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A novel constraint on fðRÞ theories of gravity is obtained from the gravitational wave signal emitted
from the binary neutron star merger event GW170817. The fðRÞ theories possess an additional massive
scalar degree of freedom apart from the massless spin-2 modes. The corresponding scalar field contributes
an additional attractive, short-ranged “fifth” force affecting the gravitational wave radiation process. We
realize that chameleon screening is necessary to conform with the observation. A model independent bound
jf0ðR0Þ − 1j < 3 × 10−3 has been obtained, where the prime denotes the derivative with respect R and R0 is
the curvature of our Universe at present. Though we use the nonrelativistic approximations and obtain an
order of magnitude estimate of the bound, it comes from direct observations of gravitational waves and thus
it is worth noting. This bound is stronger/equivalent compared to some earlier other bounds such as from
the Cassini mission in the Solar-System, Supernova monopole radiation, the observed CMB spectrum,
galaxy cluster density profile, etc., although it is weaker than best current constraints (jf0ðR0Þ − 1j ≲ 10−6)
from cosmology. Using the bound obtained, we also constrain the parameter space in the fðRÞ theories of
dark energy like Hu-Sawicki, Starobinsky, and Tsujikawa models.

DOI: 10.1103/PhysRevD.99.044056

I. INTRODUCTION

The recent detection of gravitational waves (GW) by the
LIGO collaboration [1–5] provides an unprecedented
opportunity to test the theories of gravity beyond GR in
the extreme stellar environment or strong-field regime per
se. Previously, no significant deviation from GR was found
in vacuum or in the weak-field regime through several
precision tests [6]. Recently, some model independent
constraints on deviations from GR have been studied based
on various GW generation and propagation mechanisms in
the observed GW signals from compact black hole binaries
[7,8]. More recently, constraints on a number of theories
beyond GR have been obtained from the constraints on the
speed of gravitational waves [9,10].
There are several unsolved puzzles in GR, such as

resolving the singularities (in black holes and the big bang
singularity in cosmology), understanding the dark matter
and dark energy, etc. which motivate many researchers to
pursue modified gravity theories in the classical domain
which deviate from GR in ultraviolet and/or infrared energy
scales. The simplest and well studied modification is the
fðRÞ theory of gravity which is a generalization of the
Einstein-Hilbert action by replacing the Ricci scalar (R) by
a function fðRÞ (see [11,12] and the references therein for a
review). Such theories have some important cosmological
implications. For example, Starobinsky [13] gave the first

successful fðRÞ ¼ Rþ αR2 (α > 0) model of cosmic
inflation, which can account for the early inflationary
era without any inflationary scalar field. The observed
cosmic acceleration (at present) can arise in some fðRÞ
theories of gravity without requiring the cosmological
constant and the dark energy, i.e., a new exotic form of
matter. Initial form of the models proposed for this purpose
was fðRÞ ¼ R − α=Rn (α > 0, n > 0) [14]. However, this
model suffers from various instability problems [15] mainly
due to the fact that f;RR ¼ ∂2f=∂R2 is negative in this
model. Also, it does not satisfy the local gravity constraints
[16]. Initially, some viable fðRÞ models were proposed by
Nojiri and Odintsov [17] for resolving these problems.
Later, Hu and Sawicki [18] designed a class of models
which avoid the instability problems and do satisfy cos-
mological and Solar-System constraints under certain limits
of parameter space. Other such viable fðRÞ models were
proposed by Starobinsky [19] and Tsujikawa [20]. There
are also other viable models [21] which unify the infla-
tionary paradigm and the late time acceleration along with
the satisfaction of local tests. Modification at the large scale
dynamics in these fðRÞ models leaves several interesting
observational signatures such as the modification to the
spectra of galaxy clustering, CMB, weak lensing, etc. [22].
For astrophysical and other works in fðRÞ gravity, see [23].
An important feature of fðRÞ gravity is that it carries a

massive scalar degree of freedom apart from the usual
massless spin-2 tensormodes [24]. It can be shown that fðRÞ
gravity is dynamically equivalent to Einstein gravity mini-
mally coupled to a scalar field in the Einstein frame [11].
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The scalar field is associated with a nontrivial potential that
depends upon the form of the fðRÞ model and couples to
matter through the trace of the energy-momentum tensor.
In the nonrelativistic limit, the scalar field sources a (finite-
range) fifth force which is added to the usual Newtonian
force. The role of this extra scalar field in gravitational
radiation and weak-field metric for simple sources was
studied in [25] using the linearized form of fðRÞ gravity.
Their results are among those ones which clearly show the
need for some screening mechanism to suppress this fifth
force at the astronomical scales. In some fðRÞ theories,
the fifth force can be screened only at the galactic or
Solar-System scales through the chameleon mechanism
[18,26,27]. This mechanism facilitates the above mentioned
viablemodels to conform the local gravity constraints aswell
as the modified dynamics at the large scale. Recently, in
Refs. [28,29], the authors have discussed how such screening
mechanisms in scalar-tensor theories affect the gravitational
radiation from compact binary systems.
Constraints on such fðRÞ theories were obtained by

several authors in Solar-System tests [18], and cosmology
[30–36] using various observations such as galaxy cluster
profiles [31], cluster abundances [32,33], CMB [34], red-
shift-space distortions [35], etc. For astrophysical tests
based on the studies of stellar structure, distance measure-
ments, galaxy rotation curves, etc. see Refs. [37–39]. On
the other hand, binary systems of compact objects are
excellent laboratory to probe the gravity in the strong field
regime. Recently, the authors of Ref. [40] obtained the
constraints from the study of orbital period decay of
quasicircular neutron star-white dwarf (NS-WD) binary
systems using the observational data of PSR J0348þ 0432
and PSR J1738þ 0333 [41]. In Ref. [29], the authors
compute the waveforms of gravitational-waves (GWs)
emitted by such inspiral compact binaries such as neutron
star–black hole (NS-BH) and use it to constrain screened
modified gravity including the fðRÞ theories. Also, there
are some other constraints [42] from the stochastic back-
ground of gravitational waves.
In this paper, we constrain independently the fðRÞ

gravity (with chameleon mechanism) from the observed
GW signals at the LIGO-VIRGO detectors. Static black
holes in fðRÞ and other scalar-tensor theories do not have
scalar hair [43] and, therefore, are identical as in GR.
Although the additional scalar fields are excited in dynami-
cal situations (such as the late-inspiral and merger stage of
the binary black hole (BBH) coalescence, or ringdown of
single black holes [44–46]), the early stages of BBH
inspirals in these theories are indistinguishable from GR
[47]. Therefore, GWs from the inspirals of BBHs [2–4] are
not as useful as other compact binaries (such as NS-BH,
BNS, NS-WD, etc.) to constrain fðRÞ gravity. The authors
of [48] have studied the possibilities to use the future
observations of gravitational radiation from the binary
neutron star mergers (BNS) as the probe of fðRÞ gravity.

However, they do not consider the chameleon mecha-
nism. Our study is aimed at a phenomenological insight
of the observed GW170817 [5] from a BNS merger. In
Sec. II, we discuss the GW radiation from the coalescence
of binaries in the presence of additional short-ranged
scalar force and use GW170817 to constrain it. We use
this result in Sec. III to show that chameleon screening
is must in fðRÞ gravity. Then, in Sec. IV, we obtain
constraints on general fðRÞ theories which accommodate
chameleon mechanism and apply it on the specific dark-
energy models such as the Hu-Sawicki, Starobinsky,
and Tsujikawa models. Finally, we summarize our results
in Sec. V.

II. COALESCENCE OF BINARIES
AND GW RADIATION FOR THE

NEWTONIAN-YUKAWA POTENTIAL

Consider a binary system of two compact objects with
masses m1 and m2 moving around each other. Let us
assume the presence of a short-ranged Yukawa-type modi-
fication to the gravitational potential (originated from some
scalar field) in addition to the Newtonian term. For non-
relativistic and quasicircular motion of the system, the
effective Lagrangian becomes

L ¼ 1

2
μð_r2 þ r2 _θ2Þ þGm1m2

r
þ αq1q2

r
e−mϕr; ð1Þ

where μ ¼ m1m2

m1þm2
is the reduced mass, r is relative sepa-

ration between the compact objects, α is the coupling
constant of the scalar interaction, q1 and q2 are the scalar
charges, and mϕ defines the length scale for which the
modification in the potential is important. The effect of
such an additional term in the gravitational potential will be
observed in the LIGO-VIRGO detection window of gravi-
tational waves, if m−1

ϕ > Oð10Þ km. When the distance
between the binary compact objects such as NS-NS is large
(r ≫ m−1

ϕ ) the modification in the gravitational interaction
can be neglected. However, when they are close enough
(r≲m−1

ϕ ) the gravitational “fifth” force is switched on.
Note that m−1

ϕ cannot be very small as in that case the
“fifth” force becomes relevant when the two NS are very
close, in a regime where relativistic corrections are impor-
tant and the tidal effects may dominate over the scalar force.
However, m−1

ϕ should be at least much greater than the
impact parameter of the BNS collision, which is of the
order of Oð10Þ km. On the other hand, m−1

ϕ cannot be too
large also, as in that case the “fifth” force will be turned on
during the whole detection of the GW signal and, hence,
this extra force cannot be distinguished from the Newtonian
force. The typical binary separation when the signal enters
LIGO-VIRGO window is up to Oð1000Þ km. Therefore,
we assume the mass range 10 km ≪ m−1

ϕ ≲ 1000 km in
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our study such that the “fifth” is switched off during the
early binary inspirals of the GW signal that is detected at
LIGO-VIRGO detector. However, it is switched on for the
late binary inspiral phases. Note that similar mass range
was also considered in Refs. [49,50].
Such a short-ranged “fifth” force can also be originated

from interaction between charged asymmetric dark matter
particles trapped in binary NS (BNS) system, mediated by
the massive but ultralight dark photons [49]. For other
relevant work in this line, see [50] and the references
therein. Recently, there have been forecasts indicating how
well the Yukawa-type potential originated either from
scalar-tensor theories or dark matter components will be
constrained from the LIGO upgrades and the Einstein
Telescope observations in the future [51].
Let us assume that distance between the two coalescing

neutron stars is small enough such that r ≪ m−1
ϕ , when the

signal enters LIGO-VIRGO detectors. Then the modified
Kepler’s law becomes

ω2 ¼ Gðm1 þm2Þ
r3

ð1þ α̃Þ ð2Þ

where α̃ ¼ αq1q2
Gm1m2

. As the inspiraling binary radiate gravi-
tational waves, the orbital energy (E) of the binary system
decreases, where

E ¼ −
GMμ

2r
ð1þ α̃Þ ¼ −

1

2
μv2: ð3Þ

In the above equation, M ¼ m1 þm2 and v ¼ ωr.
The luminosity of GW emitted is related to the quadru-

pole moment of the binary mass and is given by,

LGW ¼ 32G
5c5

μ2r4ω6: ð4Þ

Using Eq. (2), we get

LGW ¼ 32

5

c5

G
η2
�
v
c

�
10 1

ð1þ α̃Þ2 ; ð5Þ

where η ¼ μ
M is called the symmetric mass ratio.

In general, scalar dipole radiation also contributes to the
total energy loss. However, it vanishes if the scalar-charge
to mass ratio of the compact objects are same (i.e., q1m1

¼ q2
m2
)

[49,52]. This is true also for the scalar field originated from
fðRÞ gravity, where, for the binaries consisting of the same
type of compact objects (such as NS-NS mergers), the
scalar dipole radiation vanishes [48]. Thus LGW ¼ − dE

dt .
Using Eqs. (3) and (5) we get

d
dt

�
v
c

�
¼ 32η

5

c3

GM

�
v
c

�
9 1

ð1þ α̃Þ2 : ð6Þ

The angular frequency (ωgw) of the gravitational wave
radiation is directly related to the orbital angular

frequency (ω) of the binary source such that ωgw ¼ 2ω.
As the orbit decays, the frequency as well as the amplitude
of the gravitational wave sweeps upward. This is known as
a chirp and such an inspiral wave form is known as chirp
wave form. Using πfgw ¼ ω ¼ v3

GMð1þα̃Þ in Eq. (6), we get

dfgw
dt

¼ 96

5
π8=3

�
GM̂c

c3

�5=3

f11=3gw ; ð7Þ

where fgw is the frequency of the emitted gravitational

waves. M̂c is the modified chirp mass given by

M̂c ¼
ðm1m2Þ3=5

ðm1 þm2Þ1=5
ð1þ α̃Þ2=5 ¼ Mcð1þ α̃Þ2=5: ð8Þ

For α̃ ¼ 0 we get back the standard chirp mass (Mc).
The expression for GW amplitude remains unchanged as
in GR, [49]

Agw ¼ 4G
c4DL

μω2r2; ð9Þ

whereDL is the luminosity distance of the source from the
detector.
Below, we describe how the extra “fifth” force can be

probed from just the chirp mass without going into the full
waveform analysis:

(i) 10 km ≪ m−1
ϕ ≲ 1000 km: For this mass range of

the Yukawa potential, the “fifth” force is switched
off during the early binary inspirals of the GW signal
and the relevant chirp mass is given by that in GR
(i.e., Mc). Where as, for later inspiral stages when
the “fifth” force is switched on, the chirp mass gets
modified and is given by M̂c ¼ Mcð1þ α̃Þ2=5. So,
one can express the modified chirp mass in a
compact notation as,

M̂c ¼
�Mc ðr > m−1

ϕ Þ;
Mcð1þ α̃Þ2=5 ðr < m−1

ϕ Þ: ð10Þ

Consequently, a signature of “fifth force” in GW
signal is that the entire gravitational waveform
cannot be fitted with a single standard template
with a unique chirp mass. Then two templates with
different masses mE and mL are required to fit the
early wave form and late waveform, respectively.
The value of α̃ can be obtained from the difference
between mE and mL. However, if α̃ is sufficiently
small, a single chirp mass may be used for fitting
the whole waveform. Then, an estimation of upper
bound on the size of α̃ can be done from the
uncertainty in the observed chirp mass (ΔMc; obs)
such thatΔMc ¼ jM̂c −Mcj < ΔMc; obs. This is
the case for GW170817, where the observed chirp
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mass is Mc;obs ¼ 1.188þ0.004
−0.002 M⊙ [5]. From Eq. (8)

we get ΔMc
Mc

¼ M̂c−Mc
Mc

≈ 2
5
α̃ and using it we obtain an

estimation on the upper bound α̃ < 0.013. Using
this bound on α̃, one can constrain the theories of
gravity where such a gravitational short-ranged fifth
force appears.

(ii) m−1
ϕ > 1000 km: For this mass range, although the

fifth force is switched on for the whole LIGO-Virgo
detection band, one can still distinguish the two
forces (pure Newtonian and Newtonian-Yukawa)
from total mass estimation of the binary system.
Note that in GR the total mass (M ¼ m1 þm2) is
estimated by using the explicit formula of chirp
mass, i.e.,Mc ¼ ððM −m1Þm1Þ3=5=M1=5. Given an
observed value of chirp mass, M is minimized with
respect to m1. This gives an estimation of M as well
as the component masses m1 and m2. As in the case
of m−1

ϕ ≳ 1000 km the expression for chirp mass
gets modified, one can identify α̃ from the com-
parison of the estimated total mass and an indepen-
dent measurement of it (if possible) from the
observations (such as GRB etc.) other than GW.

However, in our case, we consider 10 km ≪ m−1
ϕ ≲

1000 km and the estimated upper bound on α̃.

III. REVIEW OF f ðRÞ THEORIES OF GRAVITY
AND THEIR NEWTONIAN LIMIT

Scalar-tensor theories of gravity can be possible origin of
the additional short-ranged fifth force in the Newtonian
limit. Massive scalar mode appears in addition to the
massless spin-2 graviton modes in such theories [53].
This massive scalar mode coupled with matter can generate
Yukawa-type potential and, consequently, the fifth force at
the nonrelativistic limit. We consider metric fðRÞ theories
of gravity, which falls under this class, in our study. In this
section, we review the well-known properties of fðRÞ
theories of gravity, in particular the Newtonian limit and
the chameleon screening, which we use in the next section.
fðRÞ theories of gravity are given by the gravitational
action in the Jordan frame

SJ ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ SM½g;Ψ�; ð11Þ

where gμν and R are metric tensor components and Ricci
scalar in Jordan frame, and Ψ is the matter field. The field
equations are given as

f0ðRÞRμν −
1

2
fðRÞgμν −∇μ∇νf0ðRÞ þ gμν□f0ðRÞ

¼ 8πGTμν: ð12Þ

and trace of the above equation is

3□f0ðRÞ þ f0ðRÞR − 2fðRÞ ¼ 8πGT: ð13Þ

In the Einstein frame, fðRÞ theory can bewritten down in
the form of a scalar-tensor gravity [11]

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃

16πG
−
1

2
∂μϕ∂μϕ − VðϕÞ

�
þ SM½A2ðϕÞg̃μν;Ψ�; ð14Þ

where the Jordan frame metric is related to Einstein frame
metric as gμν ¼ A2ðϕÞg̃μν. The conformal factor A2ðϕÞ is
directly related to f0ðRÞ ¼ df

dR as A2 ¼ f0ðRÞ−1. Here, the
scalar field ϕ is defined as

ϕ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
3

16πG

r
ln f0ðRÞ: ð15Þ

Then A2ðϕÞ becomes

AðϕÞ ¼ e
ffiffiffiffiffi
4πG
3

p
ϕ; ð16Þ

and the potential VðϕÞ is

VðϕÞ ¼ Rf0ðRÞ − fðRÞ
16πGf0ðRÞ2 : ð17Þ

However, particles follow the geodesics of Jordan
frame metric (gμν). In the nonrelativistic limit, it turns
out to be [27]

d2xi

dt2
¼ −∂iΦN −

βðϕÞ
Mpl

∂iϕ; ð18Þ

whereΦN is the Newtonian potential. Thus the fifth force is

a5 ¼ −
βðϕÞ
Mpl

∂iϕ; ð19Þ

where

βðϕÞ ¼ Mpl
d lnA
dϕ

: ð20Þ

Note thatM−2
pl ¼ 8πG. For fðRÞ theories of gravity, βðϕÞ ¼

1=
ffiffiffi
6

p
[using Eq. (16)].

From Eq. (14), the equation of motion of scalar field ϕ is

□ϕ ¼ dVðϕÞ
dϕ

−
βðϕÞ
Mpl

T̃; ð21Þ

where T̃ ¼ g̃μνT̃μν. T̃μν ¼ 2ffiffiffiffi
−g̃

p ∂ð ffiffiffiffi
−g̃

p
LMÞ∂g̃μν is the stress-energy

tensor defined in the Einstein frame. However, it is not
conserved ∇̃μT̃μν ≠ 0. The stress-energy tensor defined in
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the Jordan frame is Tμν ¼ 2ffiffiffiffi−gp ∂ð ffiffiffiffi−gp
LMÞ

∂gμν . Actually, the stress-

energy tensor in the Jordan frame is physically relevant
and also conserved, i.e., ∇μTμν ¼ 0. The definitions of
stress-energy tensor in Jordan and Einstein frames are
related as Tμν ¼ A−6T̃μν. In the nonrelativistic limit,
T ¼ −ρ ≈ −ρ̃ ¼ T̃. Then Eq. (21) becomes

∇2ϕ ¼ dVðϕÞ
dϕ

þ βðϕÞρ
Mpl

¼ dVeff

dϕ
; ð22Þ

where the effective potential

Veff ¼ VðϕÞ þ ρ lnAðϕÞ: ð23Þ

The scalar field ϕ settle down at the minimum of effective
potential [VeffðϕÞ] instead of the actual potential [VðϕÞ].
The minimum of the effective potential depends upon the
density ρ of matter distribution. Consider a spherical object
of mass m and radius r∘ embedded in the medium of
background density ρ0. This could represent a star inside
a galaxy or a galaxy/dark matter halo/cluster embedded in
the cosmological background, in which case ρ0 is the mean
cosmic density. Then the effective potential has minimum
at ϕ0 ¼ ϕminðρ0Þ. Far away from the object ϕðrÞ → ϕ0.
The object of mass m act as the source of perturbation
in the uniform background scalar field ϕ0, such that
ϕ ¼ ϕ0 þ δϕ. Then Eq. (22) becomes

∇2δϕ −m2
ϕðϕ0Þδϕ ¼ β

Mpl
δρðrÞ; ð24Þ

where m2
ϕðϕ0Þ ¼ V 00

effðϕ0Þ and δρðrÞ is the mass density
profile of the spherical object. Outside the source, the
solution for δϕ looks like

δϕ ¼ β

4πMpl

fðm; r∘Þ
r

e−mϕr; ð25Þ

where the constant fðm; r∘Þ depends upon the structure of
the spherical object. For a point mass (i.e., r∘ ¼ 0),
fðm; r∘Þ ¼ m, and assuming mϕr ≪ 1 in Eq. (25), the
fifth force [Eq. (19)] becomes

a5 ¼ −
Gm
3r2

; ð26Þ

and the total gravitational acceleration [Eq. (18)] in the
nonrelativistic limit becomes

ar ¼ −
Gm
r2

�
1þ 1

3

�
: ð27Þ

This is true irrespective of any model of fðRÞ gravity. Thus
for point mass in fðRÞ theories of gravity and at distances

mϕr ≪ 1, the nonrelativistic gravitational force deviates
largely from the Newtonian force up to a factor of 4=3; i.e.,
α̃ ≈ 0.3 in Eq. (8).
Though the stationary black holes are classically point

masses, they do not have scalar charges in fðRÞ theories
[29,43] and, hence, the fifth force is absent there
(i.e., α̃ ¼ 0). Although BH-BH mergers are dynamical
phenomena, still they are not very useful to constrain
fðRÞ gravity as the early stages (motion through 2.5 post-
Newtonian order [47]) of the binary inspirals are indis-
tinguishable from GR. Therefore, in our case, we consider
the Neutron stars which have finite size. The above
mentioned large contribution from the fifth force can be
suppressed in some fðRÞ theories through the chameleon
screening.

A. Chameleon screening and thin shell effect

For the models of fðRÞ theories of gravity which admit
chameleon screening mechanism (see [27] for review),
gravitational fifth force is suppressed at small scale such as
solar systems, while strong modification in gravity appears
at the cosmological scales. In such models, the form of
VðϕÞ becomes such that the effective mass of the scalar
field mϕ becomes heavier in high density (ρ) region and
lighter in the low density region. The first example of such
a model was that of Hu and Sawicki [18]. Other notable
examples are Starobinsky [19] and Tsujikawa [20] dark
energy models. Chameleon screening is also applicable to
finite size compact objects such as neutron stars. Therefore,
using BNS mergers, we can constrain such fðRÞ theories of
gravity.
In such theories, the field can reach a minimum of the

effective potential (V 0
effðϕsÞ ¼ 0) also at the centre of the

spherical object (neutron star) and remain there (ϕ ¼ ϕs)
up to some radius rs, at which it enters in the second regime
and begins to roll towards its asymptotic value ϕ0 [see
Fig. 1(a)]. Therefore, there is no fifth force interior to rs
called as the screening radius. Then Eq. (24) becomes

∇2δϕ ¼
� β

Mpl
δρðrÞ; rs ≤ r ≪ m−1

ϕ0
;

0; r < rs:
ð28Þ

After integrating Eq. (28) we get

dϕ
dr

¼ βðmðrÞ −mðrsÞÞ
4πMplr2

; ð29Þ

outside the screening radius, where mðrÞ ¼ R
r
0 4πr

02 ×
δρðr0Þdr0. Then the fifth force [Eq. (19)], outside the
screening radius, becomes

a5 ¼ −
GmðrÞ
3r2

�
1 −

mðrsÞ
mðrÞ

�
¼ aN

3

�
1 −

mðrsÞ
mðrÞ

�
: ð30Þ
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If rs ≪ r∘, the fifth force is of the order of the Newtonian
gravitational force (a5=aN ≈ 1=3) and hence, the object
is said to be unscreened. On the other hand, for the
screened object, rs ≈ r∘ and a5=aN ≪ 1. In this case, the
fifth-force only receives contributions from the mass in a

thin shell outside the screening radius [see Fig. 1(b)].
This phenomenon is called as the thin-shell effect [27].
Assuming ϕs ≈ 0 and after integration of Eq. (28) the
field profile can be written in terms of the Newtonian
potential ΦN as [37]

ϕðrÞ ≈
(
2βMpl

h
ΦNðrÞ −ΦNðrsÞ þ r2sΦ0

NðrsÞ
�
1
r −

1
rs

	i
; r ≥ rs;

0; r < rs:
ð31Þ

The screening distance rs is related to the background field
ϕ0 through the following equation

χ0 ≡ ϕ0

2β0Mpl
¼ −ΦNðrsÞ − rsΦ0

NðrsÞ: ð32Þ

From Eq. (15), we note that ϕ0 depends on the model of
fðRÞ gravity as

jf0ðR0Þ − 1j ¼
ffiffiffi
2

3

r
ϕ0

Mpl
: ð33Þ

Thus the information about the screening distance from the
observations can be used to constrain different fðRÞ
theories.

IV. CONSTRAINTS ON f ðRÞ THEORIES
FROM GW170817

From Eqs. (18) and (30), the total gravitational accel-
eration outside a neutron star of mass m becomes

ar ¼ −
Gm
r2

�
1þ 1

3

�
1 −

mðrsÞ
m

��
: ð34Þ

Using this result for a BNS system of masses m1 and m2,
we obtain the effective gravitational potential energy of the
binary system (in the nonrelativistic limit)

Vgrav ¼ −
1

2

Xi≠j
i;j¼f1;2g

Gmimj

rij

�
1þ 1

3

�
1 −

mðrs;jÞ
mj

��
: ð35Þ

Note that r12 ¼ r21 ¼ r (the binary separation). Then the
effective force acting on the reduced mass μ becomes

Fr ¼ −μ
∂
∂r VgravðrÞ ¼ −

Gm1m2

r2

×

�
1þ 1

3

�
1 −

1

2

�
mðrs;1Þ
m1

þmðrs;2Þ
m2

���
: ð36Þ

Therefore, α̃ in Eq. (8) becomes

α̃ ¼ 1

3

�
1 −

1

2

�
mðrs;1Þ
m1

þmðrs;2Þ
m2

��
: ð37Þ

For neutron stars, we assume that the mass density inside
the star is almost constant. Therefore, mðrsÞ=m ¼ r3s=r3∘ .
Further, we assume that the neutron stars for GW170817
are almost similar (i.e., m1 ≈m2 and r∘;1 ≈ r∘;2 ¼ r∘) and
hence, rs;1 ≈ rs;2 ¼ rs. Then

FIG. 1. Chameleon screening.
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α̃ ≈
1

3

�
1 −

r3s
r3∘

�
: ð38Þ

Since α̃ < 0.013 from the observations of GW170817, we
get rs > 0.987r∘ using Eq. (38). The typical neutron star
radius is r∘ ∼ 15 km. This result reveals that neutron stars
are different from the main sequence stars where a sub-
stantial part of the interior can be unscreened such that
rs ≈ 0.3r∘ [37].
Next we note that the background field ϕ0 is same for

both the neutron stars, i.e.,

χ0 ¼
ϕ0

2βMpl
¼ −ΦNðrs;1Þ − rs;1Φ0

Nðrs;1Þ

¼ −ΦNðrs;2Þ − rs;2Φ0
Nðrs;2Þ

≈ −ΦNðrsÞ − rsΦ0
NðrsÞ: ð39Þ

We assume the Newtonian potential for each of the neutron
star of masses m1 ≈m2 ¼ m,

ΦNðrÞ ≈
Gm
2r3∘

ðr2 − 3r2∘Þ: ð40Þ

Then using Eq. (39), we get

χ0 ≈
3Gm
2c2r∘

�
1 −

r2s
r2∘

�
ð41Þ

where we divided the right-hand side (r.h.s.) by c2 to get the
match the dimension and get the correct number. The total
mass of BNS merger (GW170817) is M ¼ m1 þm2 ¼
2.74þ0.04

−0.01 M⊙ (M⊙ is the mass of the Sun.). Hence, we
assume m ≈ 1.37 M⊙. Then, χ0 < 5 × 10−3. Using the
estimated χ0 in Eq. (33) we get

jf0ðR0Þ − 1j < 3 × 10−3: ð42Þ

Note that this is still an model independent result, provided
the model allows the chameleon screening. This result is
consistent with above mentioned difference between the
neutron stars and the main sequence stars. For the Sun (an
example of a main sequence star), we get jf0ðR0Þ − 1j ≈
2 × 10−6 using rs ≈ 0.3r∘, m ¼ M⊙ ¼ 2 × 1030 kg (Solar
mass), and r∘ ¼ R⊙ ¼ 7 × 108 m (Solar radius).
Also, we note that above analysis and the result is correct

when 10 km≪m−1
ϕ ≲1000 km as mentioned in the Sec. II.

This corresponds to the Compton wavelength 10 km ≪
λc ≲ 1000 km and an energy scale 1.2 × 10−12 eV≲
Eϕ ≪ 1.2 × 10−10 eV. Here, we emphasize on the fact
that the energy scale mentioned here is not related to the
bound on the graviton mass [54] which was used in [55,56].
In fðRÞ gravity, graviton is massless as the spin-2 modes
are massless and the mass of the scalar mode (mϕ) signifies

only the range of the scalar force and dispersion in the
associated scalar wave [53]. Using Eqs. (15), (17), and (23)
we get

V 0
effðϕÞ ¼

βMplðRf0ðRÞ − 2fðRÞÞ
f0ðRÞ2 þ βρ

Mpl
; ð43Þ

m2
ϕ ¼ V 00

effðϕÞ ¼
1

3

�
R

fðRÞ þ
1

f00ðRÞ −
4fðRÞ
f0ðRÞ2

�
: ð44Þ

At the background scalar field (ϕ0), V 0
effðϕ0Þ ¼ 0, which

leads to

m2
ϕðϕ0Þ ¼

1

3

�
1

f00ðR0Þ
−

R0

f0ðR0Þ
− 16πGρ0

�
: ð45Þ

From Eq. (42), we can safely use f0ðR0Þ ≈ 1 in Eq. (45). We
can also assume R0 ≈ 8πGρ0. Then Eq. (45) becomes

m2
ϕðϕ0Þ ≈

1

3f00ðR0Þ
− 8πGρ0: ð46Þ

Considering the cosmological background and using
the above said assumption on mass of the scalar field
(10 km ≪ m−1

ϕ ≲ 1000 km), we get

3.33 × 107 m2 ≪ f00ðR0Þ≲ 3.33 × 1011 m2: ð47Þ

Using the bound on f0ðR0Þ (42) and assumption on f00ðR0Þ
(47), we next constrain Hu-Sawicki, Starobinsky, and
Tsujikawa dark energy models.

A. Hu-Sawicki model

The Hu-Sawicki dark-energy model is given by

fðRÞ ¼ R −
μR0ðR=R0Þ2n
bðR=R0Þ2n þ 1

; ð48Þ

where n ≥ 1, μ, b > 0 for stability of the model [18]. Note
that n, μ, and b are dimensionless quantities.
At present, the Universe is mostly dominated by dark

energy. So, we work in the constant curvature (de Sitter)
cosmological background. Then, from Eq. (13), we get

f0ðR0ÞR0 − 2fðR0Þ ≈ 0; ð49Þ

where R0 ¼ 4Λ and Λ is the cosmological constant. Using
the Hu-Sawicki model [Eq. (48)] in Eq. (49), we get [55]

b� ¼ −1þ μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμ − 2nÞ

p
: ð50Þ

Note that μ > 2n. From Eq. (33), we have
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jf0ðR0Þ − 1j ¼ 2nμ
ð1þ b�Þ2

< 3 × 10−3: ð51Þ

Assuming n=μ ≪ 1, the above inequality can not be
satisfied for b−. Therefore the allowed root is bþ. Then
we obtain

n
μ
< 6 × 10−3: ð52Þ

On the other hand we have

f00ðR0Þ ¼
1

R0

�
4n2μþ 2nμ
ðbþ þ 1Þ2 −

8n2μ
ðbþ þ 1Þ3

�
ð53Þ

≈
ðn2 þ n=2Þ

μR0

; n=μ ≪ 1: ð54Þ

Then using Eq. (47) and Λ ≈ 1.11 × 10−52 m−2, we obtain

1.5 × 10−44 ≪
ðn2 þ n=2Þ

μ
≲ 1.5 × 10−40: ð55Þ

Thus, from Eqs. (52) and (55), we get for n ¼ 1,
1044 > μ > 1040, and, for n ¼ 2, 3.33 × 1044 > μ >
3.33 × 1040.
Relating the galactic density (ρgal ¼ 10−24 g cm−3 for

the Milky Way) to the cosmological density we find

jf0ðRgalÞ − 1j ≈
�
8πρgalG

4c2Λ

�
−2n−1

jf0ðR0Þ − 1j; ð56Þ

where we used bþ≈2μ≫1, Rgal > R0, Rgal ≈ 8πρgalG=c2,
and R0 ≈ 4Λ (Λ ¼ 1.1 × 10−52 m−2). Using n ¼ 1 and
Eq. (42) we get at the galactic scale,

jf0ðRgalÞ − 1j < 4 × 10−17: ð57Þ

Above bound on f0ðRgalÞ is stronger than the bound from
Cassini test where jf0ðRgalÞ − 1j < 5 × 10−11 [18].

B. Starobinsky model

The Starobinsky dark-energy model [19] is given by

fðRÞ ¼ Rþ λ

�
R0

�
1þ R2

R2
0

�−n
− 1

�
; ð58Þ

where n ≥ 1, λ > 0. For this model

jf0ðR0Þ − 1j ¼ 2−nnλ < 3 × 10−3: ð59Þ

So λ < 3×2n
n × 10−3. On the other hand, using Eq. (47),

we have

f00ðR0Þ ¼
n2λ
R02

n : ð60Þ

Using Eq. (47) we obtain 1.5 × 10−44 ≪ n2λ
2n

≲ 1.5 × 10−40.
For n ¼ 1, we have 3 × 10−44 < λ < 3 × 10−40 and, for
n ¼ 2, we get 1.5 × 10−44 < λ < 1.5 × 10−40.

C. Tsujikawa model

Another such dark energy model is given by [20]

fðRÞ ¼ R − νR0 tanh

�
R
R0

�
: ð61Þ

For this model

jf0ðR0Þ − 1j ¼ 0.4 × ν; ð62Þ

and

f00ðR0Þ ¼
0.6 × ν

R0

: ð63Þ

Then we obtain 2.5 × 10−44 < ν < 2.5 × 10−40.

V. CONCLUSIONS

In this paper we constrain fðRÞ theories of gravity from
recently detected gravitational waves at LIGO-VIRGO
detectors. We use the observation of GW170817, the first
GW signal from a binary neutron star merger.
In fðRÞ gravity, an extra massive scalar mode appears

apart from the massless spin-2 modes. This extra scalar
mode affects the GW generation in two ways. One is that an
attractive short ranged fifth force adds up to the usual
Newtonian gravitational force between two compact
objects. The other effect is that the scalar dipole radiation
carries away some part of the total mechanical energy of the
binary system. However, for the BNS merger, the scalar
dipole radiation is negligible as the scalar charge to mass
ratio (q=m) for both the objects are same. We assumed that
the range of the scalar force is smaller than the binary
separation when the GW signal enters in the LIGO-VIRGO
detection window, such that the scalar force is switched on
only for the late binary inspirals. As a result, the effective
chirp mass behaves differently for early and late binary
inspirals. Then, from the uncertainty in the observed chirp
mass for GW170817, we obtained an estimation of upper
bound on the strength of the scalar force (α̃ < 0.013).
However we noticed that, without any screening effect, the
scalar force arising in fðRÞ theories of gravity will
contribute by a large factor (α̃ ¼ 1=3). Fortunately, some
fðRÞ models such as the Hu-Sawicki model admit the
chameleon screening which can suppress the effect of the
scalar field considerably to conform with the observations.
Due to the chameleon mechanism, the compact objects like
stars are self-screened such that only a shell of its interior
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contributes to the scalar force, which is called as the thin
shell effect. The observation from GW170817 reveals that
most part of the interior of the neutron stars are screened
(rs > 0.987r⊙). This results in a model independent
bound on fðRÞ theories of gravity such that jf0ðR0Þ − 1j <
3 × 10−3 where the R0 is curvature of the cosmological
background spacetime at present. Our assumption on the
range of scalar force translates into the relation 3.33×
107 m2 ≪ f00ðR0Þ≲ 3.33 × 1011 m2. We applied these two
results in the Hu-Sawicki, Starobinsky, and Tsujikawa
models to constrain the parameter space.
In the Table I, we compare the constraint on jf0ðR0Þ − 1j

that we obtained with other bounds available in the
literature. We note that, although we have obtained an
order of magnitude estimate of the bound, it is better than
the bounds from Cassini test, Supernova monopole radi-
ation, and also is as good as the bounds from the study of
galaxy cluster density profiles and CMB spectrum.
However, this bound is weaker than the bounds obtained
from cluster abundances, strong gravitational lensing,
redshift-space distortions, distance indicators in dwarf
galaxies, etc. Our present work is based on the analysis

in the nonrelativistic/Newtonian limit. However, through
simple analysis we highlighted some important new fea-
tures such as:

(i) even direct observation of chirp mass of compact
binaries can be used to constrain fðRÞ gravity, without
going into detail analysis of the GW waveform,

(ii) chameleon screening mechanism is inevitable in
fðRÞ theories of gravity in order to confront with
the GW observation from compact binaries,

which are worth noting. We intend to study the post-
Newtonian phases, in future, which may improve the bound
we obtained. Also, future observations of the GWs from
other BNS mergers will put tighter constraints on theories
of fðRÞ gravity and other scalar-tensor gravity with
Chameleon mechanism.
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