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Quantum energy inequalities (QEIs) express restrictions on the extent to which weighted averages of the
renormalized energy density can take negative expectation values within a quantum field theory. Here we
derive, for the first time, QEIs for the effective energy density (EED) for the quantized nonminimally
coupled massive scalar field. The EED is the quantity required to be non-negative in the strong energy
condition (SEC), which is used as a hypothesis of the Hawking singularity theorem. Thus establishing such
quantum strong energy inequalities (QSEIs) is a first step towards a singularity theorem for matter
described by quantum field theory. More specifically, we derive difference QSEIs, in which the local
average of the EED is normal-ordered relative to a reference state, and averaging occurs over both timelike
geodesics and spacetime volumes. The resulting QSEIs turn out to depend on the state of interest.
We analyze the state-dependence of these bounds in Minkowski spacetime for thermal (KMS) states, and
show that the lower bounds grow more slowly in magnitude than the EED itself as the temperature
increases. The lower bounds are therefore of lower energetic order than the EED, and qualify as nontrivial
state-dependent QEIs.
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I. INTRODUCTION

Quantum energy inequalities (QEIs) were introduced by
Ford [1] 40 years ago as an explanation of why macro-
scopic violations of the second law of thermodynamics do
not occur in quantum field theories. They provide restric-
tions on the possible magnitude and duration of any
negative energy densities or fluxes within a quantum field
theory. For a recent introduction to QEIs and summary of
known results see Refs. [2,3].
QEIs have been used extensively to constrain exotic

spacetimes such as ones allowing superluminal travel,
traversable wormholes and closed timelike curves [4–6].
In this paper, our main interest will be in whether QEI
restrictions are sufficient to prove singularity theorems for
matter sources described by quantum fields. The classical
singularity theorems of Hawking and Penrose [7,8] use
pointwise energy conditions, which are easily violated by
quantum fields. In particular, Hawking’s theorem uses the
strong energy condition (SEC), which requires that the
effective energy density (EED) [9] (cf., also Ref. [10])

ρU ≔ TμνUμUν −
T

n − 2
ð1Þ

is non-negative. Here, Uμ is a timelike vector representing
the observer’s velocity, T is the trace of the stress-energy
tensor, and n the number of spacetime dimensions.

Violations of the SEC do not necessarily mean that the
conclusions of the singularity theorems no longer hold and
there has been some progress in proving suitably adapted
singularity results under weaker hypotheses on the EED
or energy density [11–17]. In Ref. [18] it was shown that
lower bounds on local weighted averages of the EED
modeled on QEIs are sufficient to derive singularity theo-
rems of Hawking type (that is, establishing timelike geo-
desic incompleteness) even if the EED is not everywhere
positive or has a negative long-term average. In our recent
work [9], we established bounds on the EED of the classical
nonminimally coupled scalar field and deduced, by the
methods of [18], a Hawking-type singularity theorem for
the Einstein–Klein–Gordon theory. Similar methods have
been applied to prove an area theorem under weakened
hypotheses [19].
Despite the progress made in proving singularity theo-

rems with weakened energy conditions, there has not been
yet a singularity theorem for matter described by a quantum
field theory (QFT) based on QEIs. In the case of Hawking-
type results, the first necessary step is to establish a quantum
strong energy inequality (QSEI) that provides bounds on the
renormalized EED. (We have chosen the name to be
reminiscent of the SEC.) In this work we establish, for
the first time, various QSEIs for nonminimally coupled
scalar fields, by analogy with the analysis of Ref. [20] of
(quantum) energy inequalities on the energy density of the
nonminimally coupled scalar field.
In particular, we derive difference QEIs, namely, lower

bounds on the expectation value of the locally averaged
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quantized energy density (or similar quantities) in
Hadamard state ω, normal ordered relative to a reference
Hadamard state ω0. Recall that Hadamard states are those
whose two-point functions have a specific singularity
structure, which will be described later. Schematically,
difference QEIs take the form

h∶ρ∶ω0
ðfÞiω ¼ hρðfÞiω − hρðfÞiω0

≥ −hQω0
ðfÞiω; ð2Þ

where hρðfÞiω is the Hadamard-renormalized energy den-
sity (or similar) in state ω, averaged against f, which is a
non-negative test function on spacetime, or singularly
supported along a timelike curve, and we speak of
worldvolume or worldline averages accordingly. Here,
Qω0

ðfÞ is allowed to be an unbounded operator. In contrast,
absolute QEIs are lower bounds on hρðfÞiω that do not
require a reference state.
IfQω0

ðfÞ is a multiple of the unit operator then the right-
hand side of Eq. (2) does not depend on ω (though it will
generally depend on the reference state ω0) and the QEI is
called state-independent. More generally, if the right-hand
side depends nontrivially on ω, inequality (2) is described
as state-dependent QEI. State-independent difference
inequalities for the usual energy density [known as quan-
tum weak energy inequalities (QWEIs)] have been proved
in various situations: for example, they were proved for the
minimally coupled scalar field in two and four dimensions
for Minkowski spacetime [21], in static spacetimes [22]
and, for all Hadamard states in spacetimes with general
curvature in Ref. [23]. Meanwhile, state-independent abso-
lute bounds have been established, again for minimal
coupling, in two-dimensions for flat [24] and curved space-
times [25] and subsequently for four-dimensional curved
spacetimes [26,27]. We refer the reader to Ref. [3] for more
references, including results on Dirac, Maxwell and Proca
fields and also some results on interacting QFTs.
On the other hand, it is known that the nonminimally

coupled scalar field cannot obey a state independent QWEI,
as can be seen by explicit examples [20]; the same
argument also applies to QSEIs. However, as shown in
Ref. [28], nonminimally coupled fields obey state depen-
dent QWEIs of both absolute and difference types. Here,
we show that they also obey state dependent difference
QSEIs. While it is in principle possible to establish an
absolute QSEI, this is the objective of a future work.
This paper is organized as follows. In Sec. II we discuss

the quantization procedure we use, giving careful attention
to the relation between quantizations based on equivalent
classical expressions. In Sec. III we show that the EED
obeys a QEI of the form of Eq. (2) and explicitly derive
bounds for worldline and worldvolume averages. In
Sec. IVA we study the simplified form taken by the
QSEI bounds in flat spacetimes. In Sec. V, through explicit
calculations for the family of KMS states, we are able to
show that, despite being state-dependent, our QSEI bounds

are nontrivial in the sense that the lower bound is of lower
energetic order than the energy density itself. Finally, we
conclude in Sec. VI with a discussion on how our results
inform the Hawking singularity theorem.
We employ ½−;−;−� conventions in the Misner, Thorne

and Wheeler classification [29]. That is, the metric sig-
nature is ðþ;−;−;…Þ, the Riemann tensor is defined
as Rλην

μvν ¼ ð∇λ∇η −∇η∇λÞvμ, and the Einstein equation
is Gμν ¼ −8πTμν. The d’Alembertian is written □g ¼
gμν∇μ∇ν and we work in n spacetime dimensions unless
otherwise stated. We adopt units in which G ¼ c ¼ 1.

II. QUANTIZATION

A. Quantization of the real scalar field
and Hadamard states

Throughout the paper, we assume that the spacetime is a
smooth n-dimensional Lorentzian manifold ðM; gÞ that is
globally hyperbolic, i.e., there are no closed causal curves
and the intersection JþðpÞ ∩ J−ðqÞ of the causal future of
p with the causal past of q is compact, for all points
p; q ∈ M. The nonminimally-coupled scalar field is
described by the Lagrangian density

L ¼
ffiffiffiffiffiffi−gp
2

½ð∇μϕÞ∇μϕ − ðm2 þ ξRÞϕ2�; ð3Þ

and obeys the field equation

Pξϕ ¼ 0; Pξ ≔ □g þm2 þ ξR: ð4Þ
It will be quantized using the algebraic approach, a thorough
review of which is to be found in [30]. Thus, quantization
proceeds by the introduction of a unital *-algebraAðMÞ on
our manifold M, so that self-adjoint elements of AðMÞ are
observables of the theory. The algebra is generated by
elements ΦðfÞ, where f ∈ DðMÞ, the space of complex-
valued, compactly-supported, smooth functions on M, also
denoted C∞

0 ðMÞ. The assumption that ðM; gÞ is globally
hyperbolic entails the existence of an antisymmetric bi-
distributionEξðx; yÞwhich is the difference of the advanced
and retarded Green functions for Pξ. The objects ΦðfÞ
represent smeared quantum fields and are required to obey
the following relations:

(i) Linearity
The map f → ΦðfÞ is complex-linear,

(ii) Hermiticity
ΦðfÞ� ¼ Φðf̄Þ ∀ f ∈ C∞

0 ðMÞ,
(iii) Field Equation

ΦðPξfÞ ¼ 0 ∀ f ∈ C∞
0 ðMÞ,

(iv) Canonical Commutation Relations
½ΦðfÞ;ΦðhÞ� ¼ iEξðf; hÞ1 ∀ f; h ∈ C∞

0 ðMÞ.
A state of the theory is a linear functional ω∶AðMÞ → C
with the interpretation that ωðAÞ is the expectation value of
A ∈ AðMÞ in state ω. Of particular interest is the associated
two-point function W∶DðMÞ ×DðMÞ → C,
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Wðf; hÞ ¼ ωðΦðfÞΦðhÞÞ: ð5Þ

However, the definition of a state includes many that have
unphysical properties. Moreover, there is no single distin-
guished state associated to each spacetime that can act as a
generalization of the Minkowski vacuum state. Therefore,
what is needed is a class of physically well-behaved states in
each spacetime—a standard choice being the class of
Hadamard states. See Ref. [31] for a recent review of these
issues.
Hadamard states were originally defined in terms of a

short-distance series expansion [32], but can also be
described as those whose two-point functions are distribu-
tions with a given singularity structure specified by its wave
front set, as was first realized by Radzikowski [33].
As we now briefly recall, the wave front set WFðuÞ of a

distribution u on a smooth m-dimensional manifold X is a
subset of the cotangent bundle T�X which encodes both
positional and directional information concerning the
singularities of u. A coordinate-independent definition
may be given as follows (see Refs. [34,35]) using the
convention that, for any smooth real-valued function ψ on
X ×Rm and any fixed a ∈ Rm, ψa denotes the smooth
function ψaðxÞ ¼ ψðx; aÞ on X.
Definition 1: A point ðx; kÞ ∈ T�X, with k ≠ 0, is said

to be regular for u if for each smooth real-valued function
ψ on X ×Rm with dψ0jx ¼ k, there are open neighbor-
hoods U of x ∈ X and A of 0 ∈ Rm so that

sup
ðλ;aÞ∈ð0;∞Þ×A

λN juðeiλψaϕÞj < ∞ for all N ∈ N

and ϕ ∈ C∞
0 ðUÞ: ð6Þ

[That is, uðeiλψaϕÞ decays faster than any inverse power of
λ as λ → þ∞, uniformly in a ∈ A.] The wave front set
WFðuÞ is the set of all ðx; kÞ ∈ T�X with k ≠ 0 that are not
regular for u.
We remark that, if ðx; kÞ is regular for u, then one may

replace Rm by any Rp and the same decay properties will
continue to hold.
The Hadamard condition may now be stated as follows.
Definition 2: A state ω is Hadamard if its two-point

function W is a distribution on M ×M whose wave front
set obeys

WFðWÞ ⊂ N þ ×N −; ð7Þ

where N � ⊂ T�M is the set of positive or negative-
frequency null covectors and we identify T�ðM ×MÞ with
T�M × T�M. (The sign of the frequency of a null covector
is given by the sign of its contraction with any future-
directed timelike vector).
A remarkable fact is that the Hadamard condition

Eq. (7), together with the algebraic relations in AðMÞ,
fixes the two-point function up to smooth terms (see

Refs. [30,31] for reviews and original references). In
particular, the difference of any two Hadamard two-point
functions is smooth.
For some purposes, we will consider states that are both

Hadamard and quasifree, meaning that all odd n-point
functions vanish and all even n-point functions can be
expanded as sums of products of the two-point function
according to Wick’s theorem, giving in particular

ωðΦðfÞnÞ¼ i−n
dn

dλn
exp

�
−
λ

2
Wðf;fÞ

�����
λ¼0

; f∈DðMÞ:

ð8Þ

Each quasifree state can be represented by the vacuum
vector in a suitable Fock space representation of the
algebra.

B. Quantization of Wick polynomials
and the stress tensor

The algebra AðMÞ does not contain elements that
correspond to smeared local Wick polynomials of degree
2 and above; in particular, it does not contain smearings of
the stress-energy tensor. These objects appear as elements
of an extended algebra WðMÞ whose construction is
described in [36] and which contains AðMÞ as a sub-
algebra. We sketch only the parts of the discussion needed
here, suppressing many points of detail and slightly
changing conventions and notation.
To start, let ω be a quasifree Hadamard state with two-

point function W. Then the algebra AðMÞ contains
elements of the form

∶Φ⊗2∶ωðf ⊗ fÞ ¼ ΦðfÞΦðfÞ −Wðf; fÞ1: ð9Þ

for any test function f, with the property that
h∶Φ⊗2∶ωðf⊗fÞiω¼0. More generally, the extended alge-
bra WðMÞ contains elements ∶Φ⊗2∶ωðtÞ, where t is any
symmetric, compactly supported distribution on M ×M
whose wave front set does not contain any points
ðx; k; x0; k0Þ ∈ T�ðM ×MÞ in which k and k0 are causal
covectors that both have positive frequency or both have
negative frequency. For example, the elements given in
Eq. (9) correspond to the case in which f ⊗ f is regarded
as acting on smooth functions S on M ×M by

ðf ⊗ fÞðSÞ ¼
Z
M×M

dVolxdVolyfðxÞfðyÞSðx; yÞ: ð10Þ

Any quasifree Hadamard state ω extends to WðMÞ so that
h∶Φ⊗2∶ωðtÞiω ¼ 0 for all t of the type just described.
More generally, distributions that involve (derivatives of)

δ-functions may be used to defineWick polynomials. It will
be enough for our purposes to introduce quadratic Wick
polynomials in the field and its derivatives. Let fμ1���μrν1���νs
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be a smooth compactly supported tensor field and define a
compactly supported distribution Tr;s½f� by

Tðr;sÞ½f�ðSÞ

¼
Z
M
dVolfμ1���μrν1���νs⟦ð∇ðrÞ ⊗∇ðsÞÞSsym⟧μ1���μrν1���νs :

ð11Þ

Here, we have written Ssymðx; yÞ ¼ 1
2
ðSðx; yÞ þ Sðy; xÞÞ for

the symmetric part of S ∈ C∞ðM ×MÞ, while ∇ðrÞ is a
symmetrized rth order covariant derivative and the double
square brackets ⟦ · ⟧ in the integrand denote a coincidence
limit. Then we obtain a smeared Wick polynomial

∶∇ðrÞΦ∇ðsÞΦ∶ωðfÞ ≔ ∶Φ⊗2∶ωðTr;s½f�Þ; ð12Þ

which depends on the reference state ω. As a matter of fact,
one has

∶∇ðrÞΦ∇ðsÞΦ∶ωðfÞ
≕∇ðrÞΦ∇ðsÞΦ∶ω0 ðfÞ þ Tr;s½f�ðW0 −WÞ1; ð13Þ

if ω0 is another quasifree Hadamard state with two-point
function W0. Taking expectations in the state ω0 yields

h∶∇ðrÞΦ∇ðsÞΦ∶ωðfÞiω0 ¼ Tr;s½f�ðW0 −WÞ; ð14Þ

which reproduces the usual point-splitting regularization
for normal ordering with respect to ω.
Standard results concerning coincidence limits may be

used to manipulate expressions of the form Tr;s½f�ðSÞ. For
example, the identity

YμZν⟦C⟧μν ¼ ⟦YμZν0Cμν0⟧ ð15Þ

satisfied by continuous vector fields Yμ, Zμ and bi-covector
field Cμν0 ðx; x0Þ implies that

T1;1½ðY ⊗ ZÞf�ðSÞ ¼ T0;0½f�ðð∇Y ⊗ ∇ZÞSÞ: ð16Þ

Similarly, if C is now a bitensor field Cμ0ν0 ðx; x0Þ [i.e., scalar
type with respect to x, and second rank covariant with
respect to x0], the identity

YμZν⟦C⟧μν ¼ ⟦Yμ0Zν0Cμ0ν0⟧ ð17Þ

implies

T0;2½ðY⊗ZÞf�ðSÞ¼T0;0½f�ðð1⊗Yμ0Zν0∇ðμ0∇ν0ÞÞSÞ: ð18Þ

The dependence of the above normal-ordered expres-
sions on ω is unsatisfactory, because of the lack of a
canonical choice of a Hadamard state in a general curved
spacetime. What is needed, therefore, is a prescription for

finding algebra elements that qualify as local and covariant
Wick powers. This might be done in various ways,
reflecting finite renormalization freedoms. Hollands and
Wald [36,37] set out a list of axioms (labeled T1–T11) that
should be obeyed by any reasonable scheme and which
moreover encompasses time ordered expressions. Among
their requirements is a form of Leibniz’s rule (T10) (related
to the “action Ward identity” [38]) which in our case
implies, e.g., that

ð∇μΦ2ÞðfμÞ ¼ 2ðΦ∇μΦÞðfμÞ ð19Þ

and

1

2
ð∇μ∇νðΦ2ÞÞðfμνÞ¼ð∇μΦ∇νΦÞðfμνÞþðΦ∇ðμ∇νÞΦÞðfμνÞ;

ð20Þ
where in each case the left-hand side is understood
distributionally, i.e.,

ð∇μΦ2ÞðfμÞ ¼ −Φ2ð∇μfμÞ;
ð∇μ∇νðΦ2ÞÞðfμνÞ ¼ ðΦ2Þð∇ν∇μfμνÞ: ð21Þ

While the Leibniz’s rule must hold for all Wick ordering
prescriptions, it is not generally true that the field equation
can be imposed inside Wick ordered expressions. In
fact, Hollands and Wald showed [37] that one cannot
consistently impose both ΦPξΦ ¼ 0 and ð∇aΦÞPξΦ ¼ 0
in n ¼ 4 spacetime dimensions, and that the latter cannot be
imposed in n ¼ 2 dimensions by any prescription obeying
their axioms. However, these fields are at least given by
local curvature tensors (of an appropriate rank and engi-
neering dimension) multiplied by the identity element. For
example, one has

ðΦPξΦÞðfÞ ¼
Z
M
dVolfQ1; ð22Þ

where Q is a scalar quantity, locally and covariantly
constructed from the metric (including curvature tensors
and covariant derivatives thereof) and the parameters m2

and ξ, and with overall engineering dimension of n − 2

powers of inverse length. The dependence on m2 and ξ is
restricted in certain ways.
Turning to the stress-energy tensor, the classical expres-

sion obtained by varying the action derived from Eq. (3)
with respect to the metric is

Tμν ¼ ð∇μϕÞð∇νϕÞ þ
1

2
gμνðm2ϕ2 − ð∇ϕÞ2Þ

þ ξðgμν□g −∇μ∇ν − GμνÞϕ2; ð23Þ

where Gμν is the Einstein tensor. The stress-energy tensor
can be expressed in terms of ϕ2 and ϕ∇μ∇νϕ, using
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Leibniz’s rule but without using the field equation.
Therefore anyWick ordering prescription gives a quantized
stress-energy tensor in terms of the Wick ordered expres-
sions ðΦ2Þ and ðΦ∇ðμ∇νÞΦÞ. Classically, Leibniz’s rule
also gives ∇μTμν ¼ ð∇νϕÞPξϕ, so the conservation of the
quantized stress-energy tensor requires that a prescription
with ðð∇μΦÞPξΦÞ ¼ 0 is adopted (and therefore, in this
approach, the stress-energy tensor cannot be conserved in
n ¼ 2 dimensions). It turns out that stress-energy tensor
conservation (if n > 2) is a consequence of the requirement
(T11) imposed by Hollands and Wald [37], which is
inspired by a “principle of perturbative agreement” and
furthermore guarantees conservation of the stress-energy
tensor in perturbatively constructed interacting models.
A prescription meeting the requirements discussed so far

may be given as follows. First, let H be a local, symmetric
Hadamard parametrix, defined near the diagonal inM ×M.
(For the definition and properties of the Hadamard para-
metrix, see e.g., Ref. [30] and references given there.) Then
the prescription

ð∇ðrÞΦ∇ðsÞΦÞHðfÞ
≕∇ðrÞΦ∇ðsÞΦ∶ωðfÞ þ Tr;s½f�ðWsym −HÞ1 ð24Þ

satisfies requirements (T1–10) but not (T11). Because the
distribution Tr;s½f� is supported on the diagonal in M ×M,
the fact thatH is only defined near the diagonal is harmless.
In this prescription, it is known [39] that

ðð∇μΦÞPξΦÞH ¼ n
2ðnþ 2Þ∇μQ1 ð25Þ

ifQ is defined as in (22) for ðΦPξΦÞH. Therefore, adopting
a prescription in which ðΦ2Þ ¼ ðΦ2ÞH but

ðΦ∇ðμ∇νÞΦÞ ¼ ðΦ∇ðμ∇νÞΦÞH −
n

n2 − 4
gμνQ1 ð26Þ

will result in a stress-energy tensor that is automatically
conserved.1 Of course, the definition of ð∇Φ∇ΦÞ must
now differ from ð∇Φ∇ΦÞH in order to protect the Leibniz’s
rule (20),

ð∇μΦ∇νΦÞ ¼ ð∇μΦ∇νΦÞH þ n
n2 − 4

gμνQ1: ð27Þ

Likewise, the prescription for a derivative ðΦ∇ΦÞ is fixed
by the Leibniz’s rule

ðΦ∇ΦÞ ¼ 1

2
∇ðΦ2Þ: ð28Þ

Hollands and Wald showed that one can inductively
modify the Hadamard prescription so that all Wick and time

ordered expressions are consistent with all their require-
ments [37]. There remain further finite renormalization
freedoms, for example, in selecting a length scale that is
needed in the construction ofH. These result in the freedom
to add multiples of 1 to Tμν, given by conserved local
curvature terms.
This construction supplants the older viewpoint, see e.g.,

Ref. [40], in which one renormalizes the stress-energy
tensor directly using point-splitting and a Hadamard sub-
traction and then makes an ad hoc modification to fix the
failure of conservation. Instead, conservation follows from
wider requirements on the time ordering prescription. If one
is only interested in defining the stress-energy tensor, one
can proceed alternatively by modifying the classical expres-
sion for Tμν, adding a term proportional to gμνϕPξϕ that
vanishes on shell, as shown by Moretti [39]. This gives
identical results to the more general Hollands–Wald pre-
scription [37] in n ¼ 4 dimensions, but not in n ¼ 2.
When taking differences of expectation values, multiples

of the unit cancel. Therefore, if ω and ω0 are quasifree
Hadamard states, the difference in expectation values of
any quadratic Wick expression is given by the point-
splitting result

hð∇ðrÞΦ∇ðsÞΦÞðfÞiω0 − hð∇ðrÞΦ∇ðsÞΦÞðfÞiω
¼ h∶ð∇ðrÞΦ∇ðsÞΦÞ∶ωðfÞiω0

¼ Tr;s½f�ðW0 −WÞ: ð29Þ
Furthermore, because the difference W0 −W is a smooth
bisolution to the operator Pξ, one can use the field equation
in the sense that

hð∇ðrÞΦPξΦÞðfÞiω0 − hð∇ðrÞΦPξΦÞðfÞiω ¼ 0: ð30Þ
That is, while the quadratic Wick ordered expressions
obey Leibniz’s rule, but not generally the field equation,
the differences in their expectation values obey both. This
gives us the freedom to quantize classical expressions in the
most convenient fashion for proving quantum energy
inequalities.

C. Quantization of the effective energy density

The main observable of interest will be the EED,
classically defined by Eq. (1), where Uμ is the velocity
field of a family of observers. As a quantum field, ρU may
be defined by

ρUðfÞ ¼ Tμν

��
UμUν −

gμν

n − 2

�
f

�
; ð31Þ

where Tμν is the quantized stress tensor constructed as
described above. Using the Leibniz’s rule, ρUðfÞ may be
written in various ways, which will be useful for different
purposes. If the second derivatives of Φ2 arising from
Eq. (23) are expanded using Eq. (20), the expression

1Here, we have corrected the corresponding expression in
Ref. [37] which contains some errors.
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ρUðfÞ¼ ð∇μΦ∇νΦÞ
��

ð1−2ξÞUμUν−
2ξgμν

n−2

�
f

�

−2ξðΦ∇ðμ∇νÞΦÞðUμUνfÞ

þΦ2

��
ξRξ−

1−2ξ

n−2
m2

�
f

�
−

2ξ

n−2
ðΦPξΦÞðfÞ;

ð32Þ

is obtained,wherewe have also used the definition ofPξ (but
not the field equation) to absorb theΦ□gΦ term, and defined

Rξ ¼
2ξ

n − 2
R − RμνUμUν: ð33Þ

Equation (32) corresponds to a classical expression used in
[9].On the other hand, if Eq. (20) is applied again, alongwith
Eq. (21), to rewrite Eq. (32) in terms of the Wick poly-
nomials Φ2, ∇μΦ∇νΦ and ΦPξΦ alone, we find

ρUðfÞ ¼ ð∇μΦ∇νΦÞ
��

UμUν −
2ξgμν

n − 2

�
f

�

−Φ2

�
ξ∇ν∇μðUμUνfÞ þ

�
1 − 2ξ

n − 2
m2 − ξRξ

�
f

�

−
2ξ

n − 2
ðΦPξΦÞðfÞ: ð34Þ

Alternatively, the mass term in Eq. (34) may be traded
for additional terms involving Pξ, □g and the Ricci scalar,
giving

ρUðfÞ¼ð∇μΦ∇νΦÞ
��

UμUν−
gμν

n−2

�
f

�

þ 1−2ξ

2ðn−2ÞΦ
2ð□gfÞ−ξΦ2ð∇ν∇μðUμUνfÞ−R1=2fÞ

−
1

n−2
ðΦPξΦÞðfÞ; ð35Þ

in which the mass parameter appears only in the last
term. The curvature termR1=2 is justRξ with ξ ¼ 1=2. The
three expressions for ρU are all equivalent, but have
different advantages as starting points for quantum energy
inequalities.
We will be interested in expectation values of the

quantized EED in state ω0, normal ordered relative to a
reference Hadamard state ω,

h∶ρU∶ωðfÞiω0 ¼ hρUðfÞiω0 − hρUðfÞiω: ð36Þ

Each term in the above expressions Eqs. (32), (34) or (35)
may then be written in terms of distributions Tr;s½·� acting
on the difference of the two-point functions S ¼ W0 −W.
By further manipulation, they may all be expressed in terms
of T0;0½f� acting on suitable derivatives of S. For instance, if
Vμ is any smooth vector field,

h∶∇μΦ∇νΦ∶ωðVμVνfÞiω0 ¼ T1;1½ðV ⊗ VÞf�ðSÞ
¼ T0;0½f�ðð∇V ⊗ ∇VÞSÞ; ð37Þ

where we have used the identity Eq. (16). Similarly, if eμa
(a ¼ 0;…; n − 1) is an n-bein defined on the support of f
with e0 timelike, we also find

h∶∇μΦ∇νΦ∶ωðgμνfÞiω0

¼ T0;0½f�ðð∇e0 ⊗ ∇e0ÞSÞ −
Xn−1
a¼1

T0;0½f�ðð∇ea ⊗ ∇eaÞSÞ:

ð38Þ

Finally, the identity Eq. (18) yields

hð∶Φ∇ðμ∇νÞΦ∶ωÞðUμUνfÞiω0

¼ T0;2½ðU ⊗ UÞf�ðSÞ ¼ T0;0½f�ðð1 ⊗s UμUν∇μ∇νÞSÞ
¼ T0;0½f�ðð1 ⊗s UμUν∇μ∇νÞSÞ
¼ T0;0½f�ðð1 ⊗s ð∇2

U −∇∇UUÞÞSÞ; ð39Þ

where ⊗s is the symmetrized tensor product P ⊗s P0 ¼
½ðP ⊗ P0Þ þ ðP0 ⊗ PÞ�=2. Note that expectation values of
∶ΦPξΦ∶ vanish. In this way, the expectation values of
normal ordered quantities may be reduced to coincidence
limits of certain differential operators acting on the differ-
ence of two-point functions. For instance,

hVμVν∶∇μΦ∇νΦ∶ωiω0 ðxÞ ¼ ⟦ð∇V ⊗ ∇VÞðW0 −WÞ⟧ðxÞ:
ð40Þ

This is just as in the traditional viewpoint of renormaliza-
tion by point-splitting [40], but with the advantage that
there is a systematic framework from which suitable
differential operators in question may be derived, rather
than simply being asserted as Ansätze. Although we used
vielbeins to treat terms of the form ∶ð∇ΦÞ2∶, it would be
equally valid to use parallel propagators, leading ultimately
to the same expectation values in the end.

III. QUANTUM STRONG ENERGY INEQUALITIES

Having described in detail how the EED may be
quantized, we now turn to the derivation of QSEIs for
averaging along timelike worldlines or spacetime volumes.

A. Worldline

Let γ be a smooth timelike curve parametrized by proper
time τ. Choose any smooth n-bein ea (a ¼ 0;…; n − 1Þ on
a tubular neighborhood T of γ, so that Uμ ¼ eμ0 is every-
where timelike and agrees with _γμ on γ. Fix a Hadamard
reference state ω0 with 2-point functionW0 and, for brevity,
denote all quantities normal-ordered relative to ω0 by ∶X∶,
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rather than ∶X∶ω0
. Using the procedure described in the

previous subsection, the expectation values of the effective
energy density ∶ρU∶ in Hadamard state ω can be written in
terms of the coincidence limits acting on ∶W ≔ W −W0.
Equation (32), together with identities Eqs. (37)–(39), gives

h∶ρU∶iω ¼ ⟦ρ̂1∶W∶⟧þ ⟦ρ̂2∶W∶⟧

þ
�
ξRξ −

1 − 2ξ

n − 2
m2

�
⟦∶W∶⟧ ð41Þ

along γ, where the operators ρ̂i are given by

ρ̂1 ¼
�
1−2ξ

n−1

n−2

�
ð∇U ⊗∇UÞþ

2ξ

n−2

Xn−1
a¼1

ð∇ea ⊗∇eaÞ;

ð42aÞ

ρ̂2 ¼ −2ξð1 ⊗s UμUν∇μ∇νÞ: ð42bÞ

We have used the fact that the field equation holds for
normal-ordered expressions. Note that Rξ vanishes for
Ricci-flat spacetimes.
Our aim is to establish QEI lower bounds on the

averaged EED along γ,

h∶ρU∶∘γiωðf2Þ ¼
Z

dτf2ðτÞh∶ρU∶iωðγðτÞÞ; ð43Þ

where f ∈ DðR;RÞ is a real valued test function. The
contributions arising from the three terms in Eq. (41) will
be handled in differing ways. Note first that all the terms in
ρ̂1 take the form Q ⊗ Q for some partial differential
operator Q with real coefficients, provided ξ ∈ ½0; 2ξc�,
where

ξc ¼
n − 2

4ðn − 1Þ ð44Þ

is the value of ξ corresponding to conformal coupling. The
contribution of the terms deriving from ρ̂1 to the averaged
EED can be bounded from below, uniformly in ω, using the
methods of Ref. [23] (see also Lemma 4 below). A key
point here is that operators Q ⊗ Q map any positive type
bidistribution to another positive type bidistribution. By
contrast, the mass term is negative definite for ξ < 1=2,
while the geometric termRξ has no definite sign in general
and for this reason cannot be bounded below by a state-
independent QEI. (However, see the remarks following
Theorem 5.) This leaves ρ̂2, the contribution of which can
be manipulated to a more convenient form using the
following lemma.
Lemma 3: If F is a smooth function on T × T and

f ∈ C∞
0 ðRÞ then

Z
dτfðτÞ2⟦ð1 ⊗s UμUν∇μ∇νÞF⟧ðγðτÞÞ

¼ −
Z

dτ⟦ð∂ ⊗ ∂Þððf ⊗ fÞϕ�FÞ⟧ðτÞ

þ
Z

dτf0ðτÞ2⟦F⟧ðγðτÞÞ

−
1

2

Z
dτfðτÞ2ð∇A⟦F⟧ÞðγðτÞÞ; ð45Þ

where ϕ� denotes a pull back by ϕðτ; τ0Þ ¼ ðγðτÞ; γðτ0ÞÞ,
Aμ ¼ ∇UUμ is the acceleration field ofU and ∂ denotes the
derivative on R.
Proof.—First, choose fT ∈DðT ;RÞ such that fT ∘γ¼ f.

Then, slightly simplified, the identity Eq. (38) of
Ref. [20] (a consequence of Synge’s rule ∇V⟦H⟧ ¼
2⟦ð1 ⊗s ∇VÞH⟧) gives

2f2T ⟦ð1 ⊗s ∇2
UÞF⟧þ∇U⟦ð1 ⊗s ð∇Uf2T ÞÞF⟧

¼ −2⟦ð∇U ⊗ ∇UÞððfT ⊗ fT ÞFÞ⟧þ 2ð∇UfT Þ2⟦F⟧
þ 2∇U⟦ð1 ⊗s ∇UÞððfT ⊗ fT ÞFÞ⟧: ð46Þ

Integrating both sides along γ and dividing by 2, we have

Z
dτfðτÞ2⟦ð1 ⊗s ∇2

UÞF⟧ðγðτÞÞ

¼ −
Z

dτ⟦ð∂ ⊗ ∂Þððf ⊗ fÞϕ�FÞ⟧ðτÞ

þ
Z

dτðf0ðτÞÞ2⟦ϕ�F⟧ðτÞ; ð47Þ

and the result follows on noting that

⟦ð1 ⊗s UμUν∇μ∇νÞF⟧ ¼ ⟦ð1 ⊗s ∇2
UÞF⟧ −

1

2
∇A⟦F⟧

ð48Þ

using the Leibniz’s and Synge rules. □

It follows that

Z
dτfðτÞ2⟦ρ̂2∶W∶⟧ðγðτÞÞ

¼ 2ξ

Z
dτ⟦ð∂ ⊗ ∂Þððf ⊗ fÞϕ�∶W∶Þ⟧ðτÞ

− 2ξ

Z
dτf0ðτÞ2h∶Φ2∶iωðγðτÞÞ

þ ξ

Z
dτfðτÞ2ð∇Ah∶Φ2∶iωÞðγðτÞÞ: ð49Þ

The first term in this expression can be estimated as a
special case (k ¼ 0, Q ¼ 1) of the following result, which
can also be used to bound all terms arising from ρ̂1. [For the
benefit of the reader, we note that on the right-hand side of
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Eq. (50), the functions f̄α and fα are substituted into a
bidistribution obtained as a pull back of ðQ ⊗ QÞW0.]
Lemma 4: Let Q be a partial differential operator

on M with smooth real coefficients and k ∈ N0. Then
the inequality

Z
dτ⟦ð∂k ⊗ ∂kÞððf⊗ fÞϕ�ððQ⊗QÞ∶W∶ÞÞ⟧ðτÞ

≥−
Z

∞

0

dα
π
α2kðϕ�ððQ⊗QÞW0ÞÞðf̄α;fαÞ>−∞; ð50Þ

holds for all Hadamard states ω and real-valued test
functions f ∈ DðR;RÞ, where fαðτÞ ¼ eiατfðτÞ.
Proof.—This is a slight generalization of an argument

first given in Ref. [23]. First note that one has, for any
smooth symmetric function S and test function f as above,

Z
dτ⟦ð∂k ⊗ ∂kÞððf ⊗ fÞSÞ⟧ðτÞ

¼
Z

dτdτ0δðτ − τ0Þ∂k
τ∂k

τ0 ððf ⊗ fÞSÞðτ; τ0Þ

¼
Z

∞

−∞

dα
2π

Z
dτdτ0e−iαðτ−τ0Þ∂k

τ∂k
τ0 ððf ⊗ fÞSÞðτ; τ0Þ

¼
Z

∞

0

dα
π

Z
dτdτ0α2ke−iαðτ−τ0ÞfðτÞfðτ0ÞSðτ; τ0Þ; ð51Þ

where in the second step we have inserted the Fourier
representation of the δ-function and in the last step used
symmetry of S and also integrated by parts k times in both τ
and τ0. Applying this to S ¼ ϕ�ððQ ⊗ QÞ∶W∶,

lhs of ð50Þ ¼
Z

∞

0

dα
π
α2kðϕ�ððQ ⊗ QÞ∶W∶ÞÞðf̄α; fαÞ

¼
Z

∞

0

dα
π
α2kððϕ�ððQ ⊗ QÞWÞÞðf̄α; fαÞ

− ðϕ�ððQ ⊗ QÞW0Þðf̄α; fαÞÞÞ; ð52Þ

noting that expressions of the form ϕ�ððQ ⊗ QÞWÞ are
shown to exist in Ref. [23], with wave front sets obeying

WFðϕ�ððQ ⊗ QÞWÞÞ ⊂ ðR ×RþÞ × ðR ×R−Þ
⊂ T�R × T�R: ð53Þ

Together with other results proved in Ref. [23], this shows
that the two terms in the integrand in Eq. (52) are non-
negative and decay rapidly as α → þ∞ for any Hadamard
state ω (see Theorem 2.2 of Ref. [23]). Here the microlocal
properties of Hadamard states play a crucial role.
Consequently, the final expression in Eq. (52) may be
written as the difference of two separately convergent non-
negative integrals. Discarding the first of these, the inequal-
ity Eq. (50) is proved. □

Applying this result to all terms arising from ρ̂1 and the
first term in Eq. (49), and combining with the other terms
fromEqs. (49) and (41),we haveproved the following result.
Theorem 5: Let W0 be the two-point function of a

reference Hadamard state for the nonminimally coupled
scalar field with coupling constant ξ ∈ ½0; 2ξc� and mass
m ≥ 0 defined on a globally hyperbolic spacetime M with
smooth metric g. Let γ be a smooth timelike curve para-
metrized in proper time τ, with velocityUμ and acceleration
Aμ ¼ ∇UUμ. Then, for all Hadamard states ω and real-
valued test functions f ∈ DðR;RÞ, the normal-ordered
effective energy density obeys the QEI

h∶ρU∶∘γiωðf2Þ ≥ −ðQ1½f� þ h∶Φ2∶∘γiωðQ2½f� þQ3½f�Þ
− ξh∇A∶Φ2∶∘γiωðf2ÞÞ; ð54Þ

where

Q1½f� ¼
Z

∞

0

dα
π
ðϕ�ðρ̂1W0Þðf̄α;fαÞþ2ξα2ϕ�W0ðf̄α;fαÞÞ;

ð55Þ

Q2½f�ðτÞ ¼
1 − 2ξ

n − 2
m2f2ðτÞ þ 2ξðf0ðτÞÞ2; ð56Þ

and

Q3½f�ðτÞ ¼ ξRξðγðτÞÞfðτÞ2: ð57Þ

An important feature of the QEI (54), and indeed all the
QEIs that we will derive in this paper, is that the lower
bound depends on the state of interest ω; that is, it is a state-
dependent QEI, unlike e.g., the quantum weak energy
inequality proved for the minimally coupled scalar field in
Ref. [23]. Now in fact no state-independent QSEI could
possibly hold (except in the massless minimally coupled
case) because the classical model can violate the SEC. This
makes it possible to construct single-particle quantum
states relative to the Minkowski vacuum state whose
averaged EED is negative for some test function.
Tensoring together N copies of such a state, the averaged
EED scales with N and so it is clear that no state-
independent QSEI can be valid, even in Minkowski space.
See Ref. [20], where an analogous argument is given in
detail for the energy density of the nonminimally coupled
field. Nonetheless, the state-dependence of the lower bound
raises concerns that will be discussed more fully in Sec. V.
For now we note that the only nontrivial quantum field
appearing in the bound is the Wick square ∶Φ2∶ (and at
most one derivative thereof), while the EED itself involves
contributions involving two derivatives ofΦ and squares of
the derivatives ofΦ. This distinction will enable us to show
that the QEIs we study in this paper are nontrivial.
The expression for the QSEI bound simplifies in various

situations: if γ is geodesic the last term in Eq. (54) vanishes;
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for flat spacetimes Q3 vanishes, while for minimal cou-
pling (and any spacetime curvature) we have

h∶ρU∶∘γiωðf2Þ ≥ −
�Z

∞

0

dα
π
ϕ�ðð∇U ⊗ ∇UÞW0Þðf̄α; fαÞ

þ m2

n − 2
h∶Φ2∶∘γiωðf2Þ

�
: ð58Þ

There is another interesting situation in which a variant
of the above result can be obtained. Suppose that the
background spacetime is such that Rξ is non-negative. In
particular, this occurs if the background solves the Einstein
equations with matter that obeys both the strong and weak
energy conditions, for then we have RμνUμUν ≤ 0 and
R ≥ 2RμνUμUν, whereupon

2ξ

n − 2
R − RμνUμUν ≥ −

�
1 −

4ξ

n − 2

�
RμνUμUν

≥ −
�
1 −

2

n − 1

�
RμνUμUν ≥ 0 ð59Þ

if ξ obeys the standing assumption ξ ∈ ½0; 2ξc� and the
spacetime dimension n ≥ 3. Making the further mild
technical assumption that Rξ has a smooth non-negative
square root,2 the corresponding contributions to the aver-
aged EED in Eq. (41) are of the same form as those in ρ̂1
and can be treated in the same way. In this situation, the
QEI becomes

h∶ρU∶∘γiωðf2Þ ≥ −ðQ1½f� þQ4½f� þ ð∶Φ2∶∘γÞωðQ2½f�Þ
− ξh∇A∶Φ2∶∘γiωðf2ÞÞ; ð60Þ

where

Q4½f�¼ ξ

Z
∞

0

dα
π
ðϕ�ðð ffiffiffiffiffiffi

Rξ

p
⊗

ffiffiffiffiffiffi
Rξ

p ÞW0ÞÞðf̄α;fαÞ: ð61Þ

Although this bound is still state dependent, the coefficients
appearing in the state-dependent parts no longer depend
explicitly on the background geometry. If the background
spacetime solves Einstein equations with matter satisfying
the strong energy condition (but not necessarily the weak
energy condition) then a similar procedure could be used to
absorb the −RμνUμUν term leaving the Ricci scalar in the
state-dependent part.

B. Worldvolume

In this subsection we will consider averages of the EED
over a spacetime volume. We will require some more
terminology and notation for these purposes. First, following
Ref. [26] we define a small sampling domain to be an

open subset3 Σ of ðM; gÞ that (i) is contained in a globally
hyperbolic convex normal neighborhood ofM, and (ii) may
be covered by a single hyperbolic coordinate chart fxag,
which, by definition, requires that ∂=∂x0 is future pointing
and timelike and that there exists a constant c > 0 such that

cju0j ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiXn−1
j¼1

u2j

vuut ð62Þ

holds for the components of every causal covector u at each
point of Σ—in other words, the coordinate speed of light is
bounded. Nowwemay express the hyperbolic chart fxμg by
a map κ where Σ → Rn, κðpÞ ¼ ðx0ðpÞ;…; xn−1ðpÞÞ. Any
function f on Σ determines a function fκ ¼ f∘κ−1 on
Σκ ¼ κðΣÞ. In particular, the inclusion map ι∶Σ → M indu-
ces a smooth map ικ∶Σκ → M. Then the bundle N þ of
nonzero future pointing null covectors on ðM; gÞ pulls back
under ικ so that

ι�κN þ ⊂ Σκ × Γ; ð63Þ
where Γ ⊂ Rn is the set of all ua with u0 > 0 and satisfying
Eq. (62) so it is a proper subset of the upper half space
Rþ ×Rn−1. For brevity, if S is a smooth function onM ×M,
we write Sκ instead of Sκ×κ for S∘ðκ−1 × κ−1Þ.

1. Bound with explicit mass dependence

Let f be any real-valued test function compactly sup-
ported in the small sampling domain Σ and let Uμ be a
future-directed timelike unit vector field defined on a
neighborhood of the support of f. Applying the Gram-
Schmidt process to the basis U; ∂=∂x1;…; ∂=∂xn−1, we
obtain a smoothn-bein feμaga¼0;1…n−1 on this neighborhood,
with eμ0 ¼ Uμ.
Following a procedure similar to the one used to derive the

worldline inequality, we fix a Hadamard reference state ω0

with 2-point functionW0. Then the expectation values of the
effective energy density in Hadamard state ω and normal-
ordered relative to ω0, can be written using Eq. (34) as

h∶ρU∶ðf2Þiω ¼
Z

dVolf2⟦ρ̂I∶W∶⟧ − h∶Φ2∶ðQI
2½f�Þiω;

ð64Þ
where the operator ρ̂I (the superscript I merely serves to
distinguish this bound from a bound without explicit mass
dependence that will be described shortly) is given by

ρ̂I¼
�
1−

2ξ

n−2

�
ðUμ∇μ⊗Uν∇νÞþ

2ξ

n−2

Xn−1
a¼1

ðeμa∇μ⊗eνa∇νÞ

ð65Þ

2Not all smooth non-negative functions have smooth square
roots; see Refs. [41,42].

3Reference [26] allows for Σ to be a timelike submanifold of
dimension lower than n, but we will not need that level of
generality here.
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and

QI
2½f� ¼ ξ∇μ∇νðf2UμUνÞ þ 1 − 2ξ

n − 2
m2f2 − ξRξf2: ð66Þ

All terms appearing in ρ̂I take the form Q ⊗ Q, withQ a
partial differential operator with smooth real coefficients,
provided that the coupling obeys ξ ∈ ½0; ðn − 2Þ=2� ¼
½0; 2ðn − 1Þξc�. Their contributions to the averaged EED
can then all be bounded from below using the following
result, which is similar to Lemma 4 for the worldline.
Lemma 6: Let Q be a partial differential operator on M

with smooth real coefficients. Then the inequality

Z
dVolf2⟦ðQ⊗QÞ∶W∶⟧

≥−2
Z
Rþ×Rn−1

dnα
ð2πÞn ððQ⊗QÞW0Þκðhα;hαÞ>−∞; ð67Þ

holds for all Hadamard states ω and real-valued test
functions f supported in the small sampling domain Σ,
where α ¼ ðα0;…; αn−1Þ and

hαðxÞ ¼ eiαμx
μð−gκðxÞÞ1=4fκðxÞ: ð68Þ

Proof.—The proof works in a similar way to that of
Lemma 4. First note that, for any smooth symmetric
function S and test function f as above, and writing hðxÞ ¼
ð−gκðxÞÞ1=4fκðxÞ, we have

Z
dVolf2⟦S⟧

¼
Z

dnxdnx0δnðx−x0ÞhðxÞhðx0ÞSκðx;x0Þ

¼
Z
R×Rn−1

dnα
ð2πÞn

Z
dnxdnx0e−iαðx−x0ÞhðxÞhðx0ÞSκðx;x0Þ

¼ 2

Z
Rþ×Rn−1

dnα
ð2πÞn

Z
dnxdnx0e−iαðx−x0ÞhðxÞhðx0ÞSκðx;x0Þ

¼ 2

Z
Rþ×Rn−1

dnα
ð2πÞn Sκðhα;hαÞ; ð69Þ

where we have inserted the Fourier representation of the
δ-function in the second step and in the last step we used the
symmetry of S. All these manipulations are valid owing to
the compact support of f (and hence h) and the smoothness
of f and S. Applying this to S ¼ ðQ ⊗ QÞ∶W∶, gives

lhs of ð67Þ ¼ 2

Z
Rþ×Rn−1

dnα
ð2πÞn ððQ ⊗ QÞ∶W∶Þκðhα; hαÞ

¼ 2

Z
Rþ×Rn−1

dnα
ð2πÞn fððQ ⊗ QÞWÞκðhα; hαÞ

− ððQ ⊗ QÞW0Þκðhα; hαÞg: ð70Þ

In the last line, the two terms in the integrand involve
pullbacks of distributions via κ × κ. The criteria for exist-
ence are trivially satisfied in this case, and their wave front
sets are bounded by

WFððQ ⊗ QÞWÞκÞ ⊂ ðι�κ × ι�κÞðN þ ×N −Þ
⊂ ðΣκ × ΓÞ × ðΣκ × −ΓÞ ð71Þ

and the same bound forW0. As Γ is contained in the α0 > 0
half-space of Rn, the two terms in the integrand are
separately rapidly decaying as α → ∞ in the integration
region (see [26] [p. 444]) Therefore the integrals exist
separately; as ððQ ⊗ QÞWÞ is non-negative, wemay discard
this term, whereupon the inequality Eq. (67) is proved.
Applying this lemma to Eq. (64), we have proved the

following result for ξ ∈ ½0; ðn − 2Þ=2�, a range that includes
the conformal coupling ξc:
Theorem 7: For coupling constant ξ ∈ ½0; 2ðn − 1Þξc�,

suppose that f is a real-valued test function compactly
supported in a small sampling domain and letUμ be a future-
pointing unit timelike vector field defined on a neighbor-
hood of the support of f. Then the QEI

h∶ρU∶ðf2Þiω ≥ −ðQI
1½f� þ h∶Φ2∶ðQI

2½f�ÞiωÞ; ð72Þ

where

QI
1½f� ¼ 2

Z
Rþ×Rn−1

dnα
ð2πÞn ðρ̂

IW0Þðhα; hαÞ; ð73Þ

holds for all Hadamard states ω, where W0 is the 2-point
function of the Hadamard reference state used to define the
normal-ordering prescription, and ρ̂I, hα, and QI

2½f� are as
defined above.
As in Sec. III A there are situations in which some of the

state-dependent terms in this bound may be bounded
independently of the state. In particular, the mass term
can be treated in this way if ξ ∈ ½1=2; 2ðn − 1Þξc�, and the
Rξ term can if the background obeys SEC and WEC and
ξ ∈ ½0; ðn − 1Þξc� (and we assume that

ffiffiffiffiffiffi
Rξ

p
is smooth).

There are also obvious simplifications for Ricci flat space-
times and at minimal coupling ξ ¼ 0. We leave the details
to the reader.

2. Bound without explicit mass dependence

The bound derived depends on the mass of the field but,
as in the classical case [9], we can derive a second bound
that does not have explicit mass dependence by using the
field equation.
Instead of starting with Eq. (32), we use Eq. (35), with

identities Eqs. (37) and (38), which gives

h∶ρU∶ðf2Þiω ¼
Z

dVol⟦ ρ̂II∶W∶⟧ − h∶Φ2∶ðQII
2 ½f�Þiω;

ð74Þ
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where

ρ̂II ¼ n − 3

n − 2
ðUμ∇μ ⊗ Uν∇νÞ þ

1

n − 2

Xn−1
a¼1

ðeμa∇μ ⊗ eνa∇νÞ

ð75Þ

and

QII
2 ½f� ¼ ξ∇ν∇μðf2UμUνÞ − 1 − 2ξ

2ðn − 2Þ□gf2 − ξR1=2f2:

ð76Þ

Applying Lemma 6 to the terms arising from ρ̂II, we have
proved:
Theorem 8: For coupling constant ξ ∈ R, suppose that

f is a real-valued test function compactly supported in a
small sampling domain and let Uμ be a future-pointing unit
timelike vector field defined on a neighborhood of the
support of f. Then the QEI

h∶ρU∶ðf2Þiω ≥ −ðQII
1 ½f� þ h∶Φ2∶ðQII

2 ½f�ÞiωÞ; ð77Þ

holds for all Hadamard states ω, where

QII
1 ½f� ¼ 2

Z
Rþ×Rn−1

dnα
ð2πÞn ðρ̂

IIW0Þðhα; hαÞ; ð78Þ

W0 is the 2-point function of the Hadamard reference state
used to define the normal-ordering prescription, and ρ̂II, hα,
and QII

2 ½f� are as defined above.
As with Theorem 7 there are situations in which some of

the state-dependent terms may be given state-independent
lower bounds, and also simplifications at minimal coupling
and in Ricci-flat spacetimes. Details are left to the reader.
For ξ ∈ ½0; 2ðn − 1Þξc� Theorems 7 and 8 may be combined
into a single theorem by taking the stricter of the two
bounds in each case. This would be similar to the classical
Theorem 2 of Ref. [9].
It is interesting to note that we can write the first term on

the R.H.S. of Eqs. (66) and (76) using

∇ν∇μðf2UμUνÞ ¼ f2ð∇μAμ þ θ2 þ∇UθÞ
þ∇2

Uf
2 þ 2θ∇Uf2 þ∇Af2 ð79Þ

where θ ¼ ∇μUμ is the expansion and Aμ is the accel-
eration. If Uμ is an irrotational timelike geodesic congru-
ence then the Raychaudhuri equation

∇Uθ ¼ RμνUμUν − 2σ2 −
θ2

n − 1
ð80Þ

gives

∇ν∇μðf2UμUνÞ ¼ f2
�
RμνUμUν þ n − 2

n − 1
θ2 − 2σ2

�

þ∇2
Uf

2 þ 2θ∇Uf2; ð81Þ

where σ is the shear scalar. If the background obeys the
SEC then −RμνUμUν is non-negative and, together with the
shear term −2σ2, can be absorbed into the state-indepen-
dent part of the bound (assuming they have smooth
square roots).

IV. MINKOWSKI SPACE

To illustrate our results let us consider the nonminimally
coupled scalar field in the n-dimensional Minkowski space
Mmink ¼ ðRn; ηÞ, with η ¼ diagðþ1;−1;…;−1Þ being the
standard Minkowski metric.

A. Worldline

First we will apply the worldline bound of Theorem 5 to
n-dimensional Minkowski space for the case of an inertial
curve, i.e., γ is a timelike geodesic. Without loss of
generality, inertial coordinates may be chosen so that
γðtÞ ¼ ðt; 0Þ. Also we choose our reference state to be
the vacuum state Ω, which has the two-point function

WΩðt; x; t0; x0Þ ¼
Z

dμðkÞe−ikμðx−x0Þμ

¼
Z

dμðkÞe−i½ðt−t0ÞωðkÞþðx−x0Þ·k�; ð82Þ

where

dμðkÞ ¼
Z

dn−1k
ð2πÞn−1

1

2ωðkÞ ; ð83Þ

is the measure and kμ ¼ ðωðkÞ; kÞ with ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
.

The operator ρ̂1 from Eq. (42a) can be written as

ρ̂1 ¼
�
1−2ξ

n−1

n−2

�
ð∂0⊗ ∂0Þþ

2ξ

n−2

Xn−1
i¼1

ð∂i⊗ ∂iÞ: ð84Þ

If we use the identity

m2ϕ�WΩðḡ ⊗ gÞ þ
Xn−1
i¼1

ϕ�ð∂i ⊗ ∂iÞWΩðḡ ⊗ gÞ

¼ ϕ�ð∂0 ⊗ ∂0ÞWΩðḡ ⊗ gÞ; ð85Þ

we have for the first part of the bound
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Q1½f� ¼
Z

∞

0

dα
π
ðϕ�ðρ̂1WΩÞðf̄α; fαÞ þ 2ξα2ϕ�WΩðf̄α; fαÞÞ

¼
Z

∞

0

dα
π

��
ð1 − 2ξÞð∂ ⊗ ∂Þ − 2ξ

n − 2
m2 þ 2ξα2

�
ϕ�WΩ

�
ðf̄α; fαÞ

¼
Z

∞

0

dα
π

Z
dtdt0e−iαðt−t0ÞfðtÞfðt0Þ

Z
dμðkÞ

�
ω2ðkÞð1 − 2ξÞ − 2ξ

n − 2
m2 þ 2ξα2

�
e−iðt−t0ÞωðkÞ

¼ Sn−2
ð2πÞn

Z
∞

0

dα
Z

∞

0

dk
kn−2

ωðkÞ
�
ω2ðkÞð1 − 2ξÞ − 2ξ

n − 2
m2 þ 2ξα2

�
jf̂ðαþ ωðkÞÞj2:

At the last stepwe have passed to spherical polar coordinates
and written Sn−2 for the volume of the (n − 2)-dimensional
standard unit sphere. Our convention for the Fourier trans-
form of f is

f̂ðωÞ ¼
Z

dteiωtfðtÞ: ð86Þ
We can make the change of variables

u ¼ αþ ωðkÞ; v ¼ ωðkÞ; ð87Þ
and write Q1½f� as

Q1½f� ¼
Sn−2
ð2πÞn

Z
∞

m
dujf̂j2ðuÞ

Z
u

m
dvðv2 −m2Þðn−3Þ=2

×

�
v2 − 4ξuvþ 2ξ

�
u2 −

1

n − 2
m2

��
: ð88Þ

Using Eq. (86) and the fact that Q3 vanishes at flat
spacetime Theorem 5 becomes
Theorem 9: In n-dimensional Minkowski space we

have, for 0 ≤ ξ ≤ 2ξc,

h∶ρU∶∘γiωðf2Þ ≥ −½Q1½f�1þ h∶Φ2∶∘γiωðQ2½f�Þ�; ð89Þ

where γ is a timelike geodesic,

Q1½f� ¼
Sn−2
ð2πÞn

Z
∞

m
duunjf̂j2ðuÞ

×

�
1

n
Qn;2

�
u
m

�
−

4ξ

n − 1
Qn;1

�
u
m

�

þ 2ξ

n − 2

�
1 −

m2

u2ðn − 2Þ
�
Qn;0

�
u
m

��
; ð90Þ

and

Q2½f�ðtÞ ¼
1 − 2ξ

n − 2
m2f2ðtÞ þ 2ξðf0ðtÞÞ2; ð91Þ

for f ∈ DðRÞ and ξ ∈ ½0; n−2
2ðn−1Þ�. The functions Qn;r are

defined by

Qn;rðyÞ ¼
nþ r − 2

ynþr−2

Z
y

1

dxðx2 − 1Þðn−3Þ=2xr: ð92Þ

The functions Qn;r are non-negative functions for nþ
r ≥ 2 and they vanish for nþ r ¼ 2. Also they have the
properties

Qn;rð1Þ ¼ 0; lim
y→∞

Qn;rðyÞ ¼ 1: ð93Þ

Since n ≥ 3 and ξ ≤ n−2
2ðn−1Þ

Q1½f� ≤
2Sn−2

ð2πÞnðn − 1Þ
Z

∞

0

duunjf̂j2ðuÞ; ð94Þ

where we also assumed that m > 0.
Using Eq. (94) we can investigate the behavior of the

bound under rescaling of the smearing function f, and in
particular whether the SEC holds in an averaged sense
along a complete timelike geodesic. This question is
prompted by the analogous situation for the energy density,
in which an averaged weak energy condition (AWEC) can
be proved for the nonminimally coupled scalar field under
mild assumptions on the growth of the Wick square along
the geoedesic [20]. In fact, we will not be able to prove a
direct analogue of the AWEC result, but instead a slight
modification of it.
First we define the smearing function fλ for λ ∈ R to be

fλðtÞ ¼
fðt=λÞffiffiffi

λ
p : ð95Þ

Then its Fourier transform satisfies

ðf̂λðuÞÞ2 ¼ λðf̂ðλuÞÞ2; ð96Þ
and, by analogy with the averaged weak energy condition
(AWEC) [20], we would say that the averaged strong
energy condition (ASEC) holds in state ω if

lim inf
λ→þ∞

λh∶ρU∶∘γiωðf2λÞ ≥ 0 ð97Þ

because the left-hand side is a measure of the total integral
of the EED (up to a factor of fð0Þ) along γ.
Using Eq. (94) we have thatQ1½fλ� ¼ Oðλ−nÞ as λ → ∞.

Then λQ1ðfλÞ → 0 as λ → ∞. For the state-dependent part
of the bound we have
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λh∶Φ2∶∘γiωðQ2½fλ�Þ

¼ 1 − 2ξ

n − 2
m2

Z
dth∶Φ2∶iωðγðtÞÞfðt=λÞ2

þ 2ξ

λ2

Z
dth∶Φ2∶iωðγðtÞÞf0ðt=λÞ2: ð98Þ

If we assume that h∶Φ2∶iωðtÞ is absolutely integrable, then
the dominated convergence theorem implies that the first
term converges to a constant while the second term goes to
zero for λ → ∞. This gives a bound

lim inf
λ→∞

λh∶ρU∶∘γiωðf2λÞ

≥ −
1 − 2ξ

n − 2
m2fð0Þ2

Z
dth∶Φ2∶iωðγðtÞÞ ð99Þ

rather than the ASEC in the form originally stated. This
does not show that ASEC cannot hold, but rather that it
cannot be derived from the QSEI by scaling methods.
Instead, what can be proved is that

lim inf
λ→þ∞

λ

��
∶ρU∶þ

1−2ξ

n−2
m2∶Φ2∶

�
∘γ
	

ω

ðf2λÞ≥ 0; ð100Þ

provided that jh∶Φ2∶iωðγðtÞÞj ≤ cð1þ jtjÞ1−ϵ for positive
constants c, ϵ (we may, without loss, assume that
0 < ϵ < 1). The proof is simple: for λ ≥ 1 we have

λ

��
∶ρU∶þ

1 − 2ξ

n − 2
m2∶Φ2∶

�
∘γ
	

ω

ðf2λÞ

≥ −
2ξ

λ2

Z
dth∶Φ2∶iωðγðtÞÞf0ðt=λÞ2

≥ −
2cξ
λϵ

Z
duð1þ jujÞ1−ϵf0ðuÞ2; ð101Þ

where we have changed variables from t to u ¼ t=λ and
used the fact that jh∶Φ2∶iωðγðλuÞÞj ≤ cλ1−ϵð1þ jujÞ1−ϵ if
λ ≥ 1. As the right-hand side vanishes in the limit λ → þ∞
the result follows. It would be interesting to determine
whether the ASEC is actually violated in some Hadamard
states, but we do not pursue this here.

B. Worldvolume

Nowwe turn to the worldvolume quantum inequalities of
Theorems 7 and 8. Again we choose our reference state to
be the vacuum state with two-point function given by
Eq. (82). Additionally, we require the vector field Uμ to be
translationally invariant. Then we can choose an inertial
coordinate system for whichUμ is purely in the direction of
t. We suppress the distinction between f and its coordinate
expression so f becomes identical with h. In Minkowski
space the operators ρ̂I and ρ̂II become

ρ̂I ¼
�
1−

2ξ

n−2

�
ð∂0 ⊗ ∂0Þþ

Xn−1
i¼1

2ξ

n−2
ð∂i⊗ ∂iÞ: ð102Þ

and

ρ̂II ¼
�
n − 3

n − 2

�
ð∂0 ⊗ ∂0Þ þ

Xn−1
i¼1

1

n − 2
ð∂i ⊗ ∂iÞ; ð103Þ

Then the state independent part of Theorem 7 becomes

QI
1½f� ¼ 2

Z
Rþ×Rn−1

dnα
ð2πÞn ðρ̂

IWΩÞðf̄α; fαÞ

¼
Z
Rþ×Rn−1

dnα
ð2πÞn

Z
dn−1k
ð2πÞn−1

1

ωðkÞ

×

�
ωðkÞ2 − 2ξ

n − 2
m2

�
jf̂ðαþ kÞj2; ð104Þ

where we used Uμkμ ¼ ωðkÞ and the convention

f̂ðkÞ ¼
Z
Rn

dnxeikμx
μ
fðxÞ: ð105Þ

With the change of variables ðk;αÞ → ðk; uÞ, where

u ¼ αþ k; ð106Þ

QI
1½f� becomes

QI
1½f� ¼

Z
∞

0

dα0
ð2πÞn

Z
dn−1k
ð2πÞn−1

1

ωðkÞ
�
ωðkÞ2 − 2ξ

n − 2
m2

�

×
Z
Rn−1

dn−1ujf̂ðα0 þ ωðkÞ;uÞj2: ð107Þ

Performing a second change of variables

u0 ¼ α0 þ ωðkÞ; ð108Þ

and changing the order of integration gives

QI
1½f� ¼

Z
dn−1k

ð2πÞ2n−1
1

ωðkÞ
�
ωðkÞ2 − 2ξ

n − 2
m2

�

×
Z

∞

ωðkÞ
du0

Z
Rn−1

dn−1ujf̂ðuÞj2

¼ Sn−2
ð2πÞ2n−1

Z
dk

kn−2

ωðkÞ
�
ωðkÞ2 − 2ξ

n − 2
m2

�

×
Z

∞

ωðkÞ
du0

Z
Rn−1

dn−1ujf̂ðuÞj2; ð109Þ

where we transitioned to spherical coordinates, using the
fact that the integrand is spherically symmetric in k.
Writing k in terms of ω gives
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QI
1½f� ¼

Sn−2
ð2πÞ2n−1

Z
∞

m
du0

Z
Rn−1

dn−1ujĥðuÞj2

×
Z

u0

m
dωðω2−m2Þðn−3Þ=2

�
ω2−

2ξ

n−2
m2

�
: ð110Þ

Using the functionsQn;k defined in Eq. (92) and noticing
that Rξ and R1=2 vanish in flat spacetime, the following
theorem is immediate
Theorem 10: In n-dimensional Minkowski space for

ξ ∈ ½0; ðn − 2Þ=2�, the QSEI of Theorem 8 reduces to

h∶ρU∶ðf2Þiω ≥ −½QI
1½f�1þ h∶Φ2∶ðQI

2½f�Þiω�; ð111Þ

where

QI
1½f� ¼

Sn−2
ð2πÞ2n−1

Z
∞

m
du0

Z
dn−1ujf̂ðuÞj2un0

×

�
1

n
Qn;2

�
u0
m

�
−
m2

u20

2ξ

ðn−2Þ2Qn;0

�
u0
m

��
; ð112Þ

and

QI
2½f� ¼ ξ∂2

0ðf2Þ þ
1 − 2ξ

n − 2
m2f2: ð113Þ

Similarly the state independent part of Theorem 8
becomes

QII
1 ½f� ¼ 2

Z
Rþ×Rn−1

dnα
ð2πÞn ðρ̂

IIWΩÞðf̄α; fαÞ

¼
Z
Rþ×Rn−1

dnα
ð2πÞn

Z
dn−1k
ð2πÞn−1

1

ωðkÞ

×

�
ωðkÞ2 − 1

n − 2
m2

�
jf̂ðαþ kÞj2; ð114Þ

and one may show
Theorem 11: In n-dimensional Minkowski space for

ξ ∈ R, the QSEI of Theorem 8 reduces to

h∶ρU∶ðf2Þiω ≥ −½QII
1 ½f�1þ h∶Φ2∶ðQII

2 ½f�Þiω�; ð115Þ

where

QII
1 ½f� ¼

Sn−2
ð2πÞ2n−1

Z
∞

m
du0

Z
dn−1ujf̂ðuÞj2un0

×

�
1

n
Qn;2

�
u0
m

�
−
m2

u20

1

ðn−2Þ2Qn;0

�
u0
m

��
; ð116Þ

and

QII
2 ½f� ¼ ξ∂2

0ðf2Þ −
1 − 2ξ

2ðn − 2Þ□gf2: ð117Þ

Noting the properties of the functionsQn;k and extending
the integration domain, both QI

1½f� and QII
1 ½f� can be

bounded above by the expression

Sn−2
ð2πÞ2n−1

Z
∞

0

du0

Z
dn−1ujf̂ðuÞj2 u

n
0

n
ð118Þ

on the ranges of ξ for which Theorems 10 and 11 are valid.

V. KMS STATES AND TEMPERATURE SCALING

The QEI bounds we have obtained depend on the state,
in contrast to the original QEIs, Refs. [1,22–24,26,43–45]
that provide state-independent lower bounds. Clearly there
are some very uninteresting state-dependent bounds, such
as the trivial bound in which the averaged stress-energy
tensor is simply bounded below by itself! It is therefore
important to explain in what way our state-dependent
bounds are nontrivial. The strategy we adopt follows
Refs. [20,28] in which a state-dependent lower bound of
the schematic form

hρðfÞiω ≥ −hQðfÞiω ð119Þ

is regarded as nontrivial provided there are no constants
c and c0 (perhaps depending on f) for which

jhρðfÞiωj ≤ cþ c0hQðfÞiω ð120Þ

holds for all physically reasonable states ω. This indicates
that the lower bound is relatively small, in comparison with
the possible magnitude of quantity that is being bounded.
A good way to establish nontriviality is to consider a family
of states in which the averaged energy density tends to
infinity more rapidly than the bound does.
In this section we will do this by examining the

behavior of the bounds we derived for thermal states in
n-dimensional Minkowski space, letting the temperature
become large. We start with the worldline inequality of
Theorem 9.

A. Worldline

We fix inertial coordinates ðt; xÞ on n-dimensional
Minkowski spacetime, for n > 3, and consider the averaged
energy density along the inertial trajectory γðτÞ ¼ ðτ; 0Þ.
Let ωβ be the KMS state at inverse temperature β, with
respect to the time parameter t. The state ωβ is Hadamard,
with the two-point function

Wβðt; x; t0; x0Þ ¼
Z

dμðkÞ
�
e−ikμðx−x0Þμ

1 − e−βωðkÞ
þ eikμðx−x0Þμ

eβωðkÞ − 1

�
;

ð121Þ

where μðkÞ is given by Eq. (83).
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After normal ordering with respect to the ground state of
Eq. (82) we find4

h∶Φ2∶iβ ¼ β2−nBn;0ðβmÞ; ð122Þ

where Bn;r is defined on ½0;∞Þ for r ≥ 0 by

Bn;rðαÞ ¼
Sn−2

ð2πÞn−1
Z

∞

α
dzðz2 − α2Þðn−3Þ=2 zr

ez − 1
: ð123Þ

As ωβ is time-translationally invariant, the state-dependent
part of the bound in Theorem 9 for that state is

h∶Φ2∶∘γiβðQ2½f�Þ

¼ β2−nBn;0ðβmÞ
�
1 − 2ξ

n − 2
m2jjfjj2 þ 2ξjjf0jj2

�
: ð124Þ

On the other hand, the expectation value of the renormal-
ized EED is, after a calculation,

h∶ρU∶iβðxÞ ¼
Z

dμðkÞ
�
ωðkÞ2 − 1

n − 2
m2

�
2

eβωðkÞ − 1

¼ Sn−2
ð2πÞn−1

Z
∞

m
dω

ðω2 −m2Þðn−3Þ=2
eβω − 1

×
�
ω2 −

1

n − 2
m2

�
; ð125Þ

Since h∶ρU∶iβ is translationally invariant, the left-hand side
of Eq. (89) is

h∶ρU∶∘γiβðf2Þ
¼
�
β−nBn;2ðβmÞ− m2

n−2
β2−nBn;0ðβmÞ

�
jjfjj2: ð126Þ

Now we can state the following theorem
Theorem 12: The bound given in Theorem 9 is non-

trivial in the sense that there do not exist constants c and c0
such that

jh∶ρU∶∘γiωðf2Þj ≤ cþ c0jQ1ðfÞ1þ h∶Φ2∶∘γiωQ2ðfÞj;
ð127Þ

for all Hadamard states ω unless f is identically zero.
Proof.—Assuming f ≢ 0, in the limit of high temper-

atures β → 0 we have from Eqs. (122), (126)

lim
β→0

βnh∶ρU∶∘γiβðf2Þ ¼ Bn;2ð0Þjjfjj2 > 0 ð128aÞ

lim
β→0

βnðQ1ðfÞ þ h∶Φ2∶∘γiβQ2ðfÞÞ ¼ 0: ð128bÞ

If the bound of Theorem 9 were trivial there would exist
constants c, c0 such that

lim
β→0

βnh∶ρU∶∘γiβðf2Þ
≤ lim

β→0
βnðcþc0jQ1ðfÞjþc0jh∶Φ2∶∘γiβQ2ðfÞjÞ: ð129Þ

But Eq. (128a) implies

0 < Bn;2ð0Þjjfjj2 ≤ 0; ð130Þ

which is a contradiction. □

B. Worldvolume

The two bounds of the worldvolume quantum inequal-
ities of Theorems 10 and 11 are also state dependent.
Evaluating them for a KMS state ωβ and using Eq. (122)
gives

h∶Φ2∶ðQI;II
2 ½f�Þiβ ¼ β2−nBn;0ðβmÞ

Z
dVolQI;II

2 ½f�: ð131Þ

The expectation value of the renormalized EED is given by
Eq. (125). So the left-hand side of the inequalities of
Theorems 10 and 11 for state ωβ, becomes

h∶ρU∶ðf2Þiβ ¼
�
β−nBn;2ðβmÞ − 1

n − 2
β2−nBn;0ðβmÞ

�

×
Z

dVolf2ðxÞ: ð132Þ

Theorem 13: The bound given in Theorem 10, and
respectively, Theorem 11, is nontrivial in the sense that
there do not exist constants c and c0 such that

jh∶ρU∶ðf2Þiωj ≤ cþ c0jQI
1½f�1þ h∶Φ2∶ðQI

2½f�Þiωj;
ð133Þ

respectively,

jh∶ρU∶ðf2Þiωj ≤ cþ c0jQII
1 ½f�1þ h∶Φ2∶ðQII

2 ½f�Þiωj;
ð134Þ

for all Hadamard states ω unless f is identically zero.
Proof.—Assuming f ≢ 0, in the limit of high temper-

atures β → 0 we have from Eqs. (131), (132)

lim
β→0

βnh∶ρU∶ðf2Þiβ ¼ Bn;2ð0Þ
Z

dVolf2ðxÞ > 0 ð135aÞ
4The corresponding expression in Ref. [20] is missing the

factor β2−n in one place, but the final results are correct
(abbreviating h·iωβ

as h·iβ).

QUANTUM STRONG ENERGY INEQUALITIES PHYS. REV. D 99, 045001 (2019)

045001-15



lim
β→0

βnðQI;II
1 ½f�1þ h∶Φ2∶ðQI;II

2 ½f�ÞiβÞ ¼ 0: ð135bÞ

If the bounds of Theorems 10 and 11 were trivial there
would exist constants c and c0 such that

lim
β→0

βnh∶ρU∶ðf2Þiβ
≤ lim

β→0
βnðcþ c0jQI;II

1 ½f�1þ h∶Φ2∶ðQI;II
2 ½f�ÞiβjÞ: ð136Þ

But Eq. (135) implies

0 < Bn;2ð0Þ
Z

dVolf2ðxÞ ≤ 0; ð137Þ

which is a contradiction. □

VI. CONCLUSIONS

The main result of this paper is the derivation of state-
dependent, but nontrivial, lower bounds for the renormal-
ized effective energy density of the nonminimally coupled
field, averaged either along timelike curves or over space-
time volumes. First, we discussed the quantization of EED
in the context of algebraic quantum field theory and
developed a systematic framework to derive suitable differ-
ential operators, following Ref. [37]. Additionally we
showed that while the quadratic Wick ordered expressions
obey the Leibniz’s rule but not the field equation, the
differences in their expectation values obey both, so the
field equation can be used to simplify expressions in
difference QEIs. Then we proceeded to establish both
worldline and worldvolume bounds for the renormalized
EED, for intervals of coupling constants including both
minimal and conformal coupling in all cases.
Applying the results to Minkowski space we derived

simplified worldline and worldvolume bounds, which are
expected to hold to good approximation in circumstances
where the spacetime is approximately flat or the sampling

function has support that is small in comparison with
curvature length scales. Finally we analyzed the state
dependence of the bounds in the case of n-dimensional
Minkowski space, by looking at their temperature depend-
ence in KMS states. We concluded that both the worldline
and the worldvolume bounds are nontrivial in the sense
described in the introduction.
This is the first derivation of a quantum strong energy

inequality and one of the few QEI results to address the
scalar field with nonminimal coupling. More importantly,
the establishment of a QSEI is the first step towards a
Hawking-type singularity theorem result employing QEI
hypotheses. As shown by Refs. [9] and [18] it is possible to
prove singularity theorems of “Hawking type” if we can
establish bounds of the form

Z
RμνUμUνfðτÞ2 ≤ jjjfjjj2; ð138Þ

where jjj · jjj is a suitable Sobolev norm. In the case that the
metric gμν and Hadamard state ω are physical solutions of
the semiclassical Einstein equation

h∶Tμν∶iω ¼ −8πGμν: ð139Þ

the QEI bounds derived could, in some cases, be written in
the geometric form of Eq. (138). The investigation of this
possibility and proof of a Hawking-type singularity theo-
rem with a QEI derived hypothesis is part of an ongoing
work to appear elsewhere.
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