PHYSICAL REVIEW D 99, 044054 (2019)

Quasinormal modes of p-forms in spherical black holes
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We study the quasinormal modes of p-form fields in spherical black holes in D dimensions. Using the
spherical symmetry of the black holes and gauge symmetry, we show the p-form field can be expressed in
terms of the coexact p-form and the coexact (p — 1)-form on the sphere SP~2. These variables allow us
to find the master equations. By utilizing the S-deformation method, we explicitly show the stability of
p-form fields in the spherical black hole spacetime. Moreover, using the WKB approximation, we calculate
the quasinormal modes of the p-form fields in D(<10) dimensions.
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I. INTRODUCTION

Black holes in general relativity are important from
various perspectives. In fact, they are sources of gravita-
tional waves, they provide a way to test general relativity
in the strong gravity regime, and they can be a key to
quantum gravity. Before discussing this physics, we have to
show the stability of black holes. In fact, the stability of
black holes is often nontrivial. Historically, the stability of
black holes has been studied since the seminal papers by
Regge and Wheeler [1] and Zerilli [2]; for examples, see
[3-5]. From the point of view of a unified theory such as
string theory, it is natural to consider black holes in higher
dimensions. Indeed, higher-dimensional black holes may
be created at the accelerator such as the LHC [6]. Thus,
the stability analysis is also generalized to higher dimen-
sions [7-10]. In higher dimensions, however, Einstein’s
general relativity is not a unique possibility. Rather,
Lovelock gravity is natural in higher dimensions [11,12].
Therefore, the stability of black holes in Lovelock gravity
has been studied [13-18]. Moreover, in contrast to four-
dimensional general relativity where only scalar, electro-
magnetic and gravitational fields can reside in the black
hole spacetime, there exist p-form fields in higher dimen-
sions. To our best knowledge, no work of p-form fields in
higher dimensional black hole spacetime has been done.
The purpose of this paper is to study the stability of p-form
fields in black hole spacetime and obtain quasinormal
modes of p-form fields.
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To study the behavior of various physical fields in
spherical black holes, we must derive the master equations.
For this purpose, we express a p-form field in terms of a
coexact p-form and coexact (p — 1)-form on the sphere and
derive the master equation for each component. If the
effective potential in the master equation is positive outside
the event horizon of black holes, the p-form field is
stable [19]. However, it turns out that the effective potential
for a p-form field has a negative region for some param-
eters. This region may cause the instability of p-form fields
in spherical black holes. Nevertheless, we succeed in prov-
ing the stability of p-form fields using the S-deformation
method [8].

Given the stability, we can calculate the quasinormal
modes of p-form fields in the black hole spacetime. We use
the WKB method [20-22] to calculate the quasinormal
modes of p-form fields in D(<10) dimensions. Since a
p-form field has two components, there are two quasinor-
mal modes, namely, one for each component. It is shown
that the quasinormal modes of the p-form field in D
dimensions reflect duality relations.

The organization of the paper is as follows. In Sec. II, we
review the properties of p-form fields. In particular, we
count the physical degrees of freedom (d.o.f.) of a p-form
field. In Sec. III, we consider p-form fields in spherical
black holes. We represent a p-form field by coexact form
fields on the sphere. We also discuss spherical harmonics.
In Sec. IV, we obtain the master equations for the p-form
field in spherical black holes in arbitrary dimensions. The
master variables are a coexact p-form and a coexact
(p — I)-form on the sphere. We check their d.o.f. match
to the physical d.o.f. of a p-form field. We also find useful
duality relations for the effective potentials. It turns out that
the effective potential has a negative region for some cases.
In Sec. V, therefore, we have explicitly verified the stability
of the p-form field using the S-deformation technique.
In Sec. VI, we also investigated the quasinormal modes of
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p-form fields using the WKB approximation. Section VIl is
devoted to conclusion.

II. BASICS OF p-FORM FIELDS

In this section, we introduce the action for p-form fields
and explain the gauge invariance in the system. We also
calculate physical d.o.f. of a p-form field. We refer the
reader to the textbook [23] for a more detailed explanation
of the p-forms on manifolds.

The action of the p-form field is given by

Sz—%/F/\*F

1
= _—1)'/de‘/_gFa|~--al,+|FalmaP+l, (1)

2(p+

where we used the Hodge operator *. Here, D is the
dimension of the spacetime. We defined the p-form field
A, as follows:

1

A, = ﬁAu]__,apdx“l Adx® Ao A dx (2)

and the field strength F is defined by
F=dA. (3)

The operator d is the exterior derivative satisfying the
identity

& =0. (4)

Using the Hodge operator, we can define the coderivative
o as

= (=1)Pr+l 4 g %, (5)
Note that the coderivative also satisfies the identity
& = 0. (6)

The equations of motion for the form field can be
deduced as

dF =0 and 6F =0. (7)
This system has the symmetry under the dual transformation
F = +F. (8)

Because of this symmetry, we do not need to consider a
p-form field with the rank higher than

ol

Here, [] denotes the Gauss symbol. So, we concentrate on
the form fields A ,(0 < p < py,y) in arbitrary dimensions.

The p-form field has the invariance under the gauge
transformation

A,—>A,=A,+dE, (10)

with an arbitrary (p — 1)-form field E,_;. This is because
the field strength is defined by (3). The gauge parameter
E,_, itself has the degeneracy

[

—

p—1 =8p_1 +dE,» (11)
with an arbitrary (p — 2)-form field &,_,. Hence, in order
to count the physical d.o.f. of the p-form field A ,, we need
to take into account these degrees generated by the trans-
formations &,_;,E,,,---&j. Taking into account that
components Ag,,..,, are not dynamical, the formula for
physical d.o.f. is given by

D—lCP - D-]Cp—l + D-le—Z - = D-ch' (12)

For example, in D =4, a 2-form field has one physi-
cal d.o.f.

III. p-FORM FIELDS IN SPHERICAL
BLACK HOLES

In this subsection, we study the decomposition of the
p-form field in black hole spacetime in terms of form fields
on the sphere. Then, we eliminate some components using
gauge transformations. We also discuss eigenvalues of
spherical harmonics for p-forms.

In general relativity, the spherical black hole is known as
the Schwarzschild black hole. It is not difficult to generalize
the Schwarzschild black hole to higher dimensions D > 4,
and the solutions are called a Schwarzschild-Tangherlini
black hole [24] expressed by the metric

1
ds*> = —f(r)dt? +mdr2 + r?qupdxtdxB,  (13)
r

where f(r) is given by
f(r)=1-—=, (14)

and n is defined as n = D — 2. Here, g5 is the metric of the
sphere S" and the spherical coordinate is expressed by

XA =0, ....0m. (15)
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A. Decomposition of a p-form field in terms of
coexact form fields on the sphere

We use the notation A p to denote a p-form field on the
sphere, that is, A, is written by

A p = A4 a DAI (16)
where
DA Ay = gyt A -

“A dxr, (17)

We can write down the components of A, as follows:

1
APZMA”AI Ap,dl‘/\d}"/\DA1 p=2

1

oA A DA
1 _ 1

A A AT ADA A A DA

(18)
If we define the components of A, as

UA,»--AF,Z = Aer,»--A,,,z, (19)
VA1~~-A,,,1 = AtAlmAp,lv (20)
WA]-~-A,,_1 = ArA]mAp_l’ (21)
XA]mAp = AA|-~-AF1 (22)

then A, is written by

A,=dtA"drAU, ,+dt AV, +dr AW, +X,.
(23)
Thus, the p-form can be expressed by the one (p — 2)-form

ﬁp_z, the two (p — 1)-forms Vp_, and Wp_, and the one
p-form X,. The identity

pCp = paCpat 2D—2Cp—1 + 522G (24)

guarantees the matching of d.o.f.
Using the Hodge decomposition on the sphere S”, a

p-form field A » can be decomposed as
,=dA,  +A, forl<p<n-1 (25)

where we have introduced the coexact form 5.4 » = 0. From
this decomposition theorem on the sphere, we can write

down a more useful expansion. In fact, for p > 2, we can
express A, by the coexact form

=dA,,+ A, (26)

This result shows that the general form field on $” is
expressed by only the coexact form fields. Thus, the
arbitrary p-form field A, is given by

A,=dtA"drAU, ,+dtAV,  +dr AW, +X,

=dt Ndr A (&’Z/Alp_3 +Z/A[p_2) + dt A (C}h}p_z + ﬁp—l)
+dr A (CAZVAV],_Q + Wp_1> + ((3.)%[,_1 + ')’ep) (27)

B. Gauge fixing of p-form field A,

The p-form field A, has the gauge invariance under the
transformation by B p—1s that is,

A,>A,=A,+dB, | (28)

Now starting from the general expression for A, in D

dimensions, we can deduce the following result,

A, =dtAdr AU, 5 +dt AV, | +dr AW, + X,

(29)

by using the gauge transformation for A ,.

C. Spherical harmonics for coexact p-form field

We review the spherical harmonics of the p-form
field following [25]. The Laplace-Beltrami operator is
defined by

A ~

A=6d+db (30)

The spherical harmonics of the coexact p-form field ) ) 18
defined by

Y, = yAI [ DAA (31)
which satisfies
5Y,=0 (32)
and
AY,=21,9,. (33)
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The last equation becomes

A

5dY,=2,Y, (34)
by using the identity (6). Here, 1, is given by
A= +p)(f+n-p-1), (35)

and 7 is a positive integer, £ = 1,2, ..., 00. On the sphere
S", the left-hand side of the equation becomes

A A A 1 -
0dYy, = ] (=(A=p(n=p))Va,..a,) D4 (36)
Here, we defined A as
AyA]...Ap - yAl...Ap :A:A. (37)

Then, the spectrum of the coefficient of the p-form
harmonics 571, is

—(A —-pn- p))yA]mAp = /IpyA|~»-AI,' (38)
We rewrite this equation as follows:
AyA]...AF = _Van)yA]...AF, (39)
where
vy =2, = pln=p). (40)

With the harmonics jip,
coexact p-form field /ip can be expanded as

the coefficient of the general

Anpa,(0) =Y Arg(L0)VR% 4 (1), (41)
Lo

where ¢ denotes other indices to characterize the degen-
eracy. For simplicity, we denote A, ,(z, r) just as A.
IV. MASTER EQUATIONS FOR p-FORM FIELD

In this section, we derive the master equations for the
master variable ¥ in the Schrodinger form

¥+ 2¥ - VY =0, (42)

where V is the effective potential and x is the tortoise
coordinate defined by

d d

— = 43
dx fdr (43)

In Eq. (7), the first equation is trivially satisfied from

the identity (4), and the second equation 6F = 0 in the
coordinate basis is expressed as follows:

_a aa;ay\ — (),
=50 o(y/=gF* ) =0 (44)

This equation can be decomposed into four patterns.
The first pattern we consider is

1
—— By (y=gFarhiAra) = 0, 45
N (V=g ) (45)

Substituting the components into the above equation, we
obtain

iy (B = (p=2)(n = (p = 2)UN = = 0. (46)

This yields

+p-2)(¢+14+n—-pUs, =0. (47)
Since we are considering p > 2, and generally n > p, the
quantity (£ + p—2)(£+ 1+ n—p) is always positive.
Hence, the coefficient U/, , must vanish for all £, namely,

U, =0. (48)

Thus, the (p — 2)-form U p—2 1n Eq. (29) is not dynamical.
The second pattern is the following:

1
—— 0, (y/=gF“ A1) = 0. 49
It is easy to get
=LA V-V

(n)

+%<rp_l +(p=1)(n=-p+1)V=0. (50)

The third pattern is given by

%gaa(\/——gF“"““’*P-') =0 ey

This leads to

I om

WV +% (yp1+( -Dn=—p+1))W=0. (52

The final pattern

Oy(v/=gFh140) =0 (53)

1
V=9
generates two equations for the (p — 1)-form component
VA-Ap WArApt and p-form component X414 as
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V- r% fO,(r™ fW) =0 (54)

and

(s + p(n = p))X =
(55)

Y 1 n—2 f
_X+ﬂ7pfar(r pr/)_p

A. Master equations

Now, we can derive the master equations. These general
results reproduce the effective potential in Eqgs. (15) and
(16) in [26] and in Eq. (99) in [27] as special cases and
agree with the results in [28,29].

1. Coexact p-form

From Eq. (55), we can read off the master variable for the
p-form component as

1 2p—n
v, :FX and a= . (56)
Assuming the time dependence of ¥, as
e—i{ot’
we obtain the master equation
—RY, + VI, = 0?¥, (57)
with the effective potential VE,";,
A
Vip=3((E+p)+n=—p-1)
-2p , n—=2p-=2
. (58
("))

2. Coexact (p — 1)-form

The (p — 1)-form components are contained in Egs. (50),
(52) and (54), but the master equation is derived in
Egs. (52) and (54). Using the master variable ¥,_; for
the (p — 1)-form

Y, = %W and V= r¥fo, (%/ Wdt), (59)
we can deduce the master equation as

~PY, + V)

p,p—llPP—l = a)zle_l. (60)

Here, we assumed the same time dependence as before.

The effective potential V"

».p—1 18 given by

Vipa =5 (€ p=netn-p)

n—=2p (n-2p+2 ,
+ 5 < 5 f—rf)). (61)

Note that Eq. (50) is trivially satisfied.

B. Degrees of freedom and dual relations

We have shown that the D-dimensional p-form field can
be represented by the coexact p-form and coexact (p — 1)-

form fields. The condition for the coexact form 5/1,, =0
can be solved as

A, =6B,,,. (62)

However, lg’p .1 has a freedom B’I, 1+ 55’1, 1». This argu-

ment continues up to the maximum value n. Hence, the

d.o.f. of the coexact p-form are given by

nCIH‘l - nCP+2 + nCI’+3 t+e= nCP - nCP—l + nCI’—2
+-=,,Cp. (63)

Similarly, we obtain ,_ C,_; for the d.o.f. of the coexact
(p — 1)-form. Note that the identity

n—lCP + n—lCP—1 = nCP (64)

exactly coincides with the physical d.o.f. of a p-form field.
The duality plays an important role in form fields.
Indeed, we found the following duality relations:

Vr(1n—>17.n—p = ngn,;;—l’ (65)
(n) _ vy
Vn—p,n—p—l - Vp+1,p+1' (66)

In particular, in even dimensions, we have the degeneracy

() _ )
vy = v, (67)

B

[S[E]
Iz A~

Later, we will see this degeneracy in the quasinormal mode
spectrum.

C. Examples of effective potentials

In four dimensions where n = 2, the master equation for
the p = O-form A, becomes

fz(f(f—i—l)—krf’). (68)

I%

2
Vi -

From the master equations of the p = 1-form A, we see
that the effective potential of the coexact 1-form is

Vi =+ 1)% (69)
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and that of the coexact O-form reads
VS =+ 1)%. (70)

The effective potentials for the coexact 1-form and the
coexact O-form components in A; are the same. Our results
agree with the expression (99) in [27]. Moreover, since the
coexact 2-forms on the sphere S? do not exist, the master
equation for the p = 2-form A, becomes single. The
effective potential of the coexact 1-form component is
given by

v =L e+ 1)+ rp). (71)

~

As is expected, this effective potential is the same expres-
sion as that for the O-form field in Eq. (68). This confirms
that we can consider only the form fields with a rank larger
than p,,.

In five dimensions where n = 3, the master equation for
the p = O-form A, becomes

3
Vo) = % (f(f +2)+3 <rf’ + J;)) (72)

We can also read off the effective potentials in the master
equations for the 1-form A . The effective potential of the
coexact 1-form component reads

o _ [ LY P
i =L (g (mr-3r))
and that of the coexact O-form component is given by

v :§<f(f+2) +% @f— rf’)). (74)

In five dimensions, we need not consider a 2-form field
because of the duality. Here, for the 2-form A,. The
effective potential of the coexact 2-form component is
given by

3
ve) = % (f(f +2) +% (Ef - rf’>> (75)

and that of the coexact 1-form component becomes

v :% ((f+ 1)2 +% <rf’—;f>>. (76)

The effective potential (76) is the same as Eq. (73), and the
effective potential (75) is the same as Eq. (74). These
results just reflect the duality relations (65) and (66).

It is also easy to explicitly write down the master
equations for the p-form fields in higher dimensions.

V. STABILITY ANALYSIS

In this section, we show the stability of the p-form field
in arbitrary dimensions. The stability of p-form fields in
black hole spacetime is nontrivial because the effective
potential has a negative region as is shown in Fig. 1. To
show the stability of the fields around the black holes, the
S-deformation method [7-10,30] is useful. Hence, first, we
shortly review the S-deformation method. Secondly, we
show the stability of the effective potential for each
component of the p-form field.

Let us start with the master equation

o’ = AY, (77)
where we defined the operator A as

d2
A=—-——7Y+ VY, 78
dx? + (78)

and we assume the time dependence of ¥ as
Y o et (79)

If w*> <0 for the boundary conditions ¥ — 0 and
d¥/dx - 0 at x - +oo, this solution is unstable and
exponentially grows. So, if we want to show the stability,
we have to show @? > 0. The S-deformation is defined by
using the new operator D, as follows:

The effective potential of 1-form field

\"
12 L
10 i
sl

I — Vis
6 |

L Vio
al
.l

1 1 T T 1 P X

5 10 15 20
FIG. 1. The effective potentials for the 1-form in 10 dimensions

are plotted. The potential for the coexact O-form component has a
negative region. Here, we took £ =1 and p = 1.
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d
D, =— .
= + S(x) (80)
Then, Eq. (77) is modified as

?|P? = PFAY

d2
S L
[dﬁ+}
d 2 1/ 2
= = (¥'DY) + DL + V|
_ ds
V=V oS (81)

Suppose we find the continuous function, S, which makes
V > 0 for —co < x < o0. Then, after integration, we have

o / ¥ dx|¥)? = -9 D Y,

(e8]

+/°° A[|D Y+ VPR > 0. (82)

o0

Here, we assumed the boundary conditions ¥ — 0 and
d¥/dx — 0 at x > too; that is, the ¥ and d¥/dx have a
compact support, so the first term in Eq. (82) vanishes. The
above inequality implies the positivity of @?; that is, there is
no growing mode for W.

In the present case, an appropriate S-deformation exists

as follows:
d 1
S=——|(In(— 83
i (n(z)) ®)

which is inspired by [17].

A. Effective potential of coexact p-form
If we choose
n—2p

a= 5 (84)

the effective potential of the coexact p-form on the sphere
becomes

n 7\ n dS
Vﬁal - VE,,;,:VE,;,Jrfd—— 2
r
f
:p(f+p)(f+n—p—1). (85)

This modified potential is positive definite outside the event
horizon, because p satisfies p < ppax < 1.

B. Effective potential of coexact (p —1)-form

If we choose

n—2p
2 9

(86)

the effective potential of the coexact (p — 1)-form on the
sphere becomes

Vit = Vi = Vi 7 =S
:§«f+mw+n—p—n—w—mm
Z%((l +p)(l+n-—p—1)—(n—-2p))
zép(n_p+1)>0. (87)

This modified potential is also positive definite outside the
event horizon.

From the above analysis, we see that the p-form fields in
arbitrary dimensions are stable in the spherical black hole
even for other gravity theories as long as f satisfies the
positivity f > 0 outside the horizon r > ry,.

VI. QUASINORMAL MODES

We got the master equations and the effective potentials
for each component of the p-form field. In this section we
present the quasinormal modes for the general form fields.
The quasinormal modes are fundamental vibration modes
around a black hole, and these modes are obtained by
solving the master equation under the appropriate boundary
conditions. The general formalism for calculating quasi-
normal modes by using WKB approximation has been
proposed by Schutz and Will in [20] and subsequently
developed by many people in [21,22,31-35]. Here, we
summarize the main points of the WKB method for
calculating quasinormal modes.

Firstly, we can divide the region into two regions. The
region [ (—oo < x < X)) is the one ranging from the top of
the effective potential x; to the horizon of the black hole.
The region II (x) < x < o0) is the one ranging from the top
of the potential x; to the far outside of the black hole, i.e.,
infinity. The wave traveling to the potential is called the
ingoing wave and the wave traveling from the potential is
called the outgoing wave. In each region, the solutions of
the master equation can be expressed as

\PI — ZimPin + Zi)utlpi)ut’ -
{%:ﬁW+aww )
where W and WU represent the ingoing and outgoing

waves, respectively. The boundary condition for obtaining
quasinormal modes is that there are no ingoing waves:
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Zin = 7zin — 0, (89)

Since there are two conditions, only discrete complex
eigenvalues are allowed.

In the Nth order WKB method, we approximate the
function Q(x) defined by

Q(x) = w? - V(x) (90)

in terms of a 2Nth order Taylor expansion around the
maximum of the potential as follows:

dQ 2N 1
—d)(f) X:XO:QEJ”:o and Q<x>2;mé"><x—xo>"-

(O1)

Expressing the wave function using WKB approximation,
we can calculate the scattering matrix. Thus, we can get the
formula for quasinormal modes as

w =~ V() + 2‘/(02) <nt0ne + 5 + Z Qk) N (92)
k=1

where V= V(x,), and V((]k) is the kth order derivative of
the potential

, (93)
and Q; and Q, are given by
2 o T3
Q, = (-30p1 + 6f,)p —5/31 +§ﬁ2 (94)

Q, = (=28204* + 180042, — 2808, 85 — 682 + 204,)°
+ (—1155p% + 918428, — 1908, 5 — 672 + 2544)B.

(95)
Here, f is defined by
1
ﬂ = None + 5 (96)
and f;(k > 1) is defined by
(k+2) k
V 1 atl
po=o (—2> . (97)
(k+2)! 2y

The higher Q; can be derived explicitly, but the expressions
of Q;(k > 3) are too long to write down them here. So, we
give them in the Appendix. The parameter, 7, is called
the tone number of quasinormal modes. This method is

TABLE I. The QNMs of 2-form field A,.
D 2-form component
6 1.2618 — 0.4616i
7 1.7509 — 0.5920i
8 22231 -0.7192i
9 2.6681 — 0.8555i
10 3.0791 — 1.00801
D 1-form component
6 1.2618 — 0.4616i
7 1.5387 — 0.5652i
8 1.8352 — 0.7345i
9 2.2630 — 0.8521i
10 2.6910 — 0.9444i

often called the Nth order WKB approximation. It is known
that in the case of n,,, < ¢ this approximation is good. So
we focus on the case 7, = 0 in this paper.

Now, we show the quasinormal modes of the p-form
fields up to D = 10 dimensions. In this case, we need to
consider form fields up to p = 4. In this study we used the

sixth order WKB method, so we need the Q,€,, ..., Qs.
We choose a set of parameters,
(. 1y Nione) = (1,1,0). (98)

In Table I, we showed the quasinormal modes (QNMs)
of a 2-form field. As you can see the QNM of the coexact
2-form component and the QNM of the coexact 1-form
component in six dimensions coincide. This comes from
the duality relations (65) and (66). Except for D = 8, the
coexact 2-form component decays faster than the coexact
1-form component. In Table II, we listed the QNMs of a
3-form field. In D = 8 dimensions, we can see that duality
relations hold. In other dimensions, the coexact 2-form
component decays faster than the coexact 3-form compo-
nent. In Table III, we displayed the QNMs of a 4-form field.
In this case, only D = 10 is relevant. Here, we see the
duality relations again. In all cases, we see, as D increases,

TABLE II. The QNMs of 3-form field A3.

D 3-form component
8 2.0779 — 0.6754i
9 2.6018 — 0.7640i
10 3.1539 - 0.8307i
D 2-form component
8 2.0779 — 0.6754i
9 2.3795 — 0.7729i
10 2.6947 - 0.9197
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TABLE III. The QNMs of 4-form field A,.
D 4-form component
10 2.9227 — 0.8595i
D 3-form component
10 2.9227 — 0.8595i

the real and imaginary parts of the quasinormal frequency
increase.

VII. CONCLUSION

We studied the quasinormal modes of p-form fields in
spherical black holes in arbitrary dimensions. Using the
spherical symmetry of the black holes and gauge symmetry,
we showed that the p-form field can be expressed in terms
of the coexact p-form and coexact (p — 1)-form on the
sphere. These variables allow us to find the master
equations. We revealed some relations between the effec-
tive potentials in the master equations. We found that the
effective potential can have a negative region for some
parameters. Therefore, by utilizing the S-deformation
method, we explicitly showed the stability of p-form fields
in the spherical black hole spacetime. Finally, using the
WKB approximation, we calculated the quasinormal

modes of p-form fields in D(< 10) dimensions. There,
|

Q; = (—4630204¢ + 46530081, — 7812083
— 12608, 5 + 150053
+ (41811085 + 479970815,

we can see the degeneracy of the spectrum expected from
the duality relations we found.

It is interesting to include rotations of black holes in our
analysis. Recently, Lunin found the ansatz for the 1-form
field in arbitrary dimensions to get the separable equations
of motion [36]. It is interesting to investigate p-form fields
in higher dimensional rotational black holes. We can also
consider higher spin fields in arbitrary dimensions.
Resolving the above problems must have implications
for string theory. We leave these problems for future work.
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APPENDIX

To perform the sixth order WKB method, we need €23,
Q, and Qs in addition to Q, €,. Here, we display them for
completeness:

— 99780433 + 10860524, + 193205, /33

— 660,44 — 63063 + 7056 *
— 9546035 — 124026232 + 170706254 + 29340, 23

4026 1 605 5

5667
Py +

— A+ P12

315

+ 341443 — 27308, 85 — 17708,8, — 108542 + 2458, ) >
101479 131817 14777
T R T
1155 1539 945 1107
PPs + B3 - ﬂzﬁ4

Q, = (—95872644/8% +
+ 1307376083 5,53 + 54180008353

Tﬂ@ (A1)

1306196644, — 2246731283 — 510678004 82 + 345492048,
— 4939203 5 — 1285200428, —

73248022

— 11407208, 385 — 4275684 + 5947262 B -+ 98T84B, B2 s + 1105440, B3, + 2503228,
+ 493928,% — 55448, 3 — 30248, — 5544855 — 157282 + 2525 ) °

+ (—15460137088 + 231728040458, — 450195608 85 — 1017144604452 + 826926045,
+ 29638800833, + 127827604343 — 1456560/ 5 — 361836028, — 187040025

— 31386000, 8285 — 17833083 + 22372085 + 3612008, -5 + 3541208, 384

+ 118220828, + 150360853 — 281408, 3, — 176408, — 21420855 — 82902 + 18903 )°
129443349 53000175 4785249
(— S P+ 53574549, — 11535783635 — T Bif} + —— — Bibs
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+ 870855083 5,85 + 3909285283 — 48262283 5 — 1246797264 — 63234052

— 11194158,43p; — Tﬂ% + 8875382 + 1494785, 5,35 + 145417, B354 + > N
28077 22029 19277 5607
+ 64T315o53 = = iy = 10521 pofig = == — Psfis ——— i + Tﬂs)ﬁ and (a2)

Qs = (—22598568720410 + 3879735451233 B, — 67494940808] 35 — 2200281283233
+ 10801237443, + 62576841603 3,33 + 4660027680133 — 165561984733 5
— 76679568081 6,, — 413669760813 — 144323424083 4333 — 2918042404353
+ 2316384081 B¢ + 85128960433 285 + 903504005 8354 + 1086792004235,
+ 12632928015, + 641961608, 835 + 140078485 — 291984033 8, — 153177632 B2 3¢
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+ 37502152806, + 2063169360033 5,5 + 1547973840031 33 — 67564728033 5
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— 4302228083585 — 19968240423 — 348079203, 5335 — 6978912083, 3,333,
— 125972008,33 — 75837604338, — 14953960833 + 2324700435 + 36187208, 5,3,
+ 3614520, 8336 + 3353280, 45 + 114212083 ¢ + 28593608, 535 + 10927204,/
+ 1464400834 — 2379308, g — 1470008,35 — 1824908553, — 1353808,
+ —8200542 + 12705p4)5*
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— 3966026425, — 382013108285 — 18168321252 — 330714723, 82Ps
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