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In this paper, we analyze the bosonic current densities induced by a magnetic flux running along the core
of an idealized cosmic string in a high-dimensional anti-de Sitter spacetime, admitting that an extra
dimension coordinate is compactified. Additionally, we admit the presence of a magnetic flux enclosed by
the compactified axis. To develop this analysis, we calculate the complete set of normalized bosonic wave
functions obeying a quasiperiodicity condition, with arbitrary phase β, along the compactified extra
dimension. In this context, only azimuthal and axial currents densities take place. As to the azimuthal
current, two contributions appear. The first one corresponds to the standard azimuthal current in high-
dimensional anti-de Sitter spacetime with a cosmic string without compactification, while the second
contribution is a new one, induced by the compactification itself. The latter is an even function of the
magnetic flux enclosed by the compactified axis and is an odd function of the magnetic flux along its core
with period equal to quantum flux, Φ0 ¼ 2π=e. On the other hand, the nonzero axial current density is an
even function of the magnetic flux along the core of the string and an odd function of the magnetic flux
enclosed by the compactified axis. We also find that the axial current density vanishes for untwisted and
twisted bosonic fields in the absence of the magnetic flux enclosed by the compactified axis. Some
asymptotic expressions for the current density are provided for specific limiting cases of the physical
parameter of the model.
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I. INTRODUCTION

The physics underlying quantum vacuum fluctuations
arises once quantum aspects of relativistic phenomena are
taken into account. That means a quantized relativistic field
(scalar, electromagnetic, or fermionic) will have a fluctuat-
ing ground state. In Minkowski spacetime, for instance, the
vacuum expectation value (VEV) of physical observables,
as a consequence of quantum vacuum fluctuations of
relativistic fields, is zero unless the vacuum is somehow
“perturbed” by external influences. These external
influences are in general boundary conditions of some
sort or coupled external fields. One very known physical
observable that gets a nonzero VEV under external
influences is the energy density that characterizes the
Casimir effect [1–3]. Another physical observable of

interest that averages to a nonzero value under these
circumstances is the four-current density due to charged
fields. This is of special importance since the VEV of the
four-current density can provide a better understanding of
the dynamics of the electromagnetic field once it is used as
a source in the semiclassical Maxwell equations.
An additional feature related to modifications of quan-

tum vacuum fluctuations of relativistic fields is its occur-
rence faces a curved background. It has been known that
geometrical and topological aspects of a curved space-
time also induce a nonzero VEV of physical observables
[1–3]. In particular, the induced VEV of the four-current
density by curved backgrounds has been investigated in
Refs. [4–11]. Among these curved backgrounds, the anti-de
Sitter (AdS) spacetime carries very interesting properties
that provide strong motivation to study it [12–17].
By considering a negative cosmological constant, the

AdS spacetime is obtained as a solution of Einstein’s
equations and thus is characterized by a constant negative
curvature. Thereby, from a theoretical and fundamental
point of view, the AdS spacetime makes it possible to solve
several problems exactly as a consequence of its high
symmetry, allowing the quantization of fields more easily,
besides offering better insight into the quantization of fields
in other curved spacetimes. Moreover, the AdS spacetime
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arises as a ground-state solution of string and supergravity
theories and also appears in the context of AdS=CFT
correspondence, a scenario that makes possible the reali-
zation of the holographic principle, relating string theory
(supergravity) in a high-dimensional AdS spacetime with a
conformal field theory constructed in its boundary [18]. In
addition, the AdS background geometry is relevant in
branewold scenarios with large extra dimensions, offering
a way to solve the hierarchy problem between the gravi-
tational and electroweak mass scales [19].
The presence of a cosmic string inAdS spacetimeprovides

more interesting phenomena, since this combined geometry
makes it possible to identify in the VEVof some observable,
the contributions come from either parts, namely, from the
AdS geometry and cosmic string topology. Cosmic strings
are linear topological defects that are predicted in the context
of both gauge field theories and supersymmetric extensions
of the Standard Model of particle physics, as well as in the
context of string theory [20–25]. The spacetime of a straight,
infinitely long, and structureless cosmic string is character-
ized by a conical topology arising due to the angle deficit in
the plane perpendicular to it [20–22]. Phenomenologically,
current observations of CMB suggest cosmic strings can
contribute to a small percentage of the primordial density
perturbations [26] in the Universe and can also play a
important role in other cosmological, astrophysical, and
gravitational phenomena [22–25].
In the present paper, we are interested in calculating the

VEVof the current density associated with a charged scalar
field and investigate the effects arising from the geometry
and topology of a high-dimensional AdS spacetime in the
presence of a cosmic string carrying a magnetic flux. In
addition, we will assume a compactification of one extra
dimension and the existence of a constant vector potential
along it. Thus, the presence of these magnetic fluxes as well
as the compactified extra dimension will also provide
additional contributions to the VEV of the current density,
as we shall see.
The presence of extra compact dimensions is a character-

istic aspect of all the theories mentioned before in which the
AdS spacetime plays a key role and, as previously said,
induces nonzero contributions to physical observables such
as the energy-momentum tensor, which has not only the
energy density component but also the stresses components
(see Ref. [5] and references therein). In this case, for
instance, the vacuum energy density induced by the extra
compact dimensions offers an explanation for the observed
and still unexplained accelerated expansion of the
Universe. In Kaluza-Klein-type models and in braneworld
scenarios, on the other hand, the dependence of the size of
the compact extra dimension by the vacuum energy density
serves as a mechanism to stabilize fields known as moduli
fields.
This paper is organized as follows. In Sec. II, we present

the high-dimensional AdS spacetime in the presence of a

cosmic string and obtain the complete set of normalized
solutions of the Klein-Gordon equation associated with a
charged scalar field in this background, considering the
presence of an azimuthal and axial vector potentials. This
solution is then submitted to a nontrivial boundary condition
that compactifies an extra dimension. This set of solution is
used to construct theWightman function. In Sec. III, we first
prove that the VEVs of the charge density, radial current
density, and current density associated with the extra
dimensions, except the one that is compactifed, are all zero.
Finally, the rest of Sec. III is devoted to computing the
nonzero azimuthal current density and the nonzero current
density associated with the compactified extra dimension. In
this case, we show that the azimuthal current density has a
pure contribution due to the high-dimensional AdS space-
time with a cosmic string plus a second contribution due to
the compactification of the extra dimension. Moreover, we
also show that the current density associated with the
compactified extra dimension has only the contribution
due to the compactification. Section IV is devoted to the
main conclusions about our results. Throughout the paper,
we use natural units G ¼ ℏ ¼ c ¼ 1.

II. KLEIN-GORDON EQUATION
AND WIGHTMAN FUNCTION

The main objective of this section is to obtain the
positive frequency Wightman function associated with a
massive scalar field in a (Dþ 1)-dimensional AdS space-
time, with D > 3, in the presence of a cosmic string and a
compactified extra dimension. This function is important in
the calculation of vacuum polarization effects. To do that,
we first obtain the complete set of normalized mode
functions for the Klein-Gordon equation admitting an
arbitrary curvature coupling parameter.
In cylindrical coordinates, the geometry associated with

a cosmic string in a (3þ 1)-dimensional AdS spacetime is
given by the line element below (considering a static string
along the y axis),

ds2 ¼ e−2y=a½dt2 − dr2 − r2dϕ2� − dy2; ð2:1Þ

where r ≥ 0 and ϕ ∈ ½0; 2π=q� define the coordinates on
the conical geometry, ðt; yÞ ∈ ð−∞;∞Þ, and the parameter
a determines the curvature scale of the background
spacetime. The parameter q ≥ 1 codifies the presence of
the cosmic string. Using the Poincaré coordinate defined
by w ¼ aey=a, the line element above is written in the form
conformally related to the line element associated with a
cosmic string in Minkowski spacetime:

ds2 ¼
�
a
w

�
2

½dt2 − dr2 − r2dϕ2 − dw2�: ð2:2Þ

For the new coordinate, one has w ∈ ½0;∞Þ. Specific
values for this coordinates deserve to be mentioned:
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w ¼ 0 and w ¼ ∞ correspond to the AdS boundary and
horizon, respectively.
For an idealized cosmic string, i.e., an infinitely thin and

long straight cosmic string in the background of Minkowski
spacetime, the line element expression inside the brackets of
the right-hand side of (2.2), has been derived in Ref. [27] by
making use of two approximations: the weak-field approxi-
mation and the thin-string one. In this case, the parameter q
is related to the mass per unit length μ of the string by the
formula 1=q ¼ 1–4Gμ, where G is Newton’s gravitational
constant. However, the validity of the line element with the
planar angle deficit has been extended beyond linear
perturbation theory by Refs. [20,28]. In this case, the
parameter q does not need to be close to 1. Note that in
braneworld scenarios based on AdS spacetime, to which the
results given in this paper could be applied, the fundamental
Planck scale is much smaller thanmPl and can be of order of
the string formation energy scale.
The generalization of (2.2) to (Dþ 1)-dimensional AdS

spacetimes is done in the usual way, by adding extra
Euclidean coordinates [13]:

ds2¼
�
a
w

�
2
�
dt2−dr2− r2dϕ2−dw2−

XD
i¼4

ðdxiÞ2
�
: ð2:3Þ

The Euclidean version of the line element expressed inside
the bracket of the above equation has been presented in
Ref. [29] and called conical-type line singularity in an
arbitrary dimension; therefore, we consider the line element
inside (2.3) as a Minkowski version of the cosmic string
metric spacetime for higher dimensions. Moreover, a
discussion about the generalization of the cosmic string
spacetime can also be found in Ref. [30].
The curvature scale a in (2.3) is related to the cosmo-

logical constant, Λ, and the Ricci scalar, R, by the formulas

Λ ¼ −
DðD − 1Þ

2a2
; R ¼ −

DðDþ 1Þ
a2

: ð2:4Þ

The analysis of the induced current density for a charged
massive scalar field in the AdS space described in Poincaré
coordinates with toroidally compact dimensions has been
developed in Ref. [5]. In the latter, it is assumed that, in
addition to compact dimensions, the field obeys periodicity
conditions with general phases. Moreover, the presence of
constant vector potentials has also been considered.
In this present paper, we are interested in calculating the

induced vacuum current density, hjμi, associated with a
charged scalar quantum field, φðxÞ, in the cosmic string
spacetime in the AdS bulk induced by the presence of
magnetic flux running along the string’s core. Moreover,
we also assume the compactification along only one extra
coordinate, defined by z in the expression below:

ds2¼
�
a
w

�
2
�
dt2−dr2−r2dϕ2−dw2−dz2−

XD
i¼5

ðdxiÞ2
�
:

ð2:5Þ

Note that we will also consider the presence of a constant
vector potential along the extra compact dimension.
This compactification is implemented by assuming that
z ∈ ½0; L�, and the matter field obeys the quasiperiodicity
condition

φðt;r;ϕ;w;zþL;x5;…;xDÞ¼e2πiβφðt;r;ϕ;w;z;x5;…;xDÞ;
ð2:6Þ

where 0 ≤ β ≤ 1. The special cases β ¼ 0 and β ¼ 1=2
correspond to the untwisted and twisted fields, respectively,
along the z direction.
The field equation that governs the quantum dynamics of

a charged bosonic field with mass m, in a curved back-
ground and in the presence of an electromagnetic potential
vector, Aμ, reads

ðgμνDμDν þm2 þ ξRÞφðxÞ ¼ 0; ð2:7Þ

with Dμ ¼ ∇μ þ ieAμ. In addition, we have considered the
presence of a nonminimal coupling, ξ, between the field
and the geometry represented by the Ricci scalar, R. Two
specific values for the curvature coupling are ξ ¼ 0 and
ξ ¼ D−1

4D , which correspond to minimal and conformal
coupling, respectively. Also, we shall assume the existence
of the constant vector potentials

Aμ ¼ ð0; 0; Aϕ; 0; Az; 0;…; 0Þ; ð2:8Þ

with Aϕ ¼ −qΦϕ=ð2πÞ and Az ¼ −Φz=L, with Φϕ and Φz

being the corresponding magnetic fluxes. In quantum field
theory, the condition (2.6) changes the spectrum of the
vacuum fluctuations compared with the case of uncom-
pactified dimensions and, as a consequence, the induced
vacuum current density changes.
In the spacetime defined by (2.5) and in the presence of

the vector potentials given above, Eq. (2.7) becomes

� ∂2

∂t2−
∂2

∂r2−
1

r
∂
∂r−

1

r2

� ∂
∂ϕþ ieAϕ

�
2

−
� ∂
∂zþ ieAz

�
2

−
∂2

∂w2
−
ð1−DÞ

w
∂
∂wþMðD;m;ξÞ

w2
−
XD
i¼5

∂2

∂ðxiÞ2
�
φðxÞ¼ 0;

ð2:9Þ

where MðD;m; ξÞ ¼ a2m2 − ξDðDþ 1Þ.
The equation above is completely separable, and its

positive energy and regular solution at the origin are
given by
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φðxÞ ¼ Cw
D
2JνðpwÞJqjnþαjðλrÞe−iEtþiqnϕþikzzþik⃗·x⃗k : ð2:10Þ

In the expression above, x⃗k represents the coordinates along
the (D − 4) extra dimensions, and k⃗ represents the corre-
sponding momentum. Moreover,

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

4
þ a2m2 − ξDðDþ 1Þ

r
;

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2 þ ðkz þ eAzÞ2

q
;

α ¼ eAϕ

q
¼ −

Φϕ

Φ0

; ð2:11Þ

with Φ0 ¼ 2π
e , the quantum flux. In (2.10), JμðzÞ represents

the Bessel function [31].
The quasiperiodicity condition (2.6) provides a discre-

tization of the quantum number kz as shown below:

kz ¼ kl ¼
2π

L
ðlþ βÞ; with l ¼ 0;�1;�2;… ð2:12Þ

Therefore,

E ¼ El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2 þ k̃2l

q
; ð2:13Þ

where

k̃l ¼
2π

L
ðlþ β̃Þ;

β̃ ¼ β þ eAzL
2π

¼ β −
Φz

Φ0

: ð2:14Þ

The constant C in (2.10) can be obtained by the
normalization conditionZ

dDx
ffiffiffiffiffi
jgj

p
g00φ�

σ0 ðxÞφσðxÞ ¼
1

2E
δσ;σ0 ; ð2:15Þ

where the delta symbol on the right-hand side is understood
as the Dirac delta function for the continuous quantum
number, λ, p, and k⃗, and Kronecker delta for the discrete
ones, n and kl. From (2.15), one finds

jCj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa1−Dλp

2Eð2πÞD−3L

s
: ð2:16Þ

So, the normalized bosonic wave function reads

φσðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa1−Dλp

2Eð2πÞD−3L

s
w

D
2JνðpwÞJqjnþαjðλrÞ

× e−iEltþiqnϕþiklzþik⃗·x⃗k : ð2:17Þ
The properties of the vacuum state can be given

by the positive frequency Wightman function,

Wðx; x0Þ ¼ h0jφ̂ðxÞφ̂�ðx0Þj0i, where j0i stands for the
vacuum state with respect to the observer placed at rest
with respect to the string. To evaluate it, we use the mode
sum formula

Wðx; x0Þ ¼
X
σ

φσðxÞφ�
σðx0Þ: ð2:18Þ

Substituting (2.17) into (2.18), we obtain

Wðx; x0Þ ¼ qa1−Dðww0ÞD2
2ð2πÞD−3L

×
X∞
n¼−∞

einqΔϕ
X∞
l¼−∞

Z
dk⃗

Z
∞

0

dpp
Z

∞

0

dλλ

× JqjnþαjðλrÞJqjnþαjðλr0ÞJνðpwÞJνðpw0Þ

×
e−iElΔtþiklΔzþik⃗·Δx⃗k

El
; ð2:19Þ

where Δt ¼ t − t0, Δϕ ¼ ϕ − ϕ0, Δz ¼ z − z0 and
Δx⃗k ¼ x⃗k − x⃗k0.
To develop the summation over the quantum number l,

we shall apply the Abel-Plana summation formula [32],
which is given by

X∞
l¼−∞

gðlþ β̃Þfðjlþ β̃jÞ

¼
Z

∞

0

du½gðuÞþgð−uÞ�fðuÞ

þ i
Z

∞

0

du½fðiuÞ−fð−iuÞ�
X
j¼�1

gðijuÞ
e2πðuþijβ̃Þ−1

: ð2:20Þ

For this case, we can identify

gðuÞ ¼ e2πiuΔz=L

fðuÞ ¼ e−iΔt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þp2þk⃗2þð2πu=LÞ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2 þ ð2πu=LÞ2

q : ð2:21Þ

Using (2.20), we can write the Wightman function as

Wðx; x0Þ ¼ Wcsðx; x0Þ þWcðx; x0Þ: ð2:22Þ

The first term represents the contribution due to the AdS
bulk without compactification, which, for our analysis,
besides to present dependence on the magnetic fluxes, also
depends on the conical structure induced by the presence of
the cosmic string. As for the second term, it is induced by
the compactification and contains contributions due to the
magnetic flux enclosed by the compactified axis. Both
expressions are explicitly written in (2.23) and (2.27),
respectively.
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The first term on the right-hand side of (2.22), derived from the first integral of (2.20), can be written as

Wcsðx; x0Þ ¼
qðww0ÞD2e−ieAzΔz

2ð2πÞD−2aD−1

Z
dk⃗eik⃗·Δx⃗k

Z
∞

0

dppJνðpwÞJνðpw0Þ

×
X∞
n¼−∞

einqΔϕ
Z

∞

0

dλλJqjnþαjðλrÞJqjnþαjðλr0Þ
Z

dkzeikzΔz
e−iΔt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þp2þk⃗2þk2z

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2 þ k2z

q ; ð2:23Þ

where we have defined a new variable kz ¼ 2πu=L.1 Now, performing a Wick rotation and using the identity

e−Δτω

ω
¼ 2ffiffiffi

π
p

Z
∞

0

dse−s
2ω2−Δτ2=ð4s2Þ; ð2:24Þ

the integration over kz can be evaluated, and the result is

Wcsðx; x0Þ ¼
qðww0ÞD2e−ieAzΔz

ð2πÞD−2aD−1

Z
dk⃗eik⃗·Δx⃗k

Z
∞

0

dppJνðpwÞJνðpw0Þ

×
X∞
n¼−∞

einqΔϕ
Z

∞

0

dλλJqjnþαjðλrÞJqjnþαjðλr0Þ
Z

∞

0

ds
s
e−s

2ðλ2þp2þk⃗2Þ−ðΔz2−Δt2Þ=4s2 : ð2:25Þ

Now, let us concentrate on the second term of (2.22). Defining again the variable kz ¼ 2πu=L, the integral over this

variable must be considered in two different intervals; in the first interval ½0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2

q
�, the integral vanishes, so it

remains the contribution coming from the second interval, ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2

q
;∞�. So, taking into account this analysis,

we get

Wcðx; x0Þ ¼
qðww0ÞD2e−ieAzΔz

ð2πÞD−2aD−1

Z
dk⃗eik⃗·Δx⃗k

Z
∞

0

dppJνðpwÞJνðpw0Þ

×
X∞
n¼−∞

einqΔϕ
Z

∞

0

dλλJqjnþαjðλrÞJqjnþαjðλr0Þ

×
Z

∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þp2þk⃗2

p dkz
cosh

�
Δt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z − λ2 − p2 − k⃗2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z − λ2 − p2 − k⃗2

q X∞
j¼�1

e−jkzΔz

eLkzþ2πijβ̃ − 1
: ð2:26Þ

Developing the series expansion ðey − 1Þ−1 ¼ P∞
l¼1 e

−ly, and with the help of Ref. [33], it is possible to integrate over kz,
obtaining

Wcðx; x0Þ ¼
qðww0ÞD2e−ieAzΔz

ð2πÞD−2aD−1

Z
dk⃗eik⃗·Δx⃗k

Z
∞

0

dppJνðpwÞJνðpw0Þ
X∞
n¼−∞

einqΔϕ
Z

∞

0

dλλJqjnþαjðλrÞJqjnþαjðλr0Þ

×
X
j¼�1

X∞
l¼1

e−2πiβ̃jlK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 þ p2 þ k⃗2Þ½ðlLþ jΔzÞ2 − Δt2�

q �
: ð2:27Þ

Clearly, we notice that for L → ∞ the function above vanishes. By using the integral representation below for the
Macdonald function [34],

1For the case of vanishing magnetic fluxes and the absence of cosmic string, i.e., q ¼ 1, the expression (2.23) reduces itself to the
Wightmann function in an Ads bulk only.
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KνðxÞ ¼
1

2

�
x
2

�
ν
Z

∞

0

dτ
e−τ−x

2=4τ

τνþ1
; ð2:28Þ

we can rewrite Eq. (2.27) as

Wcðx; x0Þ ¼
qðww0ÞD2e−ieAzΔz

ð2πÞD−2aD−1

Z
dk⃗eik⃗·Δx⃗k

Z
∞

0

dppJνðpwÞJνðpw0Þ

×
X∞
n¼−∞

einqΔϕ
Z

∞

0

dλλJqjnþαjðλrÞJqjnþαjðλr0Þ
X
j¼�1

X∞
l¼1

e−2πiβ̃jl
Z

∞

0

ds
s
e−s

2ðλ2þp2þk⃗2Þ−½ðlLþjΔzÞ2−Δt2�=4s2 : ð2:29Þ

Substituting (2.25) and (2.29) into (2.22), and after some manipulations, we get a compact expression for the total
Wightman function given below:

Wðx; x0Þ ¼ qðww0ÞD2e−ieAzΔz

ð2πÞD−2aD−1

Z
dk⃗eik⃗·Δx⃗k

Z
∞

0

dppJνðpwÞJνðpw0Þ

×
X∞
n¼−∞

einqΔϕ
Z

∞

0

dλλJqjnþαjðλrÞJqjnþαjðλr0Þ
X∞
l¼−∞

e−2πiβ̃l
Z

∞

0

ds
s
e−s

2ðλ2þp2þk⃗2Þ−½ðlLþjΔzÞ2−Δt2�=4s2 : ð2:30Þ

Now, using the integral [34]

Z
∞

0

dηηe−η
2s2JγðηρÞJγðηρ0Þ ¼

e−
ðρ2þρ02Þ

4s2

2s2
Iγ

�
ρρ0

2s2

�
; ð2:31Þ

we can integrate over λ, p, and k⃗, obtaining

Wðx; x0Þ ¼ qe−ieAzΔz

2ð2πÞD2aD−1

�
ww0

rr0

�D
2
X∞
l¼−∞

e−2πiβ̃l
Z

∞

0

dχχ
D
2
−1e−χu

2
l =2rr

0
Iν

�
ww0

rr0
χ

� X∞
n¼−∞

eiqnΔϕIqjnþαjðχÞ; ð2:32Þ

where we have introduced a new variable, χ ¼ rr0=2s2, and defined

u2l ¼ r2 þ r02 þ w2 þ w02 þ ðlLþ ΔzÞ2 þ Δx⃗2k − Δt2: ð2:33Þ

The parameter α in Eq. (2.11) can be written in the form

α ¼ n0 þ ε; with jεj < 1

2
; ð2:34Þ

with n0 being an integer number. This allow us to sum over the quantum number n in (2.32), using the result obtained in
Ref. [6], given as

X∞
n¼−∞

eiqnΔϕIqjnþαjðχÞ ¼
1

q

X
k

eχ cosð2πk=q−ΔϕÞeiαð2πk−qΔϕÞ

−
e−iqn0Δϕ

2πi

X
j¼�1

jejiπqjεj
Z

∞

0

dy
cosh ½qyð1 − jεjÞ� − cosh ðjεjqyÞe−iqðΔϕþjπÞ

eχ coshðyÞ½cosh ðqyÞ − cos ðqðΔϕþ jπÞÞ� ; ð2:35Þ

where

−
q
2
þ Δϕ

Φ0

≤ k ≤
q
2
þ Δϕ

Φ0

: ð2:36Þ
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In short, the obtainment of the above expression is through the integral representation for the modified Bessel function [31],

IqjnþαjðzÞ ¼
1

π

Z
π

0

dy cosðqjnþ αjyÞez cos y − sinðπqjnþ αjÞ
π

Z
∞

0

dye−z cosh y−qjnþαjy; ð2:37Þ

following by the summation of the quantum number n and some additional intermediate steps.
Thus, the substitution of (2.35) into (2.32) allows us to integrate over χ with the help of [34], yielding

Wðx; x0Þ ¼ e−ieAzΔz

ð2πÞDþ1
2 aD−1

X∞
l¼−∞

e−2πiβ̃l
	X

k

eiαð2πk−qΔϕÞFðD−1Þ=2
ν−1=2 ðulkÞ

− q
e−iqn0Δϕ

2πi

X
j¼�1

jejiπqjεj
Z

∞

0

dy
cosh ½ð1 − jεjÞqy� − cosh ðjεjqyÞe−iqðΔϕþjπÞ

cosh ðqyÞ − cos ðqðΔϕþ jπÞÞ FðD−1Þ=2
ν−1=2 ðulyÞ



; ð2:38Þ

where we have introduced the notation

Fμ
γ ðuÞ ¼ e−iπμ

Qμ
γ ðuÞ

ðu2 − 1Þμ=2 ¼
ffiffiffi
π

p
Γðγ þ μþ 1Þ

2γþ1Γðγ þ 3=2Þuγþμþ1
F
�
γ þ μ

2
þ 1;

γ þ μþ 1

2
; γ þ 3

2
;
1

u2

�
; ð2:39Þ

with Qμ
γ ðuÞ being the associated Legendre function of the second kind and Fða; b; c; zÞ being the hypergeometric function

[31]. In (2.38), the arguments of the function Fμ
γ are given by

ulk ¼ 1þ
r2 þ r02 − 2rr0 cos ð2πk=q − ΔϕÞ þ Δw2 þ ðlLþ ΔzÞ2 þ Δx⃗2k − Δt2

2ww0

uly ¼ 1þ
r2 þ r02 þ 2rr0 coshðyÞ þ Δw2 þ ðlLþ ΔzÞ2 þ Δx⃗2k − Δt2

2ww0 : ð2:40Þ

So, Eq. (2.38) is the most compact expression to the
Wightman function. In this format, the l ¼ 0 component
corresponds to the contribution due to the cosmic string
only, and l ≠ 0 is the contribution due to the compactifi-
cation.
Having obtained the above result, we are in a position to

calculate the induced current densities. This new subject is
left to the next sections.

III. BOSONIC CURRENT

The bosonic current density operator is given by

ĵμðxÞ ¼ ie½φ̂�ðxÞDμφ̂ðxÞ − ðDμφ̂Þ�φ̂ðxÞ�
¼ ie½φ̂�ðxÞ∂μφ̂ðxÞ − φ̂ðxÞð∂μφ̂ðxÞÞ��
− 2e2AμðxÞjφ̂ðxÞj2: ð3:1Þ

Its VEV can be evaluated in terms of the positive frequency
Wightman function as exhibited below:

hjμðxÞi ¼ ie lim
x0→x

fð∂μ − ∂μ
0ÞWðx; x0Þ þ 2ieAμWðx; x0Þg:

ð3:2Þ

As we will see, this VEV is a periodic function of the
magnetic fluxes Φϕ and Φz with period equal to the
quantum flux. This can be observed writing the parameter
α as in (2.34).

A. Charge density

Let us begin with the calculation of the charge density.
Since A0 ¼ 0, we have

hj0ðxÞi ¼ ie lim
x0→x

ð∂t − ∂ 0
tÞWðx; x0Þ: ð3:3Þ

Substituting Eq. (2.38) into the above expression, taking
the time derivatives and finally the coincidence limit, we
obtain a divergent result. To avoid this problem, a regu-
larization procedure is necessary. Many regularization
procedures can be applied; however, for the present
problem, the most convenient is the Pauli-Villars (PV)
gauge-invariant one. Adopting this procedure, regulator
fields with large masses are introduced. The number of
these fields depends on the specific problem. As wewill see
below, a single regulator field with massM is sufficient. By
using PV, the regularized VEV of the charge density reads
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hj0ðxÞiReg ¼
2ie

ð2πÞDþ1
2 aDþ1

lim
t0→t

Δt
X∞
l¼−∞

e−2πiβ̃l
�X

k

e2πkiα
X
n¼0;1

cnF
ðDþ1Þ=2
νðnÞ−1=2

ðũlkÞ

−
q
2πi

X
j¼�1

jejiπqjεj
Z

∞

0

dy
cosh ½ð1 − jεjÞqy� − cosh ðjεjqyÞe−iqjπ

cosh ðqyÞ − cos ðqjπÞ
X
n¼0;1

cnF
ðDþ1Þ=2
νðnÞ−1=2

ðũlyÞ
�
; ð3:4Þ

where c0 ¼ 1; νð0Þ ¼ ν, given by (2.11); c1 ¼ −1;
and νð1Þ is the corresponding parameter associated with
the mass M. Moreover, in (3.4), the arguments of the
functions are

ũlk ¼ 1þ 4r2 sin2 ðπk=qÞ þ ðlLÞ2 − Δt2

2w2

ũly ¼ 1þ 4r2 cosh2ðyÞ þ ðlLÞ2 − Δt2

2w2
: ð3:5Þ

In obtaining the above result, we have used the relation

∂xF
μ
γ ðuðxÞÞ ¼ −ð∂xuðxÞÞFμþ1

γ ðuðxÞÞ ð3:6Þ

by using the recurrence relations for the associated
Legendre function of the second kind [31].
We can see from (3.5) that the arguments of the

functions FðDþ1Þ=2
νðnÞ−1=2 above, for l ≠ 0, are bigger than unity.

Consequently, the corresponding compactified contribu-
tions inside the brackets of (3.4) are finite, providing a
vanishing contribution for the charge density when we
take the time coincidence limit, Δt → 0. On the other hand,
for cosmic string contribution (l ¼ 0) for k ¼ 0 and for
k ≠ 0 but with r ¼ 0, the arguments of the functions
go to unity for the time coincidence limit. However, in
the limit of argument close to 1, by using the asymptotic
formula for the hypergeometric function, we get a
divergent result below, which does not depend on the
parameter ν:

FðDþ1Þ=2
ν−1=2 ðuÞ ≈ ΓððDþ 1Þ=2Þ

2ðu − 1ÞðDþ1Þ=2 : ð3:7Þ

So, the divergent behavior of the combination,

FðDþ1Þ=2
νð0Þ−1=2 ðuÞ − FðDþ1Þ=2

ν1−1=2 ðuÞ, is canceled. Finally, taking

the time coincidence limit in (3.4), these contributions
also provide a vanishing result. So, we conclude that the
charge density vanishes.
Following similar procedure, we also can prove that no

radial current density, hjri; currents densities along w, hjwi;
nor extra dimensions, hjii for i ¼ 5; 6;…, are induced by
this system.

B. Azimuthal current

The VEV of the azimuthal current density is given by

hjϕðxÞi ¼ ie lim
x0→x

fð∂ϕ − ∂ 0
ϕÞWðx; x0Þ þ 2ieAϕWðx; x0Þg:

ð3:8Þ

Substituting (2.19) into the above equation, we can
formally express the azimuthal current as

hjϕðxÞi ¼ −
qea1−DwD

ð2πÞD−3L

×
X∞
n¼−∞

qðnþ αÞ
Z

dk⃗
Z

∞

0

λJ2qjnþαjðλrÞdλ

×
Z

∞

0

pJ2νðpwÞdp
X∞
l¼−∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2 þ k̃2l

q :

ð3:9Þ

Identifying gðuÞ ¼ 1 and

fðuÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2 þ ð2πu=LÞ2

q ; ð3:10Þ

we can use (2.20) to develop the summation on the
quantum number l. Doing this, the VEV is decomposed as

hjϕðxÞi ¼ hjϕðxÞics þ hjϕðxÞic; ð3:11Þ

where hjϕðxÞics corresponds the contribution from the
cosmic string without compactification, which comes from
the first integral on the right-hand side of Eq. (2.20). This
component reads

hjϕðxÞics ¼ −
2qewD

ð2πÞD−2aD−1

×
X∞
n¼−∞

qðnþ αÞ
Z

dk⃗
Z

∞

0

dλλJ2qjnþαjðλrÞ

×
Z

∞

0

pJ2νðpwÞdp
Z

∞

0

dkzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2 þ k2z

q ;

ð3:12Þ

where we have defined kz ¼ 2πu=L.
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Using the identity

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þp2þ k⃗2þk2z

q ¼ 2ffiffiffi
π

p
Z

∞

0

dse−s
2ðλ2þp2þk⃗2þk2zÞ ð3:13Þ

and (2.31), we can perform the integrations over all but the
s variable, obtaining

hjϕðxÞics ¼ −
eq2wD

ð2πÞD2aD−1rD

Z
∞

0

dχχ
D
2
−1e−χ½1þðw=rÞ2�

× Iν

�
w2χ

r2

� X∞
n¼−∞

ðnþ εÞIqjnþεjðχÞ: ð3:14Þ

We have written α in the form (2.34) and also introduced a
new variable, χ ¼ r2=2s2. In Ref. [4], a compact expression
for the summation over the quantum number n has been
derived. We reproduce this result,

X∞
n¼−∞

ðnþ εÞIqjnþεjðχÞ

¼ 2χ

q2
X0
½q=2�

j¼1

sin ð2πj=qÞ sin ð2πjεÞeχ cosð2πj=qÞ

þ χ

qπ

Z
∞

0

dy sinhðyÞ e−χ coshðyÞgðq; ε; yÞ
cosh ðqyÞ − cos ðπqÞ ; ð3:15Þ

where ½q=2� represents the integer part of q=2 and the prime
on the sign of the summation means that in the case q ¼ 2p
the term k ¼ q=2 should be taken with the coefficient 1=2.
Moreover, the function, gðq; ε; yÞ, is defined as

gðq; ε; yÞ ¼ sin ðqπεÞ sinh ðð1 − jεjÞqyÞ
− sinh ðqεyÞ sin ðð1 − jεjÞπqÞ: ð3:16Þ

Substituting the above result into (3.14) and with the
help of Ref. [34], we get

hjϕðxÞics¼
4ea−ð1þDÞ

ð2πÞDþ1
2

×

�X0
½q=2�

j¼1

sinð2πj=qÞsinð2πjεÞFðDþ1Þ=2
ν−1=2 ðujÞ

þq
π

Z
∞

0

dy
sinhð2yÞgðq;ε;2yÞ
coshð2qyÞ− cosðπqÞF

ðDþ1Þ=2
ν−1=2 ðuyÞ

�
;

ð3:17Þ

where the arguments of the functions are given by

uj ¼ 1þ 2ðr=wÞ2 sin2 ðπj=qÞ;
uy ¼ 1þ 2ðr=wÞ2 cosh2ðyÞ: ð3:18Þ

From (3.17), we can see that hjϕðxÞics is an odd function of
εwith period equal to quantum flux,Φ0 ¼ 2π=e; moreover,
for 1 ≤ q < 2, the first term on the right-hand side is
absent. In Fig. 1, we exhibit the behavior of the azimuthal
current as a function of ε for different values of q,
considering D ¼ 4, ξ ¼ 0 and r=w ¼ ma ¼ 1. As we
can see, the intensity of the current depends strongly on
the value of q. Increasing q, its intensity also increases.
In Fig. 2, we plot the behavior of the azimuthal current,

hjϕðxÞics, as function of r=w for D ¼ 4, considering ε ¼
0.25 and ξ ¼ 0, for different values of the parameter q.
In the left panel, we adopted ma ¼ 1, and in the right
panel, ma ¼ 5.
After the numerical analyses for hjϕðxÞics, we will

develop its behavior for some specific regimes of the
physical variables. We start by considering r=w → 0. We
can use the asymptotic formula for the hypergeometric
function for small arguments [31] to rewrite Eq. (3.17) as

hjϕðxÞics≈
4eΓðDþ1

2
Þ

ð4πÞDþ1
2

�
w
ar

�
Dþ1

�X0
½q=2�

j¼1

cot ðπj=qÞ sinð2πjεÞ
sinD−1ðπj=qÞ

þq
π

Z
∞

0

dy
tanhðyÞ

coshD−1ðyÞ
gðq;ε;2yÞ

coshð2qyÞ− cosðπqÞ
�
:

ð3:19Þ

Apart form the conformal factor, ðw=aÞðDþ1Þ, the above
expression coincides with the corresponding one in
Minkowski background for points near the string [4]. On
the other hand, for r=w ≫ 1, we have

q
2.5

1.5

1.0

0.4 0.2 0.0 0.2 0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

10
3 a5 e

1
j

cs

FIG. 1. The azimuthal current density without compactification
for D ¼ 4 in Eq. (3.17) is plotted, in units of ea−5, in terms of ε,
for r=w ¼ 1; ma ¼ 1; ξ ¼ 0; and q ¼ 1, 1.5, 2.5.
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hjϕðxÞics ≈
21−2νeΓðD=2þ νþ 1Þ
ð4πÞD2Γðνþ 1ÞaDþ1

�
w
r

�
Dþ2νþ2

×

	X0
½q=2�

j¼1

cotðπj=qÞ sinð2πjεÞ
sinDþ2νðπj=qÞ þ q

π

Z
∞

0

dy
tanhðyÞ

coshDþ2νðyÞ
gðq; ε;2yÞ

coshð2qyÞ− cosðπqÞ


: ð3:20Þ

Another interesting asymptotic behavior is for ν ≫ 1. For this case, Eq. (3.17) reads

hjϕðxÞics ≈
2eνD=2

ð2πÞD2a1þD

"X0
½q=2�

j¼1

sin ð2πj=qÞ sin ð2πjεÞ
�
uj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2j − 1

q �
−ν

ðu2j − 1ÞDþ2
4

þ q
π

Z
∞

0

dy
sinh ð2yÞgðq; ε; 2yÞ

cosh ð2qyÞ − cos ðπqÞ

�
uy þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2y − 1

q �
−ν

ðu2y − 1ÞDþ2
4

#
: ð3:21Þ

For a conformally coupled massless scalar field, we have ν ¼ 1=2, and by expressing the associated Legendre function

in terms of the hypergeometric function [31,34], we can write a more convenient expression for FðDþ1Þ=2
ν−1=2 ðuÞ [5],

given by

FðDþ1Þ=2
0 ðuÞ ¼ −

ΓðDþ1
2
Þ

2
½ð1þ uÞ−ðDþ1Þ=2 − ðu − 1Þ−ðDþ1Þ=2�: ð3:22Þ

Substituting (3.22) into (3.17), we obtain

hjϕðxÞics ¼
�
w
a

�
Dþ1

	
4eΓðDþ1

2
Þ

ð4πÞDþ1
2 rðDþ1Þ

�X0
½q=2�

j¼1

cos ðπj=qÞ sinð2πjεÞ
sinDðπj=qÞ þ q

π

Z
∞

0

dy
sinhðyÞ

cosh ð2qyÞ − cos ðπqÞ
gðq; ε; 2yÞ
coshDðyÞ

�

−
2eΓðDþ1

2
Þ

ð4πÞDþ1
2 rðDþ1Þ

�X0
½q=2�

j¼1

sin ð2πj=qÞ sin ð2πjεÞ
�
w2

r2
þ sin2ðπj=qÞ

�
−Dþ1

2

þ q
π

Z
∞

0

dy
sinh ð2yÞgðq; ε; 2yÞ

cosh ð2qyÞ − cos ðπqÞ
�
w2

r2
þ cosh2ðyÞ

�
−Dþ1

2

�

: ð3:23Þ

q

2.5

1.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.5
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r w

a5 e
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j
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q

2.5

1.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0
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r w
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FIG. 2. The azimuthal current density without compactification for D ¼ 4 in Eq. (3.17) is plotted, in units of ea−5, in terms of the
proper distance, r=w, for ε ¼ 0.25; ξ ¼ 0; and q ¼ 1, 1.5, 2.5. The plot on the left is for ma ¼ 1, while the plot on the right
is for ma ¼ 5.
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We notice that two different sets of contributions appear in the expression above. Apart from the conformal factor, the first
set coincides with the induced massless scalar azimuthal current in the Minkowski background [4]. It is divergent for r → 0.
As for the second set, it is a new contribution. This part is induced by the boundary located atw ¼ 0. It is finite at the string’s
core for w ≠ 0. In addition, for r ≫ w, this part tends to cancel the first one. Finally, taking D ¼ 4 in the above expression,
we obtain

hjϕðxÞics ¼
�
w
a

�
5
	

3e
32π2r5

�X0
½q=2�

j¼1

cot ðπj=qÞ sinð2πjεÞ
sin3ðπj=qÞ þ q

π

Z
∞

0

dz
tanhðzÞ

cosh ð2qzÞ − cos ðπqÞ
gðq; ϵ; 2zÞ
cosh3ðzÞ

�

−
3e

64π2r5

�X0
½q=2�

j¼1

sin ð2πj=qÞ sin ð2πjεÞ
�
w2

r2
þ sin2ðπj=qÞ

�
−5=2

þ q
π

Z
∞

0

dy
sinh ð2yÞgðq; ε; 2yÞ

cosh ð2qyÞ − cos ðπqÞ
�
w2

r2
þ cosh2ðyÞ

�
−5=2

�

: ð3:24Þ

The compactified contribution for the azimuthal current, hjϕðxÞic, can be obtained using (2.26). So, we have

hjϕðxÞic ¼ −
2qewD

ð2πÞD−2aD−1

X∞
n¼−∞

qðnþ αÞ
Z

dk⃗
Z

∞

0

λJ2qjnþαjðλrÞdλ

×
Z

∞

0

pJ2νðpwÞdp
Z

∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þp2þk⃗2

p dkzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z − λ2 − p2 − k⃗2

q X
j¼�1

1

eLkzþ2πijβ̃ − 1
: ð3:25Þ

To proceed with our analysis, it is necessary to use the series expansion ðey − 1Þ−1 ¼ P∞
l¼1 e

−ly, and with the help of
Ref. [34], we can integrate over kz, obtaining

hjϕðxÞic ¼ −
4qewD

ð2πÞD−2aD−1

X∞
l¼1

cosð2πlβ̃Þ
X∞
n¼−∞

qðnþ αÞ
Z

dk⃗
Z

∞

0

dλλJ2qjnþαjðλrÞ

×
Z

∞

0

dppJ2νðpwÞK0

�
lL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2

q �
: ð3:26Þ

Using the integral representation for the Macdonald function given in (2.28), it is possible to integrate over the variables λ,
p, and k⃗, getting

hjϕðxÞic ¼ −
2q2ewD

ð2πÞD=2aD−1rD
X∞
l¼1

cosð2πlβ̃Þ
Z

∞

0

dχχðD−2Þ=2e−χ½1þðl2L2þ2w2Þ=2r2�

× Iν

�
w2χ

r2

� X∞
n¼−∞

ðnþ εÞIqjnþεjðχÞ; ð3:27Þ

where we have written α in the form of (2.34) and defined the variable, χ ¼ 2tr2

ðlLÞ2. Now, using the sum formula given in

(3.15), we are able to integrate over χ, obtaining the final form of the contribution to the azimuthal current density induced
by the compactification,

hjϕðxÞic ¼
8ea−ðDþ1Þ

ð2πÞðDþ1Þ=2
X∞
l¼1

cosð2πlβ̃Þ
�X0
½q=2�

j¼1

sinð2πj=qÞ sinð2πjεÞFðDþ1Þ=2
ν−1=2 ðvljÞ

þ q
π

Z
∞

0

dy
sinh ð2yÞgðq; ε; 2yÞ
coshð2qyÞ − cosðπqÞF

ðDþ1Þ=2
ν−1=2 ðvlyÞ

�
; ð3:28Þ
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with

vlj ¼ 1þ ðlLÞ2 þ 4r2sin2ðπj=qÞ
2w2

vly ¼ 1þ ðlLÞ2 þ 4r2cosh2ðyÞ
2w2

: ð3:29Þ

From the above expression, we can see that the con-
tribution due to the compactification on the azimuthal
current density is an even function of the parameter β̃ and is
an odd function of the magnetic flux along the core of the
string, with period equal to Φ0. In particular, in the case of
an untwisted bosonic field, hjϕðxÞic is an even function of
the magnetic flux enclosed by the compactified dimension.
In Fig. 3, we plot (3.28) as function of β̃ for D ¼ 4,
considering ma ¼ 1, ξ ¼ 0, ε ¼ 0.25, and different values
of q. As we can see, besides hjϕðxÞic to present a strong
dependence on the parameter q, its direction depends on the
value of β̃.

In the regime L=w ≫ 1, Eq. (3.28) presents the follow-
ing asymptotic behavior:

hjϕðxÞic ≈
21−2νeΓðD=2þ νþ 1Þ
ð4πÞD2Γðνþ 1ÞaDþ1

�
w
L

�
Dþ2νþ2X∞

l¼1

cosð2πlβ̃Þ

×

	X0
½q=2�

j¼1

sinð2πj=qÞ sinð2πjεÞ
�
l2

4
þ
�
r
L

�
2

sin2ðπj=qÞ
�
−D

2
−ν−1

þ q
π

Z
∞

0

dy
sinh ð2yÞgðq; ε; 2yÞ
coshð2qyÞ − cosðπqÞ

�
l2

4
þ
�
r
L

�
2

cosh2ðyÞ
�
−D

2
−ν−1



: ð3:30Þ

For a conformally coupled massless scalar field and taking D ¼ 4, a much simpler expression can be provided. It reads

hjϕðxÞic ¼
�
w
aL

�
5 3e
π2

	X0
½q=2�

j¼1

sinð2πj=qÞ sinð2πjεÞ½Gcðβ̃; ρjÞ − Gcðβ̃; σjÞ�

þ q
π

Z
∞

0

dy
sinh ð2yÞgðq; ε; 2yÞ
coshð2qyÞ − cosðπqÞ ½Gcðβ̃; ηðyÞÞ −Gcðβ̃; τðyÞÞ�



; ð3:31Þ

where we have defined the function

Gcðβ̃; xÞ ¼
X∞
l¼1

cos ð2πlβ̃Þ
ðl2 þ x2Þ5=2 ð3:32Þ

and introduced new variables

ρj ¼
2r sin ðπj=qÞ

L
; ηðyÞ ¼ 2r coshðyÞ

L

σj ¼
2

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ r2sin2ðπj=qÞ

q
; τðyÞ ¼ 2

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ r2cosh2ðyÞ

q
: ð3:33Þ

Similarly to what happened with (3.23), two different contributions appear in (3.31). The positive contribution is due to the
compactification only, and the negative one is induced by the boundary located at w ¼ 0. Also, we can observe that for
r ≫ w the latter tends to cancel the former.

q
2.5

1.5

1.0

0.4 0.2 0.0 0.2 0.4
0.6

0.4

0.2

0.0

0.2

0.4

0.6

10
3
a5

e
1

j
c

FIG. 3. The azimuthal current density induced by compactifi-
cation for D ¼ 4 is plotted, in units of ea−5, in terms of β̃ for
ma ¼ 1; ξ ¼ 0; ε ¼ 0.25, and q ¼ 1, 1.5, 2.5.
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C. Current along the compactified dimension

In this section, we want to analyze the current density
along the compactified axis, named the axial current. As we
shall see, due to the compactification, an axial current will
be induced. This current goes to zero in the limit L → ∞.
The VEV of the axial current is calculated by

hjzðxÞi ¼ ie lim
x0→x

fð∂z − ∂ 0
zÞWðx; x0Þ þ 2ieAzWðx; x0Þg:

ð3:34Þ

Substituting Eq. (2.19) into the above expression and using
the fact that Az ¼ −Φz=L, we obtain

hjzðxÞi ¼ −
qea1−DwD

ð2πÞD−3L

X∞
n¼−∞

Z
dk⃗

Z
∞

0

λJ2qjnþαjðλrÞdλ

×
Z

∞

0

pJ2νðpwÞdp
X∞
l¼−∞

k̃lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k⃗2 þ k̃2l

q ;

ð3:35Þ

where k̃l is given by (2.14).
The sum over the quantum number l is again evaluated

by using the Abel-Plana formula given in (2.20). In this
case, we identify gðuÞ ¼ 2πu=L, and fðuÞ is given by
(3.10). The first integral on the right-hand side is zero due
the fact that gðuÞ is an odd function. Therefore, it remains
only the second integral. It reads

hjzðxÞi ¼ −
2iqea1−DwD

ð2πÞD−2

Z
dk⃗

Z
∞

0

pJ2νðpwÞdp

×
X∞
n¼−∞

Z
∞

0

λJ2qjnþαjðλrÞdλ
Z

∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þp2þk⃗2

p dkz

×
kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z − λ2 − p2 − k⃗2
q X

j¼�1

j

eLkzþ2πijβ̃ − 1
;

ð3:36Þ
where we have defined the variable kz ¼ 2πu=L. Again, by
using the series expansion, ðey − 1Þ ¼ P∞

l¼1 e
−ly, in the

above expression, we have

hjzðxÞi ¼ −
4qea1−DwD

ð2πÞD−2

X∞
l¼1

sinð2πlβ̃Þ

×
Z

dk⃗
Z

∞

0

pJ2νðpwÞdp
X∞
n¼−∞

Z
∞

0

λJ2qjnþαjðλrÞdλ

×
Z

∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þp2þk⃗2

p dkz
kze−lLkzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z − λ2 −p2 − k⃗2
q : ð3:37Þ

We can evaluate the integral over kz with the help of
Ref. [34], and the result is given terms of the Macdonald

function of the first order, K1ðzÞ. Using the integral
representation (2.28) again and the fact that KνðyÞ ¼
K−νðyÞ, we obtain

Z
∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þp2þk⃗2

p dkz
kze−lLkzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z − λ2 − p2 − k⃗2
q

¼ 1

lL

Z
∞

0

dte−t−ðlLÞ2ðλ2þp2þk⃗2Þ=4t: ð3:38Þ

Substituting (3.38) into (3.37), it is possible to evaluate the
integrals over λ, p, and k⃗, obtaining

hjzðxÞi ¼ −
2qea1−DwDL

ð2πÞD=2rDþ2

X∞
l¼1

l sinð2πlβ̃Þ

×
Z

∞

0

dχχD=2e−χ½1þðl2L2þ2w2Þ=2r2�

× Iν

�
w2χ

r2

� X∞
n¼−∞

IqjnþεjðχÞ; ð3:39Þ

where we have introduced the variable χ ¼ 2tr2=ðlLÞ2. The
summation over n can be found in Ref. [4] and also given
by (2.35) by taking Δφ ¼ 0. This sum is

X∞
n¼−∞

IqjnþεjðχÞ ¼
eχ

q
−
1

π

Z
∞

0

dy
e−χ coshðyÞfðq; ε; yÞ
cosh ðqyÞ − cosðπqÞ

þ 2

q

X0
½q=2�

k¼1

cos ð2πkεÞeχ cos ð2πk=qÞ: ð3:40Þ

The function, fðq; ε; yÞ, is defined as

fðq; ε; yÞ ¼ sin ½ð1 − jεjÞqπ� coshðjεjqyÞ
þ sin ðjεjqπÞ cosh ½ð1 − jεjÞqy�: ð3:41Þ

Finally substituting (3.40) into (3.39), we get

hjzðxÞi ¼ −
2qea1−DwDL

ð2πÞD=2rDþ2

X∞
l¼1

l sinð2πlβ̃Þ

×
Z

∞

0

dχχD=2e−χ½1þðl2L2þ2w2Þ=2r2�Iν

�
w2χ

r2

�

×
�
eχ

q
−
1

π

Z
∞

0

dy
e−χ coshðyÞfðq; ε; yÞ
coshðqyÞ − cosðπqÞ

þ 2

q

X0
½q=2�

k¼1

cosð2πkεÞeχ cosð2πk=qÞ
�
: ð3:42Þ

At this point, we may decompose the current above as

hjzðxÞi ¼ hjzðxÞið0Þc þ hjzðxÞiðq;εÞc ; ð3:43Þ
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where the first term on the right-hand side of the above
expression,

hjzðxÞið0Þc ¼ 4ea−ð1þDÞL

ð2πÞDþ1
2

X∞
l¼1

l sinð2πlβ̃ÞFðDþ1Þ=2
ν−1=2 ðul0Þ;

ð3:44Þ

with ul0 given below in (3.47), is purely due to the
compactification. It does not depend on ε and q. For a
conformally coupled massless scalar field and taking
D ¼ 4, this contribution reads

hjzðxÞið0Þc ¼
�
w
a

�
5 3e
2π2L4

×

	X∞
l¼1

sinð2πβ̃lÞ
l4

−
X∞
l¼1

lsinð2πβ̃lÞ
½l2þð2wL Þ2�

5
2



: ð3:45Þ

The second contribution to the axial current depends on the
magnetic fluxes and the parameter associated with the
cosmic string. It is given by

hjzðxÞiðq;εÞc ¼8ea−ð1þDÞL

ð2πÞDþ1
2

X∞
l¼1

lsinð2πlβ̃Þ

×

�X0
½q=2�

k¼1

cosð2πkεÞFðDþ1Þ=2
ν−1=2 ðulkÞ

−
q
π

Z
∞

0

dy
fðq;ε;2yÞ

coshð2qyÞ−cosðπqÞF
ðDþ1Þ=2
ν−1=2 ðulyÞ

�
;

ð3:46Þ

where we have adopted the following notation:

ulk ¼ 1þ ðlLÞ2 þ 4r2sin2ðπk=qÞ
2w2

uly ¼ 1þ ðlLÞ2 þ 4r2cosh2ðyÞ
2w2

: ð3:47Þ

Notice that this term depends on the radial distance, r, and
is finite on the string’s core. We also can notice that the
axial current vanishes for integer and half-integer values of
β̃. In Fig. 4, we plot the axial current density, Eq. (3.46), for
D ¼ 4 as function of β̃ for ε ¼ 0 and ε ¼ 0.25, considering
ma ¼ 1, ξ ¼ 0, L=a ¼ 1, and different values of q.
We can also analyze the axial current in the regime

L=w ≫ 1. Using the asymptotic behavior for the hyper-
geometric function for large arguments, we get the follow-
ing expression:

hjzðxÞiðq;εÞc ≈
21−2νeΓðD=2þνþ1ÞL
ð4πÞD2Γðνþ1ÞaDþ1

�
w
L

�
Dþ2νþ2

×
X∞
l¼1

lsinð2πlβ̃Þ

×

	X0
½q=2�

k¼1

cosð2πkεÞ
�
l2

4
þ
�
r
L

�
2

sin2ðπk=qÞ
�
−D

2
−ν−1

−
q
π

Z
∞

0

dy
fðq;ε;2yÞ

coshð2qyÞ−cosðπqÞ

×

�
l2

4
þ
�
r
L

�
2

cosh2ðyÞ
�
−D

2
−ν−1



: ð3:48Þ

Finally, for a conformally coupled massless scalar field and
assuming D ¼ 4, we obtain

hjzðxÞiðq;εÞc ¼
�
w
a

�
5 3e
π2L4

×

	X0
½q=2�

k¼1

cosð2πkεÞ½Vcðβ̃; ρkÞ − Vcðβ̃; σkÞ�

−
q
π

Z
∞

0

dy
fðq; ε; 2yÞ

coshð2qyÞ − cosðπqÞ

× ½Vcðβ̃; ηðyÞÞ − Vcðβ̃; τðyÞÞ�


; ð3:49Þ
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FIG. 4. The axial current density is plotted forD ¼ 4, in units of ea−4, as a function of β̃ forma ¼ 1; ξ ¼ 0; L=a ¼ 1; and q ¼ 1, 1.5,
2.5. In the left plot, we consider ε ¼ 0, while in the right plot, we take ε ¼ 0.25.
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where we have introduced the function

Vcðβ̃; xÞ ¼
X∞
l¼1

l sin ð2πβ̃lÞ
ðl2 þ x2Þ5=2 ð3:50Þ

in the integrands of (3.49), with the corresponding argu-
ments defined in (3.33).

IV. CONCLUSIONS

In this paper, we have investigated the induced scalar
current density, hjμi, in a (Dþ 1)-dimensional AdS space,
with D ≥ 4, admitting the presence of a cosmic string
having a magnetic flux running along its axis. In addition,
we assume the compactification of just one extra dimension
in a circle of perimeter L and the existence of a constant
vector potential along this direction. This compactification
is implemented by assuming that the matter field obeys a
quasiperiodicity condition along it, Eq. (2.6). To develop
this analysis, we construct the positive energy Wightman
function, by solving the Klein-Gordon equation in the
corresponding background. By using the Poincaré coor-
dinate and admitting a general curvature coupling constant,
the normalized solution is given by (2.17). The Wightman
function is evaluated by summing over all set of normalized
solution (2.19). By using the Abel-Plana summation for-
mula, Eq. (2.20), the Wightman function is decomposed in
two contributions, one due only to the cosmic string in the
AdS background and the other induced by the compacti-
fication. Fortunately, we were able to express this function
in a compact form in Eq. (2.38).
In our analysis, we have proven that only azimuthal and

axial current densities are induced. Because of the com-
pactification, the azimuthal current has been decomposed
in two parts. The first one corresponds to the expression in
the geometry of a cosmic string in AdS bulk without
compactification, and the second is induced by the com-
pactification; both are presented by Eqs. (3.17) and (3.28),
respectively. Both contributions are odd functions of ε, with
a period equal to the quantum flux Φ0. This is an
Aharonov-Bohm–like effect. The pure cosmic string con-
tribution is plotted for D ¼ 4, in units of the inverse of
a5e−1, as a function of ε as shown in Fig. 1. From this
graph, we can see that the intensity of this current increases
with the parameter q; also, we have plotted this contribu-
tion for two different values of the productma as a function
of dimensionless variable r=w for different values of q.
These graphs are presented in Fig. 2. By them, we can see a
strong decay in the intensity of hjics; moreover, carefully,
we can identify that for a bigger value of ma the decay is
more accentuated. Some asymptotic expressions for this
current are provided for specific limiting cases of the
physical parameter of the model. For small and larger

values of r=w, the corresponding asymptotic expressions
are given by (3.19) and (3.20), respectively. For ν ≫ 1, it is
given by (3.21). Finally, for a conformally coupled mass-
less field, the induced current assumes the form (3.23).
As to the azimuthal current density induced by the

compactification, Eq. (3.28), we can observe that it is an
even function of the parameter β̃ and is an odd function of
the magnetic flux along the core of the string, with a period
equal to Φ0. Its dependence on β̃ is plotted in Fig. 3,
considering the interval ½−0.5; 0.5� and different values of
q. Here, we also observe that this component depends
strongly on q. Its asymptotic behavior for large values of
L=w is presented in (3.30), where we can observe that this
current decays with a specific power of w=L.
Because of the compactification, there appears an

induced current along the compactified extra dimension
presented in a complete expression by (3.42). It has a
purely compactification origin and vanishes when β̃ ¼ 0,
1=2, and 1. This current can be expressed as the sum of two
terms. One of them is given by Eq. (3.44). It is explicitly
shown that it is independent of the radial distance r, the
cosmic string parameter q, and ε. The other contribution is
given by Eq. (3.46). It depends on the magnetic fluxes and
the planar angle deficit, and it is an odd function of the
parameter β̃ and is an even function of ε, with a period
equal to the quantum flux Φ0. For the particular case in
which β ¼ 0, Eq. (3.46) becomes an odd function of the
magnetic flux enclosed by the compactified dimension. A
plot of the azimuthal current as function β̃ is presented in
Fig. 4 for two different values of ε and considering D ¼ 4.
From this graph, we can see that the amplitude of the
current increases with the parameter q and the effect of ε is
to change the orientation of the current.
Before concluding, we would like to mention that the

currents densities analyzed in this paper refer to the vacuum
ones induced by the presence of magnetic fluxes and the
compactification. As was exhibited by all the graphs
provided, the planar angle deficit associated with the
cosmic string spacetime increases the intensity of the
azimuthal current density, and the compactification intro-
duces an additional contribution to it; moreover, the latter
induces a new current density along the compactified
dimension.
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