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We introduce and study a lattice fermion model in one dimension with explicit N ¼ 1 supersymmetry
(SUSY). The Hamiltonian of the model is defined by the square of a supercharge built from Majorana
fermion operators. The model describes interacting Majorana fermions, and its properties depend only on a
single parameter g. When g ¼ 1, we find that SUSY is unbroken and the ground states are identical to those
of the frustration-free Kitaev chains. We also find a parameter regime in which SUSY is restored in the
infinite-volume limit. For sufficiently large g, we prove that SUSY is spontaneously broken and the low-
lying excitations are gapless, which can be thought of as Nambu-Goldstone fermions. We then show
numerically that these gapless modes have cubic dispersion at long wavelengths.

DOI: 10.1103/PhysRevD.99.045002

I. INTRODUCTION

Spontaneous symmetry breaking (SSB) is one of the most
important concepts in physics, and it is known that SSBgives
rise to gapless excitations called Nambu-Goldstone (NG)
bosons [1–3]. In recent years, counting theories of NG
bosons in nonrelativistic systems have attracted much
attention [4,5]. When the generators of broken symmetry
are fermionic, it is expected that SSB leads to massless
fermions instead of massless bosons at low energies. The
most famous example of such fermionic symmetries is
supersymmetry (SUSY) [6,7]. SUSY is a symmetry that
relates bosons and fermions, and it is expected to solve some
fundamental problems such as the hierarchy problem [8,9].
Despite its importance, SUSY has yet to be confirmed
experimentally. Thus, SUSY is considered to be spontaneo-
usly broken if realized in nature. It is known, in relativistic
systems, that spontaneous SUSYbreaking gives rise tomass-
less excitations called NG fermions or Goldstinos [10]. The
low-energy properties of such systems can be described
by the theory of nonlinear realization of SUSY [11].
In condensed matter physics, a few examples of SUSY

have been discussed in the context of lattice models
[12–15], cold atomic systems [16–18], and emergent SUSY
at criticality [19–24]. The relation between spontaneous
SUSY breaking and NG fermions in nonrelativistic systems
was also studied in the literature. In particular, it was argued
that NG fermions with a quadratic dispersion associated with
spontaneous SUSY breaking can be realized in cold atomic
systems with a mixture of bosons and fermions [16–18].
On theother hand, in our previouswork,we studied extensions
of Nicolai’s model [12,13] and found that spontaneous
SUSY breaking gives rise to NG fermions with linear or
cubic dispersion relations, depending on the details of the

models [25,26]. So far, these studies have been limited to
N ¼2 supersymmetric models. Thus, the properties ofN ¼1
SUSY in nonrelativistic systems have not been elucidated.
The concept of Majorana fermions is also one of the

most important ideas in high-energy and condensed matter
physics, and it has been attracting renewed attention in
terms of the application to quantum information [27].
To date, considerable effort has been devoted to the studies
of free Majorana fermions, and they are relatively well
understood. On the other hand, the effects of interactions
on Majorana fermions remain elusive and have been the
focus of recent research, as they can potentially lead to a
variety of interesting phenomena, such as the reduction of
the topological classification of free fermions [28,29]. In
addition, models of interacting Majorana fermions exhibit
rich phase diagrams including emergent SUSY [23,30–33].
In this paper, we introduce and study a lattice fermion

model with N ¼ 1 SUSY, which describes a chain of
interacting Majorana fermions. The Hamiltonian consists
of quadratic and quartic terms in Majorana fermions, and
its properties depend only on a single parameter g ∈ R. The
model has an exact SUSYand allows us to study spontaneous
SUSY breaking and NG fermions in nonrelativistic situa-
tions.When jgj ¼ 1, SUSYis unbroken and theground states
can be obtained analytically. For jgj < gc ≈ 1, we find that
SUSY is restored in the infinite-volume limit. On the other
hand, for sufficiently large jgj, we show that spontaneous
SUSY breaking takes place in both finite and the infinite
chains. We then prove the existence of gapless excitations,
which are the analogue of NG fermions in nonrelativistic
systems, by using a variational argument. We also show
numerically that these gapless modes have cubic dispersion
at long wavelengths.
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The structure of this paper is as follows: In Sec. II, we
introduce the Hamiltonian as the square of a supercharge.
In Sec. III, we first review the definition of spontaneous
SUSY breaking. Then, we discuss conditions under which
SUSY is unbroken, it is broken in the finite system but
restored in the infinite system, or it is broken in both the
finite and the infinite systems. In Sec. IV, we prove the
existence of NG fermions using elementary inequalities,
and show that their dispersion relation is cubic. We conclude
our paper in Sec. V. In Appendix A, we give an explicit
expression for the Jordan-Wigner-transformed Hamiltonian.
In Appendixes B, D, and E, we derive formulas which are
used in the main text. In Appendix C, we discuss the finite-
size scaling of the ground-state energy for some parameters.
In Appendix F, we give an explicit representation of the
translation operator of a Majorana fermion by one site.

II. MODEL

In this section, we introduce the N ¼ 1 supersymmetric
lattice fermion model on a (1þ 1)-dimensional lattice. We
consider the following supercharge:

Q ¼
XN
j¼1

gγj þ iγj−1γjγjþ1; ð1Þ

where γj ¼ γ†j is a Majorana fermion operator acting on the
jth sitewhich satisfies the Clifford algebra fγi; γjg ¼ 2δi;j, g
is a real parameter, and Nð≥4Þ is the (even) number of sites.
We assume the periodic boundary conditions (PBCs), i.e.,
γjþN ¼ γj. The supercharge is Hermitian (Q† ¼ Q) and is
invariant under the translation by one Majorana site
T∶ γj → γjþ1. The supercharge is fermionic, since it anti-
commutes with the fermionic parity ð−1ÞF ≔ iN=2

Q
N
j¼1 γj.

TheHamiltonian is defined asH ¼ Q2. The superchargeQ is
a conserved quantity by definition, and thus themodel has an
explicit N ¼ 1 SUSY. The Hamiltonian is positive semi-
definite, since the expectationvalue in an arbitrary state jψi is
non-negative, i.e., hψ jHjψi ¼ kQjψik2 ≥ 0.Without loss of
generality, we can assume that the parameter g is non-
negative, since the model with −g can be mapped to the one
with g by sending γj → γN−j.
The Hamiltonian can be written more explicitly as

H ¼ Hfree þHint þ Ng2; ð2Þ
with

Hfree ¼ 2gi
XN
j¼1

ð2γjγjþ1 − γj−1γjþ1Þ; ð3Þ

Hint ¼
XN
j¼1

ð1 − 2γj−1γjγjþ2γjþ3Þ: ð4Þ

The first term Hfree describes the hopping of Majorana
fermions between nearest- or next-nearest-neighbor sites,

while the second term Hint describes quartic interactions
[See alsoFig. 1(a)]. The second term inEq. (3) is not invariant
under the time-reversal operationK∶γj→ð−1Þjþ1γj, i → −i.
Note that each summand in Eq. (4) is positive semidefinite.

III. SUSY BREAKING

In this section, we first give a definition of SUSY
breaking, and then we discuss the property of the ground
states in terms of SUSY breaking. In Sec. III B, we show
that SUSY is unbroken for g ¼ 1, and the ground state can
be calculated analytically. In Sec. III C, we find points
where SUSY is broken in finite systems but restored in the
infinite-volume limit. In Sec. III D, we prove that SUSY is
broken when g is larger than 8=π by deriving a lower bound
on the ground-state energy density.

A. Definition of SUSY breaking

We now review the precise definition of spontaneous
SUSY breaking [25]:
Definition.—SUSY is said to be spontaneously broken if

the ground-state energy density is positive.
This definition is well defined in both finite and infinite

systems. In the large-g limit, SUSY is spontaneously broken
in our model, since the constant term in Eq. (2) proportional
to g2 is dominant. In the rest of this paper, wemostly focus on
spontaneous SUSY breaking for modest values of g.

B. SUSY unbroken case

In this subsection, we discuss the properties of the
ground states for g ¼ 1. In this case, SUSY is unbroken;
i.e., there exist zero-energy states. These states must be

FIG. 1. (a) Schematics of the Hamiltonian. Symbols 4g and 2g
represent the first and second terms of the free Hamiltonian
[Eq. (3)], respectively. The pink region represents a quartic
interaction of Majorana fermions described by Eq. (4). (b) Sche-
matic phase diagram of the Hamiltonian [Eq. (2)] in the infinite-
volume limit as a function of g. At g ¼ �1, the ground states can
be obtained analytically. The model at g ¼ 0 is another solvable
case [34]. The SUSY broken or unbroken transition occurs at
g ¼ �gc, with gc slightly larger than 1.
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ground states, since the Hamiltonian is positive semi-
definite. Although the system is interacting, ground states
can be obtained analytically in this case. One of the ground
states is identical to the trivial ground state of the Kitaev
chain [35] (t ¼ Δ ¼ 0, μ < 0) with PBCs, and the other is
the same as the topological ground state of the Kitaev chain
(t ¼ Δ ≠ 0, μ ¼ 0) with PBCs. We refer to these two states
as jΨ0i and jΨ1i, respectively. They are related to each
other by translation operator T. We note that they are
eigenstates of the fermionic parity ð−1ÞF with opposite
eigenvalues, as T anticommutes with ð−1ÞF [36].
In order to verify that these two states are ground states

of our Hamiltonian, we rewrite Q in Eq. (1) as

Q ¼
XL
l¼1

ðγ2l−2 þ γ2lþ1Þð1þ iγ2l−1γ2lÞ; ð5Þ

¼
XL
l¼1

ðγ2l−1 þ γ2lþ2Þð1þ iγ2lγ2lþ1Þ; ð6Þ

where L ¼ N=2. The two states jΨ0i and jΨ1i are,
respectively, annihilated by the operators (1þ iγ2l−1γ2l)
and (1þ iγ2lγ2lþ1) for all l; i.e.,

ð1þ iγ2l−1γ2lÞjΨ0i¼ 0; ð1þ iγ2lγ2lþ1ÞjΨ1i¼ 0: ð7Þ

From this it follows that QjΨ0i ¼ QjΨ1i ¼ 0. Note that
although the Hamiltonian breaks time-reversal symmetry
explicitly, each ground state is invariant under the time-
reversal operation K.
We find numerically that the lowest excitation energy

decays exponentially when increasing the system size N.
Therefore, the lowest excited states are expected to be
degenerate with the ground states in the infinite-volume
limit. For finite systems, we have checked numerically that
the number of ground states is two unless N ≡ 0 ðmod 8Þ.
When N is a multiple of 8, we have four ground states, two
of which are jΨ0i and jΨ1i, as discussed above. The other
two can also be obtained analytically. The explicit expres-
sion for one of the rest ground states is

jΦ0i ¼
1

N0

XN
j¼1

e−i
π
4
jγjjΨ0i; ð8Þ

where N0 is a normalization factor. The coefficient e−i
π
4
j

indicates why this state is a ground state when N is a
multiple of 8. Due to the translational symmetry, the other
ground state can be obtained by acting with T on jΦ0i.

C. SUSY restoration case

For g ≠ 1, we have verified that SUSY is broken
spontaneously in finite systems by exact numerical diag-
onalization. However, when the parameter g is close to 1,

we find that the ground-state energy density tends to decrease
exponentially with the system size. In Fig. 2, we show the
log-linear plot of the ground-state energy density as a
function of N for g ¼ 0.99, 1.01 and N ¼ 10;…; 38. The
results suggest that SUSY is restored in the infinite-volume
limit, although it is broken in a finite volume.
We also find that SUSY is restored in the infinite-volume

limit even when g is not close to 1. In Fig. 3, we plot the
ground-state energy E0 as a function of 1=N for g ¼ 0 and
N ¼ 10;…; 38. From Fig. 3, we see that the ground-state
energy has a periodic structure depending on the number of
sitesN ðmod 6Þ [37]. Since the Hamiltonian is described by
the sum of local operators, one may expect that the ground-
state energy is of the order of N. However, Fig. 3 implies
that the ground-state energy converges to a finite value in
the infinite-volume limit, so that the ground-state energy
density goes to zero. Thus, SUSY is restored in the infinite-
volume limit.
We note in passing that the model with g ¼ 0 is

integrable, and the SUSY restoration can be proved
analytically [34]. The restoration of SUSY is not observed
in our previous N ¼ 2 SUSY models where SUSY is
unbroken in the point g ¼ 0. Since SUSY is unbroken for

FIG. 2. Log-linear plots of ground-state energy density for
g ¼ 0.99 and 1.01 as a function of N. Here, E0 refers to the
ground-state energy.

FIG. 3. The ground-state energyE0 for g¼0 as a function of 1=N.
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both g ≈ 1 and g ¼ 0, we expect that there is an extended
region of the phase diagram in which SUSY is restored
[see Fig. 1(b)]. However, the precise location of the phase
boundaries (�gc) and the nature of the phase transition
remain unclear and require further study [38].

D. SUSY-breaking case

Next, we prove that SUSY is spontaneously broken for
g > 8=π in both finite and infinite systems. The proof goes as
follows: The ground-state energy of the free part Efree

0 reads

Efree
0 ¼ −

8g
tanðπ=NÞ ð9Þ

(see Appendix B for details). Using Anderson’s argument
[39–42], we get a lower bound for the ground-state energy
density E0=N as follows:

E0

N
≥ g2 þ Efree

0

N
≥ g

�
g −

8

π

�
: ð10Þ

Here, for the first inequality, we have used the fact thatHint in
Eq. (2) is positive semidefinite. Clearly, the inequality
Eq. (10) shows that SUSY is spontaneously broken when
g > 8=π. This condition is not optimal, since numerical
results show that the ground-state energy density is positive
in both finite and the infinite systems even when g is smaller
than 8=π, as shown in Appendix C.

IV. NAMBU-GOLDSTONE FERMIONS

In the previous section, we have shown that SUSY is
broken when g is larger than 8=π. In this section, we prove
the existence of NG fermions, and show that NG fermions
have a cubic dispersion relation. In Sec. IVA, we prove that
low-energy excitation states are bounded from above by p
linear when g > 8=π. In Sec. IV B, we clarify that the
dispersion relation of NG fermions is cubic in momentum
by employing both analytical and numerical methods.

A. Existence of Nambu-Goldstone fermions

In this subsection, we give a proof of the existence of the
gapless fermionic excitations associated with spontaneous
SUSY breaking using a variational method based on the
Bijl-Feynman ansatz [43–46]. Suppose that g > 8=π, so that
SUSY is spontaneously broken. Take a variational state
jψðpÞi ¼ Qpjψ0i, where jψ0i is a SUSY-broken ground
state and

Qp ¼
XN
j¼1

qj cosðpjÞ ð11Þ

is the Fourier component of the local supercharge
qj ¼ gγj þ iγj−1γjγjþ1. Here, the momentum p takes the

values of 2πm=N (m ∈ Z). The definition of Qp immedi-
ately implies that it is Hermitian (Q†

p ¼ Qp) and is an even
function ofp (Q−p ¼ Qp).We note that the ground states are
at least doubly degenerate in this case, and another ground
state is Qjψ0i. For p ≠ 0 ðmod 2πÞ, the variational state
jψðpÞi is orthogonal to both jψ0i and Qjψ0i, since jψðpÞi
can be written as a linear combination of states with
momenta �p.
We define a variational energy in terms of the trial state

jψðpÞi as

ϵvarðpÞ ¼
hψðpÞjHjψðpÞi
hψðpÞjψðpÞi − E0: ð12Þ

Here, E0 is the ground-state energy of the Hamiltonian.
This variational energy ϵvarðpÞ is larger than or equal to the
first excitation energy. Using the Pitaevskii-Stringari
inequality [47] and properties of the operator Qp, one
finds that, when p is small enough, the variational energy is
bounded by p linear from above, as shown in Appendix D,

ϵvarðpÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
2E0=N

s
jpj þOðp3Þ: ð13Þ

Here, C is a constant of Oð1Þ. From Eq. (13), we see that
there exist gapless excitations associated with spontaneous
SUSY breaking. We note that these excitations are con-
sidered to be NG fermions, since the trial sate jψðpÞi has an
opposite fermionic parity from that of the ground state jψ0i.

B. Dispersion relation

Next, we discuss the dispersion relation of low-lying
excitations. In the large-g limit,Hfree in Eq. (2) is dominant.
Thus, let us consider only this term for the moment. The
Fourier transform of the free Hamiltonian Hfree can be
written as follows:

Hfree ¼ 8g
X
p>0

fðpÞγ†ðpÞγðpÞ − 8g
tanðπ=NÞ : ð14Þ

Here, γðpÞ is the Fourier transform of local Majorana
operators, and fðpÞ is defined as fðpÞ ≔ 2 sinðpÞ−
sinð2pÞ. Details of calculation are shown in Appendix E.
In this case, the constant term in Eq. (14) coincides with the
ground-state energy. When the momentum p is small
enough, the dispersion relation ofHfree is cubic, sincefðpÞ ∝
p3 around the origin.
To see the dispersion for finite g, we calculate the many-

body spectrum using an exact diagonalization method with
the help of the translation operator of Majorana fermions
discussed in Appendix F. Figure 4 shows the results for
g ¼ 8 with N ¼ 16;…; 24. The excitation energies ϵðpÞ
are plotted with respect to the momentum p. Here, we
redefine the momentum with the ground state being a
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zero-momentum state. The dotted curve is the spectrum of
the free part of the Hamiltonian described by 8gfðpÞ. In the
vicinity of p ¼ 0, there are energy levels that fit the curve.
This implies a cubic dispersion at low energies. In order to
verify this, we calculate the first excitation energyΔE using
exact diagonalization up to N ¼ 40 Majorana sites. The
results are shown in Fig. 5. We plot the first excitation
energy for g ¼ 4;…; 10 as a function of 1=N3, and the lines
are fits to the data of N ¼ 32;…; 40. The results clearly
show that the lowest excitation energy is proportional to p3.
Therefore, we conclude that the low-lying excitations have
cubic dispersion when SUSY is spontaneously broken.

V. CONCLUSION

In summary, we have introduced and studied a lattice
fermion model in one dimension with N ¼ 1 SUSY. The
Hamiltonian is defined by the square of a supercharge Q
made up solely of Majorana fermions and depends only on
the parameter g. At jgj ¼ 1, SUSY is unbroken, and the

ground states are identical to the ground states of the
frustration-free Kitaev chains. While N ¼ 2 SUSY is
unbroken only at the point g ¼ 0 in our previous works,
we found that N ¼ 1 SUSY is broken spontaneously in
finite systems, yet restored in the infinite-volume limit
for jgj < gc ≈ 1.
For jgj > 8=π, we proved that SUSY is broken sponta-

neously and there exist gapless excitations which can be
thought of as Nambu-Goldstone fermions. Using numerical
methods,we showed that the lowest-excited states have cubic
dispersion at long wavelengths. We expect that our results
provide a first step towards a comprehensive understanding
of spontaneous SUSY breaking in both relativistic and
nonrelativistic models of interacting Majorana fermions.
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APPENDIX A: JORDAN-WIGNER TRANSFORM
OF THE HAMILTONIAN

In this section, we map the Hamiltonian to a spin system
with S ¼ 1=2 using the Jordan-Wigner transformation:

γ2j−1 ¼ σxj
Yj−1
k¼1

ð−σzkÞ; γ2j ¼ −σyj
Yj−1
k¼1

ð−σzkÞ:

The Hamiltonian in terms of spin operators reads

H¼ðg2þ1ÞNþ2g
XN=2

l¼1

f2ðσzl −σxl σ
x
lþ1Þ−ðσxl σylþ1−σyl σ

x
lþ1Þg

−2
XN=2

l¼1

ðσzlσxlþ1σ
x
lþ2þσxl σ

x
lþ1σ

z
lþ2Þ

þðð−1ÞFþ1Þf4gσyN=2σ
y
1þ2gðσxN=2σ

y
1−σyN=2σ

x
1Þ

þ2ðσzN=2−1σ
y
N=2σ

y
1þσyN=2σ

y
1σ

z
2Þg:

Since we assume periodic boundary conditions in terms
of fermion operators, the Hamiltonian in terms of spin
operators contains boundary terms which are proportional
to ð−1ÞF þ 1. We note that this Hamiltonian contains
similar terms, which appear in Ref. [38].

APPENDIX B: THE GROUND-STATE
ENERGY OF Hfree

In this section, we calculate the ground-state energy of
the free part of the Hamiltonian Hfree for a finite length N.
The ground-state energy of Hfree can be calculated by
methods used in Ref. [35].

FIG. 4. Many-body spectrum of the Hamiltonian with g ¼ 8 as
a function of momentum p. The dotted curve is one particle
spectrum of Hfree described by 8gfðpÞ [see Eq. (14)].

FIG. 5. The first excitation energy of the Hamiltonian for each g
as a function of N3. Here, the number of sites N is varied from 24
up to 40. The lines are fits to the data of N ¼ 32;…; 40.

SUPERSYMMETRY BREAKING AND NAMBU-GOLDSTONE … PHYS. REV. D 99, 045002 (2019)

045002-5



Hfree ¼ 2ig
XN
j¼1

ð2γjγjþ1 − γj−1γjþ1Þ ¼
i
4
ΓtAΓ;

Here, Γ is a vector of the form ðγ1; γ2;…; γNÞt, and A is the
following N × N real skew-symmetric matrix:

A¼ g

0
BBBBBBBBBBBB@

0 4 −2 0 0 … 0 0 2 −4
−4 0 4 −2 0 … 0 0 0 2

2 −4 0 4 −2 … 0 0 0 0

..

. . .
. . .

. ..
.

0 0 0 0 0 … −4 0 4 −2
−2 0 0 0 0 … 2 −4 0 4

4 −2 0 0 0 … 0 2 −4 0

1
CCCCCCCCCCCCA
:

Since A is real skew-symmetric, A can be block diagon-
alized using an orthogonal matrix Q,

QTAQ ¼ ⨁
N=2

l¼1

�
0 ϵl

−ϵl 0

�
: ðB1Þ

Here, �iϵl are eigenvalues of the matrix A. By analogy
with the Kitaev chain [35], the ground-state energy can be
calculated as

Efree
0 ¼ −

1

2

XN=2

l¼1

ϵl:

Next, we consider the following eigenvalue problem in
order to get the eigenvalues,

Ãv ¼ ϵv: ðB2Þ

Here, we define an N × N Hermitian matrix Ã as Ã ¼ iA so
that the eigenvalues are real. From the eigenvalue in
Eq. (B2), we obtain

2giðvj−2 − 2vj−1 þ 2vjþ1 − vjþ2Þ ¼ ϵvj

for each component vjðj ¼ 1;…; N mod NÞ. Next, we
assume the following ansatz:

vj ¼ αeipj;

from which we get eipN ¼ 1 for periodic boundary con-
ditions vjþN ¼ vj. From this, for all j ¼ 1;…; N, we
obtain

ϵ ¼ g2iðeipðj−2Þ − 2eipðj−1Þ þ 2eipðjþ1Þ − eipðjþ2ÞÞe−ipj
¼ 2gið2eip − 2e−ip − e2ip þ e−2ipÞ
¼ −8g sinðpÞ þ 4g sinð2pÞ:

Here, the momentum p is an element of the setM, which is
defined as

M ¼
�
0;� 2π

N
;� 4π

N
;…;�ðN − 2Þπ

N
; π

�
:

The eigenvalues of the matrix A are ið8g sinðpÞ−
4g sinð2pÞÞ, with p ∈ M. Therefore, the ground-state
energy Efree

0 of Hfree is obtained as

Efree
0 ¼ −

1

2

XN=2

l¼1

�
8g sin

�
2πl
N

�
− 4g sin

�
4πl
N

��

¼ −
8g

tan ðπ=NÞ :

APPENDIX C: FINITE-SIZE SCALING
OF THE GROUND-STATE ENERGY

DENSITY FOR g ≤ 8=π

We have proved in the main text that SUSY is sponta-
neously broken in both finite and the infinite systems
when g > 8=πð¼ 2.546479…Þ. However, this value is not

FIG. 6. The ground-state energy density for (a) g ¼ 1.5 and
(b) g ¼ 2 as a function of 1=N2. Lines are fits to the data of
N ¼ 34;…; 40. Estimated values of energy density in the
thermodynamic limit are 0.079 and 0.58…, respectively.
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optimal, and there is a region of the parameter g in which
SUSY is spontaneously broken even when g ≤ 8=π. In
order to verify this, we calculate the ground-state energy
density numerically. The results for g ¼ 1.5 and g ¼ 2 are
shown in Fig. 6.
In these figures, lines are fits to the data of N ¼

34;…; 40. From these figures, we find that the ground-state
energy densities for g ¼ 1.5 and g ¼ 2 in the thermodynamic
limit are 0.079 and 0.58…, respectively. Therefore, we
conclude that there is a region of the parameter g < 8=π
in which SUSY is broken spontaneously.

APPENDIX D: VARIATIONAL METHOD
BASED ON BIJL-FEYNMAN ANSATZ

In this section, we calculate the upper bound of the
variational energy in order to prove that there exist gapless
modes associated with SUSY breaking. By a straightfor-
ward calculation, we can rewrite the variational energy in
terms of the double commutator of H and Qp,

ϵvarðpÞ ¼
h½Qp; ½H;Qp��i0
hfQp;Qpgi0

: ðD1Þ

Here, the symbol h� � �i0 denotes the expectation value in the
ground state. The local supercharge qj satisfies the follow-
ing locality condition:

fqi; qjg ¼
�
non zero ji − jj ≤ 2

0 others
:

Therefore, the commutator ½H;Qp� can be written in terms
of a sum of local operators. However, the double commu-
tator ½Qp; ½H;Qp�� may not be so. In order to get an upper
bound on ϵvarðpÞ, we apply the Pitaevskii-Stringari
inequality [47]. By applying it to Eq. (D1), we obtain

ϵ2varðpÞ ≤
hf½H;Qp�; ½Qp;H�i0

hfQp;Qpgi0
¼ fnðpÞ

fdðpÞ
;

where, fnðpÞ and fdðpÞ are defined by hf½H;Qp�;
½Qp;H�i0 and hfQp;Qpgi0, respectively. Since fnðpÞ
can be written as a sum of expectation values of local
operators, it is of the order of N. When p ¼ 0, we get
fnð0Þ ¼ 0 and fdð0Þ ¼ 2E0, respectively. Thus, when p is
small enough, we have fnðpÞ ¼ NðCp2 þ Oðp4ÞÞ and
fdð0Þ ¼ 2E0 þ Oðp2Þ. Here, we use the facts that Qp is
an even function of p (Q−p ¼ Qp) and a Hermitian
operator (Q†

p ¼ Qp). From these results, the variational
energy is bounded by p linear from above:

ϵvarðpÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
2E0=N

s
jpj þ Oðp3Þ:

This proves that there exist gapless excitations associated
with spontaneous SUSY breaking. We note that these
gapless modes are considered to be NG fermions, since
the trial state jψðpÞi has a different fermionic parity from
that of the ground state jψ0i.

APPENDIX E: FOURIER TRANSFORM OF Hfree

In this section, we study, using the Fourier transforma-
tion, the dispersion relation of Hfree defined by

Hfree ¼ 2gi
XN
j¼1

ð2γjγjþ1 − γj−1γjþ1Þ:

Here, we assume PBC and N even. The Fourier transform
of Majorana fermion operators are defined as [30]

γj ¼
ffiffiffiffi
2

N

r X
p

γðpÞeipj;

and the inverse Fourier transformation is also defined as

γðpÞ ¼
ffiffiffiffiffiffiffi
1

2N

r XN
j¼1

γje−ipj:

Here, p takes the values of 2πm=N (m ∈ Z), since PBC is
assumed. From the Clifford algebra of Majorana fermion
operators, Fourier-transformed Majorana operators satisfy
the following anticommutation relation:

fγðpÞ; γðp0Þg ¼ δp;−p0 :

This relation implies γ†ðpÞ ¼ γð−pÞ. The free part of the
Hamiltonian Hfree can be rewritten as

Hfree ¼ 2gi
X
j¼1

ð2γjγjþ1− γj−1γjþ1Þ

¼ 4g
X
p

ð2sinðpÞ− sinð2pÞÞγð−pÞγðpÞ

¼
X
p>0

ð2sinðpÞ− sinð2pÞÞγð−pÞγðpÞ−8g
X
p>0

sinðpÞ:

By a straightforward calculation, we obtain

Hfree ¼ 8g
X
p>0

ð2 sinðpÞ − sinð2pÞÞγ†ðpÞγðpÞ − 8g
tanðπ=NÞ :

Here, we note that the last constant term coincides with the
ground-state energy as calculated in Sec. V. From this, we
see that the dispersion relation is cubic in momentum when
the momentum p is small enough; i.e.,

8gð2 sinðpÞ − sinð2pÞÞ ∼ 8gjpj3:
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APPENDIX F: TRANSLATION OPERATOR
OF MAJORANA CHAIN

The importance of the translation operator in lattice
Majorana fermions was discussed in Ref. [36]. However, an
explicit expression for the operator was not given there. In
this section, we provide an explicit expression for the
operator of translation by one Majorana site. Using
Majorana fermion operators, we define the following
operator T1:

T1 ¼ γ1S1 � � � SN−1:

Here, Sj is defined as follows:

Sj ¼
1ffiffiffi
2

p ð1þ γjγjþ1Þ:

This operator exchanges Majorana fermions on the jth and
(jþ 1)th sites up to a phase factor. T1 translates the
Majorana fermion on the ith site to that on (iþ 1)th site,

T1γjT−1
1 ¼ γjþ1:

If T1 is the translation operator, TN
1 must be the identity.

However, we numerically find that the operator TN
1 is �1

depending on N,

TN
1 ¼

�þ1 ðN=2 ¼ 4; 5; 8; 9;…Þ
−1 ðN=2 ¼ 2; 3; 6; 7;…Þ :

In the case of N=2 ¼ 2; 3; 6; 7;…, we introduce the new
operator T2 defined by T2 ¼ eiπ=NT1. We numerically
verify that the operator T2 satisfies TN

2 ¼ 1 in the case
of N=2 ¼ 2; 3; 6; 7;…. Operators T1 and T2 defined above
become translation operators for N=2 ¼ 4; 5; 8; 9;… and
N=2 ¼ 2; 3; 6; 7;…, respectively. Now, we define a new
operator T as

T ≔
�
T1 ðN=2 ¼ 4; 5; 8; 9;…Þ
T2 ðN=2 ¼ 2; 3; 6; 7;…Þ :

This operator T is the translation operator of lattice
Majorana fermions for all N.
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