
 

Does nonlocal gravity yield divergent gravitational
energy-momentum fluxes?

Yi-Zen Chu1,2,* and Sohyun Park3,†
1Department of Physics, National Central University, Chungli 32001, Taiwan

2Center for High Energy and High Field Physics (CHiP), National Central University,
Chungli 32001, Taiwan

3CEICO, Institute of Physics of the Czech Academy of Sciences,
Na Slovance 2, 18221 Prague 8 Czech Republic

(Received 26 November 2018; published 26 February 2019)

Energy-momentum conservation requires the associated gravitational fluxes on an asymptotically flat
spacetime to scale as 1=r2, as r → ∞, where r is the distance between the observer and the source of the
gravitational waves. We expand the equations of motion for the Deser-Woodard nonlocal gravity model up
to quadratic order in metric perturbations, to compute its gravitational energy-momentum flux due to an
isolated system. The contributions from the nonlocal sector contains 1=r terms proportional to the
acceleration of the Newtonian energy of the system, indicating such nonlocal gravity models may not yield
well-defined energy fluxes at infinity. In the case of the Deser-Woodard model, this divergent flux can be
avoided by requiring the first and second derivatives of the nonlocal distortion function f½X� at X ¼ 0 to be
zero, i.e., f0½0� ¼ 0 ¼ f00½0�. It would be interesting to investigate whether other classes of nonlocal models
not involving such an arbitrary function can avoid divergent fluxes.
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I. INTRODUCTION

More than one hundred years since its formulation,
Einstein’s general relativity (GR) is still regarded as the best
theory of gravity. GR is based on profound theoretical
guidelines such as the equivalence principles and is sup-
ported by a number of experimental tests ranging from
millimeter scale in the laboratory to solar system scales [1].
On larger scales, however, GR requires a hypothetical “dark”
substance, the so-called dark energy, to explain the observed
acceleration of the Universe [2–9]. A cosmological constant,
the simplest form of dark energy, can derive cosmic accel-
eration.However, it is not understoodwhy the energy density
of the cosmological constant is orders of magnitude smaller
compared to the expectation from quantum field theory and
why it has a value such that it has become dominant only so
recently in cosmic history. These are, respectively, the fine-
tuning and coincidence problems of the cosmological con-
stant [10–13]. Dynamical scalar field models of dark energy
also suffer huge fine-tuning problems [14]. This has moti-
vated the development of modifications of gravity on
cosmological scales in order to generate cosmic acceleration
without postulating dark energy [15–18].
When it comes to modifying gravity, we note a theorem

that states, “The only local, metric-based, generally coor-
dinate invariant and potentially stable class of models are

f½R� models in which the Ricci scalar is replaced by some
nonlinear function of the Ricci scalar” [19]. The data sets
suggest that the expansion history is very close to that of the
ΛCDM model [20,21]. However, the only choice of f½R�
that can reproduce the ΛCDM expansion history is f½R� ¼
Rþ 2Λ [22]. The three remaining options are adding fields
other than the metric to carry part of the gravitational force;
breaking general coordinate invariance; and abandoning
locality. In this paper, we shall focus on the third option
of nonlocal modifications of gravity. This has been less
studied compared to the first and second options, so it needs
more work [15–18].
The justification for nonlocality comes fromquantum field

theory, in which nonlocality inevitably arises as quantum
loop corrections of massless particles; see, for example [23].
It has been suggested that a nonlocal quantum effective
action might derive from fundamental theory through the
gravitational vacuum polarization of infrared gravitons
vastly produced during primordial inflation [24,25].
However, since no such derivation is currently available,
one may take a phenomenological approach, that is to guess
what form of nonlocal actions would do the job of generating
an accelerated expansion without dark energy [26–31].
One should also ensure any modification must be in a

way that does not violate the successes of GR in the solar
system regime. Furthermore, any gravity theory describing
the Universe, which has lasted 13.8 billion years, must
yield stable solutions.
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To be specific, we consider a metric-based, coordinate
invariant, nonlocal model proposed by Deser and Woodard
(DW) [26], in which the Hilbert Lagrangian is multiplied
by an algebraic function of the inverse scalar d’Alembertian
acting on the Ricci scalar,

SDW ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ Rf

�
1

□
R

��
: ð1Þ

The invariant action guarantees the conservation of field
equations obtained from its variation, whether it is local or
nonlocal [24]. The nonlocal scalar □−1R is defined with
retarded boundary conditions, which ensures causality
[24,26]. Moreover, the nonlocal scalar □

−1R possesses
the desired feature ofmimicking the behavior of dark energy.
It naturally delays the onset of cosmic acceleration to late
times because □−1R grows very slowly: R ¼ 0 in a perfect
radiation domination, so it stays almost zero until the matter-
radiation equality and grows logarithmically in the matter-
dominated era. Further, the function f½X� can be chosen for
negative X ≡□

−1R to reproduce the ΛCDM expansion
history [32–34], however no huge tuning is required thanks
to the delay of□−1R. Perturbations around the cosmological
background have beenworked out [35–37] and the resultwas
a suppressed growth, which is in better agreement with the
data than the ΛCDM model [38,39].
The nonlocal action (1) can be re-cast in a localized form

by introducing two auxiliary scalar fields [40–49]. One of the
two scalar degrees of freedom turns out to be a ghost field;
hence, the localized version suffers from a kinetic energy
instability. However, the original nonlocal model (1) is a
constrained version of its localized cousin in which the
auxiliary scalars and their first derivatives vanish on the
initial value surface [50,51], so it can avoid the kinetic
instability. In fact, it has been explicitly checked that the
evolution of permitted perturbations does not lead to explo-
sive excitation of the ghost mode in the original nonlocal
model (1) but it does so in the localized version [51].
The solar system tests on the DW model (1) have been

first studied in [43], where Koivisto has shown that the
constraint from the Cassini spacecraft [52] only fixes the
first derivative of the nonlocal function f½X� at X ¼ 0 to lie
within the range

−5.8 × 10−6 < f0½0� < 5.7 × 10−6 ð2Þ
and fixes none of the higher derivatives [43]. Note that, in
his analysis, the nonlocal function was expanded around
the Minkowski background, in which X ¼ □

−1R ¼ 0. This
bound is easily satisfied by the nonlocal function found to
reproduce the ΛCDM expansion history, f0ΛCDM½0� ∼ 10−24

[32]. Deser and Woodard pointed out that a perfect
screening can be made inside the solar system: The key
point is that the scalar d’Alembertian □ has different signs
when acting on functions of time than on functions of
space. As a result, X ¼ □

−1R < 0 for cosmological scales

and X ¼ □
−1R > 0 for gravitationally bound systems.

Since the reproduction of the ΛCDM expansion history
fixes the function f½X� for X < 0 and f½0� ¼ 0 [32],
defining f½X� ¼ 0 for all X > 0 can completely eliminate
any corrections inside gravitationally bound systems [50].
This choice amounts to setting to zero f½0� as well as all its
derivatives fðn≥1Þ½0�.
In the present paper, on the other hand,we do not apply this

f½X ≥ 0� ¼ 0 assumption. Instead, we wish to constrain the
nonlocal function f in a more direct way by answering the
question: “What is the gravitational energy-momentum
generated by isolated astrophysical sources in asymptotically
flat spacetimes?” In GR, the quadrupole radiation formula
and its implications for the dynamics of compact binary
systems have been well tested since the discovery of the
Hulse-Taylor binary pulsar [53]. (See [54] for a recent
review.) At this point, any modifications of gravity must,
therefore, pass this consistency test at the subpercent level.
What we uncover instead is that, once f0½0� ≠ 0 and
f00½0� ≠ 0, the total energy-momentum of gravitational waves
within the Deser-Woodard model likely diverges at infinity.
The rest of this paper is organized as follows. In Sec. II,

we lay out the setup, including the field equations and
definitions we will use throughout the paper. Section III is
the heart of our paper. We first expand the field equations
around the flat spacetime background to linear order in
metric perturbations and study gravitational polarizations
and the nonrelativistic/static limit. We then further
expand up to quadratic order in metric perturbations and
compute the gravitational energy-momentum flux due
to an isolated system. Our discussions comprise Sec. IV.
In the Appendixes A and B, we describe, respectively, the
expansion of various nonlocal terms occurring within the
Deser-Woodard equations of motion and the solution of the
de Donder gauge retarded Green’s function of its linearized
metric perturbation.

II. SETUP: DESER-WOODARD (DW) MODEL

We start from the causal and conserved nonlocal field
equations of the DW model derived in [26]

Gμν þ ΔGμν ¼ 8πGNTμν; ð3Þ
where the nonlocal modifications ΔGμν to the Einstein
tensor Gμν are

ΔGμν ¼ ΔAGμν þ ΔBGμν; ð4Þ
with

ΔAGμν ≡ ðGμν þ gμν□ −∇μ∇νÞ

×

�
f

�
1

□
R

�
þ 1

□

�
Rf0

�
1

□
R

���
; ð5Þ

ΔBGμν ≡
�
1

2
δfαμ δβgν −

1

2
gμνgαβ

�
∂α

�
1

□
R

�

× ∂β

�
1

□

�
Rf0

�
1

□
R

���
: ð6Þ
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Here, the symmetrization symbol means AfαBβg ≡ AαBβ þ
AβBα.On the right-hand side ofEq. (3),wewill letTμν denote
the stress tensor of some astrophysical source of gravitational
waves, such as the binary systems detected byLIGO/Virgo to
date. We shall assume the spacetime metric is given by the
following deviation from the Minkowski one:

gμν ¼ ημν þ hμν: ð7Þ
We will work with the metric signature ðþ;−;−;−Þ. In the
following, we will primarily use the “trace-reversed” per-
turbation variable

h̄μν ≡ hμν −
1

2
ημνh̄; h̄≡ ησρh̄σρ: ð8Þ

It is not expected that an exact solution can beobtained, so the
strategy is to employ perturbation theory. To this end, we lay
out in the Appendix A, the results of expanding in power
series of h̄μν the nonlocal terms—those involving □

−1—in
Eq. (3). We now proceed to massage Eq. (3) into a power
series in the perturbation h̄μν (or, equivalently, in hμν). If
δnð…Þ represents the piece of ð…Þ containing precisely n
powers of the metric perturbation, then Eq. (3) can be
rearranged as

δ1Gμν þ δ1ΔGμν ¼ 8πGNτμν; ð9Þ

τμν≡
X∞
l¼0

δlTμν− ð8πGNÞ−1
X∞
l¼2

fδlGμνþδlΔGμνg: ð10Þ

The results from the Appendix A tell us that the linear-in-h
terms on the left-hand side of Eq. (9) are

δ1Gμν þ δ1ΔGμν ¼ ð1þ f̄Þδ1Gμν þ 2f̄0ðημν∂2 − ∂μ∂νÞ

×
Z

Ḡþ½x − x0�δ1R½x0�d4x0; ð11Þ

where f̄ ≡ f½0�, f̄0 ≡ f0½0� and the first-order Einstein tensor
and Ricci scalar are, respectively,

δ1Gμν ¼ −
1

2
ð∂2h̄μν − ∂fμ∂σh̄νgσ þ ημν∂σ∂ρh̄σρÞ; ð12Þ

δ1R ¼ ∂σ∂ρh̄σρ þ
1

2
∂2h̄; ð13Þ

and the retarded Green’s function of the wave operator
∂2 ≡ ηαβ∂α∂β, obeying

∂2Ḡþ½x� ¼ δð4Þ½x�; ð14Þ
is given by the following expression involving theDirac delta
function:

Ḡþ½x� ¼ δ½t − jx⃗j�
4πjx⃗j : ð15Þ

A. Conservation

The key observation we wish to make is that, via a direct
calculation using Eqs. (11) and (12), one can readily verify
the left-hand side of Eq. (9) is conserved with respect to the
background flat metric:

∂μðδ1Gμν þ δ1ΔGμνÞ ¼ 0: ð16Þ

In fact, the two terms are separately conserved. In the far
zone, where the observer is located and the astrophysical
stress tensor is zero, this allows us to interpret the
gravitational terms quadratic and higher in perturbations
on the right-hand side of Eq. (9) to be associated with
gravitational stress-energy-momentum—as in Sec. 7.6 of
Weinberg [55]. As r → ∞, we expect jh̄μνj ≪ 1 and the
quadratic terms should be the dominant ones in this limit.
Hence, we shall identify the far zone gravitational stress-
energy tensor as the quadratic terms:

tμν ≡ −
δ2Gμν þ δ2ΔGμν

8πGN
: ð17Þ

III. DW MODEL: PERTURBATIVE ANALYSIS

In this section, we will solve for Eq. (17) engendered by
an isolated astrophysical system via perturbation theory.
The usual strategy is to first obtain the solutions to the
linearized form of Eq. (9); the second-order solutions may
then be obtained via iteration, etc. However, to leading
order in GN, we only need to insert the linearized solutions
into Eq. (17) to obtain the leading-order O½GN� contribu-
tions to GW stress energy flux since higher-order solutions
necessarily yield higher powers of GN in tμν.
To obtain the linearized solutions to Eq. (9), we choose

the de Donder gauge

∂μh̄μν ¼ 0: ð18Þ
This simplifies the linearized Einstein tensor and Ricci
scalar in Eqs. (12) and (13) to

δ1Gμν ¼ −
1

2
∂2h̄μν and δ1R ¼ 1

2
∂2h̄: ð19Þ

Furthermore, Eqs. (14) and (19) now inform us

Z
d4x0Ḡþ½x − x0�δ1R½x0� ¼

1

2
h̄½x�; ð20Þ

where we have assumed the wave operator may be
integrated-by-parts to act on the Green’s function.
Altogether, Eqs. (19) and (20) applied to Eq. (9) hands us

−
1

2
ð1þ f̄Þ∂2h̄μν þ f̄0ðημν∂2 − ∂μ∂νÞh̄ ¼ 8πGNτμν: ð21Þ
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A. Linearized solutions, gravitational polarizations, static limit

In the Appendix B, we evaluate the Green’s function of the wave operator on the left-hand side of Eq. (21). We find that

h̄μν½x� ¼ −8πGN

Z
d4x0

�
2

1þ f̄
Ḡþ½x − x0�τμν½x0� þ

4f̄0

ð1þ f̄Þð1þ f̄ − 6f̄0ÞDWμν½x − x0�τ½x0�
�
; ð22Þ

τ≡ ηαβταβ ð23Þ
where, for the reader’s convenience, we collect the results from Eq. (15) and the Appendix B:

Ḡþ½x − x0� ¼ δ½T − R�
4πR

; ð24Þ

DWμν½x − x0� ¼ ημν
δ½T − R�
8πR

þ ðx − x0Þμðx − x0Þν
R

∂
∂R

δ½T − R�
8πR

ð25Þ

¼ ημν
δ½T − R�
8πR

−
ðx − x0Þμðx − x0Þν

8πR2

�
δ0½T − R� þ δ½T − R�

R

�
; ð26Þ

T ≡ t − t0; R≡ jx⃗ − x⃗0j: ð27Þ
More explicitly, we have

h̄00
8πGN

¼ −
2

1þ f̄

Z
d4x0

δ½T − R�
4πR

τ00½x0� þ
4f̄0

ð1þ f̄Þð1þ f̄ − 6f̄0Þ
Z

d4x0
δ½T − R�

8π

�
_τ½x0� − 2

τ½x0�
R

�
; ð28Þ

h̄0i
8πGN

¼ −
2

1þ f̄

Z
d4x0

δ½T − R�
4πR

τ0i½x0� þ
4f̄0

ð1þ f̄Þð1þ f̄ − 6f̄0Þ
Z

d4x0δ½T − R�
�

Ri

8πR
_τ½x0�

�
; ð29Þ

h̄ij
8πGN

¼−
2

1þ f̄

Z
d4x0

δ½T−R�
4πR

τij½x0�−
4f̄0

ð1þ f̄Þð1þ f̄−6f̄0Þ
Z

d4x0
δ½T−R�

8π

�
−δij

τ½x0�
R

−
RiRj

R2

�
_τ½x0�þ τ½x0�

R

��
: ð30Þ

1. GW polarizations

We will employ the de Donder gauge solutions in
Eqs. (28), (29), and (30) to understand the GW polari-
zations of the DW model. First, the gauge-invariant 0i0j
components of the linearized Riemann tensor in the de
Donder gauge of Eq. (18) are

δ1R0i0j ¼
1

2

�
∂l∂fih̄jgl−∂2

0

�
h̄ij−

1

2
δijh̄ll

�
−
1

2
δij∂l∂mh̄lm

−
1

2
∂i∂jh̄ll−

1

2
∂i∂jh̄00

�
: ð31Þ

On the other hand, if one chooses instead the synchronous
gauge, where all perturbations occur within the spatial
metric,

ds2 ¼ ημνdxμdxν þ hðsÞij dx
idxj; ð32Þ

the linearized Riemann components would read instead

δ1R0i0j ¼ −
1

2
ḧðsÞij : ð33Þ

Since GWs are detected in the far zone r → ∞ limit, we shall
examine the linearized h̄ solutions in this limit. Now, all of
them in Eqs. (28), (29) and (30) take the form

h̄μν ∼
Z

d4x0δ½T − R�Q αβ
μν ταβ; ð34Þ

where Qμν
αβ could potentially involve Ri=R or powers of

1=R. If we agree to put the center of the spatial coordinate
system within the astrophysical system, then in the far
zone R ¼ r − x⃗0 · r̂þOðr · ðjx⃗0j=rÞ2Þ, where r≡ jx⃗j and
r̂≡ x⃗=r. Since r−1, R−1 → 0 in the far zone, more spatial
derivatives acting on the Qμν

αβ would produce faster decay
in the far zone. Therefore, to leading order, each spatial
derivative acting on h̄μν acts on the δ-function, which in turn
produces

∂iδ½T − R� ¼ −
Ri

R
∂tδ½T − R�: ð35Þ

But in the far zone, the Ri=R → r̂i. Hence, the far zone
replacement rule can be summarized as

∂ih̄μν → −r̂i∂0h̄μν; r̂i ¼ xi

r
: ð36Þ
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Moreover, ∂ir̂j would also yield more powers of 1=r; hence,
to leading order and using the de Donder gauge condition,
∂i∂jh̄00 → r̂ir̂j∂2

0h̄00 ¼ r̂ir̂j∂l∂mh̄lm → r̂ir̂jr̂lr̂m∂2
0h̄lm.

Altogether, wegather the far zone deDonder gauge linearized
Riemann is

δ1R0i0j → −
1

2
ḧttij; ð37Þ

where the transverse-traceless gravitational perturbation is

httij ¼
�
PiaPjb −

1

2
PijPab

�
h̄ab; ð38Þ

Pab ≡ δab − r̂ar̂b: ð39Þ
As the name suggests, the GW is traceless and transverse to
the direction of GW propagation:

δijhttij ¼ 0; r̂ihttij ¼ 0: ð40Þ
As already alluded to, the linearized Riemann is gauge
invariant. Hence, we may set Eqs. (33) and (37) equal in
the far zone, and—by integrating them twice with respect to
time—obtain (up to initial conditions) the equality of the
synchronous gauge and the transverse-traceless GW:

hðsÞij ¼ httij þ…: ð41Þ
Because the synchronous gauge has purely spatial perturba-
tions, we may interpret hðsÞij to be a direct measure of the
fluctuations in proper lengths of infinitesimally separated test
masses co-moving in the spacetime where t refers to their
proper times. More specifically, we see this is identical to the
corresponding result in general relativity, except GN is to be
replaced by GN=ð1þ f̄Þ:

hðsÞij ≈ −
16πGN

1þ f̄

�
PiaPjb −

1

2
PijPab

�

×
Z
R3

d3x⃗0

4πr
τab½t − rþ x⃗0 · r̂; x⃗0� þ…; ð42Þ

because the second line of Eq. (30) is eliminated by the “tt”
projector.
In summary, linear GWs in the DWmodel yield the same

signals as in GR—i.e., far-zone “spin-2” waves sourced by
the transverse-traceless portion of the spatial energy-
momentum-shear-stress tensor—except the effective
Newton’s constant GN is replaced by GN=ð1þ f̄Þ. It
implies that the GWs still travel at the speed of light
though their amplitude is rescaled by 1=ð1þ f̄Þ. Therefore,
the propagation of GWs in the DW model satisfies the
exquisite bound on the speed of GWs,���� vGWc − 1

���� ≤ 5 × 10−16; ð43Þ

placed by the detection of the binary neutron star merger
GW170817 [56,57]. This is in contrast to the modified

gravity models of the first option, adding fields other than
the metric to carry part of the gravitational force, which
typically predict a variable GW speed [58–64].

2. Nonrelativistic/static limit

Next, we move on to examine gravitational tidal forces
exerted by isolated nonrelativistic systems.
Within this nonrelativistic/static limit, we assume τij and

τ0i are negligible compared to τ00 and that τ00 itself is time
independent. This is a simplified model for, say, describing
the tidal forces the Moon exerts on the Earth. In this limit,
we have to leading order in 1=r,

h̄00 ≈ −
�

2

1þ f̄
þ 4f̄0

ð1þ f̄Þð1þ f̄ − 6f̄0Þ
�
2GNM

r
; ð44Þ

h̄ij ≈
4f̄0

ð1þ f̄Þð1þ f̄ − 6f̄0Þ ðδij þ r̂ir̂jÞ 1
2

2GNM
r

; ð45Þ

h̄0i ≈ 0; M ≡
Z

d3x⃗0τ00½x⃗0�: ð46Þ

In this static limit,

δ1R0i0j ¼ −
�

1

1þ f̄
−

2f̄0

ð1þ f̄Þð1þ f̄ − 6f̄0Þ
�

× ðδij − 3r̂ir̂jÞ
GNM
r3

: ð47Þ

Notice the ‘effective’ Newton’s constant

Gtidal ≡
�

1

1þ f̄
−

2f̄0

ð1þ f̄Þð1þ f̄ − 6f̄0Þ
�

GN ¼ 1

1þ f̄

1þ f̄ − 8f̄0

1þ f̄ − 6f̄0
GN; ð48Þ

which determines the strength of tidal forces, is different
from that determining the strength of gravitational waves

GGW ≡ GN

1þ f̄
ð49Þ

unless f̄0 ¼ 0. Moreover, a nonrelativistic particle of mass
m ≪ M near this monopole would have the action—
assuming there are no external forces—

−m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v⃗2 þ h00 þO½v2; h�
q

dt

¼ −m
Z �

1 −
1

2
ðv⃗2 − h00Þ þ…

�
dt: ð50Þ

This allows us to identify the ‘Newtonian potential’ in
a⃗i ¼ −∂iΨN as

ΨN ¼ 1

2
h00 ¼ −

1

1þ f̄
1þ f̄ − 8f̄0

1þ f̄ − 6f̄0
GNM
r

: ð51Þ
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This is also consistent with the results above for the
linearized Riemann tensor, as well as [43], since one
expects δ1R0i0j ¼ −∂i∂jΨN.
At this point, we have the following weak field metric

ds2¼
�
1−α

rs
r

�
dt2−

�
1þðβ−γÞrs

r

�
dr2−

�
1þβ

rs
r

�
r2Ω2

ð52Þ
rs ≡ 2GNM: ð53Þ

where

α ¼ 1

1þ f̄
1þ f̄ − 8f̄0

1þ f̄ − 6f̄0
; β ¼ 1

1þ f̄
1þ f̄ − 2f̄0

1þ f̄ − 6f̄0
;

γ ¼ 1

1þ f̄
2f̄0

1þ f̄ − 6f̄0
: ð54Þ

Let us define

r≡
�
1 −

β

2

rs
r0

�
r0 ð55Þ

to first order in rs=r0. We discover

ds2 ¼
�
1 − α

rs
r0

�
dt2 −

�
1þ ðβ − γÞ rs

r0

�
dr02 − r02Ω2;

ð56Þ

and also observe that

β − γ ¼ 1

1þ f̄
1þ f̄ − 4f̄0

1þ f̄ − 6f̄0
≠ α: ð57Þ

To order rs=r, the Ricci scalar is zero for any α, β, γ; but the
Ricci tensor is zero if and only if α ¼ β − γ. Therefore, our
solution here does not satisfy the vacuum Einstein equa-
tions (i.e., GR). Hence if this solution can be regarded as
the far zone region of a black hole solution, it would not be
the Schwarzschild solution. In other words, the DW model
violates the Birkhoff theorem [65–68]. It also implies that
the two Newtonian potentials identified as

ΨN ¼ −α
rs
2r

¼ −
1

1þ f̄

1þ f̄ − 8f̄0

1þ f̄ − 6f̄0
GNM
r

ð58Þ

ΦN ¼ −ðβ − γÞ rs
2r

¼ −
1

1þ f̄

1þ f̄ − 4f̄0

1þ f̄ − 6f̄0
GNM
r

ð59Þ

are not equal to each other. This peculiar behavior can be
avoided if one sets f̄0 ¼ 0. In fact, Koivisto has given the
bound −5.8 × 10−6 < f̄0 < 5.7 × 10−6 in Eq. (2) upon the
observation ofΨN ≠ ΦN [43]. Note that all the anomalies at
linear order such as GGW ≠ Gtidal and ΨN ≠ ΦN would
disappear if f̄0 ¼ 0.

B. Quadratic order and tμν½GW�
At quadratic order, let us focus on the nonlocal terms in

the far zone GW stress tensor in Eq. (17),

δ2ΔGμν ≡ δ2ΔAGμν þ δ2ΔBGμν; ð60Þ
where the modified Einstein tensor terms at second order are

δ2ΔAGμν ¼ δ2Gμνf̄ þ 2δ1ðGμν þ gμν□ −∇μ∇νÞf̄0
Z

Ḡþδ1Rþ ðημν∂2 − ∂μ∂νÞ
�
1

2
f̄00
�Z

Ḡþδ1R
�

2

þ f̄00
Z

Ḡþδ1R
Z

Ḡþδ1Rþ f̄0
Z

Ḡþhδ1Rþ 2f̄0
Z

Ḡþδ2Rþ 2f̄0
Z

δ1Gþδ1R
	
; ð61Þ

δ2ΔBGμν ¼
�
1

2
δfαμ δβgν −

1

2
ημνη

αβ

�
∂α

�Z
Ḡþδ1R

�
∂β

�
f̄0
Z

Ḡþδ1R
�
: ð62Þ

The integral

Z
Ḡþδ1R≡

Z
Ḡþ½x − x0�δ1R½x0�d4x0 ð63Þ

has already been evaluated in Eq. (20) to give the local term

Z
Ḡþδ1R ¼ 1

2
h̄: ð64Þ

This allows us to make the crucial observation, that the only
nonlocal contribution to the f̄00 terms in Eqs. (61) and (62)
is the last term on the second line in Eq. (61):

tμν ¼ −
f̄00

8πGN
ðημν∂2 − ∂μ∂νÞI1 þ…; ð65Þ

where

I1 ¼
Z

d4x0Ḡþ½x − x0�δ1R½x0�
Z

d4x00Ḡþ½x0 − x00�δ1R½x00�

ð66Þ

¼
Z

d4x0Ḡþ½x − x0� 1
2
∂2
x0 h̄½x0�

1

2
h̄½x0�: ð67Þ

Further note that the only two terms proportional to f̄00 in
Eqs. (61) and (62) are both invariant under the gauge
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transformation hμν → hμν þ ∂fμξνg, induced by the infini-
tesimal coordinate change xμ → xμ þ ξμ, because they both
contain the gauge-invariant linearized Ricci scalar δ1R.
Now, taking the trace of the equation of motion (21) gives

∂2h̄ ¼ −
16πGN

1þ f̄ − 6f̄0
τ; ð68Þ

which in turn allows us to solve h̄ using Eq. (15),

h̄½x0� ¼ −
16πGN

1þ f̄ − 6f̄0

Z
d4x00Ḡþ½x0 − x00�τ½x00�: ð69Þ

Inserting Eqs. (68) and (69) into Eq. (66),

I1 ¼
1

4

�
16πGN

1þ f̄ − 6f̄0

�
2
Z

d4x0Ḡþ½x − x0�

×

�
τ½x0�

Z
d4x00Ḡþ½x0 − x00�τ½x00�

�
: ð70Þ

At this order in perturbation theory, we may replace
τ → T ≡ ημνTμν, because the GW contribution necessarily
scales at least as OðGNÞ. Furthermore, if we make the
simplifying assumption that the astrophysical system is non-
relativistic, then T ≈ T00; i.e., energy density dominates over
pressure density. Additionally, upon replacing τ with only its
matter contribution, notice the integrand is strictly zero
outside the matter source. This allows us to simultaneously
take the far zone and nonrelativistic limits of I1 readily:

I1 ≈
1

16πr

�
16πGN

1þ f̄ − 6f̄0

�
2
Z

d3x⃗0T00½t − r; x⃗0�

×
Z

d3x⃗00
T00½t − r − jx⃗0 − x⃗00j; x⃗00�

4πjx⃗0 − x⃗00j : ð71Þ

The x⃗0 and x⃗00 both lie within the source, so r ≫ jx⃗0 − x⃗00j by
assumption.

I1 ≈
1

r
16πG2

N

ð1þ f̄ − 6f̄0Þ2
Z

d3x⃗0

×
Z

d3x⃗00
T00½t − r; x⃗0�T00½t − r; x⃗00�

4πjx⃗0 − x⃗00j : ð72Þ

Because ∂2ðA½t − r�=rÞ ¼ 0 for any amplitude A, after
plugging Eq. (72) into Eq. (65), we arrive at the main
result—the only nonlocal contribution to the GW stress
energy that is proportional to f̄00 goes as 1=r in the far zone
location of the observer:

tμν ¼
f̄00

r
2GN

ð1þ f̄ − 6f̄0Þ2 ðδ
0
μ − r̂iδiμÞðδ0ν − r̂jδjνÞ

×
∂2

∂t2
Z

d3x⃗0
Z

d3x⃗00
T00½t − r; x⃗0�T00½t − r; x⃗00�

4πjx⃗0 − x⃗00j þ…

ð73Þ

We reiterate there is no need to compute other nonlocal terms
in Eqs. (61) and (62), because there are no other nonlocal f̄00
terms that could potentially cancel this 1=r divergent flux.
Before closing this section, we note that the other

nonlocal contributions to the GW stress energy are the
ones proportional to f̄0 on the second line in Eq. (61):

−
2f̄0

8πGN
ðημν∂2 − ∂μ∂νÞð−I1 þ I2 þ I3Þ; ð74Þ

where

I2 ≡
Z

d4x0Ḡþ½x − x0�δ2R½x0�; ð75Þ

I3 ≡
Z

d4x0δ1G½x; x0�δ1R½x0�: ð76Þ

Our preliminary analysis finds that I2 receives a contribu-
tion from the region of spacetime near the nonrelativistic
source of GWs, such that a divergent 1=r flux is also
generated:

I2 ≈
16πG2

N

r

�
2

3ð1þ f̄Þ2 þ
5

6ð1þ f̄ − 6f̄0Þ2
	

×
Z

d3x⃗0
Z

d3x⃗00
T00½t − r; x⃗0�T00½t − r; x⃗00�

4πjx⃗0 − x⃗00j : ð77Þ

Furthermore, I3 contains extra derivatives acting on Tμν,
rendering it subdominant with respect to I2:

I3 ¼ −
1

1þ f̄ − 6f̄0
∂μ∂ν

Z
d4x0

×
Z

d4x00Ḡþ½x − x00�h̄μν½x00�Ḡþ½x00 − x0�τ½x0�: ð78Þ

≈ −
16πG2

N

r
ð1þ f̄ − 4f̄0Þ

ð1þ f̄Þð1þ f̄ − 6f̄0Þ2 ∂
2
0

Z
d3x⃗0

×
Z

d3x⃗00
T00½t − r; x⃗0�T00½t − r; x⃗00�

4π
jx⃗0 − x⃗00j þ � � �

ð79Þ
That is, it is unlikely that I3 can cancel the divergent flux of
I2. Once again, we observe that the only way to avoid the
1=r divergent fluxes of I2 and I3 is to set the overall
coefficient f̄0 in Eq. (74) to zero.

IV. DISCUSSION

We have examined the features of gravitational waves in
the DW nonlocal gravity model (1). The linearized field
equations around the flat spacetime background reveal that
the gravitational wave polarizations in the Deser-Woodard
model are the same as in general relativity, except the
effective Newton’s constant is re-scaled. Similarly, the
form of the Newtonian gravitational tidal forces exerted
by a nonrelativistic body is the same as that of GR, but
the effective Newton’s constant has a different re-scaling,
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i.e., GGW ≠ Gtidal. And, the physical asymptotically flat
nonrotating black hole solution in the DW model, formed
fromgravitational collapse, is likely not a solution ofGR.All
these deviations from GR arising at linear order can be
avoided by requiring f0½0� ¼ 0. At quadratic order, the
gravitational energy-momentum flux due to an isolated
system turns out to scale as 1=r, which would lead to a
divergent total GW energy-momentum at infinity. This
divergent flux can be avoided if we set f00½0� ¼ 0 in addition
to f0½0� ¼ 0.
The GW flux result, in particular, suggests a new theo-

retical consistency test of modified gravity theories that are
nonlocal in character. In local theories, as long as the
linearized solutions go as 1=r, the first nonlinear (i.e.,
quadratic) corrections to their equations of motion can be
expected to go as 1=r2. Since stress-energy tensors begin at
quadratic order, this would provide a finite total energy-
momentum at r ¼ ∞. However, the nonlocal nature of the
interactionswithin theDeser-Woodardmodel give rise, at the
first nonlinear oder, to terms in its equations of motion,
Eqs. (61) and (62), that are more akin to—though not
precisely the same as—those encountered in the GR solution
of the gravitational perturbation hμν sourced by the stress
tensor of the GWs themselves. These latter terms are
typically dubbed the first post-Minkowskian corrections to
linearized GR, encountered when solving Einstein’s equa-
tions at the first nonlinear order. Despite their nonlinear
nature, they do produce additional 1=r terms. Because the
Deser-Woodard model GW stress tensor contains terms of
similar structure, it is therefore not surprising it too receives a
1=r contribution; for e.g., in Eq. (73).
We plan to investigate whether other nonlocal models

suffer from the same issue of divergent gravitational fluxes.
First, it should be noted that them2 1

□
Rmodel of [29] is likely

unable to avoid the divergent flux because the nonlocal factor
1
□
R generates I2 in Eq. (77), which contains the 1=r flux.We

are interested in looking into the m2R 1
□

2 R model proposed
by Maggiore and Mancarella [28], which has attracted
substantial attention [69–81]. It would be also interesting
to see whether nonlocal models replacing dark matter, for
instance the nonlocal MOND (modified Newtonian dynam-
ics) model [82–85] involving a more complicated nonlocal
scalar, induce divergent gravitational fluxes.
As we have already pointed out, the DW model can

avoid the divergent fluxes by setting f0½0� ¼ 0 ¼ f00½0�.
Indeed, Deser and Woodard have suggested to set f½X� ¼ 0
for all X ≥ 0 in order to eliminate any deviations from GR
inside gravitationally bound systems [24,50]. The justifi-
cation for this choice is as follows: Nonlocal modifications
are thought to represent quantum corrections from infrared
gravitons created during primordial inflation. Since those
gravitons were of horizon scale, they have the biggest effect
on large scales and no effect on small scales. In other
words, the nonlocal quantum effects give large modifica-
tions on large scales and no modification on small scales,

which perfectly complies with the original motivation of
modifying gravity on large scales [24,50].
An infinite flux of gravitational energy-momentum is

such a drastic result that it prompts us to seek guidance
from fundamental theory in constructing nonlocal models
of modified gravitation. Presumably, a first-principles
derivation of the nonlocal effective field equations through
quantum loop effects during primordial inflation would
lead to well-defined GW energy-momentum fluxes at
infinity. Although such a derivation, which might involve
a nonperturbative resummation of loop corrections, is not
currently available, there is a hint towards it from pertur-
bative calculations. First, for the case of the de Sitter
background, where the scale factor a½t� ¼ eHt with H
constant, the nonlocal scalar becomes [86],

1

□
RjdS ¼ −4 ln½a� þ � � � : ð80Þ

Second, one loop contributions to the graviton self-energy
from a massless, minimally coupled scalar field in a locally
de Sitter background induce corrections to the Newtonian
potential associated with a static point mass resulting in a
secular decrease of the Newton’s constant, proportional to
− ln½a� at late times [87],

GN → GN

�
1 −

1

30π

ℏGNH2

c5
ln½a� þ � � �

�
: ð81Þ

Also, note that primordial inflation is thought to be very
close to the de Sitter background. Therefore, this ln½a�
correction seems to indicate a connection between nonlocal
gravity and quantum infrared loop corrections during
primordial inflation.
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APPENDIX A: PERTURBATIVE EXPANSIONS
ON NONLOCAL TERMS

In this section, the nonlocal factors in Eq. (3) are
expanded as up to second order in the power series of hμν:
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X ≡ 1

□
R ¼ δ1X þ δ2X ¼

Z
Ḡþδ1Rþ

Z �
1

2
Ḡþhδ1Rþ δ1Gþδ1Rþ Ḡþδ2R

�
; ðA1Þ

f½X�≡ f

�
1

□
R

�
¼ f̄ þ δ1f þ δ2f ¼ f̄ þ f̄0δ1X þ f̄0δ2X þ 1

2
f̄00ðδ1XÞ2 ðA2Þ

¼ f̄ þ f̄0
Z

Ḡþδ1Rþ f̄0
Z �

1

2
Ḡþhδ1Rþ δ1Gþδ1Rþ Ḡþδ2R

�
þ 1

2
f̄00
�Z

Ḡþδ1R
�

2

; ðA3Þ

f0½X�≡ f0
�
1

□
R

�
¼ f̄0 þ δ1f0 þ δ2f0 ¼ f̄0 þ f̄00δ1X þ f̄00δ2X þ 1

2
f̄000ðδ1XÞ2 ðA4Þ

¼ f̄0 þ f̄00
Z

Ḡþδ1Rþ f̄00
Z �

1

2
Ḡþhδ1Rþ δ1Gþδ1Rþ Ḡþδ2R

�
þ 1

2
f̄000

�Z
Ḡþδ1R

�
2

; ðA5Þ

U ≡ 1

□

�
Rf0

�
1

□
R

��
¼ 1

□
ðRf0½X�Þ ¼ δ1U þ δ2U ðA6Þ

¼
Z

Ḡþδ1Rf̄0 þ
Z �

1

2
Ḡþhδ1Rf̄0 þ δ1Gþδ1Rf̄0 þ Ḡþδ2Rf̄0 þ Ḡþδ1Rδ1f̄0

�
ðA7Þ

¼ f̄0
Z

Ḡþδ1Rþ f̄0
Z �

1

2
Ḡþhδ1Rþ δ1Gþδ1Rþ Ḡþδ2R

�
þ f̄00

Z
Ḡþδ1R

Z
Ḡþδ1R: ðA8Þ

Here f̄ ¼ f½0�, f̄0 ¼ f0½0�, f̄00 ¼ f00½0� since the argument □̄−1R̄ ¼ 0 and the retarded Green’s function is expanded as

Gþ ¼ Ḡþ þ δ1Gþ þO½h2�: ðA9Þ
Then, the modified Einstein tensor at first order in perturbations on the Minkowski background is

δ1ΔAGμν ¼ δ1Gμνf̄ þ 2ðημν∂2 − ∂μ∂νÞf̄0
Z

Ḡþδ1R; ðA10Þ

δ1ΔBGμν ¼ 0: ðA11Þ
The modified Einstein tensor at second order is

δ2ΔAGμν ¼ δ2Gμνf̄ þ 2δ1ðGμν þ gμν□ −∇μ∇νÞf̄0
Z

Ḡþδ1Rþ ðημν∂2 − ∂μ∂νÞ
�
1

2
f̄00
�Z

Ḡþδ1R
�

2

þ f̄00
Z

Ḡþδ1R
Z

Ḡþδ1Rþ f̄0
Z

Ḡþhδ1Rþ 2f̄0
Z

Ḡþδ2Rþ 2f̄0
Z

δ1Gþδ1R
	
; ðA12Þ

δ2ΔBGμν ¼
�
1

2
δfαμ δβgν −

1

2
ημνη

αβ

�
∂α

�Z
Ḡþδ1R

�
∂β

�
f̄0
Z

Ḡþδ1R
�
: ðA13Þ

APPENDIX B: GRAVITATIONAL GREEN’S
FUNCTION: De DONDER GAUGE

In this section, we will obtain the Green’s function to the
wave operator on the left-hand side of Eq. (21).
Fourier spacetime solutions We may write Eq. (21) in

Fourier spacetime.

Kμν
αβ ˜̄hαβ½k� ¼ 8πGNτ̃μν½k�; ðB1Þ

Kμν
αβ ≡ 1

2
ð1þ f̄Þ 1

2
δfαμ δβgν k2 − f̄0ðημνk2 − kμkνÞηαβ; ðB2Þ

k2 ≡ kσkσ: ðB3Þ

We see that, if a K−1 can be found that satisfies

Kμν
ρσðK−1Þρσαβ ¼

1

2
δfαμ δβgν ; ðB4Þ

then

˜̄hμν½k� ¼ 8πGNðK−1Þρσαβ½k�τ̃αβ½k�: ðB5Þ

In fact, a direct calculation would yield
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−ðK−1Þμναβ ¼
2

1þ f̄

1

2
δfαμ δβgν

1

−k2
þ 4f̄0

ð1þ f̄Þð1þ f̄ − 6f̄0Þ

×
ηαβ

−k2

�
ημν −

kμkν
k2

�
: ðB6Þ

The reason for the − sign is to highlight that 1=ð−k2Þ ¼
1=∂2.
Now, the retarded Green’s function for the wave operator

in 4D Minkowski is

1

∂2
½z≡ðt;z⃗Þ�≡Ḡþ½z�¼

Z þ∞þi0þ

−∞þi0þ

dk0
2π

Z
R3

d3k⃗
ð2πÞ3e

ik⃗·z⃗ e−ik0t

−k20þ k⃗2

ðB7Þ

¼ δ½t − r�
4πr

; r≡ jz⃗j ðB8Þ

¼ Θ½t�
4π

δ½σ̄�; σ̄ ≡ t2 − r2

2
: ðB9Þ

We also have the object

gμν½z�≡
Z þ∞þi0þ

−∞þi0þ

dk0
2π

Z
R3

d3k⃗
ð2πÞ3 e

ik⃗·z⃗ e
−ik0t

−k2
kμkν
k2

;

k2 ≡ k20 − k⃗2 ðB10Þ

¼ 1

2
i
∂
∂zμ

Z
d4k
ð2πÞ4 e

−ik·z ∂
∂kν

1

k2
: ðB11Þ

Assuming it is alright to integrate-by-parts the ∂=∂kν,

gμν½z� ¼ −
1

2
i
∂
∂zμ

Z
d4k
ð2πÞ4 ð−izνÞ

e−ik·z

k2
ðB12Þ

¼ 1

2

∂
∂zμ

�
zν

Z
d4k
ð2πÞ4

e−ik·z

−k2

	
ðB13Þ

¼ 1

2

∂
∂zμ fzνḠ

þ½z�g ðB14Þ

¼ Θ½t�
8π

ðημνδ½σ̄� þ zμzνδ0½σ̄�Þ: ðB15Þ

As a check of this result, we note from its Fourier
representation that ημνgμν ¼ Ḡþ. From the final position
spacetime result,

ημνgμν ¼
Θ½t�
8π

ð4δ½σ̄� þ 2σ̄δ0½σ̄�Þ: ðB16Þ

Using the identity σ̄δ0½σ̄� ¼ −δ½σ̄� we indeed obtain
Θ½t�ð4πÞ−1δ½σ̄� ¼ Ḡþ. It is also possible to arrive at this
result by first tackling the Fourier integral

g2½z�≡
Z
ret

d4k
ð2πÞ4

e−ik·z

−ðk2Þ2 : ðB17Þ

The desired result is then gμν ¼ −∂μ∂νg2½z�.
The linearized Deser-Woodard graviton propagator con-

tains the Fourier integral

DWμν ¼
Z

d4k
ð2πÞ4

e−ik·z

−k2

�
ημν −

kμkν
k2

�
: ðB18Þ

We have

DWμν½z� ¼
Θ½t�
4π

�
ημνδ½σ̄� −

1

2

∂
∂zμ fzνδ½σ̄�g

�
ðB19Þ

¼ Θ½t�
8π

ðημνδ½σ̄� − zμzνδ0½σ̄�Þ: ðB20Þ
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