly extended single-particle space within a
covariant field theory. These extensions are currently under
investigation.
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APPENDIX A: DIRAC’S NORM

The invariance of the Dirac norm follows from the
conservation of charge and the transformation law of the
current yyty [28]:

[ axwtxwixn = [ ws, (An

with y'(x, 1) = S(A)w(A~'x). By expanding the wave
function of a free particle in the momentum basis, and
by using the property [22]

u{,‘v/)T ugf) = 5”/2Ep ,

we find

3
/d3xlp']'(x,t)w(X,t) = /%HG(P) :
with [la(p)||* = [ao(p)I* + |a(p)[|*-

From the invariance of both p.x|,_g, and the measure
2 E , the equality (A1) can be restated as

d*p d*p
wwwz/@@
/szP 2E,2Ey,

implying the relation

a,(p)Fy’ (p).

F5(p) = up ST A)S(A)uy = 5 2E .

where we have defined F3*(p) = upTS (A)S(A)uy,.

APPENDIX B: STATE EXPANSIONS
IN CONTINUOUS VARIABLES

We consider a complete continuous set of states {|p)}
spanning a space H and satisfying (p’|p) = 6(p — p’), and
a state of the form

W) = /¢(p)|p>dp,

satisfying (y|y) = [|¢(p)|*dp = 1. If E(p) is a monoto-
nous function of p, we can rewrite |y) as

v = [ dwe)
:/qmmw

>—w (B1)

(B2)

where ®(E) E))/\/|dE/dp| and |E) = |p(E))/
dE/dp
/|cI>(E)|2dE= 1, (E'|E) = 6(E-E).

The extension to states defined in H®" is apparent:
the change from n variables p; to n new independent
variables E;(p) proceeds in the same way, where
|Ey...E,) = |p1...,pa)/\/[J| and J is the Jacobian
J(E,,....E,)/O(py,..., p,). Note, however, that these
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states can be associated to different partitions of H®": if

Pi|pi) = pilpi), [Pi, P;] = 0, we may write py, ..., p,) =
Ip1)-..|pn) and similarly, |E,, ..., E,) = |E})...|E,), with
H;(p)|E;) = E;(p)|E;) and [H;, H| = 0.
Considering now states in ‘H ® H of the form
= /¢(p,Q)|pq>dpdq,
we obviously have (¥,|¥,) = [¢(p.q)¢»(p,q)dpdq.

And if ¢;(p.q) —9,(17 q)6(fi(p.q) -
finite overlap

c,-), we obtain a

(¥, |%,) = / 3P Q)0a(p. )51 (p.0) = 1)

x 8(f2(p.q) — c2)dpdq

=01(p.9)92(p.q)/ . (B3)
where J = 0(f1,f2)/9(p,q) and the final result is
evaluated at the intersection of both curves (assumed here
to exist and be unique; the extension to the general case is
straightforward). On the other hand, if f,(p,q)=

f2(p.q) = f(p.q), we obtain,

(¥|¥,) = /f]l(P»Q)gz(P’Q)‘S(f(P’Q) —cy)
x 8(f(p,q) — c;)dpdq

(e —Cz)/él(p,q)gz(p,q)dv/lfl’

(B4)

where the integral is along the curve f(p, q) = ¢, where
J=0(f,v)/(p,q) and v(p, q) is any function such that
|

(f.v) are independent variables. For instance dv/|J| =
dp/|f,| if v = p. Proper normalization of these states

would then imply [ g:(p. ¢)g:(p. q)dv/|J| = 1.
;) can be written as

|¥) = /g(p,Q)fS(f(p,q) —¢)lpg)dpdq

~ [ atp-a)lpado/is (B5)

= / g(p.a)lpa)dp/|f,l, (B6)

with the last two integrals over the curve f(p,q) =c,
which defines the function ¢(p) to be used in the last
integral. Moreover, we can also rewrite the last integral in
p)//|dq/dp|,

the more symmetric form [using |¢(p)) =
Egs. (B1) and (B2)],

) = / o(p. )P)pYdp/ JIf of

- / op.Qa)yda) JIf Sl (B7)

These expressions represent continuous Schmidt decom-
positions of |¥).

APPENDIX C: INVARIANT DENSITY

In order to prove that P(x,t,¢€)¥(x,t,€) is positive
for € >0, it is sufficient to show that F(x,t,¢):=
lwo(x,t,€)/w,(x,t,€)|*> > 1. By performing the integration
in Eq. (44) [27] we find

\/2_7r\/ X2 — (t—ie)? + i(t — ie)e™mV >~ (1=ie)’

X, I,€ = )
ol ) 2y/x* — (t —ie)?
(C1)
\/2_m'xe m/x*—(t—ie)?
wi(x, t€) = ,
24/x% = (t - ie)z\/\/x2 —(r—ie)* +i(r—ie)
(C2)
and hence,
Flrte) =14 2¢/f(x.1,€)(tsin(%) +ecos(§l) + flx, te) — (x* — € - tz)’ (©3)
X
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where f(x,t,€) =1/ (x> =€ —12)2 +4x2¢> and y(x,1,¢€) :=
arg(x? + € — 1* + 2iet). Notice that F(x,7,¢€) is indepen-
dent of m. Fore > 0 and r > 0, 0 <y < 7z while for r <0,
—n <y <0.Inboth cases #sin(%) > 0, cos(5) > 0. Then the
quotient in Eq. (C3) is clearly positive. On the other hand,
for  ¢e=0, y=0 and the quotient becomes
(|x* = 2| = (x*=1?))/x?, implying F(x, t,0) = 1 if |x| > ||

and F(x,1,0) =2£2/x*> =1 if |x| < |f|. From Eq. (44)
we notice, by performing the integral, that y{(x,7,e,m’) x
wolx,t,e,m) —yi(x,t,e,m’ )y (x,t,e,m) =yi(x,t,e,m") x
yi(x,t,e,m)(F(x,t,e)—1), with  F(x,t,¢) defined
in Eq. (C3). This implies W(x,t,7)¥(x,1,1) x
| [ dm@(m)e™ y(x,t,e,m)[*(F(x,1,¢) —1) >0  since
F(x,t€) > 1.
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