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We study the quasinormal modes of p-form fields in spherical black holes in D dimensions. Using the
spherical symmetry of the black holes and gauge symmetry, we show the p-form field can be expressed in
terms of the coexact p-form and the coexact (p − 1)-form on the sphere SD−2. These variables allow us
to find the master equations. By utilizing the S-deformation method, we explicitly show the stability of
p-form fields in the spherical black hole spacetime. Moreover, using the WKB approximation, we calculate
the quasinormal modes of the p-form fields in Dð≤10Þ dimensions.
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I. INTRODUCTION

Black holes in general relativity are important from
various perspectives. In fact, they are sources of gravita-
tional waves, they provide a way to test general relativity
in the strong gravity regime, and they can be a key to
quantum gravity. Before discussing this physics, we have to
show the stability of black holes. In fact, the stability of
black holes is often nontrivial. Historically, the stability of
black holes has been studied since the seminal papers by
Regge and Wheeler [1] and Zerilli [2]; for examples, see
[3–5]. From the point of view of a unified theory such as
string theory, it is natural to consider black holes in higher
dimensions. Indeed, higher-dimensional black holes may
be created at the accelerator such as the LHC [6]. Thus,
the stability analysis is also generalized to higher dimen-
sions [7–10]. In higher dimensions, however, Einstein’s
general relativity is not a unique possibility. Rather,
Lovelock gravity is natural in higher dimensions [11,12].
Therefore, the stability of black holes in Lovelock gravity
has been studied [13–18]. Moreover, in contrast to four-
dimensional general relativity where only scalar, electro-
magnetic and gravitational fields can reside in the black
hole spacetime, there exist p-form fields in higher dimen-
sions. To our best knowledge, no work of p-form fields in
higher dimensional black hole spacetime has been done.
The purpose of this paper is to study the stability of p-form
fields in black hole spacetime and obtain quasinormal
modes of p-form fields.

To study the behavior of various physical fields in
spherical black holes, we must derive the master equations.
For this purpose, we express a p-form field in terms of a
coexact p-form and coexact (p − 1)-form on the sphere and
derive the master equation for each component. If the
effective potential in the master equation is positive outside
the event horizon of black holes, the p-form field is
stable [19]. However, it turns out that the effective potential
for a p-form field has a negative region for some param-
eters. This region may cause the instability of p-form fields
in spherical black holes. Nevertheless, we succeed in prov-
ing the stability of p-form fields using the S-deformation
method [8].
Given the stability, we can calculate the quasinormal

modes of p-form fields in the black hole spacetime. We use
the WKB method [20–22] to calculate the quasinormal
modes of p-form fields in Dð≤10Þ dimensions. Since a
p-form field has two components, there are two quasinor-
mal modes, namely, one for each component. It is shown
that the quasinormal modes of the p-form field in D
dimensions reflect duality relations.
The organization of the paper is as follows. In Sec. II, we

review the properties of p-form fields. In particular, we
count the physical degrees of freedom (d.o.f.) of a p-form
field. In Sec. III, we consider p-form fields in spherical
black holes. We represent a p-form field by coexact form
fields on the sphere. We also discuss spherical harmonics.
In Sec. IV, we obtain the master equations for the p-form
field in spherical black holes in arbitrary dimensions. The
master variables are a coexact p-form and a coexact
(p − 1)-form on the sphere. We check their d.o.f. match
to the physical d.o.f. of a p-form field. We also find useful
duality relations for the effective potentials. It turns out that
the effective potential has a negative region for some cases.
In Sec. V, therefore, we have explicitly verified the stability
of the p-form field using the S-deformation technique.
In Sec. VI, we also investigated the quasinormal modes of
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p-form fields using theWKB approximation. Section VII is
devoted to conclusion.

II. BASICS OF p-FORM FIELDS

In this section, we introduce the action for p-form fields
and explain the gauge invariance in the system. We also
calculate physical d.o.f. of a p-form field. We refer the
reader to the textbook [23] for a more detailed explanation
of the p-forms on manifolds.
The action of the p-form field is given by

S ¼ −
1

2

Z
F ∧ �F

¼ −
1

2ðpþ 1Þ!
Z

dDx
ffiffiffiffiffiffi
−g

p
Fa1���apþ1

Fa1���apþ1 ; ð1Þ

where we used the Hodge operator �. Here, D is the
dimension of the spacetime. We defined the p-form field
Ap as follows:

Ap ≡ 1

p!
Aa1���apdx

a1 ∧ dxa2 ∧ � � � ∧ dxap ð2Þ

and the field strength F is defined by

F≡ dA: ð3Þ

The operator d is the exterior derivative satisfying the
identity

d2 ¼ 0: ð4Þ

Using the Hodge operator, we can define the coderivative
δ as

δ≡ ð−1ÞDðpþ1Þþ1 � d � : ð5Þ

Note that the coderivative also satisfies the identity

δ2 ¼ 0: ð6Þ

The equations of motion for the form field can be
deduced as

dF ¼ 0 and δF ¼ 0: ð7Þ
This system has the symmetry under the dual transformation

F̃ ¼ �F: ð8Þ

Because of this symmetry, we do not need to consider a
p-form field with the rank higher than

pmax ¼
�
D
2

�
− 1 ¼

�
n
2

�
: ð9Þ

Here, ½ � denotes the Gauss symbol. So, we concentrate on
the form fields Apð0 ≤ p ≤ pmaxÞ in arbitrary dimensions.
The p-form field has the invariance under the gauge

transformation

Ap → Ãp ¼ Ap þ dΞp−1 ð10Þ

with an arbitrary (p − 1)-form field Ξp−1. This is because
the field strength is defined by (3). The gauge parameter
Ξp−1 itself has the degeneracy

Ξp−1 → Ξ̃p−1 ¼ Ξp−1 þ dΞp−2 ð11Þ

with an arbitrary (p − 2)-form field Ξp−2. Hence, in order
to count the physical d.o.f. of the p-form field Ap, we need
to take into account these degrees generated by the trans-
formations Ξp−1;Ξp−2; � � �Ξ0. Taking into account that
components A0a2���ap are not dynamical, the formula for
physical d.o.f. is given by

D−1Cp − D−1Cp−1 þ D−1Cp−2 − � � � ¼ D−2Cp: ð12Þ

For example, in D ¼ 4, a 2-form field has one physi-
cal d.o.f.

III. p-FORM FIELDS IN SPHERICAL
BLACK HOLES

In this subsection, we study the decomposition of the
p-form field in black hole spacetime in terms of form fields
on the sphere. Then, we eliminate some components using
gauge transformations. We also discuss eigenvalues of
spherical harmonics for p-forms.
In general relativity, the spherical black hole is known as

the Schwarzschild black hole. It is not difficult to generalize
the Schwarzschild black hole to higher dimensions D > 4,
and the solutions are called a Schwarzschild-Tangherlini
black hole [24] expressed by the metric

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2qABdxAdxB; ð13Þ

where fðrÞ is given by

fðrÞ ¼ 1 −
μ

rn−1
; ð14Þ

and n is defined as n≡D − 2. Here, qAB is the metric of the
sphere Sn and the spherical coordinate is expressed by

xA ¼ ðθ1;…; θnÞ: ð15Þ
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A. Decomposition of a p-form field in terms of
coexact form fields on the sphere

We use the notation Âp to denote a p-form field on the
sphere, that is, Âp is written by

Âp ¼ AA1���Ap
DA1���Ap; ð16Þ

where

DA1���Ap ≡ dxA1 ∧ � � � ∧ dxAp: ð17Þ

We can write down the components of Ap as follows:

Ap ¼
1

ðp−2Þ!AtrA1���Ap−2
dt∧ dr∧DA1���Ap−2

þ 1

ðp−1Þ!AtA1���Ap−1
dt∧DA1���Ap−1

þ 1

ðp−1Þ!ArA1���Ap−1
dr∧DA1���Ap−1 þ 1

p!
AA1���Ap

DA1���Ap:

ð18Þ

If we define the components of Ap as

UA1���Ap−2
≡ AtrA1���Ap−2

; ð19Þ

VA1���Ap−1
≡ AtA1���Ap−1

; ð20Þ

WA1���Ap−1
≡ ArA1���Ap−1

; ð21Þ

XA1���Ap
≡ AA1���Ap

; ð22Þ

then Ap is written by

Ap ¼ dt ∧ dr ∧ Ûp−2 þ dt ∧ V̂p−1 þ dr ∧ Ŵp−1 þ X̂p:

ð23Þ

Thus, the p-form can be expressed by the one (p − 2)-form
Ûp−2, the two (p − 1)-forms V̂p−1 and Ŵp−1 and the one
p-form X̂p. The identity

DCp ¼ D−2Cp−2 þ 2D−2Cp−1 þ D−2Cp ð24Þ

guarantees the matching of d.o.f.
Using the Hodge decomposition on the sphere Sn, a

p-form field Âp can be decomposed as

Âp ¼ d̂Âp−1 þ Âp; for 1 ≤ p < n − 1; ð25Þ

where we have introduced the coexact form δ̂Âp ¼ 0. From
this decomposition theorem on the sphere, we can write

down a more useful expansion. In fact, for p ≥ 2, we can
express Âp by the coexact form

Âp ¼ d̂Âp−1 þ Âp

¼ d̂ðd̂Âp−2 þ Âp−1Þ þ Âp

¼ d̂Âp−1 þ Âp: ð26Þ

This result shows that the general form field on Sn is
expressed by only the coexact form fields. Thus, the
arbitrary p-form field Ap is given by

Ap ¼ dt ∧ dr ∧ Ûp−2 þ dt ∧ V̂p−1 þ dr ∧ Ŵp−1 þ X̂p

¼ dt ∧ dr ∧ ðd̂Ûp−3 þ Ûp−2Þ þ dt ∧ ðd̂V̂p−2 þ V̂p−1Þ
þ dr ∧ ðd̂Ŵp−2 þ Ŵp−1Þ þ ðd̂X̂p−1 þ X̂pÞ: ð27Þ

B. Gauge fixing of p-form field Ap

The p-form field Ap has the gauge invariance under the
transformation by Bp−1, that is,

Ap → Ãp ¼ Ap þ dBp−1: ð28Þ

Now starting from the general expression for Ap in D
dimensions, we can deduce the following result,

Ap ¼ dt ∧ dr ∧ Ûp−2 þ dt ∧ V̂p−1 þ dr ∧ Ŵp−1 þ X̂p;

ð29Þ

by using the gauge transformation for Ap.

C. Spherical harmonics for coexact p-form field

We review the spherical harmonics of the p-form
field following [25]. The Laplace-Beltrami operator is
defined by

Δ̂≡ δ̂ d̂þd̂ δ̂ : ð30Þ

The spherical harmonics of the coexact p-form field Ŷp is
defined by

Ŷp ¼ 1

p!
YA1���Ap

DA1���Ap ð31Þ

which satisfies

δ̂Ŷp ¼ 0 ð32Þ

and

Δ̂Ŷp ¼ λpŶp: ð33Þ
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The last equation becomes

δ̂ d̂ Ŷp ¼ λpŶp ð34Þ

by using the identity (6). Here, λp is given by

λp ≡ ðlþ pÞðlþ n − p − 1Þ; ð35Þ

and l is a positive integer, l ¼ 1; 2;…;∞. On the sphere
Sn, the left-hand side of the equation becomes

δ̂ d̂ Ŷp ¼ 1

p!
ð−ðΔ̃ − pðn − pÞÞYA1���Ap

ÞDA1���Ap: ð36Þ

Here, we defined Δ̃ as

Δ̃YA1���Ap
¼ YA1���Ap

∶A
∶A: ð37Þ

Then, the spectrum of the coefficient of the p-form
harmonics Ŷp is

−ðΔ̃ − pðn − pÞÞYA1���Ap
¼ λpYA1���Ap

: ð38Þ

We rewrite this equation as follows:

Δ̃YA1���Ap
¼ −γðnÞp YA1���Ap

; ð39Þ

where

γðnÞp ≡ λp − pðn − pÞ: ð40Þ

With the harmonics Ŷp, the coefficient of the general

coexact p-form field Âp can be expanded as

AA1���Ap
ðxÞ ¼

X
l;σ

Al;σðt; rÞYl;σ
A1���Ap

ðxAÞ; ð41Þ

where σ denotes other indices to characterize the degen-
eracy. For simplicity, we denote Al;σðt; rÞ just as A.

IV. MASTER EQUATIONS FOR p-FORM FIELD

In this section, we derive the master equations for the
master variable Ψ in the Schrödinger form

−Ψ̈þ ∂2
xΨ − VΨ ¼ 0; ð42Þ

where V is the effective potential and x is the tortoise
coordinate defined by

d
dx

¼ f
d
dr

: ð43Þ

In Eq. (7), the first equation is trivially satisfied from
the identity (4), and the second equation δF ¼ 0 in the
coordinate basis is expressed as follows:

1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
Faa1���apÞ ¼ 0: ð44Þ

This equation can be decomposed into four patterns.
The first pattern we consider is

1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
FatrA1���Ap−2Þ ¼ 0: ð45Þ

Substituting the components into the above equation, we
obtain

−
1

r2ðp−1Þ
ðΔ̃ − ðp − 2Þðn − ðp − 2ÞÞÞUA1���Ap−2 ¼ 0: ð46Þ

This yields

ðlþ p − 2Þðlþ 1þ n − pÞUl;σ ¼ 0: ð47Þ

Since we are considering p ≥ 2, and generally n > p, the
quantity ðlþ p − 2Þðlþ 1þ n − pÞ is always positive.
Hence, the coefficient Ul;σ must vanish for all l, namely,

Ûp−2 ¼ 0: ð48Þ

Thus, the (p − 2)-form Ûp−2 in Eq. (29) is not dynamical.
The second pattern is the following:

1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
FatA1���Ap−1Þ ¼ 0: ð49Þ

It is easy to get

1

rn−2ðp−1Þ
f∂rðrn−2ðp−1Þð _W − V 0ÞÞ

þ 1

r2
ðγðnÞp−1 þ ðp − 1Þðn − pþ 1ÞÞV ¼ 0: ð50Þ

The third pattern is given by

1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
FarA1���Ap−1Þ ¼ 0: ð51Þ

This leads to

Ẅ − _V 0 þ f
r2

ðγðnÞp−1 þ ðp − 1Þðn − pþ 1ÞÞW ¼ 0: ð52Þ

The final pattern

1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
FaA1���ApÞ ¼ 0 ð53Þ

generates two equations for the ðp − 1Þ-form component
VA1���Ap−1 , WA1���Ap−1 and p-form component XA1���Ap as
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_V −
1

rn−2p
f∂rðrn−2pfWÞ ¼ 0 ð54Þ

and

−Ẍ þ 1

rn−2p
f∂rðrn−2pfX 0Þ − f

r2
ðγðnÞp þ pðn − pÞÞX ¼ 0:

ð55Þ

A. Master equations

Now, we can derive the master equations. These general
results reproduce the effective potential in Eqs. (15) and
(16) in [26] and in Eq. (99) in [27] as special cases and
agree with the results in [28,29].

1. Coexact p-form

From Eq. (55), we can read off the master variable for the
p-form component as

Ψp ¼ 1

ra
X and a≡ 2p − n

2
: ð56Þ

Assuming the time dependence of Ψp as

e−iωt;

we obtain the master equation

−∂2
xΨp þ VðnÞ

p;pΨp ¼ ω2Ψp ð57Þ

with the effective potential VðnÞ
p;p:

VðnÞ
p;p ¼ f

r2

�
ðlþ pÞðlþ n − p − 1Þ

þ n − 2p
2

�
rf0 þ n − 2p − 2

2
f

��
: ð58Þ

2. Coexact (p− 1)-form

The (p − 1)-form components are contained in Eqs. (50),
(52) and (54), but the master equation is derived in
Eqs. (52) and (54). Using the master variable Ψp−1 for
the (p − 1)-form

Ψp−1 ≡ f
ra

W and V ¼ r2af∂r

�
f
r2a

Z
Wdt

�
; ð59Þ

we can deduce the master equation as

−∂2
xΨp−1 þ VðnÞ

p;p−1Ψp−1 ¼ ω2Ψp−1: ð60Þ

Here, we assumed the same time dependence as before.

The effective potential VðnÞ
p;p−1 is given by

VðnÞ
p;p−1 ¼

f
r2

�
ðlþ p − 1Þðlþ n − pÞ

þ n − 2p
2

�
n − 2pþ 2

2
f − rf0

��
: ð61Þ

Note that Eq. (50) is trivially satisfied.

B. Degrees of freedom and dual relations

We have shown that the D-dimensional p-form field can
be represented by the coexact p-form and coexact (p − 1)-
form fields. The condition for the coexact form δÂp ¼ 0

can be solved as

Âp ¼ δB̂pþ1: ð62Þ

However, B̂pþ1 has a freedom B̂pþ1 þ δB̂pþ2. This argu-
ment continues up to the maximum value n. Hence, the
d.o.f. of the coexact p-form are given by

nCpþ1 − nCpþ2 þ nCpþ3 þ � � � ¼ nCp − nCp−1 þ nCp−2

þ � � � ¼ n−1Cp: ð63Þ
Similarly, we obtain n−1Cp−1 for the d.o.f. of the coexact
(p − 1)-form. Note that the identity

n−1Cp þ n−1Cp−1 ¼ nCp ð64Þ
exactly coincides with the physical d.o.f. of a p-form field.
The duality plays an important role in form fields.

Indeed, we found the following duality relations:

VðnÞ
n−p;n−p ¼ VðnÞ

p;p−1; ð65Þ

VðnÞ
n−p;n−p−1 ¼ VðnÞ

pþ1;pþ1: ð66Þ

In particular, in even dimensions, we have the degeneracy

VðnÞ
n
2
;n
2
¼ VðnÞ

n
2
;n
2
−1: ð67Þ

Later, we will see this degeneracy in the quasinormal mode
spectrum.

C. Examples of effective potentials

In four dimensions where n ¼ 2, the master equation for
the p ¼ 0-form A0 becomes

Vð2Þ
0;0 ¼

f
r2
ðlðlþ 1Þ þ rf0Þ: ð68Þ

From the master equations of the p ¼ 1-form A1, we see
that the effective potential of the coexact 1-form is

Vð2Þ
1;1 ¼ lðlþ 1Þ f

r2
ð69Þ
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and that of the coexact 0-form reads

Vð2Þ
1;0 ¼ lðlþ 1Þ f

r2
: ð70Þ

The effective potentials for the coexact 1-form and the
coexact 0-form components in A1 are the same. Our results
agree with the expression (99) in [27]. Moreover, since the
coexact 2-forms on the sphere S2 do not exist, the master
equation for the p ¼ 2-form A2 becomes single. The
effective potential of the coexact 1-form component is
given by

Vð2Þ
2;1 ¼

f
r2
ðlðlþ 1Þ þ rf0Þ: ð71Þ

As is expected, this effective potential is the same expres-
sion as that for the 0-form field in Eq. (68). This confirms
that we can consider only the form fields with a rank larger
than pM.
In five dimensions where n ¼ 3, the master equation for

the p ¼ 0-form A0 becomes

Vð3Þ
0;0 ¼

f
r2

�
lðlþ 2Þ þ 3

2

�
rf0 þ f

2

��
: ð72Þ

We can also read off the effective potentials in the master
equations for the 1-form A1. The effective potential of the
coexact 1-form component reads

Vð3Þ
1;1 ¼

f
r2

�
ðlþ 1Þ2 þ 1

2

�
rf0 −

1

2
f

��
ð73Þ

and that of the coexact 0-form component is given by

Vð3Þ
1;0 ¼

f
r2

�
lðlþ 2Þ þ 1

2

�
3

2
f − rf0

��
: ð74Þ

In five dimensions, we need not consider a 2-form field
because of the duality. Here, for the 2-form A2. The
effective potential of the coexact 2-form component is
given by

Vð3Þ
2;2 ¼

f
r2

�
lðlþ 2Þ þ 1

2

�
3

2
f − rf0

��
ð75Þ

and that of the coexact 1-form component becomes

Vð3Þ
2;1 ¼

f
r2

�
ðlþ 1Þ2 þ 1

2

�
rf0 −

1

2
f

��
: ð76Þ

The effective potential (76) is the same as Eq. (73), and the
effective potential (75) is the same as Eq. (74). These
results just reflect the duality relations (65) and (66).
It is also easy to explicitly write down the master

equations for the p-form fields in higher dimensions.

V. STABILITY ANALYSIS

In this section, we show the stability of the p-form field
in arbitrary dimensions. The stability of p-form fields in
black hole spacetime is nontrivial because the effective
potential has a negative region as is shown in Fig. 1. To
show the stability of the fields around the black holes, the
S-deformation method [7–10,30] is useful. Hence, first, we
shortly review the S-deformation method. Secondly, we
show the stability of the effective potential for each
component of the p-form field.
Let us start with the master equation

ω2Ψ ¼ AΨ; ð77Þ

where we defined the operator A as

A≡ −
d2

dx2
Ψþ VΨ; ð78Þ

and we assume the time dependence of Ψ as

Ψ ∝ e−iωt: ð79Þ

If ω2 < 0 for the boundary conditions Ψ → 0 and
dΨ=dx → 0 at x → �∞, this solution is unstable and
exponentially grows. So, if we want to show the stability,
we have to show ω2 > 0. The S-deformation is defined by
using the new operator Dx as follows:

FIG. 1. The effective potentials for the 1-form in 10 dimensions
are plotted. The potential for the coexact 0-form component has a
negative region. Here, we took l ¼ 1 and μ ¼ 1.
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Dx ≡ d
dx

þ SðxÞ: ð80Þ

Then, Eq. (77) is modified as

ω2jΨj2 ¼ Ψ�AΨ

¼ Ψ�
�
−

d2

dx2
þ V

�
Ψ

¼ −
d
dx

ðΨ�DxΨÞ þ jDxΨj2 þ V̄jΨj2;

V̄ ≡ V þ dS
dx

− S2: ð81Þ

Suppose we find the continuous function, S, which makes
V̄ > 0 for −∞ < x < ∞. Then, after integration, we have

ω2

Z
∞

−∞
dxjΨj2 ¼ −½Ψ�DxΨ�∞−∞

þ
Z

∞

−∞
dx½jDxΨj2 þ V̄jΨj2� > 0: ð82Þ

Here, we assumed the boundary conditions Ψ → 0 and
dΨ=dx → 0 at x → �∞; that is, the Ψ and dΨ=dx have a
compact support, so the first term in Eq. (82) vanishes. The
above inequality implies the positivity ofω2; that is, there is
no growing mode for Ψ.
In the present case, an appropriate S-deformation exists

as follows:

S ¼ −
d
dx

�
ln

�
1

rα

��
ð83Þ

which is inspired by [17].

A. Effective potential of coexact p-form

If we choose

α ¼ −
n − 2p

2
; ð84Þ

the effective potential of the coexact p-form on the sphere
becomes

VðnÞ
p;p → V̄ðnÞ

p;p ¼ VðnÞ
p;p þ f

dS
dr

− S2

¼ f
r2

ðlþ pÞðlþ n − p − 1Þ: ð85Þ

This modified potential is positive definite outside the event
horizon, because p satisfies p ≤ pmax < n.

B. Effective potential of coexact (p− 1)-form
If we choose

α ¼ n − 2p
2

; ð86Þ

the effective potential of the coexact (p − 1)-form on the
sphere becomes

VðnÞ
p;p−1 → V̄ðnÞ

p;p−1 ¼ VðnÞ
p;p−1 þ f

dS
dr

− S2

¼ f
r2
ððlþ pÞðlþ n − p − 1Þ − ðn − 2pÞÞ

≥
f
r2
ðð1þ pÞð1þ n − p − 1Þ − ðn − 2pÞÞ

¼ f
r2
pðn − pþ 1Þ > 0: ð87Þ

This modified potential is also positive definite outside the
event horizon.
From the above analysis, we see that the p-form fields in

arbitrary dimensions are stable in the spherical black hole
even for other gravity theories as long as f satisfies the
positivity f > 0 outside the horizon r > rh.

VI. QUASINORMAL MODES

We got the master equations and the effective potentials
for each component of the p-form field. In this section we
present the quasinormal modes for the general form fields.
The quasinormal modes are fundamental vibration modes
around a black hole, and these modes are obtained by
solving the master equation under the appropriate boundary
conditions. The general formalism for calculating quasi-
normal modes by using WKB approximation has been
proposed by Schutz and Will in [20] and subsequently
developed by many people in [21,22,31–35]. Here, we
summarize the main points of the WKB method for
calculating quasinormal modes.
Firstly, we can divide the region into two regions. The

region I (−∞ < x < x0) is the one ranging from the top of
the effective potential x0 to the horizon of the black hole.
The region II (x0 < x < ∞) is the one ranging from the top
of the potential x0 to the far outside of the black hole, i.e.,
infinity. The wave traveling to the potential is called the
ingoing wave and the wave traveling from the potential is
called the outgoing wave. In each region, the solutions of
the master equation can be expressed as

�ΨI ¼ Zin
I Ψin

I þ Zout
I Ψout

I ;

ΨII ¼ Zin
IIΨin

II þ Zout
II Ψout

II ;
ð88Þ

where Ψin and Ψout represent the ingoing and outgoing
waves, respectively. The boundary condition for obtaining
quasinormal modes is that there are no ingoing waves:
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Zin
I ¼ Zin

II ¼ 0: ð89Þ

Since there are two conditions, only discrete complex
eigenvalues are allowed.
In the Nth order WKB method, we approximate the

function QðxÞ defined by

QðxÞ≡ ω2 − VðxÞ ð90Þ

in terms of a 2Nth order Taylor expansion around the
maximum of the potential as follows:

dQðxÞ
dx

����
x¼x0

¼Qð1Þ
0 ¼ 0 and QðxÞ≃

X2N
k¼0

1

k!
QðkÞ

0 ðx− x0Þk:

ð91Þ

Expressing the wave function using WKB approximation,
we can calculate the scattering matrix. Thus, we can get the
formula for quasinormal modes as

ω ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 þ

ffiffiffiffiffiffiffiffiffiffiffi
2Vð2Þ

0

q �
ntone þ

1

2
þ
XN−1

k¼1

Ωk

�vuut ; ð92Þ

where V0 ≡ Vðx0Þ, and VðkÞ
0 is the kth order derivative of

the potential

VðkÞ
0 ≡ dkVðxÞ

dxk

����
x¼x0

; ð93Þ

and Ω1 and Ω2 are given by

Ω1 ¼ ð−30β21 þ 6β2Þβ2 −
7

2
β21 þ

3

2
β2 ð94Þ

Ω2 ¼ ð−2820β41 þ 1800β21β2 − 280β1β3 − 68β22 þ 20β4Þβ3
þ ð−1155β41 þ 918β21β2 − 190β1β3 − 67β22 þ 25β4Þβ:

ð95Þ

Here, β is defined by

β≡ ntone þ
1

2
ð96Þ

and βkðk ≥ 1Þ is defined by

βk ≡ Vðkþ2Þ
0

ðkþ 2Þ!
�

1

2Vð2Þ
0

�k
4
þ1

: ð97Þ

The higherΩk can be derived explicitly, but the expressions
of Ωkðk ≥ 3Þ are too long to write down them here. So, we
give them in the Appendix. The parameter, ntone, is called
the tone number of quasinormal modes. This method is

often called theNth order WKB approximation. It is known
that in the case of ntone < l this approximation is good. So
we focus on the case ntone ¼ 0 in this paper.
Now, we show the quasinormal modes of the p-form

fields up to D ¼ 10 dimensions. In this case, we need to
consider form fields up to p ¼ 4. In this study we used the
sixth order WKB method, so we need the Ω1;Ω2;…;Ω5.
We choose a set of parameters,

ðl; μ; ntoneÞ ¼ ð1; 1; 0Þ: ð98Þ

In Table I, we showed the quasinormal modes (QNMs)
of a 2-form field. As you can see the QNM of the coexact
2-form component and the QNM of the coexact 1-form
component in six dimensions coincide. This comes from
the duality relations (65) and (66). Except for D ¼ 8, the
coexact 2-form component decays faster than the coexact
1-form component. In Table II, we listed the QNMs of a
3-form field. In D ¼ 8 dimensions, we can see that duality
relations hold. In other dimensions, the coexact 2-form
component decays faster than the coexact 3-form compo-
nent. In Table III, we displayed the QNMs of a 4-form field.
In this case, only D ¼ 10 is relevant. Here, we see the
duality relations again. In all cases, we see, as D increases,

TABLE II. The QNMs of 3-form field A3.

D 3-form component

8 2.0779 − 0.6754i
9 2.6018 − 0.7640i
10 3.1539 − 0.8307i

D 2-form component

8 2.0779 − 0.6754i
9 2.3795 − 0.7729i
10 2.6947 − 0.9197

TABLE I. The QNMs of 2-form field A2.

D 2-form component

6 1.2618 − 0.4616i
7 1.7509 − 0.5920i
8 2.2231 − 0.7192i
9 2.6681 − 0.8555i
10 3.0791 − 1.0080i

D 1-form component

6 1.2618 − 0.4616i
7 1.5387 − 0.5652i
8 1.8352 − 0.7345i
9 2.2630 − 0.8521i
10 2.6910 − 0.9444i
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the real and imaginary parts of the quasinormal frequency
increase.

VII. CONCLUSION

We studied the quasinormal modes of p-form fields in
spherical black holes in arbitrary dimensions. Using the
spherical symmetry of the black holes and gauge symmetry,
we showed that the p-form field can be expressed in terms
of the coexact p-form and coexact (p − 1)-form on the
sphere. These variables allow us to find the master
equations. We revealed some relations between the effec-
tive potentials in the master equations. We found that the
effective potential can have a negative region for some
parameters. Therefore, by utilizing the S-deformation
method, we explicitly showed the stability of p-form fields
in the spherical black hole spacetime. Finally, using the
WKB approximation, we calculated the quasinormal
modes of p-form fields in Dð≤ 10Þ dimensions. There,

we can see the degeneracy of the spectrum expected from
the duality relations we found.
It is interesting to include rotations of black holes in our

analysis. Recently, Lunin found the ansatz for the 1-form
field in arbitrary dimensions to get the separable equations
of motion [36]. It is interesting to investigate p-form fields
in higher dimensional rotational black holes. We can also
consider higher spin fields in arbitrary dimensions.
Resolving the above problems must have implications
for string theory. We leave these problems for future work.
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APPENDIX

To perform the sixth order WKB method, we need Ω3,
Ω4 and Ω5 in addition to Ω1, Ω2. Here, we display them for
completeness:

Ω3 ¼ ð−463020β61 þ 465300β41β2 − 78120β31β3 − 99780β21β
2
2 þ 10860β21β4 þ 19320β1β2β3

− 1260β1β5 þ 1500β32 − 660β2β4 − 630β23 þ 70β6Þβ4
þ ð−418110β61 þ 479970β41β2 − 95460β31β3 − 124026β21β

2
2 þ 17070β21β4 þ 29340β1β2β3

þ 3414β32 − 2730β1β5 − 1770β2β4 − 1085β23 þ 245β6Þβ2

−
101479

4
β61 þ

131817

4
β41β2 −

14777

2
β31β3 −

40261

4
β21β

2
2 þ

6055

4
β21β4 þ

5667

2
β1β2β3

−
1155

4
β1β5 þ

1539

4
β32 −

945

4
β2β4 −

1107

8
β23 þ

315

8
β6; ðA1Þ

Ω4 ¼ ð−95872644β81 þ 130619664β61β2 − 22467312β51β3 − 51067800β41β
2
2 þ 3454920β41β4

þ 13073760β31β2β3 þ 5418000β21β
3
2 − 493920β31β5 − 1285200β21β2β4 − 732480β21β

2
3

− 1140720β1β
2
2β3 − 42756β42 þ 59472β21β6 þ 98784β1β2β5 þ 110544β1β3β4 þ 25032β22β4

þ 49392β2β
2
3 − 5544β1β7 − 3024β2β6 − 5544β3β5 − 1572β24 þ 252β8Þβ5

þ ð−154601370β81 þ 231728040β61β2 − 45019560β51β3 − 101714460β41β
2
2 þ 8269260β41β4

þ 29638800β31β2β3 þ 12782760β21β
3
2 − 1456560β31β5 − 3618360β21β2β4 − 1870400β21β

2
3

− 3138600β1β
2
2β3 − 178330β42 þ 223720β21β6 þ 361200β1β2β5 þ 354120β1β3β4

þ 118220β22β4 þ 150360β2β
2
3 − 28140β1β7 − 17640β2β6 − 21420β3β5 − 8290β24 þ 1890β8Þβ3

þ
�
−
129443349

4
β81 þ 53574549β61β2 − 11535783β51β3 −

53000175

2
β41β

2
2 þ

4785249

2
β41β4

TABLE III. The QNMs of 4-form field A4.

D 4-form component

10 2.9227 − 0.8595i

D 3-form component

10 2.9227 − 0.8595i
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þ 8708550β31β2β3 þ 3909285β21β
3
2 − 482622β31β5 − 1246797β21β2β4 − 632340β21β

2
3

− 1119415β1β
2
2β3 −

305141

4
β42 þ 88753β21β6 þ 149478β1β2β5 þ 145417β1β3β4 þ

117281

2
β22β4

þ 64731β2β
2
3 −

28077

2
β1β7 − 10521β2β6 −

22029

2
β3β5 −

19277

4
β24 þ

5607

4
β8

�
β and ðA2Þ

Ω5 ¼ ð−22598568720β101 þ 38797354512β81β2 − 6749494080β71β3 − 22002812832β61β
2
2

þ 1080123744β61β4 þ 6257684160β51β2β3 þ 4660027680β41β
3
2 − 165561984β51β5

− 766795680β41β2β4 − 413669760β41β
2
3 − 1443234240β31β

2
2β3 − 291804240β21β

4
2

þ 23163840β41β6 þ 85128960β31β2β5 þ 90350400β31β3β4 þ 108679200β21β
2
2β4

þ 126329280β21β2β
2
3 þ 64196160β1β

3
2β3 þ 1400784β52 − 2919840β31β7 − 7531776β21β2β6

− 8618400β21β3β5 − 3939600β21β
2
4 − 6233472β1β

2
2β5 − 13981632β1β2β3β4 − 2849280β1β

3
3

− 1023456β32β4 − 3116736β22β
2
3 þ 307440β21β8 þ 487872β1β2β7 þ 583520β1β3β6

þ 544320β1β4β5 þ 129472β22β6 þ 487872β2β3β5 þ 134736β2β
2
4 þ 272160β23β4

− 24024β1β9 − 13440β2β8 − 24024β3β7 − 14224β4β6 − 12012β25 þ 924β10Þβ6
þ ð−57626387280β101 þ 106553134800β81β2 − 20386144800β71β3 − 65772661920β61β

2
2

þ 3750215280β61β4 þ 20631693600β51β2β3 þ 15479738400β41β
3
2 − 675647280β51β5

− 2947719600β41β2β4 − 1496632200β41β
2
3 − 5324508000β31β

2
2β3 − 1135963920β21β

4
2

þ 113720040β41β6 þ 390240480β31β2β5 þ 381413280β31β3β4 þ 487029840β21β
2
2β4

þ 513631440β21β2β
2
3 þ 283029600β1β

3
2β3 þ 9396240β52 − 17603880β31β7 − 42912240β21β2β6

− 43022280β21β3β5 − 19968240β21β
2
4 − 34807920β1β

2
2β5 − 69789120β1β2β3β4

− 12597200β1β
3
3 − 7583760β32β4 − 14953960β22β

2
3 þ 2324700β21β8 þ 3618720β1β2β7

þ 3614520β1β3β6 þ 3353280β1β4β5 þ 1142120β22β6 þ 2859360β2β3β5 þ 1092720β2β
2
4

þ 1464400β23β4 − 237930β1β9 − 147000β2β8 − 182490β3β7 − 135380β4β6

þ −82005β25 þ 12705β10Þβ4

þ
�
−26541790065β101 þ 53237904993β81β2 − 11123381220β71β3 − 36045764154β61β

2
2

þ 2279955006β61β4 þ 12440307420β51β2β3 þ 9481289682β41β
3
2 − 461383776β51β5

− 2012614434β41β2β4 − 999867660β41β
2
3 − 3630132780β31β

2
2β3 − 809619141β21β

4
2

þ 89013120β41β6 þ 304548384β31β2β5 þ 292426020β31β3β4 þ 388974714β21β
2
2β4

þ 392853060β21β2β
2
3 þ 230221620β1β

3
2β3 þ 9317949β52 − 16119726β31β7

− 39660264β21β2β6 − 38201310β21β3β5 − 18168321β21β
2
4 − 33071472β1β

2
2β5

− 63944892β1β2β3β4 − 10841880β1β
3
3 − 8518614β32β4 − 14034096β22β

2
3 þ 2582685β21β8

þ 4096764β1β2β7 þ 3870930β1β3β6 þ 3671892β1β4β5 þ 1518048β22β6 þ 3168732β2β3β5

þ 1390869β2β
2
4 þ 1530210β23β4 −

671517

2
β1β9 − 236460β2β8 −

476973

2
β3β7

þ −204771β4β6 −
444381

4
β25 þ

101409

4
β10

�
β2

−
2375536317

2
β101 þ 5112354429

2
β81β2 − 570170440β71β3 − 1875235809β61β

2
2
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þ 125451228β61β4 þ 697320300β51β2β3 þ 542138237β41β
3
2 − 27429003β51β5

− 122723430β41β2β4 −
121918445

2
β41β

2
3 − 226646440β31β

2
2β3 −

104283313

2
β21β

4
2

þ 11623829

2
β41β6 þ 20366894β31β2β5 þ 19607424β31β3β4 þ 27070372β21β

2
2β4

þ 27194427β21β2β
2
3 þ 16533060β1β

3
2β3 þ

1456569

2
β52 −

2336663

2
β31β7 − 2995587β21β2β6

−
5703723

2
β21β3β5 −

2729425β21β
2
4

2
− 2594391β1β

2
2β5 − 5045766β1β2β3β4 − 854685β1β

3
3

− 735210β32β4 −
2301381

2
β22β

2
3 þ

848925

4
β21β8 þ 358344β1β2β7 þ

674037

2
β1β3β6

þ 315150β1β4β5 þ
292005

2
β22β6 þ 289908β2β3β5 þ

269325

2
β2β

2
4 þ 143370β23β4

−
259875

8
β1β9 −

51975

2
β2β8 −

203931

8
β3β7 −

89775

4
β4β6 −

180675

16
β25 þ

51975

16
β10: ðA3Þ
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