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W. Oliveira dos Santos,* H.F Mota,* and E.R. Bezerra de Mello*

Departamento de Fisica, Universidade Federal da Paraiba 58059-900,
Caixa Postal 5008, Jodo Pessoa, Paraiba, Brazil

® (Received 10 September 2018; published 14 February 2019)

In this paper, we analyze the bosonic current densities induced by a magnetic flux running along the core
of an idealized cosmic string in a high-dimensional anti-de Sitter spacetime, admitting that an extra
dimension coordinate is compactified. Additionally, we admit the presence of a magnetic flux enclosed by
the compactified axis. To develop this analysis, we calculate the complete set of normalized bosonic wave
functions obeying a quasiperiodicity condition, with arbitrary phase f, along the compactified extra
dimension. In this context, only azimuthal and axial currents densities take place. As to the azimuthal
current, two contributions appear. The first one corresponds to the standard azimuthal current in high-
dimensional anti-de Sitter spacetime with a cosmic string without compactification, while the second
contribution is a new one, induced by the compactification itself. The latter is an even function of the
magnetic flux enclosed by the compactified axis and is an odd function of the magnetic flux along its core
with period equal to quantum flux, ®;, = 2z/e. On the other hand, the nonzero axial current density is an
even function of the magnetic flux along the core of the string and an odd function of the magnetic flux
enclosed by the compactified axis. We also find that the axial current density vanishes for untwisted and
twisted bosonic fields in the absence of the magnetic flux enclosed by the compactified axis. Some
asymptotic expressions for the current density are provided for specific limiting cases of the physical

parameter of the model.
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I. INTRODUCTION

The physics underlying quantum vacuum fluctuations
arises once quantum aspects of relativistic phenomena are
taken into account. That means a quantized relativistic field
(scalar, electromagnetic, or fermionic) will have a fluctuat-
ing ground state. In Minkowski spacetime, for instance, the
vacuum expectation value (VEV) of physical observables,
as a consequence of quantum vacuum fluctuations of
relativistic fields, is zero unless the vacuum is somehow
“perturbed” by external influences. These external
influences are in general boundary conditions of some
sort or coupled external fields. One very known physical
observable that gets a nonzero VEV under external
influences is the energy density that characterizes the
Casimir effect [1-3]. Another physical observable of
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interest that averages to a nonzero value under these
circumstances is the four-current density due to charged
fields. This is of special importance since the VEV of the
four-current density can provide a better understanding of
the dynamics of the electromagnetic field once it is used as
a source in the semiclassical Maxwell equations.

An additional feature related to modifications of quan-
tum vacuum fluctuations of relativistic fields is its occur-
rence faces a curved background. It has been known that
geometrical and topological aspects of a curved space-
time also induce a nonzero VEV of physical observables
[1-3]. In particular, the induced VEV of the four-current
density by curved backgrounds has been investigated in
Refs. [4-11]. Among these curved backgrounds, the anti-de
Sitter (AdS) spacetime carries very interesting properties
that provide strong motivation to study it [12—17].

By considering a negative cosmological constant, the
AdS spacetime is obtained as a solution of FEinstein’s
equations and thus is characterized by a constant negative
curvature. Thereby, from a theoretical and fundamental
point of view, the AdS spacetime makes it possible to solve
several problems exactly as a consequence of its high
symmetry, allowing the quantization of fields more easily,
besides offering better insight into the quantization of fields
in other curved spacetimes. Moreover, the AdS spacetime
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arises as a ground-state solution of string and supergravity
theories and also appears in the context of AdS/CFT
correspondence, a scenario that makes possible the reali-
zation of the holographic principle, relating string theory
(supergravity) in a high-dimensional AdS spacetime with a
conformal field theory constructed in its boundary [18]. In
addition, the AdS background geometry is relevant in
branewold scenarios with large extra dimensions, offering
a way to solve the hierarchy problem between the gravi-
tational and electroweak mass scales [19].

The presence of a cosmic string in AdS spacetime provides
more interesting phenomena, since this combined geometry
makes it possible to identify in the VEV of some observable,
the contributions come from either parts, namely, from the
AdS geometry and cosmic string topology. Cosmic strings
are linear topological defects that are predicted in the context
of both gauge field theories and supersymmetric extensions
of the Standard Model of particle physics, as well as in the
context of string theory [20-25]. The spacetime of a straight,
infinitely long, and structureless cosmic string is character-
ized by a conical topology arising due to the angle deficit in
the plane perpendicular to it [20-22]. Phenomenologically,
current observations of CMB suggest cosmic strings can
contribute to a small percentage of the primordial density
perturbations [26] in the Universe and can also play a
important role in other cosmological, astrophysical, and
gravitational phenomena [22-25].

In the present paper, we are interested in calculating the
VEV of the current density associated with a charged scalar
field and investigate the effects arising from the geometry
and topology of a high-dimensional AdS spacetime in the
presence of a cosmic string carrying a magnetic flux. In
addition, we will assume a compactification of one extra
dimension and the existence of a constant vector potential
along it. Thus, the presence of these magnetic fluxes as well
as the compactified extra dimension will also provide
additional contributions to the VEV of the current density,
as we shall see.

The presence of extra compact dimensions is a character-
istic aspect of all the theories mentioned before in which the
AdS spacetime plays a key role and, as previously said,
induces nonzero contributions to physical observables such
as the energy-momentum tensor, which has not only the
energy density component but also the stresses components
(see Ref. [5] and references therein). In this case, for
instance, the vacuum energy density induced by the extra
compact dimensions offers an explanation for the observed
and still unexplained accelerated expansion of the
Universe. In Kaluza-Klein-type models and in braneworld
scenarios, on the other hand, the dependence of the size of
the compact extra dimension by the vacuum energy density
serves as a mechanism to stabilize fields known as moduli
fields.

This paper is organized as follows. In Sec. II, we present
the high-dimensional AdS spacetime in the presence of a

cosmic string and obtain the complete set of normalized
solutions of the Klein-Gordon equation associated with a
charged scalar field in this background, considering the
presence of an azimuthal and axial vector potentials. This
solution is then submitted to a nontrivial boundary condition
that compactifies an extra dimension. This set of solution is
used to construct the Wightman function. In Sec. III, we first
prove that the VEVs of the charge density, radial current
density, and current density associated with the extra
dimensions, except the one that is compactifed, are all zero.
Finally, the rest of Sec. III is devoted to computing the
nonzero azimuthal current density and the nonzero current
density associated with the compactified extra dimension. In
this case, we show that the azimuthal current density has a
pure contribution due to the high-dimensional AdS space-
time with a cosmic string plus a second contribution due to
the compactification of the extra dimension. Moreover, we
also show that the current density associated with the
compactified extra dimension has only the contribution
due to the compactification. Section IV is devoted to the
main conclusions about our results. Throughout the paper,
we use natural units G =i = ¢ = 1.

II. KLEIN-GORDON EQUATION
AND WIGHTMAN FUNCTION

The main objective of this section is to obtain the
positive frequency Wightman function associated with a
massive scalar field in a (D + 1)-dimensional AdS space-
time, with D > 3, in the presence of a cosmic string and a
compactified extra dimension. This function is important in
the calculation of vacuum polarization effects. To do that,
we first obtain the complete set of normalized mode
functions for the Klein-Gordon equation admitting an
arbitrary curvature coupling parameter.

In cylindrical coordinates, the geometry associated with
a cosmic string in a (3 + 1)-dimensional AdS spacetime is
given by the line element below (considering a static string
along the y axis),

ds> = e™/[d? — dr* — r?d¢?] — dy*,  (2.1)
where r > 0 and ¢ € [0,27/g| define the coordinates on
the conical geometry, (z,y) € (—o0, ), and the parameter
a determines the curvature scale of the background
spacetime. The parameter ¢ > 1 codifies the presence of
the cosmic string. Using the Poincaré coordinate defined
by w = ae/?, the line element above is written in the form
conformally related to the line element associated with a
cosmic string in Minkowski spacetime:

2
ds? = (ﬁ> [d? — dr? — P2dg? — dw?].  (2.2)
w

For the new coordinate, one has w € [0, o). Specific
values for this coordinates deserve to be mentioned:
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w =0 and w = oo correspond to the AdS boundary and
horizon, respectively.

For an idealized cosmic string, i.e., an infinitely thin and
long straight cosmic string in the background of Minkowski
spacetime, the line element expression inside the brackets of
the right-hand side of (2.2), has been derived in Ref. [27] by
making use of two approximations: the weak-field approxi-
mation and the thin-string one. In this case, the parameter ¢
is related to the mass per unit length y of the string by the
formula 1/g = 1-4Gu, where G is Newton’s gravitational
constant. However, the validity of the line element with the
planar angle deficit has been extended beyond linear
perturbation theory by Refs. [20,28]. In this case, the
parameter g does not need to be close to 1. Note that in
braneworld scenarios based on AdS spacetime, to which the
results given in this paper could be applied, the fundamental
Planck scale is much smaller than mp; and can be of order of
the string formation energy scale.

The generalization of (2.2) to (D + 1)-dimensional AdS
spacetimes is done in the usual way, by adding extra
Euclidean coordinates [13]:

D

ds® = <%> ’ [dﬂ —dr? = Pdg? —aw? — Z(dxf)2] . (2.3)

i=4

The Euclidean version of the line element expressed inside
the bracket of the above equation has been presented in
Ref. [29] and called conical-type line singularity in an
arbitrary dimension; therefore, we consider the line element
inside (2.3) as a Minkowski version of the cosmic string
metric spacetime for higher dimensions. Moreover, a
discussion about the generalization of the cosmic string
spacetime can also be found in Ref. [30].

The curvature scale a in (2.3) is related to the cosmo-
logical constant, A, and the Ricci scalar, R, by the formulas

A= _PO-1  p_ DO+

" e (2.4)
The analysis of the induced current density for a charged
massive scalar field in the AdS space described in Poincaré
coordinates with toroidally compact dimensions has been
developed in Ref. [5]. In the latter, it is assumed that, in
addition to compact dimensions, the field obeys periodicity
conditions with general phases. Moreover, the presence of
constant vector potentials has also been considered.

In this present paper, we are interested in calculating the
induced vacuum current density, ( jﬂ), associated with a
charged scalar quantum field, ¢(x), in the cosmic string
spacetime in the AdS bulk induced by the presence of
magnetic flux running along the string’s core. Moreover,
we also assume the compactification along only one extra
coordinate, defined by z in the expression below:

D
ds*= <£> [a?t2 —rd¢? —dw? —dz? - Z(dxi)z] .

i=5

(2.5)

Note that we will also consider the presence of a constant
vector potential along the extra compact dimension.
This compactification is implemented by assuming that
z € [0, L], and the matter field obeys the quasiperiodicity
condition

xP),

(2.6)

o(t,r,pw,z+L,xX°, ..., xP)=e>Pop(t,r,dp,w,7,x°,

where 0 < < 1. The special cases f=0 and f=1/2
correspond to the untwisted and twisted fields, respectively,
along the z direction.

The field equation that governs the quantum dynamics of
a charged bosonic field with mass m, in a curved back-
ground and in the presence of an electromagnetic potential
vector, A, reads

(¢“D,D, + m* + ER)p(x) = 0, (2.7)
with D, = Vﬂ + ieA,. In addition, we have considered the
presence of a nonminimal coupling, &£, between the field
and the geometry represented by the Ricci scalar, R. Two
specific values for the curvature coupling are { = 0 and
&= %, which correspond to minimal and conformal
coupling, respectively. Also, we shall assume the existence
of the constant vector potentials
A, =(0,0,A4,0,4,,0,...,0), (2.8)

with Ay = —q®,/(2z) and A, = —®,/L, with &, and ®,
being the corresponding magnetic fluxes. In quantum field
theory, the condition (2.6) changes the spectrum of the
vacuum fluctuations compared with the case of uncom-
pactified dimensions and, as a consequence, the induced
vacuum current density changes.

In the spacetime defined by (2.5) and in the presence of
the vector potentials given above, Eq. (2.7) becomes

ﬁ_ﬁ_lg_i a_l_ A 2_ Q—FA ?
o2~ 0r ror a¢ fefe ) ~\ag T

(2.9)

where M(D, m, &) = a*>m? — ED(D + 1).

The equation above is completely separable, and its
positive energy and regular solution at the origin are
given by
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o(x) = CW%JD(pW)Jq‘n+a‘ (/1r)e_iEt+iq"‘/’+ik2z+ilz'}\\. (2.10)

In the expression above, 55” represents the coordinates along

the (D — 4) extra dimensions, and k represents the corre-
sponding momentum. Moreover,

D2
V= T+ a*m? — ED(D + 1),

E= \/,12 + P2+ K+ (k. + eA)?,
_ Ay 9y

a -, (2.11)
q 0
with @y = 2%, the quantum flux. In (2.10), J,,(z) represents
the Bessel function [31].
The quasiperiodicity condition (2.6) provides a discre-
tization of the quantum number k, as shown below:

kZ:k,:ZL—ﬂ(l—l-ﬁ), with [=0,+1,42,... (2.12)
Therefore,
E:E,:\/z2+p2+ié2+1}2, (2.13)
where
=204 B,
ﬁ:ﬂ+e§j:ﬂ—gz. (2.14)

The constant C in (2.10) can be obtained by the
normalization condition

1

/ 3/l (X)) = —=5, .

S (2.15)

where the delta symbol on the right-hand side is understood
as the Dirac delta function for the continuous quantum

number, 4, p, and 1?, and Kronecker delta for the discrete
ones, n and k;. From (2.15), one finds

IC| = _qa™"Ap
~ \2E(27)P3L

So, the normalized bosonic wave function reads

(2.16)

qa'Pip

2E(27)P-3L

« e—iE,z+iqn</)+ik,z+il;»)?H'

§06<x) = W%Jv(pw)']q\rﬁa\ (’1}’)
(2.17)

The properties of the vacuum state can be given
by the positive frequency Wightman function,

W(x,x') = (0|p(x)p*(x')|0), where |0) stands for the
vacuum state with respect to the observer placed at rest
with respect to the string. To evaluate it, we use the mode
sum formula

W(x,x') = p.(x)ps(x'). (2.18)

Substituting (2.17) into (2.18), we obtain

ga' =2 (ww)?

2(27)P3L

« i ¢inase i /d/?/mdpp/md/u
0 0

n=-—o0o [=—0

W(x,x') =

X Jq\n+a\ (Ar)‘]q\nJra\ (Ar/)Ju(pW)JApW/)

—iE Atk Az+ik-AR

E,

Ap=¢—¢',

e
X

, (2.19)
where Atr=1-7, Az=z-7 and
- = oy
AX) = x) — X .
To develop the summation over the quantum number /,

we shall apply the Abel-Plana summation formula [32],
which is given by

[Se]

> g(+B)f(|1+B)

I=—c
_ A " dulg(u) + g(—u)] £ ()
g(iju)

i [ ju)— f(—i —_ 2.2
i [ aultin) - £ Wy i 020
For this case, we can identify
g(l/t) _ eZﬂiqu/L
oA/ 24P+ +(2mu /L)
f(u) (2.21)

\/,12 + p*+ K+ (27u/L)?
Using (2.20), we can write the Wightman function as

W(x,x') = We(x,x') + Wo(x,x). (2.22)
The first term represents the contribution due to the AdS
bulk without compactification, which, for our analysis,
besides to present dependence on the magnetic fluxes, also
depends on the conical structure induced by the presence of
the cosmic string. As for the second term, it is induced by
the compactification and contains contributions due to the
magnetic flux enclosed by the compactified axis. Both
expressions are explicitly written in (2.23) and (2.27),
respectively.
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The first term on the right-hand side of (2.22), derived from the first integral of (2.20), can be written as

C](WW )7e—zeA Az

W (x, ') = 2G0T / dke™ > A dppJ,(pw)J,(pW)
—iAN P4 PP R
« Z qu¢/ dAT o) (Ar)J q,,+a|(/1r)/dk eikde © . (2.23)

72
nee vﬁ”+p2+k-+@

where we have defined a new variable k, = 2zu/ L." Now, performing a Wick rotation and using the identity

eAm 2 i 202 A2 /(A2
— 7 dse=5’® A7?/(4s )’ (224)
@ T Jo

the integration over k, can be evaluated, and the result is

q(ww/)%e_ieAZAZ - Az )
Wes(x,x') = 0P dke™ A | dppJ,(pw)J,(pw')

°°d 2 72
X Z qu)/ AAT g sa)(AT)T qn+a(ﬁi’)l D (PR~ (a2-0) 457 (2.25)

N
n=-—co

Now, let us concentrate on the second term of (2.22). Defining again the variable k, = 2zu/L, the integral over this

variable must be considered in two different intervals; in the first interval [0, \/A2+ p* + @ |, the integral vanishes, so it
remains the contribution coming from the second interval, [\/1> + p* + 5 ,]. So, taking into account this analysis,

we get

q(WW )—e—leA Az

M@ﬂITEWWT/ﬂW“AdWMWMWW
X Z znqA¢/ d/u-]q\nJra\(/lr) q\n+a|(’1r)

cosh (At\/kg—/lz—pz—é> o
< dk. 3
A /12_,'_1)2_,'_]‘{'2 \/k2 _ 12 _ pz _ ]—{»2 = eLk +2mijp _
Z

—]k Az

(2.26)

Developing the series expansion (e” — 1)7! = "% ¢~ and with the help of Ref. [33], it is possible to integrate over k.,
obtaining

q(wwl)%e—ieAzAz
W (x,x') :W/dke’k“/o dppJ,(pw)J,(pw') Z ””]A"S/ dAAT g (Ar)J gina (A7)

n=—o0o

<3 Z -2l (\/ 24 p? 4 B(L + jAz) - A7), (2.27)

j==%1 I=

Clearly, we notice that for L — oo the function above vanishes. By using the integral representation below for the
Macdonald function [34],

'For the case of vanishing magnetic fluxes and the absence of cosmic string, i.e., ¢ = 1, the expression (2.23) reduces itself to the
Wightmann function in an Ads bulk only.
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1 /x\¥ IS e—r—x2/4r

we can rewrite Eq. (2.27) as

q ww' %e—ieAzAz " o
W (x,x') ZWW dke™ | | dppJ,(pw)J,(pw')

X Z ’"qA¢/ dﬂl"‘]ln-&-al(’{r Q|n+a| /Ir Z Ze—hzﬂ]l oo@6_5'2(’12+p2+E2)_[(1L+jAZ>2_At2]/4SZ- (2.29)
A

n=—oo j==x1 I=1 0

Substituting (2.25) and (2.29) into (2.22), and after some manipulations, we get a compact expression for the total
Wightman function given below:

q(WW/)%e_ieAZAZ

R / dke™ A dppJ,(pw)J,(pw')

- Py °°dS 72 . 2 s
X D gt / A gy ) g () D €2 / — e PR RARAE(2.30)

n=—0co |=—0 §

W(x,x)

Now, using the integral [34]

*+?)
© s e 2
/0 dnne™"J,(np)J,(np') = 52 1y<2s2), (2.31)

we can integrate over 4, p, and l_é, obtaining
ge —ieA.Az ww' % o o s b ww' © ]
W(x,x') = W — ZZ o= 2mipl A dyy™ e ){M,/Zrﬂlu W}( Z elan(pIq\nJra\ (), (2.32)
=—00 n=—0oo
where we have introduced a new variable, y = rr’/2s%, and defined

w=r2+rr+wr+w?+ (IL+ Az)* + A)_c'ﬁ - A2 (2.33)

The parameter a in Eq. (2.11) can be written in the form

(2.34)

1
a=ng+e with |e] <3

with ny being an integer number. This allow us to sum over the quantum number # in (2.32), using the result obtained in
Ref. [6], given as

[oe]
Z eian(/)Iq\nJra\ ()() — 1 Ze;( cos(2mk/q—Ag) eia(Zﬂk—qA(/))

n=—oo

e~lan A¢ 0 — — —iq(Ad+jm)
; ’ Zjejmqh?\ / cosh [qy(l |8|)] cosh (|€|qy>€ ! ! (235)
i

2 om0 cosh (gy) — cos (q(Ad + jz))]

where

(2.36)
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In short, the obtainment of the above expression is through the integral representation for the modified Bessel function [31],

1 fia i ©
Linsal(2) =~ / dy cos(gln + aly)eseory - Snzdln + al / dye=eohy=artaly, (2.37)
T Jo T 0
following by the summation of the quantum number n and some additional intermediate steps.
Thus, the substitution of (2.35) into (2.32) allows us to integrate over y with the help of [34], yielding
W(x,x') = e oAb io: e—2ni/3’l{Zeia(Zﬂk—qA(/))F(D—l)/z(ulk)
(2m)FaP! =, k v
e tamodd i e cosh[(1 — |e|)gy] — cosh (|e|gy)e Ay
_ eiinalel [ g Fol/ 2.38
1 27l ;;1Je A Y cosh (qy) — cos (q(A¢ + jr)) v-1/2 (sz) ’ ( )
where we have introduced the notation
i 9y () VAL(y +pu+1) ytu,  rtutl 31
FM = lzp = 1’ 5 —~5s |, 2.39
() =e (u? = 1)#2 271 (y + 3/2)ur 4! 2 " 2 T (2.39)

with 0% (u) being the associated Legendre function of the second kind and F(a, b; c; z) being the hypergeometric function
[31]. In (2.38), the arguments of the function F} are given by

r? 412 =2rr cos (2nk/q — Ap) + Aw? + (IL + Az)> + AX? — A2

ulk:1+

I/tly:1+

2ww
2+ 12 +2rr cosh(y) + Aw? + (IL + Az)? + AR — AP

/

So, Eq. (2.38) is the most compact expression to the
Wightman function. In this format, the / = 0 component
corresponds to the contribution due to the cosmic string
only, and [ # 0 is the contribution due to the compactifi-
cation.

Having obtained the above result, we are in a position to
calculate the induced current densities. This new subject is
left to the next sections.

III. BOSONIC CURRENT

The bosonic current density operator is given by

Ju(x) = ie[@* (x)D,p(x) — (D) ¢(x)]
= ie[p*(x)0,p(x) — (x)(0,¢(x))*]
— 2e2Aﬂ(x)\¢(x)|2. (3.1)

Its VEV can be evaluated in terms of the positive frequency
Wightman function as exhibited below:

(j,(x)) = ielim{(d, — 8,")W(x, x') + 2ieA,W(x,x')}.

X' —x

(3.2)

2ww'

(2.40)

As we will see, this VEV is a periodic function of the
magnetic fluxes ®; and ®, with period equal to the
quantum flux. This can be observed writing the parameter
a as in (2.34).

A. Charge density

Let us begin with the calculation of the charge density.
Since Ay = 0, we have

{Jo(x)) = ielim (9, — )W (x, x').

X =X

(3.3)

Substituting Eq. (2.38) into the above expression, taking
the time derivatives and finally the coincidence limit, we
obtain a divergent result. To avoid this problem, a regu-
larization procedure is necessary. Many regularization
procedures can be applied; however, for the present
problem, the most convenient is the Pauli-Villars (PV)
gauge-invariant one. Adopting this procedure, regulator
fields with large masses are introduced. The number of
these fields depends on the specific problem. As we will see
below, a single regulator field with mass M is sufficient. By
using PV, the regularized VEV of the charge density reads
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o —27rl TTKIX D+l /2
<Jo<x>>Reg (2;;)”“ D+1hmAtZ 2zipl |:Ze2k Z eyl _1/2 i)

k

Jj==%1

where ¢y = 1; Vo) =V, given by (2.11); ¢; =—-1;
and v(y) is the corresponding parameter associated with
the mass M. Moreover, in (3.4), the arguments of the
functions are

4r?sin® (zk/q) + (IL)* — AP
2w?

4r% cosh?(y) + (IL)? — A
5 .

l:ilkzl

(3.5)

ﬁly:1+ 2W

In obtaining the above result, we have used the relation

0, Fy (u(x)) =

~(0u(x)Fy (ux)  (3.6)

by using the recurrence relations for the associated
Legendre function of the second kind [31].

We can see from (3.5) that the arguments of the
functions F (( Y 1>/2 above, for [ # 0, are bigger than unity.
Consequently, the corresponding compactified contribu-
tions inside the brackets of (3.4) are finite, providing a
vanishing contribution for the charge density when we
take the time coincidence limit, At — 0. On the other hand,
for cosmic string contribution (I = 0) for k = 0 and for
k#0 but with r =0, the arguments of the functions
go to unity for the time coincidence limit. However, in
the limit of argument close to 1, by using the asymptotic
formula for the hypergeometric function, we get a
divergent result below, which does not depend on the
parameter v:

I'((D+1)/2)

(D+1)/2 ~
Fl/_l/2 (u) ~ - 1)(D+1)/2. (3.7)
So, the divergent behavior of the combination,
D+1)/2 D+1)/2 . . .
Fi(mtl)//z(u)—F,(jlf1 /)2/ (u), is canceled. Finally, taking

the time coincidence limit in (3.4), these contributions
also provide a vanishing result. So, we conclude that the
charge density vanishes.

Following similar procedure, we also can prove that no
radial current density, (j”); currents densities along w, (;");
nor extra dimensions, (j*) for i = 5,6, ..., are induced by
this system.

_41 - jimqle| /°° d cosh [(1 — |e[)gy] — cosh (|e|gy)e~"4" F(D+1)/2
2mi Zje o @ cosh (gy) — cos (gjn) Z e ()

vm—1/2 (34)

n=0,

B. Azimuthal current

The VEV of the azimuthal current density is given by

(Jp(x)) = ie}i_rg{(@lﬁ = 0 )W(x, x') + 2ieA ;W (x, x')}.

(3.8)

Substituting (2.19) into the above equation, we can
formally express the azimuthal current as

1-D,,,D
) __gea"w
<.](/)(x)> - (Zﬂ)D_3L
X Z (n+a /dk/ ’Uq|n+a| (Ar)dA
) 1
X pJ (pw)dp Z —
0 1——w\/,12+p2+k + k7
(3.9)
Identifying g(u) = 1 and
1
flu) = ., (3.10)

\//12 + P+ K + (2zu/L)?

we can use (2.20) to develop the summation on the
quantum number /. Doing this, the VEV is decomposed as

(g () = (Up())es + Up(X))es

where (j,(x))., corresponds the contribution from the
cosmic string without compactification, which comes from
the first integral on the right-hand side of Eq. (2.20). This
component reads

(3.11)

2gewP
(27)P~2gP-1

XZ (n+a /dk/ dMJHa‘/lr)

n—=——00

<j¢(x)>cs ==

x/ pJ2(pw)dp
0

/ \/,12+p + & +k2

(3.12)

where we have defined k, = 2zu/L.
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Using the identity

9 (3.13)

! :i/mdse—sz(lz+p2+l?+k2
JRtp R+ VED

and (2.31), we can perform the integrations over all but the
s variable, obtaining

eq*wP

(Jp(X))es = —W[” o
() 35 o )

n=—00

le—)([l-‘r(w/r)z]

(3.14)

We have written a in the form (2.34) and also introduced a
new variable, y = r?/2s>. In Ref. [4], a compact expression
for the summation over the quantum number n has been
derived. We reproduce this result,

(cs]

Z (I’l + S)Iq\n+e| ()()

la/2]
2
)(Z sin (272j/q) sin (27 je) ex <°5(27i/4)
7

—/ dy sinh(y

where [¢/2] represents the integer part of ¢/2 and the prime
on the sign of the summation means that in the case ¢ = 2p
the term k = ¢/2 should be taken with the coefficient 1/2.
Moreover, the function, g(q, €, y), is defined as

e 70 g(g,e.y)
cosh (qy) —cos (rq)’

(3.15)

9(q. €, y) = sin (gre) sinh ((1 - |¢[)gy)

— sinh (gey) sin ((1 — |¢])zq). (3.16)

Substituting the above result into (3.14) and with the
help of Ref. [34], we get

la/2]
x [Z’ sin (272j/q) sin (2 je) F2 2 (u;)
j=1

+2/ dy
7 Jo

where the arguments of the functions are given by

sinh (2y)g(q.£.2y)
cosh (2qy) —cos(zq)

(D+1)/2
Fo 2y (uy)

(3.17)

0.6¢
041
0.2r

] — moooTTTIITII: -

-0.2¢

10%a%e 1< j?>

—04F}

-0.6¢

-0.4 -0.2 0.0 0.2 0.4

FIG. 1. The azimuthal current density without compactification
for D = 4 in Eq. (3.17) is plotted, in units of ea™, in terms of ¢,
forr/w=1,ma=1;,=0;and g =1, 1.5, 2.5.

u; =142(r/w)*sin® (zj/q),

uy, =1+ 2(r/w)?cosh?(y). (3.18)

From (3.17), we can see that (j#(x)),, is an odd function of
& with period equal to quantum flux, ®, = 27/ e; moreover,
for 1 < g <2, the first term on the right-hand side is
absent. In Fig. 1, we exhibit the behavior of the azimuthal
current as a function of e for different values of g,
considering D=4, £=0 and r/w=ma=1. As we
can see, the intensity of the current depends strongly on
the value of ¢. Increasing ¢, its intensity also increases.

In Fig. 2, we plot the behavior of the azimuthal current,
(j?(x)),,» as function of r/w for D = 4, considering & =
0.25 and & = 0, for different values of the parameter g.
In the left panel, we adopted ma = 1, and in the right
panel, ma = 5.

After the numerical analyses for (j%(x))., we will
develop its behavior for some specific regimes of the
physical variables. We start by considering r/w — 0. We
can use the asymptotic formula for the hypergeometric
function for small arguments [31] to rewrite Eq. (3.17) as

4el' (24 <w

)D“ Fq/z]/ cot(zj/q)sin(2xje)

(4z)= \ar = sin®~(zj/q)
I / ® gy 2nh() 9(q.€.2y)
zJo  coshP~l(y)cosh(2gy)—cos(nq)|

(3.19)

Apart form the conformal factor, (w/a)P*+!), the above
expression coincides with the corresponding one in
Minkowski background for points near the string [4]. On
the other hand, for r/w > 1, we have
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20 20
L5} 15
A A
<, AN
V' 1.0 V' 1.0
IQI I\i
w w
s s
0.5 0.5
0.0 : 0.0 : e
0.0 0.1 0.0 0.1 0.2 03 0.4 0.5 0.6

FIG. 2. The azimuthal current density without compactification for D = 4 in Eq. (3.17) is plotted, in units of ea™, in terms of the
proper distance, r/w, for e =0.25; £ =0; and ¢ = 1, 1.5, 2.5. The plot on the left is for ma = 1, while the plot on the right

is for ma = 5.

, 2172l (D)2 + v+ 1) (w)\Prw+2
<J¢(~x)>csz D D+1 <_>
(47)2T'(v+1)a r
lq/2] . . .
rcot(nj/q)sin(2zje) g / o tanh(y) 9(q.e.2y)
1) a : 3.20
{Z S0 (ajfq) xly oD () cosh(2qy) — cos(rq) (320

Another interesting asymptotic behavior is for v > 1. For this case, Eq. (3.17) reads

Do) l[m]' . . ' .)<u +y\/uj — 1)—v
(5

(05 > sin (27j/q) sin (27 je 5

(2”)_ e = -1
© . h 2 €, 2 (I/l. + M% - 1 -
+2/ gy S (2glg.e.2) \IWTVE=T) | (3.21)
7 Jo cosh (2qy) — cos (7q) (u2=1)+

For a conformally coupled massless scalar field, we have v = 1/2, and by expressing the associated Legendre function
in terms of the hypergeometric function [31,34], we can write a more convenient expression for FIED;L/IZ/ 2( ) 5],

given by

(£l
FPO2 () = &) > ) [(1 4 u)=(P+D/2 — (= 1)=(P+D/2], (3.22)

Substituting (3.22) into (3.17), we obtain

] w\ P+ [ del'(2H) [q/z]/cos(ﬂj/q)sin(Zﬂje) q [ sinh(y) 9(q.€2y)
e (‘) {<4ﬂ>z ) [Z ot e o ) = os g e

J=1

el (D] la/2] ) ol
_74”)"7*(';D4)rl) [ 1/ sin (27j/q) sin (27 je) <%+ sinz(zrj/q)> ’

(
+%/0°° 4y S (29)9(g. 2y)) (W +cosh®(y )>‘DT“]}_ (3.23)

cosh (2gy) — cos (zg

~.
Il
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We notice that two different sets of contributions appear in the expression above. Apart from the conformal factor, the first
set coincides with the induced massless scalar azimuthal current in the Minkowski background [4]. It is divergent for r — O.
As for the second set, it is a new contribution. This part is induced by the boundary located at w = 0. It is finite at the string’s
core for w # 0. In addition, for » > w, this part tends to cancel the first one. Finally, taking D = 4 in the above expression,
we obtain

la/2] . . .
e = (2) (e[S S L sMCRSE) 4 [yt ol 20

a) \327°r [“H sin®(7j/q) n 2gz) — cos (zq) cosh?(z)
lq/2]
3e { o : whoo -3/2
- sin (27j/q) sin (27 je) <—2 + s1n2(nj/q)>
6471 ; r
q [ sinh(2y)g(q.&2y) (w? 20 )
= d h . 3.24
- JTA Y cosh (2qy) — cos (zq) 7 ooshi(y) (3:24)
The compactified contribution for the azimuthal current, (j,(x))., can be obtained using (2.26). So, we have
) 2gewP
<J¢(X)>L W . n + (Z dk ﬂ]q‘”Jral )J" dl
1
X pJ2(pw)dp ke —. 3.25
/0 \ A2+p? +k \/k2 /12 _ -> 2;1 eLkZ+2m]ﬂ -1 ( )

To proceed with our analysis, it is necessary to use the series expansion (¥ — 1)7! = >"% ¢~ and with the help of
Ref. [34], we can integrate over k,, obtaining

. 4gewP
(jp(x))e = (2” D=2 0= 1Zcos 271p3) n+a /dk/ dMJﬁ‘nM‘ r)

X/ dpp]lz,(pw)Ko(lL\/lz+p2+122>. (3.26)
0

Using the integral representation for the Macdonald function given in (2.28), it is possible to integrate over the variables 4,
p, and k, getting

. 2g%ewP - 21
(Jp(x)e = - (27)P/2gD-1 DZcos 271p) / dyy P22 =21+ (L2 +2w?) /2]

<1, (%) 3 0 el (27)

n=—00

where we have written a in the form of (2.34) and defined the variable, y = (2” Now, using the sum formula given in

(3.15), we are able to integrate over y, obtaining the final form of the contribution to the azimuthal current density induced
by the compactification,

. 8eq(PH1) &= |l . . . .\ a(D41)/2
(j(x)), = 7(2”)@“)/2 lz;cos(%zlﬁ) {Z sin(2zj/q) s1n(2ﬂ]e)F£_;r/2)/ (v1;)
= =
g [~ sinh(2y)g(q.€2y) _(p+1)2
= F
* ﬂA ycosh(2qy) —cos(ng) V712 ()]

(3.28)

045005-11



W. OLIVEIRA DOS SANTOS et al. PHYS. REV. D 99, 045005 (2019)

with
(IL)? 4 4r%sin®(zj/q)
V= 1+ 2
(IL)* + 4r*cosh?(y)
vy =1+ e . (3.29)

From the above expression, we can see that the con-
tribution due to the compactification on the azimuthal ‘ ‘ ‘ ‘
current density is an even function of the parameter /3 and is -04 -0.2 0.0 02 0.4
an odd function of the magnetic flux along the core of the B
string, with period equal to @. In particular, in the case of
an untwisted bosonic field, (j#(x)). is an even function of ~ FIG. 3. The azimuthal current density indgc‘?d by compactifi-
the magnetic flux enclosed by the compactified dimension. ~ €3t°n ff)r D :.4 is plotted, in units of ea™, in terms of j for
In Fig. 3, we plot (3.28) as function of g for D = 4, ma =1i¢=0re =025 and ¢ =1, 1.5, 2.5.
considering ma = 1, £ = 0, ¢ = 0.25, and different values
of q. As we can see, besides (j?(x)), to present a strong
dependence on the parameter ¢, its direction depends on the
value of f.

In the regime L/w > 1, Eq. (3.28) presents the follow-
ing asymptotic behavior:

. 21=%e(D/2 + v+ 1) (w) D22 3
& ~ w .
(77 (x)). AT 1 NP \L 15:1 cos(271p)

(/2] P2 A\ 2 Dy
X {Z sin(2xj/q) sin(2xje) {Z + (Z) Sinz(”j/Q)]

J=1

[ sy o L1+ (1) o] ) a0

For a conformally coupled massless scalar field and taking D = 4, a much simpler expression can be provided. It reads
w\33e (2 - -
5. = (23 ) 25 { X sinCaaifa)sin(2aie) 6.5 ) - )
j=1

+%Amdyc§:1?((22qyy)) Eq(’:os(;z;)[ (B, ())—Gc(ﬁ,f(y))]}, (3.31)

where we have defined the function

®. cos (271p)
= (3.32)
— (I +x%) (2 +x2)52
and introduced new variables
2rsin(zj/q) 2rcosh(y)
e
2 e _2 a2
oj = \/w +risin (7j/q), 7(y) A cosh?(y). (3.33)

Similarly to what happened with (3.23), two different contributions appear in (3.31). The positive contribution is due to the
compactification only, and the negative one is induced by the boundary located at w = 0. Also, we can observe that for
r > w the latter tends to cancel the former.
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C. Current along the compactified dimension

In this section, we want to analyze the current density
along the compactified axis, named the axial current. As we
shall see, due to the compactification, an axial current will
be induced. This current goes to zero in the limit L — oo.
The VEV of the axial current is calculated by

(o)) = ielim {(D. = )W (x, X) + 2ied. W(x, ¥)}.

(3.34)

Substituting Eq. (2.19) into the above expression and using
the fact that A, = —®_/L, we obtain

1-D D 00
_gea
2L / dk / A2, (2r)d

k
X/ pJ3(pw) dpz —_—
0 17—00\//12+p2+k + k7
(3.35)

(J:(x)) =

where k; is given by (2.14).

The sum over the quantum number / is again evaluated
by using the Abel-Plana formula given in (2.20). In this
case, we identify g(u) =2zu/L, and f(u) is given by
(3.10). The first integral on the right-hand side is zero due
the fact that g(u) is an odd function. Therefore, it remains
only the second integral. It reads

. queal ~Dyb
el = =002 [ i [T psiowya

X Z / AT o (Ar)d2 /\/m

n=—0o0

k, J
X \/k2 o Z eLkZ+27rij/3 -1’
Zz

p?— k==
(3.36)

where we have defined the variable k, = 2zu/L. Again, by
using the series expansion, (¢’ — 1) =Y %, ¢7, in the
above expression, we have

4qea' -Dy,D &

(27" — P Zsm 27tlﬂ
)

2(
/dk/ pJz(pw)dp Z / i]q‘nm‘ (Ar)d
0 k e—lLk
J e s
/12+p2+k _/12 —p?-

We can evaluate the integral over k, with the help of
Ref. [34], and the result is given terms of the Macdonald

(J:(x)) =

(3.37)

function of the first order, K(z). Using the integral
representation (2.28) again and the fact that K, (y) =
K_,(y), we obtain

/ kz —lLk
m \/kZ 2-pr-F
:i dte—r—(lL)z(/12+p2+k )/4t (3.38)
0

Substituting (3.38) into (3.37), it is possible to evaluate the
integrals over 4, p, and /? obtaining

2gea'PwPL &
_WZ [sin(2zlp)

« /°° dyy P 2 eI+ (PL22) /27
0

1, <Wr—22)() i Lyinie) (1),

n—=—oo

(J:(x)) =

(3.39)

where we have introduced the variable y = 2tr>/(IL)?. The
summation over n can be found in Ref. [4] and also given
by (2.35) by taking A@ = 0. This sum is

$ o= [

e 70 f(g.e.y)
cosh (qy) — cos(zq)

la/2]
+ 25 cos (2ke)er=es (ak/a), (3.40)
9=
The function, f(q,¢,y), is defined as
f(q.e.y) = sin[(1 — [e[)qx] cosh(|e|qy)
+ sin (|e|gz) cosh [(1 = |e])gy]. (3.41)
Finally substituting (3.40) into (3.39), we get
) 2qea1 DyDhp &
(J.(x)) = 20 2 DD lem 271p)
o 2
% / dyyP 2 eI+ P22 27 <W_ZZ)
0 I
X1 [ —y cosh(y)
X e___/ dye f<q787y)
q mJo  cosh(gy)—cos(zq)
> [4/2]/
+- Z COS(Zﬂke)eZCOS(z”k/q)] . (3.42)
9=

At this point, we may decompose the current above as

(G.0) = G + G (3.43)
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where the first term on the right-hand side of the above
expression,

D+l)/2(ulo)

4ea (I+D)f, &=
27[% lem2zzlﬁ b—1/2

(3.44)

with u;, given below in (3.47), is purely due to the
compactification. It does not depend on & and ¢. For a
conformally coupled massless scalar field and taking
D = 4, this contribution reads

G = (%) 3

a) 27*L*

y Ssin (2apl) S Isin (2apl)
P ZZ[H(%W)ZF}' 24

=1 2

The second contribution to the axial current depends on the
magnetic fluxes and the parameter associated with the
cosmic string. It is given by

[a/2] s
[Z cos(2rke)F UDT/;/ ()

o 2
q / dy flg.e2y)
7 Jo cosh(2qy)—cos(zq)

(D+1)/z(uly)

v=1/2
(3.46)
where we have adopted the following notation:
up =1+ (LY + 4§:2in2(ﬂk/®
wy =1+ (L) + j:;cos}lz 0) (3.47)

3 4 -1_ .z (q€)
10°a"e <j*> 1

B

FIG. 4. The axial current density is plotted for D = 4, in units of ea

Notice that this term depends on the radial distance, r, and
is finite on the string’s core. We also can notice that the
axial current vanishes for integer and half-integer values of
S. In Fig. 4, we plot the axial current density, Eq. (3.46), for
D = 4 as function of § for ¢ = 0 and & = 0.25, considering
ma=1,&=0, L/a =1, and different values of g.

We can also analyze the axial current in the regime
L/w> 1. Using the asymptotic behavior for the hyper-
geometric function for large arguments, we get the follow-
ing expression:

(G )>(q’6) 21_2”6F(D/2+I/+ 1)L <W) D+2v+2
X)) & —
/ (@) (1 1)aP* \L
X lein(Zﬂlﬁ)

{i/%]cos 2rke) [ < )251n (ﬂk/q)} B
o) oo
X [iJr <£> 2coshz(y)] R }

Finally, for a conformally coupled massless scalar field and
assuming D = 4, we obtain

()8 = (Y)3—L

a

(3.48)

la/2] 2
cos (27ke)[V

L’(B’pk) - VL’(B’ 6k>]

q fq.€2y)
;/ dy cosh(2qy) — cos(zq)

< VeBny) - V. (5. r(ym},

f—"\

(3.49)

0.150
0.10F

s

Se 005}

J

o~

Y000

I\) “

-

> —0.05F

[—]

—
—0.10f
~0.15L s s s s s

0.0 02 0.4 0.6 0.8 1.0
B

4 as afunctionofﬁforma =1;6=0;L/a=1;andg =1, 1.5,

2.5. In the left plot, we consider e = 0, while in the right plot, we take & = 0.25.
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where we have introduced the function

o]

. Isin (2zf3l)
V(B x) = ;m

(3.50)
in the integrands of (3.49), with the corresponding argu-
ments defined in (3.33).

IV. CONCLUSIONS

In this paper, we have investigated the induced scalar
current density, (j#), in a (D + 1)-dimensional AdS space,
with D > 4, admitting the presence of a cosmic string
having a magnetic flux running along its axis. In addition,
we assume the compactification of just one extra dimension
in a circle of perimeter L and the existence of a constant
vector potential along this direction. This compactification
is implemented by assuming that the matter field obeys a
quasiperiodicity condition along it, Eq. (2.6). To develop
this analysis, we construct the positive energy Wightman
function, by solving the Klein-Gordon equation in the
corresponding background. By using the Poincaré coor-
dinate and admitting a general curvature coupling constant,
the normalized solution is given by (2.17). The Wightman
function is evaluated by summing over all set of normalized
solution (2.19). By using the Abel-Plana summation for-
mula, Eq. (2.20), the Wightman function is decomposed in
two contributions, one due only to the cosmic string in the
AdS background and the other induced by the compacti-
fication. Fortunately, we were able to express this function
in a compact form in Eq. (2.38).

In our analysis, we have proven that only azimuthal and
axial current densities are induced. Because of the com-
pactification, the azimuthal current has been decomposed
in two parts. The first one corresponds to the expression in
the geometry of a cosmic string in AdS bulk without
compactification, and the second is induced by the com-
pactification; both are presented by Eqs. (3.17) and (3.28),
respectively. Both contributions are odd functions of e, with
a period equal to the quantum flux @,. This is an
Aharonov-Bohm-like effect. The pure cosmic string con-
tribution is plotted for D = 4, in units of the inverse of
a’e”!, as a function of e as shown in Fig. 1. From this
graph, we can see that the intensity of this current increases
with the parameter g; also, we have plotted this contribu-
tion for two different values of the product ma as a function
of dimensionless variable r/w for different values of g.
These graphs are presented in Fig. 2. By them, we can see a
strong decay in the intensity of (j).,; moreover, carefully,
we can identify that for a bigger value of ma the decay is
more accentuated. Some asymptotic expressions for this
current are provided for specific limiting cases of the
physical parameter of the model. For small and larger

values of r/w, the corresponding asymptotic expressions
are given by (3.19) and (3.20), respectively. For v > 1, it is
given by (3.21). Finally, for a conformally coupled mass-
less field, the induced current assumes the form (3.23).

As to the azimuthal current density induced by the
compactification, Eq. (3.28), we can observe that it is an
even function of the parameter f§ and is an odd function of
the magnetic flux along the core of the string, with a period
equal to ®@. Its dependence on f is plotted in Fig. 3,
considering the interval [—0.5,0.5] and different values of
q. Here, we also observe that this component depends
strongly on ¢. Its asymptotic behavior for large values of
L/w is presented in (3.30), where we can observe that this
current decays with a specific power of w/L.

Because of the compactification, there appears an
induced current along the compactified extra dimension
presented in a complete expression by (3.42). It has a
purely compactification origin and vanishes when f = 0,
1/2, and 1. This current can be expressed as the sum of two
terms. One of them is given by Eq. (3.44). It is explicitly
shown that it is independent of the radial distance r, the
cosmic string parameter g, and e. The other contribution is
given by Eq. (3.46). It depends on the magnetic fluxes and
the planar angle deficit, and it is an odd function of the
parameter # and is an even function of &, with a period
equal to the quantum flux ®,. For the particular case in
which g =0, Eq. (3.46) becomes an odd function of the
magnetic flux enclosed by the compactified dimension. A
plot of the azimuthal current as function f is presented in
Fig. 4 for two different values of € and considering D = 4.
From this graph, we can see that the amplitude of the
current increases with the parameter ¢ and the effect of ¢ is
to change the orientation of the current.

Before concluding, we would like to mention that the
currents densities analyzed in this paper refer to the vacuum
ones induced by the presence of magnetic fluxes and the
compactification. As was exhibited by all the graphs
provided, the planar angle deficit associated with the
cosmic string spacetime increases the intensity of the
azimuthal current density, and the compactification intro-
duces an additional contribution to it; moreover, the latter
induces a new current density along the compactified
dimension.
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