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Vortices of the SOð2Þ gauged planar Skyrme model with (a) only Maxwell, (b) only Chern-Simons,
and (c) both Maxwell and Chern-Simons dynamics are studied systematically. In cases (a) and (b), where
both models feature a single parameter λ (the coupling of the potential term), the dependence of the energy
on λ is analyzed. It is shown that the plots of the energy vs λ feature discontinuities and branches. In case
(c), the emphasis is on the evolution of the topological charge, taking noninteger values. Throughout, the
properties studied are contrasted with those of the corresponding Abelian Higgs models.
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I. INTRODUCTION

Solitons of the gauged Skyrme model, Skyrmions,
present much more complex properties than their Higgs
counterparts, e.g., the Abelian Higgs vortices in 2þ 1
dimensions [1], monopoles in 3þ 1 dimensions [2,3] and
monopoles in Dþ 1 dimensions [4]. One reason for this is
that the topological charge densities of gauged Higgs
systems can be systematically constructed with a top down
approach [4] by subjecting Chern-Pontryagin densities to
dimensional descent, while the topological charge densities
of gauged Skyrme models, as defined in Ref. [5], can be
constructed instead only with a bottom up approach.1

By gauged Skyrmion, we understand the soliton of a
SOðNÞ gauged OðDþ 1Þ sigma model2 in Dþ 1 dimen-
sional spacetime, or on RD, with D ≥ N ≥ 2, supporting
topologically stable solitons. In the case at hand, this is the
SOð2Þ gauged Oð3Þ sigma model. It is understood that the
vacuum of the gauged model is the same as the vacuum of
the gauge-decoupled model, such that the gauge symmetry

is not broken in the vacuum. This is in stark contrast to (all)
Higgs models, whose dynamics explicitly displays (gauge)
symmetry breaking.
Our purpose is to investigate the detailed properties of

SOð2Þ gauged Skyrmions whose dynamics is controlled by
a Maxwell (M) term, or a Chern-Simons (CS) term, or both
(MCS). The influence of the CS dynamics in the model
incorporating both Maxwell and Chern-Simons terms, was
studied recently3 in (Sec. IVof) Ref. [9]. There the emphasis
was laid on the (unusual) dependence of the energy on
the electric charge and the angular momentum. Here, by
contrast, our attention will be focused on the evolution
of the topological charge, which we recently considered in
[10] both for 2þ 1- and 3þ 1-dimensional SOð2Þ gauged
Skyrmions.
Topologically stable vortices of the SOð2Þ gauged planar

Skyrmion with Maxwell dynamics were first given by
Schroers [11] and later in Ref. [12]. The vortices con-
structed in [11] were self-dual, while the vortices presented
in [12]4 were solutions of second-order equations for a
model which in the gauge-decoupling limit reduced to the
(ungauged) planar Skyrme model. The definition of the
topological charge proposed in [11] was subsequently
extended to higher dimensions in Ref. [5]. (See also
Appendix B of [13], and references therein.) Employing
the Chern-Simons term as an alternative for the Maxwell
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1Indeed this bottom up approach can be applied also to Higgs
field systems [6]. In that case, the bottom up definition coincides
with the top down definition of the topological charge only for
the Higgs models on R2.

2The most general Lagrangian of a Skyrme model, whether
gauged or ungauged, consists of a potential term plus quadratic,
quartic, and up to 2D-atic kinetic terms. This is to satisfy the
Derrick scaling requirement.

3Similar models were used in Refs. [7,8], with various self-
interaction potentials, where the solutions were constructed
subject to no symmetries, where the effect of the Chern-Simons
term on the interaction of the solitons was investigated.

4An interesting question studied in [12] was the dependence of
the topological lower bound on the gauge coupling constant.
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dynamics was considered in Refs. [14–16], in analogy with
its Higgs counterpart studied in Refs. [17,18].
In the present work, we consider (a) the model whose

gauge dynamics is described by the Maxwell term,
namely the model studied in Ref. [11], (b) the model
whose gauge dynamics is described by the Chern-Simons
term, studied in Refs. [14–16], and (c) the model whose
gauge dynamics is described both by the Maxwell and the
Chern-Simons terms, e.g., as in [9], where the emphasis
was different.
We have two distinct but not unrelated objectives. The

first objective is to reveal the peculiar dependence of the
energy on a parameter in the model, that is typical of
gauged Skyrmions. This has been studied in the case of the
SOð3Þ gauged Skyrmion on R3, namely the Oð4Þ sigma
model, where the energy was plotted against the coupling
of the (quartic kinetic) Skyrme term. It was found in
[19,20] and in [21] that the energy profile exhibited
discontinuities and branches. This contrasts with the
corresponding Higgs model, namely the SOð3Þ gauged
Georgi-Glashow model supporting the monopole [2,3],
where the energy profile plotted against the coupling
strength of the Higgs self-interaction potential is shown
[22] to be continuous and monotonic and, as it happens,
flattens out for large Higgs coupling. The situation in the
case of the SOð2Þ gauged Higgs model on R2, namely the
Abelian Higgs model supporting vortices, is qualitatively
similar to the three-dimensional case. It is shown in
Ref. [23] that energy profiles plotted against the Higgs
coupling are continuous and monotonic and increase
logarithmically for large Higgs coupling. The correspond-
ing study for any SOð2Þ gauged Skyrmion in 2þ 1
dimensions, either with Maxwell [11], or with Chern-
Simons [14–16] dynamics, has not been carried out. This is
our first objective. Our analysis here will confirm that also
in the two dimensional case, some energy profiles exhibit
discontinuities and branches.
Our second objective, which from the viewpoint of

dynamics is the dominant one, is to track the evolution of
the topological charge in a given gauged Skyrme model.
(The relationship of the energy with the electric charge
and the spin are already studied in Ref. [9].) The gauge-
decoupled Skyrmion has integer “baryon number” which
is calculated as the volume integral of the winding
number density. Introduction of the SOð2Þ gauge field
alters the definition of the topological charge density, and
further, in the presence of Chern-Simons dynamics the
integral of the altered topological charge density departs
from the integer value. This mechanism is predicated on
the presence of the electric component of the gauge
potential, which in turn results from the presence of the
Chern-Simons term. (Not surprisingly, this mechanism is
also responsible for the unusual energy/electric charge
and energy/angular momentum dependence, which was
the subject of investigation in Ref. [9].)

The most general Lagrangian considered is

LðλÞ ¼ −
1

4
βF2

μν þ κελμνAλFμν −
1

8
τjD½μϕaDν�ϕbj2

þ 1

2
η2jDμϕ

aj2 − η4V½ϕ�: ð1Þ

In achieving our first objective, we employ the two
models: (a) with Maxwell term only, i.e., with κ ¼ τ ¼ 0
and (b) with Chern-Simons term only, i.e., with β ¼ τ ¼ 0.
We study the energy profiles plotted against the coupling
strength of the potential term, with special emphasis to the
first-order self-dual solutions in each case. The models
considered do not contain quartic kinetic “Skyrme” terms
since inclusion of these would prevent the saturation of the
topological lower bound, and the study of first-order
solutions is the main feature of these models.
To achieve our second objective, we employ the model

(c) incorporating both Maxwell and Chern-Simons terms,
i:e., with nonvanishing couplings β and κ in (1). This is the
simplest system which enables the tracking of the topo-
logical charge leading to its annihilation. We have however
incorporated the quartic Skyrme kinetic term as well with
coupling τ. The first reason is that the model in question
should, in the gauge decoupling limit, support the unga-
uged Skyrmion characterized by the “baryon number” prior
to gauging. This necessitates the inclusion of the quartic
Skyrme term. It turns out also, that the presence of this term
renders the numerical computations simpler. It is important
to note that to achieve this aim, the potential V½ϕ� is chosen
suitably as explained in Appendix C.
Our study of (a) the gauged planar Skyrmion with

Maxwell dynamics is presented in Sec. II, where we have
employed two different potentials. The first one is the
potential employed in Ref. [11] which allows the con-
struction of self-dual solutions. The second model we study
employs the “pion mass,” where solutions to the second-
order equations are constructed. The numerical integrations
here are simpler since the decay is exponential. In Sec. III,
we study (b) the model with (only) Chern-Simons dynam-
ics, where the new choice of potentials arises. In both
Secs. II and III, we have studied the solutions of the second-
order equations, in addition to those of the first-order
equations. In Sec. IV, the combined Maxwell–Chern-
Simons model (c) is studied, where there are only solutions
to the second-order equations. Throughout, the said proper-
ties are studied quantitatively using numerical methods. A
summary of our results is given in Sec. V. The topological
charge densities are defined in Appendix A, and the
resulting topological lower bounds on the energy densities
(Belavin inequalities) for Maxwell dynamics and for
Chern-Simons dynamics are presented in Appendixes B
and C, respectively. Since all the features revealed contrast
starkly with the corresponding features in Higgs models,
and since the crucial role is played by the topological
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charges and Belavin inequalities, we have inserted sub-
sections in each Appendix exposing the (familiar) defini-
tions for the corresponding Higgs models against which
their Skyrme counterparts are contrasted.
Before proceeding to the study of the three types of

models (a), (b), and (c), we state the results of symmetry
imposition, including the topological and global charges,
which are common to all types of models (a), (b), and (c).

A. Imposition of symmetry, topological,
and the global charges

Since the field content of the models studied in the next
three sections is the same one, we state the results of the
imposition of axial symmetry and the resulting charges here
in advance. The definitions of the topological charges prior
to the imposition of symmetry, are given in Appendix A.
For the definition of the familiar global charges, we refer
to Ref. [9].

1. Imposition of symmetry

The planar Skyrme model, namely the Oð3Þ sigma
model, is described by the Skyrme scalar ϕa ¼ ðϕα;ϕ3Þ
subject to the constraint jϕaj2 ¼ 1. The axially symmetric
Ansatz is

ϕα¼ sinfðrÞnα; ϕ3¼ cosfðrÞ; nα¼
�
cosnθ

sinnθ

�
; ð2Þ

where r is the radial coordinate, θ is the azimuthal angle,
and n is the winding number of the Skyrme scalar.
Imposition of symmetry on the SOð2Þ (Abelian) gauge

field Aμ ¼ ðAi; A0Þ μ ¼ i, 0, is achieved by the Ansatz

Ai ¼
�
aðrÞ − n

r

�
ðεx̂Þi ⇒ Fij ¼ −

a0

r
εij; ð3Þ

A0 ¼ bðrÞ ⇒ Fi0 ¼ b0: ð4Þ

The prescription of gauging employed is

Dμϕ
α ¼ ∂μϕ

α þ AμðεϕÞα; ðεϕÞα ¼ εαβϕβ; ð5Þ

Dμϕ
3 ¼ ∂μϕ

3; ð6Þ

and the covariant derivatives of ϕa are

Diϕ
α ¼ ðsin fÞ0x̂inα −

a sin f
r

ðεx̂ÞiðεnÞα;
D0ϕ

α ¼ b sin fðεnÞα; ð7Þ

Diϕ
3 ¼ ðcos fÞ0x̂i; D0ϕ

3 ¼ 0: ð8Þ

Anticipating the usual choice of boundary conditions
(A2) in the Appendix, the corresponding one-dimensional
conditions read

lim
r→0

fðrÞ ¼ π; lim
r→∞

fðrÞ ¼ 0; ð9Þ

consistent with the finiteness of the energy, as well as with
regularity at the origin. This choice of boundary values
means that we are excluding the choice of symmetry-
breaking potentials.5

Concerning the boundary values of the function aðrÞ in
(3) at the origin, regularity requires that

lim
r→0

aðrÞ ¼ n: ð10Þ

As for að∞Þ, the boundary values of the function aðrÞ at
infinity, this will be left free. This is in stark contrast with
usual6 Abelian Higgs model, where að∞Þ ¼ 0.

2. Topological charge

Calculating the integral of ϱ0 defined by (A5), subject to
(2) and (3), gives

R
ϱ0d2x ¼ −8πn. We, thus, denote the

topological charge density of the ungauged Skyrmion as

q0 ¼ −
1

8π

Z
ϱ0d2x ¼ n; ð11Þ

which is the “baryon number” n.
After gauging, the topological charge is given by the

density (A10) and (A11), and the resulting topological
charge is

q ¼ −
1

8π

�Z
ϱ0d2xþ 2εij

Z
∂i½ðϕ3 − vÞAj�d2x

�
: ð12Þ

When the choice v ¼ 1 is made, which as we have seen in
Appendix B is obligatory in the case when the Abelian
dynamics is controlled by the Maxwell term only, the
topological charge equals the “baryon number” n.
With all other values of v, the topological charge departs

from n. As seen in Appendix C, the choice of v ≠ 1 is
viable in models featuring a Chern-Simons term, and the
results obtained in the generic case are qualitatively the
same. Here, we have made the choice v ¼ 0 throughout, as
this is the simplest option.

5Such potenials lead to a magnetic flux, and such models were
considered in [24], investigating the relation of the magnetic flux
and spin. Recently symmetry-breaking potentials in 2þ 1 di-
mensions were employed in [25], where minimal energy multi-
solitons and their interactions were considered. This is not in
the scope of the present work.

6The usual Abelian Higgs (AH) model is the p ¼ 1AHmodel,
for which að∞Þ ¼ 0 is forced by the requirement of finite energy.
By contrast, all other AH models with p ≥ 2 can support finite
energy solutions [9] for að∞Þ ≠ 0.
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With v ¼ 0 the topological charge is

q ¼ −
1

8π

�Z
ϱ0d2xþ 2εij

Z
∂i½ðϕ3ÞAj�d2x

�
; ð13Þ

where the contribution of the second integral is not
necessarily vanishing.
Evaluating (13) subject to the symmetries (2) and (3)

gives rise to

q ¼ 1

2
ðnþ a∞Þ; ð14Þ

where a∞ ¼ að∞Þ. The expression (14) enables tracking
the evolution of the topological charge (“baryon number”)
by considering solutions with evolving values of a∞, i.e.,
where a∞ ≠ 0. It is important here to stress that this is a
strictly Skyrme theoretic mechanism, and is excluded by
Higgs theoretic dynamics. Notably, a∞ ¼ 0 for the usual
(p ¼ 1) Abelian Higgs (AH) model.7

3. Global charges

We will also consider the energy E and the angular
momentum J of these solutions. Their corresponding
expressions can be derived from the 00 and 0φ components
of the stress-energy tensor, respectively. Anticipating the
model studied in Sec. IV, the reduced one-dimensional
energy density of that model is

E ¼ 1

2

�
a02

r2
þ b02

�
þ τ

�
a2

r2
þ b2

�
f02sin2f

þ 1

2
η2
�
f02 þ

�
a2

r2
þ b2

�
sin2f

�

þ 1

32
λ

�
η3

κ

�
2

sin2fcos2f: ð16Þ

The reduced angular momentum density is

J ¼ a0b0 þ η2absin2f þ 2τabf02sin2f; ð17Þ

and the electric charge density is

ρe ¼ −
1

r
ðrb0Þ0 − 4κ

a0

r
; ð18Þ

derived from the Gauss Law equation.
The definitions of both angular momentum and electric

charge depend on the 0th component of the Abelian
connection A0, which in turn depends on the presence of
the Chern-Simons term.
The energy, the angular momentum and the electric

charge are then given by

E ¼ 2π

Z
∞

0

rEdr; ð19Þ

J ¼ 2π

Z
∞

0

rJ dr ¼ 4πκða2∞ − n2Þ: ð20Þ

Qe ¼ 2π

Z
∞

0

rρedr ¼ 8πκðn − a∞Þ: ð21Þ

In contrast to our conclusion in Sec. I A 2 above, where we
excluded the possibility of evolving topological charge of
the Higgs model analogues, the situation here relating to
(20) and (21) is different. This is because the definitions of
J and of ρe are independent of the scalar field content, i.e.,
Skyrme or Higgs. Thus, as long as the Higgs model
employed is a p-AH model with p ≥ 2, which supports
solutions with a∞ ≠ 0 like a Skyrme model, the evolutions
of the spin J, (20), and electric charge Qe, (21), can be
tracked. In Ref. [9], this was carried out in detail and the
corresponding evolutions of the energy with respect to Q
and J were tracked.

II. SOð2Þ GAUGED SKYRMIONS ON R2 WITH
MAXWELL DYNAMICS

The Lagrangian and the static Hamiltonian of the SOð2Þ
gauged planar Skyrme model with Maxwell dynamics are

L¼−
1

4
F2
μνþ

1

2
η2jDμϕ

aj2−η4V½ϕ3�; μ¼ 0; i; ð22Þ

H¼ 1

4
F2
ijþ

1

2
η2jDiϕ

aj2þη4V½ϕ3�; i¼ 1;2: ð23Þ

Two potential functions V½ϕ3� in (22) and (23) will be
considered.
Subjecting the static Hamiltonian (23) to the symmetry

(2) and (3), the resulting one-dimensional energy density
functional is

7It is, however, the case that vortices of the p ≥ 2 AH models,
alluded to in footnote 3 above, with a∞ ≠ 0 exist. This fact does
not lead to the evolution of the topological charge (the magnetic
vortex number μ). To see this we recall the expression for the
topological charge of the p-AH model, which is descended
[4] from the 2p-th Chern-Pontryagin density. In terms of the
radial functions aðrÞ and hðrÞ parametrizing the radially sym-
metric Uð1Þ field and the Higgs field ϕα ¼ hnα, in the notation of
Sec. I A 1 above, the expression for the topological charge
corresponding to (14) is

μ ¼ 1

2π

Z
d
dr

½ð1 − h2Þ2p−1a�dr ¼ ½ð1 − h2Þ2p−1a�r¼∞
r¼0

¼ að0Þ ¼ n; ð15Þ

since hð∞Þ ¼ 1. The topological charge of a p-Abelian Higgs
model cannot take any other value but the vortex number n.
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H ¼ 1

2

�
a02

r
þ η2

�
rf02 þ a2sin2f

4r

��
þ η4V½cos f�: ð24Þ

We study the vortices resulting from the use of the two
potentials

V ¼ 1

2
λð1 − ϕ3Þ2; ð25Þ

V ¼ λ0ð1 − ϕ3Þ: ð26Þ

Thepotential (25),with λ ¼ 1 leads to the saturation of the
topological lower bound of the energy. After imposition of
symmetry on (B8) and (B9), the two first-order ODE’s are

f0 ¼ −
a sin f

r
; ð27Þ

a0

r
¼ η2ð1 − cos fÞ: ð28Þ

This is the case studied in Ref. [11]. Here we will consider
vortices of models also with λ ≠ 1, by solving the second-
order equations of motion. We will seek to find the energy
profiles vs the real and positive parameter λ. These profiles
display discontinuities and branches.
The reason for considering the other potential, (26), is

that it is a rather natural choice resembling the “pion mass”
potential of the three-dimensional Skyrme model. (The
topological lower bound established (B7) for the potential
(25) remains valid in this case.) Clearly with this choice of
potential, only solutions to the second-order equations of
motion can be sought. A distinguishing feature of these
solutions is that they decay exponentially, in contrast to the
power decay in the case of potential (25).
A common feature between the solutions of the models

with potentials (25) and (26) is, that in both cases the
topological charge equals the winding number n, as seen
from (12) with v ¼ 1.
We are specially interested here in solutions with the

ranges of λ which are subject to the lower bounds (B11)–
(B12). Following Ref. [26], one can estimate numerically
the relative magnitude of the energy per unit vorticity n.

A. The solutions

Assuming power behavior in the r ≪ 1 region, we find

fðrÞ ¼ π þ fnrjnj þ oðrjnjþ2Þ; ð29Þ

aðrÞ ¼ nþ a2r2 þ oðr4Þ; ð30Þ

where n is a nonzero integer.
At infinity, the value fð∞Þ ¼ 0 is fixed by (9). How fðrÞ

decays at infinity depends on the potential employed.
a1: The choice of potential V ¼ 1

2
λð1 − ϕ3Þ2, (25), leads

to a power decay, given by

fðrÞ ¼
ffiffiffi
2

λ

r
1

r
þ � � � ; ð31Þ

aðrÞ ¼ a1

r
ffiffiffiffiffiffiffiffiffiffi
1þ2=λ

p
−1

þ � � � ; ð32Þ

for a∞ ¼ 0, and

fðrÞ ¼ f1
ra∞

þ � � � ; ð33Þ

aðrÞ ¼ a∞ þ 1

4
η2

f21
a∞ − 1

1

r2ða∞−1Þ þ � � � ; ð34Þ

for a∞ ≠ 0. For the quadratic potential (25) our numerical
resolution is lower. We have obtained solutions for λ < 1
which have a∞ ¼ 0 and self-dual solution for λ ¼ 1 which
have a∞ ≠ 0 [11]. The dependence of the energy on λ for
λ ≤ 1 is shown in Fig. 1. We see that in that region the
interaction between vortices is attractive. For λ > 1, the
numerical schemes seem to indicate that the solutions
might not exist, since their accuracy degenerates quite fast
as higher resolution is required. Those solutions do exist if
a Skyrme term is added to the theory, though. One can
produce solutions with nonvanishing a∞ for any value of λ
when the Skyrme term is present, but as soon as one tries to
remove it the convergence of the numerical schemes ceases,
indicating that the solutions in the limit without the Skyrme
term might not exist for λ > 1.
a2: The choice of potential V ¼ λ0ð1 − ϕ3Þ, (26), results

in the exponential decay, given by

fðrÞ ¼ f1ffiffiffi
r

p e−η
ffiffiffi
λ0

p
r þ � � � ; ð35Þ

aðrÞ ¼ a∞ þ a∞f21
4λ0r

e−2η
ffiffiffi
λ0

p
r þ � � � : ð36Þ

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
/(

2n
π)

λ

n=1
n=2
n=3

FIG. 1. E vs λ for (M) vortices with n ¼ 1, 2, 3, η ¼ 1=
ffiffiffi
2

p
for

the quadratic potential.
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In both (34) and (36), the value of a∞, on the other hand,
is generally fixed by the numerical process.
In Fig. 2 (left), we show the energy per vorticity E=n for

the vortices with the pion-mass potential (26). We observe
there is a limiting value of the coupling constant of the
potential given by

λ0 ¼ n − 1

n
: ð37Þ

For n ¼ 1, the limiting value coincides with the minimal
value of λ0 (zero) but for n > 1 it corresponds to the
maximal value of λ0. For these solutions a∞ ranges for 0 to
n. The dependence of a∞ on λ0 is exhibited in Fig. 2 (right).

III. SOð2Þ GAUGED SKYRMIONS WITH CHERN-
SIMONS DYNAMICS IN 2 + 1 DIMENSIONS

Apart from its intrinsic interest, the main motivation for
considering models whose Abelian field dynamics is
described by Chern-Simons term in the Lagrangian, is that
it enables the choice of a potential in which the constant v
may take values v ≠ 1. This potential is given inAppendixC
by (C8) and the topological lower bound resulting from the
Belavin inequality (C9) remains valid for any value of v. In
the present work, we opt for the simplest such value v ¼ 0.
As a result, the topological charge defined by (A10) in
Appendix A, with v ¼ 0, results in the expression (14) for
the topological charge.
Equation (14) enables the tracking the evolution of the

topological charge, by tracking the evolving values of a∞
that parametrize the solutions. We will find that for the
model in this section the values of a∞ do not result in the
dissipation of the topological charge, so we defer this
question to the study of the model with both Chern-Simons
and Maxwell dynamics in the next section. In the present

section, we restrict our considerations to the intrinsic
properties of the solutions.
The Lagrangian and its static Hamiltonian studied in this

section are defined by (C1) and (C4), respectively, in both
of which the potential V½ϕ� is given by (C12). The static
(energy) density employed in this model is (C4), which is
seen from (C9) to be bounded from below by the topo-
logical charge. The static Hamiltonian is

HðλÞ ¼ 4

�
κ

η

�
2 F2

ij

jϕαj2 þ
1

2
η2jDiϕ

aj2

þ λ

32

�
η3

κ

�
2

jϕαj2ðϕ3 − υÞ2: ð38Þ

What is different here, contrasting with the Maxwell case
above, is that the value of the real constant v is not restricted.
This is obvious since the potential term in (38) would vanish
at infinity for any value of v since jϕαj2ð∞Þ ¼ 0.
Another striking difference here, contrasting with the

Maxwell case above, is that in this case the second-order
equations of motion are solved by the first-order
equations (C10) and (C11) for any value of v for the self-
dual case λ ¼ 1. As seen from (A10), only when the choice
v ¼ 1 is made, is the topological charge equal to thewinding
numbern. For all other values ofv ≠ 1 the topological charge
of the gauged system departs from n and depends on a∞.
After imposition of symmetry using the Ansatz (2) and

(3), (38) reduces to the one-dimensional density

HðλÞ ¼ 8

�
κ

η

�
2 a02

rsin2f
þ 1

2
η2
�
rf02 þ a2sin2f

4r

�

þ λ

32

�
η3

κ

�
2

rsin2fðcos f − υÞ2: ð39Þ
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FIG. 2. Left panel: E vs λ0 for (M) vortices with n ¼ 1, 2, 3, η ¼ 1=
ffiffiffi
2

p
for the ‘pion-mass’ potential. Right panel: a∞ vs λ0 for the same

vortices.
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When λ ¼ 1 the second-order equations of motion are
solved by the first-order equations

f0 ¼ a sin f
r

; ð40Þ

κa0 ¼ −2rUsin2f; ð41Þ

where the function U in (41), given by (C7), reduces to

U ¼ 1

8

�
η

κ

�
ðcos f − υÞ: ð42Þ

These self-dual solutions were constructed in [16]. Here, we
seek solutions to the second-order equations, with λ ≠ 1.
We will restrict our quantitative considerations to the

models with v ¼ 0 since this is the simplest case of v ≠ 1,
this being the case of interest from the viewpoint of tracking
the evolution of the topological charge. The model with
v ¼ 1 has been studied in Ref. [27].8

Proceeding with the study of the v ¼ 0 model, the
expansions at the origin for this solutions read

aðrÞ ¼ nþ η2b0f2n
8ðnþ 1Þκ r

2ðnþ1Þ þ � � � ; ð43Þ

bðrÞ ¼ b0 þ
η2f2n
8κ

r2n þ � � � ; ð44Þ

fðrÞ ¼ π þ fnrn þ � � � : ð45Þ

Concerning the asymptotic behavior, the situation is
more complicated. We have to distinguish between two
cases: a∞ > n and a∞ < n (a∞ ¼ n is a singular case). For
a∞ > n, we have a power decay in a 1=r resulting in

aðrÞ ¼ a∞ −
1

128

λ

a∞ − 1

η6

κ3
f21

1

r2ða∞−1Þ þ � � � ; ð46Þ

bðrÞ ¼ 1

16

η3

κ2
λ −

1

8κ
η2f21

1

r2a∞
þ � � � ; ð47Þ

fðrÞ ¼ f1
ra∞

þ � � � : ð48Þ

For a∞ < n, the functions decay exponentially. The
corresponding expressions are quite involved so we will
not reproduce them here.
This change in the asymptotic behavior is reflected on

the dependence of the energy on a∞. In Fig. 3 (left), we
represent the energy E vs the parameter a∞ for SOð2Þ
gauged Skyrmions with CS coupling constant κ ¼ 1, λ ¼ 1
and vorticities n ¼ 1, 2, 3, 4. For a∞ > n the energy
becomes E ¼ 2πðnþ a∞Þ, namely, it saturates the topo-
logical lower bound. Whereas for a∞ < n the dependence
of the energy on a∞ is different. Such solutions, which may
be considered to be sphalerons, were not sought in [27] in
the case of the model with v ¼ 1.
Although the transitions from a∞ < n to a∞ > n look

continuous at the level of the energy (with change in the
slope at a∞ ¼ n), it is not so in fact. If one looks at the
quantity b∞, we can observe a jump at a∞ ¼ n. We show
this in Fig. 3 (right), for the set of solutions with n ¼ 4
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FIG. 3. Left panel: E vs a∞ for (CS) vortices with n ¼ 1, 2, 3, 4, η ¼ 1, κ ¼ 1 and λ ¼ 1. Right panel: b∞ vs a∞ for (CS) vortices with
n ¼ 4, η ¼ 1, κ ¼ 1 and λ ¼ 1.

8The emphasis there was in the dependence of the energy per
unit vortex number n on the parameter λ. In comparison with the
Abelian Higgs model, studied in Ref. [26], the results were
qualitatively similar. Unlike the latter, however, where the
solutions had boundary value a∞ ¼ 0, in this model a continuous
family of solutions parametrized by a∞ ≠ 0 was constructed.
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shown in Fig. 3 (left). Notice that above a∞ ¼ n, b∞ is
constant [and equal to the leading term of Eq. (47)].
We finally show the dependence of the energy on λ. That

behavior depends on the value of a∞ chosen. For a∞ < 1,
we have the standard pattern where the curves for several
vorticities do not cross each other, resulting in an attractive
phase (see Fig. 4 for a∞ ¼ 0). However, for a∞ > 1
solutions with n < a∞ end up crossing other curves. We
see that the situation here, for the pure Chern-Simons
model with v ¼ 0 is much less transparent than in the
corresponding model with v ¼ 1 [27], and in the corre-
sponding Higgs model [26]. We do not pursue this line
further.

IV. SOð2Þ GAUGED SKYRMIONS WITH
MAXWELL–CHERN-SIMONS DYNAMICS

IN 2 + 1 DIMENSIONS

While in the previous two sections our attention was
focused on the energy profiles vs λ, the dimensionless
constant parametrizing the coupling of the potential, here
instead we focus on the evolution of the topological charge
in a given Maxwell–Chern-Simons–Skyrme theory. The
topological lower bound for this model follows immedi-
ately from the topological lower bound (C9) given in
Appendix C for the model with Chern-Simons dynamics
only, since adding the Maxwell term to the Lagrangian does
not invalidate the ensuing topological lower bound (C9). In
particular as elsewhere in this work, we will select the
simplest option v ≠ 1, namely v ¼ 0.
As can be seen from the Lagrangian (C1), it does not

contain a quartic (“Skyrme”) kinetic term. We add such a
term nonetheless, so that in the gauge decoupling limit a
topological lower bound persists. The soliton of the
ungauged system is stabilized by the “baryon number,”

the departure of the topological charge from which is what
we aim to track.
We will find out, in fact, that the evolution of the

solutions can result in the total annihilation of the topo-
logical charge.
The model is described by the Lagrangian

LðλÞ ¼ −
1

4
F2
μν þ κελμνAλFμν −

1

8
τjD½μϕaDν�ϕbj2

þ 1

2
η2jDμϕ

aj2 − η4V½ϕ�; ð49Þ

in which the potential V½ϕ� is that given by (C8),
with v ¼ 0.
This choice of V½ϕ� is predicated by our desire to avail

of the topological lower bound (C9), where the charge
density is that given by (A10), or, by (A8). This
topological lower bound is not invalidated by adding
the Maxwell term to the Lagrangian (C1) which results
in the addition of a positive definite contribution to the
static density (C2).
While in the absence of the Maxwell term the electric

component of the Abelian potential A0 could be solved
using the Gauss Law equation, (C3) in Appendix C, here
this is not possible. So in the imposition of symmetry,
the function bðrÞ in (4) appears explicitly in the one-
dimensional reduced Lagrangian, which results in

−r−1L ¼ 1

2

�
a02

r2
− b02

�
−
2κ

r
½ðab0 − ba0Þ − nb0�

þ τ

�
a2

r2
− b2

�
f02sin2f

þ 1

2
η2
�
f02 þ

�
a2

r2
− b2

�
sin2f

�

þ 1

32
λ

�
η3

κ

�
2

sin2fcos2f; ð50Þ

in which the potential term is multiplied by the real positive
parameter λ, in order to allow for generic values of the
potential coupling constant.
The second-order equations of (50) are solve subject to

the boundary values

lim
r→0

fðrÞ ¼ π; lim
r→0

aðrÞ ¼ n; lim
r→0

b0ðrÞ ¼ 0; ð51Þ

lim
r→∞

fðrÞ¼ 0; lim
r→∞

aðrÞ¼ a∞; lim
r→∞

bðrÞ¼ b∞; ð52Þ

where a∞ is not necessarily zero and b∞ is a free parameter
that allows us to vary the electric charge of the solutions
within a concrete model (i.e., choice of the parameters in
the Lagrangian). Notice that a∞ is numerically related
to b∞.
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FIG. 4. E vs λ for (CS) vortices with n ¼ 1, 2, 3, η ¼ 1, κ ¼ 1
and a∞ ¼ 0.
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A. Numerical results

The field equations resulting from (50) cannot be
integrated analytically and one has to resort to numerical
methods to carry out that task. Given a concrete theory
(e.g., fixed κ, τ, η, and λ) and a fixed winding number n,
there is just one free parameter to be varied. As said above
we use b∞ as such a parameter, a∞ being numerically
related to b∞. In Fig. 5 we show the relation between b∞
and a∞ for a generic solution (n ¼ 1, λ ¼ 1.6, η ¼ 1,
κ ¼ 1, and τ ¼ 1). We observe that b∞ is bounded while
a∞ seems not to be.9 That indicates that there exist
solutions with arbitrarily large (positive or negative) values
of the topological charge q. The same holds for the electric
charge Qe and the angular momentum J. Concerning the
energy E, it diverges as ja∞j gets larger and larger. In fact,
we know already from our results in Ref. [9] that due to the
dependence between a∞ and b∞, the dependence of the
mass/energy E on the global charges is nonstandard,
namely the dependence on the electric charge Qe and
the angular momentum J displayed, respectively (left and
right panels), in Fig. 6.
Let us analyze the effect of the topological charge q on

the energy E. In Fig. 7 (left), we represent the energy per
unit winding number n vs the topological charge for three
values of n for the same parameters as in Fig. 5. For small
values of the Skyrme constant τ the minimum of the energy
occurs at values of the topological charge around the
winding number. However, when higher values of τ are
considered the minimum of the energy occurs at values
clearly different from the winding number. This is shown in

Fig. 7 (right), where the minimum of the curve for n ¼ 1,
τ ¼ 10 is located at q ≈ 0.556. In the limit of large τ the
minimum of the energy occurs at q ¼ n=2, as shown in
Fig. 8. So the minimum takes place within the range
q ∈ ½n=2; n�. Concerning the stability of these solutions,
one would be tempted to state that most stable solution
would correspond to that with less energy, which according
to Fig. 7 (right) does not possess integer topological charge,
in general.

V. SUMMARY AND DISCUSSION

We have made a systematic study of SOð2Þ gauged
planar Skyrmions in 2þ 1 dimensions. The models in
question feature (a) Maxwell (only), (b) Chern-Simons
(only) and (c) (both) Maxwell and Chern-Simons dynam-
ics. The studies in (a) and (b) are aimed at exposing
discontinuities and branchings in the energy profiles of
such solutions, which were encountered in the solutions to
the SOð3Þ gauged Oð4Þ Skyrme model on R3. These were
shown in Refs. [19,20,21] and are expected to be typical
features of all gauged sigma model, in contrast with
(gauged) Higgs models where energy profiles are always
continuous and exhibit monotonic behavior.
In case (a), pertaining to Maxwell dynamics (only), we

have studied the model (a1) with potential (25) that
supports self-dual solutions of first-order equations, and
the model (a2) with a “pion mass” potential which has
solutions to the second-order equations only. The energy
profiles of both models exhibit nonmonotonic features.
The solutions we found in the model (a1) are charac-

terized by a∞ ¼ 0, for the coupling constant λ < 1, λ ¼ 1
corresponding to the self-dual solution. However, when the
model is augmented with the quartic (Skyrme) kinetic term
(τ >≠ 0), we find solutions with any λ and a∞ ≠ 0. Not
surprisingly the quartic term, which has a smoothing effect,
becomes singular in the limit τ → 0. The energy profiles for
τ ¼ 0 are given in Fig. 1, which while they do not exhibit
branches and look smooth, they do stop at λ ¼ 1.
The solutions of the model (a2) with potential (26)

exhibit more marked discontinuities in the energy profiles,
which range from zero to some finite value of the coupling
λ0 as shown in Fig. 2 (left) for n ¼ 1, 2, 3. The behavior of
these profiles is typified by the value of a∞, which emerges
from the numerical process. These latter are exhibited in
Fig. 2 (right). The end point of each of these profiles is
observed to coincide with the value of the coupling

λ0 ¼ n − 1

n
:

In case (b), pertaining to Chern-Simons dynamics (only),
we have studied only one model. This model, typified by a
potential term exhibiting no constant, i.e., v ¼ 0 in (38).
This choice was made in anticipation of selecting the
desired model (c), subsequently studied in Sec. III. The
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FIG. 5. b∞ vs a∞ for (MCS) vortices with n ¼ 1, λ ¼ 1.6,
η ¼ 1, κ ¼ 1, and τ ¼ 1.

9We have found certain regions in the parameter space where
a∞ could not be increased or decreased arbitrarily. However, it
was not clear whether that fact was due to the actual absence of
solutions or to a difficulty of the methods used to find them.
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solutions here present a more complex pattern, occasioned
by two different asymptotic behaviors characterized by
a∞ > n and a∞ < n. When a∞ > n, the functions decay
with a power behavior, while when a∞ < n they decay
exponentially, solutions with a∞ ¼ n being singular. It is
noteworthy to point out that the exponentially decaying
solutions with a∞ > n, the energy has the constant value

E ¼ 2πðnþ a∞Þ;

as seen from Fig. 3 (left). While the transition from the
a∞ < n to the a∞ > n solution looks smooth in this plot, it

is in fact discontinuous, as seen from Fig. 3 (right) showing
the relation of a∞ and b∞ for n ¼ 4, where the jump at
n ¼ 4 is seen.
Concerning the energy profiles vs the coupling λ in this

case, (b), we have plotted these in Fig. 4 for the solutions
a∞ < n. These E=n profiles are smooth and they do not
cross at the self-duality point λ ¼ 1, hence the system
describes solutions exclusively in the attractive phase. In
this respect, these solutions differ from those of the vortices
of the Abelian Higgs model, where both attractive and
repulsive phases occur, and also, from vortices [27] of the
Chern-Simons–Skyrme model with v ¼ 1 rather than the
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FIG. 6. Left panel: Energy E vs electric charge Qe for (MCS) vortices with n ¼ 1, λ ¼ 1.6, η ¼ 1, τ ¼ 1, and κ ¼ 1, 5, 10. Right
panel: Energy E vs angular momentum J for the same vortices.
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v ¼ 0 model studied here. The situation is different for the
a∞ > n solutions, in which case curves of different
vorticity do seem to cross, or at least meet. This completes
our first task, namely the investigation of discontinuities
and branchings in the energy profiles of gauged (planar)
Skyrmions, employing models featuring only Maxwell and
only Chern-Simons dynamics, in turn, and, in the absence
of the quartic Skyrme kinetic term.
In carrying out our second task, namely the tracking of

the topological charge with changing energy, we proceeded
to the third case (c). The system studied contains both
Maxwell and Chern-Simons dynamics.10 Such a system
was studied in Sec. IV of Ref. [9], albeit with a different
(Skyrme) potential term. There, the emphasis was on the
nonstandard dependence of the global charges, electric
charge and spin, while here, the emphasis is on the evolution
of the topological charge and its dependence on the energy.
The choice of potential in the present work, is motivated by
our desire to influence the topological charge.As can be seen
from the definition (A10) of topological charge, if v ¼ 1 as,
e.g., in the “pion mass” potential, the integral of the charge
density will yield the winding number n, as in the gauge-
decoupled case. Here, we have adopted a potential featuring
the value v ¼ 0, which does not force the topological charge
to take the value n. This potential is inspired by Chern-
Simons dynamics, arrived at via the Belavin inequalities
presented in Appendix C.
In case (c) here, we have included also the quartic

(Skyrme) kinetic term with coupling strength τ, since we

require that our model support solitons [28] in the gauge-
decoupling limit.
The mechanism giving rise to the features found in [9],

and here, is the same one, namely, the effect of the Chern-
Simons dynamics. Technically, this is due to the intertwin-
ing of the magnetic and electric functions a and b present in
the Chern-Simons density, the asymptotic values a∞ and
b∞ of which characterize the solutions in any given model.
In the present case, the relation between a∞ and b∞ is
displayed in Fig. 5, which corresponds to Fig. 6 in Ref. [9].
The latter result in the nonstandard dependence of the
energy on the global charges featured in Figs. 7 and in
8 in [9]. The model studied in [9] featured the “pion-
mass” potential, while the potential used here is (C8) (with
v ¼ 0) employed in (49). For completeness, we reproduce
these results for the system studied here, in Figs. 6 (left)
and 6 (right).
The most interesting result in the present work is

the dependence of the topological charge on the energy.
In Figs. 7 (left), 7 (right), and 8, we observe that the
topological charge evolves, taking values different from
the “baryon number” n, or the winding number, due to the
effect of the gauge field. We observe that in the absence of
the quartic kinetic (Skyrme) term (τ ¼ 0) the energetically
favored states occur at the value of the topological charge
coinciding with the winding number. When the Skyrme
term is switched on, the energetically favored states appear
at smaller values, down to one half of the winding number
for large τ. Also in the limit of large τ, we find a clear
asymmetry between positive and negative values of the
topological charge q. For large positive values of q the
energy becomes independent of the winding number n,
whereas for large negative values of q the gap in energy
between curves with consecutive values of n does not
depend en n; i.e., the curves are equispaced.
The present work is entirely devoted to the study of

gauged Skyrmions in 2þ 1 dimensions. Of special interest
is the influence of Chern-Simons dynamics which results in
the nonstandard behavior of the energy on global charges,
as reported in [9]. Going further, in the present work we
investigate the effect of the Chern-Simons dynamics on the
evolution of the topological charge. We expect that these
effects are not limited to the 2þ 1-dimensional Skyrmions,
but they feature also in higher dimensions.
In a recent article [10], SOð2Þ gauged Skyrmions in both

2þ 1 and 3þ 1 dimensions were studied. It was found
there that in the 3þ 1-dimensional case, where there is no
usual11 definition of a Chern-Simons density, these new
effects were not observed. In the context of 3þ 1 dimen-
sions, however, there do exist Chern-Simons densities,
namely, the Higgs–Chern-Simons densities (also defined
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FIG. 8. E vs q for (MCS) vortices with n ¼ 1, 2, 3, λ ¼ 1.6,
η ¼ 1, κ ¼ 1, and τ ¼ 1000.

10Such systems, (c), studied here and in [9], do not result in
energy profiles exhibiting discontinuities and singularities. The
solutions are even smoother, when the quartic kinetic Skyrme
term is added.

11Skyrme–Chern-Simons densities, proposed in [13], can be
defined in even dimensions, but a systematic (numerical) study of
this has not been attempted to date.
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in [13]), whose dynamics does result in the nonstandard
relation of energy and global charges. Thiswas demonstrated
for the SOð5Þ and SUð3Þ Yang-Mills–Higgs monopoles in
Refs. [29,30]. It is important in this connection, that Higgs–
Chern-Simons dynamics cannot lead to the evolution of
topological charge observed here for gauged Skyrmions
influenced by Chern-Simons dynamics.
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APPENDIX A: TOPOLOGICAL CHARGE OF
SOð2Þ GAUGED Oð3Þ SKYRME SYSTEM ON R2

The definition of the topological charge is independent of
the dynamics of the gauge field. The definitions given in this
Appendix, apply to the following Appendixes B and C,
pertaining, respectively, to Maxwell and Chern-Simons
dynamics.
The topological charge for the SOðNÞ gauged OðDþ 1Þ

Skyrme system on RD, with 2 ≤ N ≤ D, is given in [5] and
is reviewed in Appendix B of Ref. [13]. In the case D ¼ 2,
this definition coincides with that of Ref. [11]. Here, we
revisit the D ¼ 2 case for completeness and with more
detail.
The Oð3Þ sigma model(s) are described by the scalar

field ϕa, a ¼ α; 3; α ¼ 1, 2, which is subject to the
constraint

jϕaj2 ¼ 1: ðA1Þ
From the outset, we restrict our attention strictly to
topologically stable Skyrmion solutions, which are char-
acterized by the asymptotics,

lim
r→0

ϕ3 ¼∓ 1; lim
r→∞

ϕ3 ¼ �1: ðA2Þ

Moreover, in what follows, we will restrict to the upper
signs in (A2), for simplicity.
The prescription of gauging employed is

Diϕ
α ¼ ∂iϕ

α þ AiðεϕÞα; ðA3Þ
Diϕ

3 ¼ ∂iϕ
3; ðA4Þ

such that the component ϕ3 is gauge invariant.
The winding number density prior to gauging is

ϱ0 ¼ εijε
abc∂iϕ

a ∂jϕ
bϕc; ðA5Þ

which is essentially total divergence but is gauge variant,
while the density

ϱG ¼ εijε
abcDiϕ

a Djϕ
bϕc; ðA6Þ

is gauge invariant but is not a total divergence. Thus,
neither qualifies as a topological charge density.
However, (A5) and (A6) are related through

ϱG ¼ ϱ0 þ 2εij∂iðϕ3AjÞ − εijϕ
3Fij: ðA7Þ

Collecting the two gauge invariant terms together, and the
two total divergence terms together, we propose two
equivalent definitions for a topological charge density

ϱ̃ ¼ ϱ0 þ 2εij∂i½ðϕ3ÞAj� ðA8Þ

¼ ϱG þ εijðϕ3ÞFij: ðA9Þ

The first line, (A8), is manifestly a total divergence while
the second line, (A9) is manifestly gauge invariant. Both
are gauge invariant and total divergence, and are candidates
for topological charge densities.
It is clear that the definitions (A8) and (A9) can be

extended by adding to (or subtracting from) each, the first
Chern-Pontryagin density12 εijFij, which is both total
divergence and gauge invariant. Subtracting εijFij ¼
2εij∂iAj, with a real constant coefficient υ, results in the
most general definition of the topological charge

ϱ ¼ ϱ0 þ 2εij∂i½ðϕ3 − υÞAj� ðA10Þ

¼ ϱG þ εijðϕ3 − υÞFij: ðA11Þ

Our considerations are restricted strictly to Skyrmion
asymptotics (A2), mostly to the upper signs there, through-
out. For the purpose of establishing Belavin inequalities,
definition (A11) for the topological charge will be
employed, while (A10) will be employed to evaluate the
topological charge itself.

1. Topological charge of SOð2Þ gauged
Higgs system on R2

Here, we return to the definition of the topological
charge of the SOð2Þ gauged Higgs scalar, in a manner
analogous to what was described above for the Oð3Þ
Skyrme system. The systematic way to achieve this is to
subject a Chern-Pontryagin (CP) density to dimensional
descent to the desired dimension, in this case R2. (See [4]
and references therein.)
This alternative approach was proposed in [6] for the

Higgs systems on R2 and R3. Here, we present only the
case in R2.

12This can be done in every even-dimension D ¼ 2n with the
nth Chern-Pontryagin density.
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The covariant derivative of the complex Higgs scalar
φ ¼ ϕ1 þ iϕ2, written for the real doublet ϕa, a ¼ 1, 2 is

Diϕ
a ¼ ∂iϕ

a þ AiðεϕÞa: ðA12Þ
In analogy with (A5) and (A6), we define the winding
number density prior to gauging

ϱ0 ¼ εijε
ab∂iϕ

a ∂jϕ
b; ðA13Þ

which is essentially total divergence but is gauge variant,
and its covariantized version,

ϱG ¼ εijε
abDiϕ

a Djϕ
b; ðA14Þ

which is gauge invariant but is not a total divergence. Thus,
neither qualifies as a topological charge density.
The relation between ϱ0 and ϱG, analogous with (A7) is

ϱG ¼ ϱ0 − εij∂iðjϕaj2AjÞ þ
1

2
εijFijjϕaj2; ðA15Þ

from which we deduce the two definitions of the topo-
logical charge density

ϱ̃ ¼ ϱ0 − εij∂i½jϕaj2Aj� ðA16Þ

¼ ϱG −
1

2
εijjϕaj2Fij: ðA17Þ

analogous with (A8)–(A17).
Finally, we add η2 times the 1st CP density 1

2
εijFij to

state the final result

ϱðηÞ ¼ ϱ0 þ εij∂i½ðη2 − jϕaj2ÞAj� ðA18Þ

¼ ϱG þ 1

2
εijðη2 − jϕaj2ÞFij: ðA19Þ

Here, the real constant η has dimension ½L−1� like the Higgs
scalar, unlike the dimensionless constant v above, (A10)
and (A11), for the Skyrme scalar.

APPENDIX B: TOPOLOGICAL LOWER BOUND
FOR SOð2Þ GAUGED SKYRMIONS IN 2+ 1

DIMENSIONS WITH MAXWELL DYNAMICS

The static Hamiltonian considered is the SOð2Þ gauged
planar Skyrme scalar with Maxwell dynamics,

Hð1Þ ¼
1

4
F2
ij þ

1

2
η2jDiϕ

aj2 þ η4V½ϕ3�; ðB1Þ

where η is a constant13 with dimension L−1 and V½ϕ3� is the
(dimensionless) potential, which will be determined after

requiring that (B1) is bounded from below by either the
topological charge density (A9) or (A11).
The inequality giving rise to the ϱG term in (A9) [or

(A11)] is

jDiϕ
a − εijε

abcDjϕ
bϕcj2 ≥ 0 ⇒ jDiϕ

aj2 ≥ ϱG; ðB2Þ

and to reproduce the other term in (B1), we consider the
inequality

ðεijFij − η2UÞ2 ≥ 0 ⇒ F2
ij þ

1

2
η4U2 ≥ η2εijFijU; ðB3Þ

for some real gauge invariant function U½ϕ3� to be
determined via the inequalities (B2) and (B3), which in
turn imply the following Belavin inequality,

1

4
F2
ij þ

1

2
η2jDiϕ

aj2 þ 1

8
η4U2 ≥

1

2
η2
�
ϱG þ 1

2
εijFijU

�
:

ðB4Þ

Requiring that the right-hand side of (B4) to be identified
with the topological charge density (A11) fixes U½ϕ3� as

U ¼ 2ðϕ3 − υÞ: ðB5Þ

Finally, identifying the left-hand side of (B4) with the static
Hamiltonian (B1) fixes the potential V ¼ 1

8
U2,

V½ϕ3� ¼ 1

2
ðϕ3 − υÞ2: ðB6Þ

So far, the value of the constant v is not fixed. It is clear that
with (the upper sign of) Skyrme asymptotics (A2), the
energy integral resulting from the left-hand side of (B4)
will diverge except when one chooses v ¼ 1.
The topological charge is conveniently evaluated using

the expression (A10), which in this case will get its value
from the integral of the first term ϱ0 only, since the second
term vanishes at infinity by virtue of (A2) (upper sign).
Thus, the topological charge of these vortices is equal to the
“baryon number” of the planar Skyrmion in the gauge-
decoupled limit.
The lower bound on the static Hamiltonian (B1) is

now

Hð1Þ ¼
1

4
F2
ijþ

1

2
η2jDiϕ

aj2þ1

2
η4ðϕ3−1Þ2 ≥ 1

2
η2ϱ; ðB7Þ

which is saturated when both inequalities (B2) and (B3)
are themselves saturated, resulting in the two first-order
equations,

Diϕ
a ¼ εijε

abcDjϕ
bϕc; ðB8Þ

13η is introduced for the purpose of keeping track of the
dimensions of each term in all theOð3Þ sigma models considered,
and is set equal to a given value in the numerical calculations.
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Fij ¼ η2εijðϕ3 − 1Þ; ðB9Þ

which solve the second-order equations.
This lower bound is not invalidated if the potential (B6) is

replaced by another potential which is everywhere (within
the acceptable range of values [ϕ3ð0Þ ¼ −1;ϕ3ð∞Þ ¼ 1Þ]
larger than (B6). A natural example is the “pion mass”
potential V ¼ 1 − ϕ3.
More interesting, however, is the choice

V½ϕ3� ¼ 1

2
λðϕ3 − 1Þ2; λ > 0: ðB10Þ

Denoting the resulting static Hamiltonian defined in terms
of the potential (B10) asHðλÞ, the lower bound correspond-
ing to (B7) now reads

HðλÞ >
1

2
η2ϱ; λ > 1; ðB11Þ

>
1

2
η2λϱ; λ < 1; ðB12Þ

following the analysis given in Ref. [26] for the Abelian
Higgs model.

1. Topological lower bound for the Maxwell-Higgs case

Our reason for considering the Higgs vortices analogous
with the Skyrme vortices is to emphasize the marked
difference between these. We have in mind here the usual
Abelian Higgs model whose static Hamiltonian is

H ¼ 1

4
F2
ij þ

1

2
jDiϕ

aj2 þ 1

8
ðη2 − jϕaj2Þ2; ðB13Þ

where the constant14 η is the VEV of the Higgs field.
The inequalities analogous with (B2) and (B3) in this

case are

jDiϕ
a − εijε

abDjϕ
bj2 ≥ 0 ⇒ jDiϕ

aj2 ≥ ϱG; ðB14Þ

ðεijFij − UÞ2 ≥ 0 ⇒ 2F2
ij þ U2 ≥ 2εijFijU: ðB15Þ

Combining (B14) and (B15), and insisting that the resulting
Belavin inequality be

1

4
F2
ij þ

1

2
jDiϕ

aj2 þ 1

8
ðη2 − jϕaj2Þ2 ≥ 1

2
ϱðηÞ; ðB16Þ

ϱðηÞ given by (A19) results in

U ¼ ðη2 − jϕaj2Þ: ðB17Þ

It is clear that setting η ¼ 0, namely by opting for the
definition (A17) for the topological charge, the potential
V ¼ U2 results in diverging energy since the covariant
constancy of the Higgs field implies that its magnitude
vanishes at infinity.

APPENDIX C: TOPOLOGICAL LOWER BOUND
FOR SOð2Þ GAUGED SKYRMIONS IN 2+ 1

DIMENSIONS WITH CHERN-SIMONS
DYNAMICS

The topological lower bound on the energy of the static
solutions to the Lagrangian,

Lð1Þ ¼ κελμνAλFμν þ
1

2
η2jDμϕ

aj2 − η4V½ϕ�;
μ ¼ 0; i i ¼ 1; 2; ðC1Þ

are sought. Here, κ is the coupling strength of the Chern-
Simons (CS) term and like η has dimension ½L−1�. The
gauging prescription is that of theMaxwell case, (5) and (6),
such that the static Hamiltonian 2T00 of (C1) is expressed as

H ¼ 1

2
η2ðjDiϕ

aj2 þ A2
0jϕαj2Þ þ η4V½ϕ�;

a ¼ α; 3; α ¼ 1; 2: ðC2Þ

The Gauss Law equation (0-component of the Maxwell
equation) is

A0 ¼ −
2κ

η2jϕαj2 εijFij: ðC3Þ

Substituting (C3) in (C2), we have the final form of the static
Hamiltonian density:

Hð1Þ ¼ 4

�
κ

η

�
2
�

F2
ij

jϕαj2
�
þ1

2
η2jDiϕ

aj2þη4V½ϕ�;

a¼ α;3; α¼ 1;2: ðC4Þ

So far, the potential V½ϕ� is not specified. This can be done
once the Belavin inequalities that give the lower bound on
the energy, namely on the integral of (C4), are stated. This
depends on the definition of the topological charge density.
The inequality giving rise to the ϱG term in (A9) [or

(A11)] is of course (B2), again. To account for the term
F2
ij=jϕαj2 in (C4), consider the inequality

�
κ

ηjϕαj εijFij − η2jϕαjU
�

2

≥ 0

⇒ 2

�
κ

η

�
2
�

F2
ij

jϕαj2
�
þ η4jϕαj2U2 ≥ 2κηεijFijU: ðC5Þ

Combining (B2) and (C5), we have the Belavin inequality:
14η in Higgs models is not employed as an artifact like in the

sigma models.
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4

�
κ

η

�
2 F2

ij

jϕαj2 þ
1

2
η2jDiϕ

aj2 þ 2η4jϕαj2U2

≥
1

2
η2
�
ϱG þ 8

�
κ

η

�
εijFijU

�
: ðC6Þ

Requiring that the expression in the square brackets on the
right-hand side of (C6) be the topological charge ϱ, given
by (A11), fixes U as

U ¼ 1

8

�
η

κ

�
ðϕ3 − υÞ; ðC7Þ

and identifying the left-hand side of (A11) with the static
Hamiltonian density (C4) results in the following potential
V ¼ 2jϕαj2U2,

V½ϕ� ¼ 1

32

�
η

κ

�
2

jϕαj2ðϕ3 − υÞ2: ðC8Þ

So far, the value of the constant v in (C8) is not fixed. In
contrast with the Maxwell dynamics above, here the energy
integral will not diverge if the choice v ¼ 1 is not made.
This is seen immediately by inspecting (C8), which must
decay at infinity since

lim
r→∞

jϕαj2 ¼ 0;

for any value of v. The question as to what interesting
choices for v can be made depends on the detailed analysis
of the solutions.
What is important here is that when calculating the

topological charge by evaluating the integral of (A10), the
result will not be limited to the winding number, namely
the integral of ϱ0, except when the choice v ¼ 1 is made.
This is in contrast to the case of Maxwell dynamics
considered above.
The final result is the Belavin inequality,

Hð1Þ ¼ 4

�
κ

η

�
2 F2

ij

jϕαj2 þ
1

2
η2jDiϕ

aj2

þ 1

32

�
η3

κ

�
2

jϕαj2ðϕ3 − υÞ2 ≥ 1

2
η2ϱ; ðC9Þ

which is saturated if the two inequalities (B2) and (C5) are
saturated, i.e., when the first-order equations,

εijDiϕ
a ¼ εabcDjϕ

bϕc; ðC10Þ

8κ2εijFij ¼ η4jϕαj2ðϕ3 − υÞ; ðC11Þ

are satisfied, which solve the second-order equations.
Again, as in the Maxwell case above, the lower bound

(C9) is not invalidated if the potential (C8) is replaced by

V½ϕ� ¼ 1

32
λ

�
η

κ

�
2

jϕαj2ðϕ3 − υÞ2; λ > 0: ðC12Þ

Denoting the static Hamiltonian defined in terms of the
potential (C12) as HðλÞ, the lower bound corresponding to
(C9) now reads

HðλÞ >
1

2
η2ϱ; λ > 1;

>
1

2
η2λϱ; λ < 1;

formally the same as (B11) and (B12).

1. Topological lower bound for the
Chern-Simons–Higgs case

Again, we consider the Higgs analogue of the Chern-
Simons–Skyrme vortices discussed above, to emphasize
the essential difference between them.
Starting with the Lagrangian

L ¼ κελμνAλFμν þ
1

2
η2jDμϕ

aj2 − V½jϕaj2�;
μ ¼ 0; i i ¼ 1; 2; a ¼ 1; 2; ðC13Þ

one finds from the Gauss Law equation that

A0 ¼ −
2κ

jϕaj2 εijFij; ðC14Þ

and thus the static Hamiltonian can be expressed as

H ¼ 4κ2
�

F2
ij

jϕaj2
�
þ 1

2
jDiϕ

aj2 þ V: ðC15Þ

Here, in addition to the inequality (B14), one employs
�

κ

jϕaj εijFij − jϕajU
�

2

≥ 0

⇒ 2κ2
�

F2
ij

jϕaj2
�
þ jϕaj2U2 ≥ 2κεijFijU: ðC16Þ

Combining (B14) and (C16), one ends up with the Belavin
inequality,

4κ2
F2
ij

jϕaj2 þ
1

2
jDiϕ

aj2 þ 2jϕaj2U2

≥
1

2
η2
�
ϱG þ 8

�
κ

η

�
εijFijU

�
; ðC17Þ

and insisting that the right-hand side of (C17) be equal to
the topological charge density (A11) fixes U as

U ¼ 1

16κ
ðη2 − jϕaj2Þ: ðC18Þ

It follows that the potential V is now
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V½jϕaj2� ¼ 2

162κ2
jϕaj2ðη2 − jϕaj2Þ: ðC19Þ

This is known from the work of [17,18].

What must be emphasized here is that setting η ¼ 0

results in divergent energy since, at infinity, jϕaj2 → η2, in
contrast with the Skyrme case above where jϕαj2 → 0,
which allows the choice v ¼ 0 there.
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