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Piazza della Scienza 3, 20126 Milano, Italy

3INFN, Sezione di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
4Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy

5INFN Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy
6Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France
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Gravitational-wave astronomy with coalescing binary neutron star (NS) sources requires the availability
of gravitational waveforms with tidal effects accurate up to merger. This article presents an improved
version of TEOBResum, a nonspinning effective-one-body (EOB) waveform model with enhanced
analytical information in its tidal sector. The tidal potential governing the conservative dynamics employs
resummed expressions based on post-Newtonian (PN) and gravitational self-force (GSF) information. In
particular, we compute a GSF-resummed expression for the leading-order octupolar gravitoelectric term
and incorporate the leading-order gravitomagnetic term (either in PN-expanded or GSF-resummed form).
The multipolar waveform and fluxes are augmented with gravitoelectric and magnetic terms recently
obtained in PN. The new analytical information enhances tidal effects toward merger accelerating the
coalescence. We quantify the impact on the gravitational-wave phasing of each physical effect. The most
important contribution is given by the resummed gravitoelectric octupolar term entering the EOB
interaction potential, that can yield up to 1 rad of dephasing (depending on the NS model) with respect to its
nonresummed version. The model’s energetics and the gravitational-wave phasing are validated with
eccentricity-reduced and multiresolution numerical relativity (NR) simulations with different equations of
state and mass ratios. We also present EOB-NR waveform comparisons for higher multipolar modes
beyond the dominant quadrupole one.
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I. INTRODUCTION

The analysis of gravitational waves (GW) from binary
neutron star events requires detailed waveform models that
include tidal effects [1–3]. Semianalytical inspiral wave-
forms with tidal effects valid up to merger have been
constructed to date only in a few works [4–7]. These
models build on the effective-one-body (EOB) formalism
for the general-relativistic two-body problem [8,9] and its
extension to include tidal interactions [10]. Their common
starting point is the general-relativistic theory of tidal
properties of neutron stars (NSs) [11–15] and a post-
Newtonian (PN) expression for the EOB potential based
on the calculations of Refs. [10,16–21]. The conservative
part of the dynamics of circularized binaries is currently
known at next-to-next-to-leading order (NNLO), i.e., the
formal 7PN level [20] (or 2PN, since the Newtonian
contribution starts in fact at 5PN [11]). On the other hand,
for generic, noncircular motion, the conservative dynamics
is fully known only at 6PN [17], since Ref. [20] only

focused on circular motion. In addition, the tidal correction
to the waveform amplitude is analytically known at 6PN
[17], including gravitomagnetic and subdominant gravito-
electric multipolar contributions [22]. Note that waveform
amplitude corrections due to tidal-tail terms are also exactly
known analytically up to relative 2.5PN (i.e., global 7.5PN
order1) thanks to the analytical knowledge of the resummed
tail factor that enters the factorized EOB waveform [23,24].
Such a large amount of analytical information has been

compared over time with numerical relativity (NR) simu-
lations of inspiraling and coalescing neutron stars of
increased accuracy [4,5,10,25]. It was pointed out as early
as in Ref. [10] that the EOB treatment of tidal effects (at the
time just at the 1PN level) seemed prone to underestimating

1We recall that the tidal waveform information is only lacking
the knowledge of the 2PN (7PN) quadrupolar term, though, as
argued in Ref. [19], its effect is expected to be small. Once this
term becomes available, one will automatically have access to
3.5PN tail terms in the tidal waveform amplitude.
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their actual magnitude in the last few inspiral orbits up to
merger. This fact became progressively apparent as the
reliability of NR simulations increased, with improved
handling of the error budget [5,6,25,26], clearly pointing
out that the gravitational attraction yielded by the EOB
interaction potential based on PN-expanded NNLO tidal
information was not sufficiently strong so as to match the
NR predictions within their error bars. Bini and Damour
[21] proposed to blend together the aforementioned
NNLO tidal information with gravitational-self-force
(GSF) [27] information in a special resummed expression
for the (gravitoelectric) potential which enhanced the
tidal attraction due to the presence of a pole at the
Schwarzschild light ring. Such a potential was incorpo-
rated (with a modification concerning the light-ring
location; see below) in the (nonspinning) TEOBResum
model [6], that is built upon the point-mass, nonspinning,
EOB dynamics of Refs. [28–30]. The key prescription
suggested in Ref. [21] and implemented in Ref. [6] is to
substitute the test-mass light-ring pole r ¼ 3 (in dimen-
sionless units) with the light ring of the NNLO EOB
model. The pole effectively amplifies tides in a regime in
which the two NSs cannot be described as isolated
objects. Note that the pole singularity is never reached
since the EOB dynamics terminates at a larger radius.
TEOBResum reproduces NR waveforms within their
errors up to merger for a large sample of binaries,
including binaries with nonprecessing spins [6,30,31].
To date, TEOBResum has been tested against the largest
sample of NR data available [32]. Some phase differences
with respect to the NR data are however present for
binaries with large mass ratios and/or for NSs with large
tidal polarizability parameters, thus indicating that repro-
ducing the GW from the last few orbits using the EOB
formalism requires even stronger tides [6,30,31,33,34].
A possible mechanism leading to an effective amplifi-

cation of tidal effects close to merger is the resonance
between the NS f-mode and the orbital frequency, cf., e.g.,
Refs. [35,36]. This idea has been implemented in the EOB
formalism in Refs. [7,37], and there it was referred to as
“dynamical tides.” The point-mass EOB baseline used in
those works is the one developed in Refs. [38–41] in
combination with the PN tidal NNLO EOB potential.
When compared to NR data, the model performs very
similarly to the GSF resummation approach. Notably, both
methods either reproduce the data within their errors or
slightly underestimate the GW phase near merger [31].
In this work we incorporate in TEOBResum all the

analytical tidal information that is currently available:
(i) the l ¼ 3 GSF-resummed contribution to the EOB A
potential, that is computed in this paper for the first time,
(ii) the gravitomagnetic tidal potential, (iii) the tidal
contributions to the EOB B potential of Ref. [17], and
(iv) the full 1PN tidal corrections to the multipolar wave-
form [22]. We then compare the performance of the model

against long-end, error-controlled, NR data computed by
the Computational Relativity (CoRe) Collaboration.
The paper is organized as follows. In Sec. II A, we

compute a GSF-resummed expression for the electric
l ¼ 3 term of the tidal EOB AT potential [cf. Eq. (6)].
We also include the LO gravitomagnetic, ð2−Þ, term either
in PN series or in GSF-resummed form. We additionally
incorporate the leading-order tidal correction to the B
potential [cf. Eq. (31)], as computed in Ref. [17]. The
gravitoelectric and gravitomagnetic corrections to the tidal
multipolar waveform computed in Ref. [22] are also
incorporated into the factorized and resummed EOB wave-
form. In Sec. III, we evaluate the effect of each new term on
the GW phasing for a set of sample binaries. We find that
the largest effect on the tidal phase is generated by the new
GSF-resummed l ¼ 3 electric term, with significantly
smaller contributions from the gravitomagnetic term, the
tidal correction to the B potential and the subdominant
multipoles. We also consider the gravitomagnetic contri-
bution parametrized by static Love numbers [42] (as
opposed to irrotational) and find that this gravitomagnetic
effect is also very small. The TEOBResum/NR comparison
is given in Sec. IV and concerns both the energetics
(through the gauge-invariant relation between the binding
energy and orbital angular momentum) and the phasing,
notably considering also higher multipolar modes. In
particular, we consider the 12 best eccentricity-reduced
and multiple-resolution simulations of irrotational and
quasicircular binary neutron star (BNS) mergers computed
by the CoRe Collaboration [32] and previously presented in
Ref. [43]. The high accuracy of these data currently
provides us with the most stringent strong-field constraints
available from NR, as shown in Fig. 9. Within this data
set, we also consider simulation data with mass ratios
other than unity such as q ≈ ð1.5; 1.75; 2Þ computed in
Refs. [31,44,45]. While these data are less accurate, they
give some insights on the model’s performance in an
“extreme” region of the parameter space. We additionally
present comparisons of NR and EOB waveforms for
modes beyond the leading-order quadrupole in Fig. 11.
Conclusions are collected in Sec. V. The paper is then
concluded with two technical Appendixes. Appendix A
reports the explicit derivation of the GSF-resummed l ¼ 3
tidal potential. Appendix B briefly discusses the numerical
implementation of the model, focusing in particular on the
performances yielded by the use of the post-adiabatic
approximation of Ref. [46].
We use geometric units c ¼ G ¼ 1. To convert from

geometric to physical units we recall that GM⊙=c3 ¼
4.925491 × 10−6 sec.2 The (2,2)-mode GW frequency,
f, is related to the dimensionless (2,2)-mode angular

2The value for this quantity has recently lost some precision
due to the increased disagreement between Barycentric Dynami-
cal Time and Barycentric Coordinate Time [47].
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frequency ω̂ via f ≈ 32.3125ω̂ðM⊙=MÞ kHz [10]. For
example, ω̂ ≈ 8.356 × 10−4 at f ¼ 10 Hz for a typical
NS binary with M ¼ 2.7 M⊙. For the remainder of this
article, we employ dimensionless units rescaled with
respect to M. Note that A, B are employed to denote
certain EOB potentials and to label the neutron stars. For
the latter, A, B will always be written as subscripts.

II. TIDAL EFFECTS IN TEOBRESUM

This section summarizes the main analytical results. We
use the following definitions:

q≡mA

mB
≥ 1; XA ≡mA

M
ð1Þ

with A, B labeling the stars andM ¼ mA þmB. Let us also
introduce the symmetric mass ratio ν≡ XAXB.

A. Tidal potential: Gravitoelectric and magnetic terms

The key idea of the EOB formalism is to map the binary
motion to geodesic motion in an effective Schwarzschild
spacetime (or Kerr for binaries with spin). The dynamics
are described by the following EOB Hamiltonian:

HEOB ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤeff − 1Þ

q
; ð2Þ

in which

Ĥeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r� þ AðrÞ

�
1þ p2

φ

r2
þ 2νð4 − 3νÞp

4
r�

r2

�s
ð3Þ

in polar coordinates ðr;φÞ and per unit mass conjugate
momenta ðpr� ; pφÞ for planar motion [8,9,48]. It has been
shown that the point-mass dynamics is well described by a
Padé resummation of the 5PN expression for the radial
potential AðrÞ [49] (henceforth the point-mass potential A0).
In the EOB formalism, the tidal interaction for quasi-

circular inspiral dynamics is incorporated by augmenting
the point-mass potential as follows [10]:

A ¼ A0 þ AT; ð4Þ

where

ATðuÞ ¼
X
l≥2

h
AðlþÞLO
A ðuÞÂðlþÞ

A ðuÞ

þAðl−ÞLO
A ðuÞÂðl−Þ

A ðuÞ þ ðA ↔ BÞ
i

ð5Þ

≡u6ðκð2þÞ
A ÂT

AðuÞ þ κð2þÞ
B ÂT

BðuÞÞ; ð6Þ

where the signs � correspond to gravitoelectric and
gravitomagnetic terms, respectively, and u ¼ M=r is the

inverse of the dimensionless EOB radial coordinate. The
LO terms are given by

AðlþÞLO
A ðuÞ ¼ −κðlþÞ

A u2lþ2; ð7aÞ

Aðl−ÞLO
A ðuÞ ¼ −κðl−ÞA u2lþ3; ð7bÞ

where

κðlþÞ
A ¼ 2kðlÞA

XB

XA

X2lþ1
A

C2lþ1
A

: ð8aÞ

For the ðl−Þ sector, we currently have

κð2−ÞA ¼ 1

2
jð2ÞA

XB

XA

X5
A

C5A
: ð8bÞ

kðlÞA and jðlÞA are the dimensionless gravitoelectric and
gravitomagnetic Love numbers [14], and CA ≡mA=RA is

the compactness parameter. kðlÞA is often denoted as kl in the
literature and is related to the other commonly used Love
number (polarizability) λ̄l via kl¼ð2l−1Þ!!C2lþ1λ̄l=2
[50] which, in our notation, translates to

ΛðlÞ
A ≡ 2

ð2l − 1Þ!! C
−ð2lþ1Þ
A kðlÞA : ð9aÞ

Similarly, for the gravitomagnetic sector, we have

ΣðlÞ
A ≡ l − 1

4ðlþ 2Þ
1

ð2l − 1Þ!! C
−ð2lþ1Þ
A jðlÞA ð9bÞ

which is denoted by σ̄ðlÞ, e.g., in Ref. [50]. For l ¼ 2, our
gravitomagnetic Love number jð2Þ is related to the kmag

2 of
Ref. [42] via kmag

2 ¼ jð2Þ=ð24CÞ [22,51]. We use quasiuni-
versal fitting relations to obtain Σ from Λ [50,52,53],
specifically the fits of Ref. [52].

Following Ref. [14], we introduce their κT2 ≡κð2þÞ
A þκð2þÞ

B

and, similarly, κT2− ≡ κð2−ÞA þ κð2−ÞB . For q ¼ 1, we use

Λ≡ Λð2Þ
A ¼ Λð2Þ

B and Σ≡ Σð2Þ
A ¼ Σð2Þ

B . These relations yield
κT2 ¼ 3Λ=16 and κT2− ¼ 3Σ=2. We will employ κT2 and Λ
interchangeably to quantify the strength of the tidal inter-
actions including gravitomagnetic cases as jΣj grows mono-
tonically with Λ.
The potentials Âðl�Þ

A ðuÞ contain the terms beyond LO.
In particular, the ðlþÞ contributions are known up to l ¼ 3
as a series in u

ÂðlþÞ
A ðuÞ ¼ 1þ αðlþÞ

1A uþ αðlþÞ
2A u2 ð10Þ

with
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αð2þÞ
1A ¼ 5

2
XA; ð11Þ

αð2þÞ
2A ¼ 3þ 1

8
XA þ 337

28
X2
A; ð12Þ

αð3þÞ
1A ¼ −2þ 15

2
XA; ð13Þ

αð3þÞ
2A ¼ 8

3
−
311

24
XA þ 110

3
X2
A: ð14Þ

For l ¼ 4, we are currently limited to the LO term, and

thus Âð4þÞ
A ðuÞ ¼ 1.

In the ðl−Þ sector, only the gravitomagnetic NLO term is
known:

αð2−Þ1A ¼ 1þ 11

6
XA þ X2

A: ð15Þ

Reference [21] offered an alternative series representa-

tion for the tidal potentials Âðl�Þ
A ðuÞ in terms of the mass

ratio XA as a consequence of a resummation procedure
done using results from the first-order GSF approach.
Using XA ¼ mA=M ≪ 1 as an expansion parameter, they
wrote

Âðl�Þ
A ðuÞ ¼ Âðl�Þ0GSF þ XAÂ

ðl�Þ1GSF þ X2
AÂ

ðl�Þ2GSF þ � � �
ð16Þ

For the 1GSF terms, Ref. [21] introduced light-ring
(LR) singularity factorized potentials Ãð2�ÞðuÞ≡
ð1 − 3uÞ7=2Âð2�Þ1GSF. Using Ref. [27]’s numerical GSF
data, they constructed a global four-parameter fit to
Ãð2�ÞðuÞ and explicitly displayed the fit parameters for
the ð2þÞ potential. As Ref. [27]’s numerical data received
a minor, ∼Oð10−5Þ, correction after the publication of
Ref. [21], we repeated their fit to

Ãð2þÞðuÞ ≈ 5

2
uð1 − a1uÞð1 − a2uÞ

1þ n1u
1þ d2u2

ð17Þ

and obtained the following minor changes to their fit
parameters:

a1 ¼ 8.53352; a2 ¼ 3.04309;

n1 ¼ 0.840064; d2 ¼ 17.7324: ð18Þ

These should be compared with Eq. (7.27) of Ref. [21].
For the ð2−Þ potential, we employ a similar fit using

Ref. [27]’s updated data:

Ãð2−ÞðuÞ ≈ 11

6
uð1 − a−1 uÞð1 − a−2 uÞ

1þ n−1 u
1þ d−2 u

2
ð19Þ

with

a−1 ¼ 0.728591; ð20Þ

a−2 ¼ 3.10037; ð21Þ

n−1 ¼ −15.0442; ð22Þ

d−2 ¼ 12.5523: ð23Þ

For the 0GSF, 2GSF potentials, from Ref. [21] we have

Âð2þÞ0GSF ¼ 1þ 3u2

1 − 3u
; ð24Þ

Âð2þÞ2GSF ¼ 337

28

u2

ð1 − 3uÞp ; ð25Þ

Âð2−Þ0GSF ¼ 1 − 2u
1 − 3u

; ð26Þ

Âð2−Þ2GSF ¼ u
ð1 − 3uÞp2−

; ð27Þ

where the values of p; p2− are currently unknown due to
lack of second-order GSF results. However, Sec. VII D of
Ref. [21] provided a proof that p; p2− ≥ 4 and a further
argument that p ≤ 6.
We now wish to resum the ð3þÞ tidal potential in the

same fashion as was done for the ð2�Þ tidal potentials.
To this end, we introduce the following GSF series for

Âð3þÞ
A ðuÞ:

Âð3þÞ
A ðuÞ ¼ ð1 − 2uÞ

�
1þ 8

3

u2

ð1 − 3uÞ
�
þ XA

Ãð3þÞ

ð1 − 3uÞ7=2

þ X2
A
110

3

u2

ð1 − 3uÞp3þ
; ð28Þ

where p3þ ≥ 4 [21]. Next, using Refs. [27,54]’s numerical
data, we construct a global fit for the LR factorized 1GSF
potential:

Ãð3þÞðuÞ≡ ð1− 3uÞ7=2Âð3þÞ1GSF

≈
15

2
uð1þC1uþC2u2þC3u3Þ

1þC4uþC5u2

1þC6u2
;

ð29Þ

with
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C1 ¼ −3.68210; C2 ¼ 5.17100; C3 ¼ −7.63916;

C4 ¼ −8.63278; C5 ¼ 16.3601; C6 ¼ 12.3197:

ð30Þ

The details of this derivation are collected in Appendix A.
To pragmatically reduce the number of unknowns

here we set p2− ¼ p3þ ¼ p and we mostly stick to the
(conservative) value p ¼ 4, as in Ref. [6]. However, to get
an idea of the sensitivity of our results to the changes
in p, we shall also show some results obtained using
p ¼ 9=2. In principle, since the complete tidal potential is
analytically known only at 2PN relative order, one may
consider transforming the parameters fp; p2−; p3þg into
effective functions [that may depend on the equation of
state (EOS) and mass ratio] to be determined by compar-
isons with highly accurate NR simulations. Consistently
with Ref. [30] (see Sec. III C and notably Fig. 12), the NR
phasing error of (some) NR simulations of the CoRe
catalog, that we shall also use here, is smaller than the
EOB-NR phase difference towards merger. This thus
suggests that state-of-the-art NR simulations might be used
to meaningfully inform the tidal sector of the EOB model
towards merger. However, to do so consistently all over the
BNS parameter space we would need a few dozen high-
quality numerical BNS simulations with an error budget of
the order of (at least) 0.2 rad up to merger. This is currently
not the case when κT2 is of the order of (or larger than) 150,
so this kind of tuning is postponed to future work. In any
case, at least for κT2 ≃ 100, we shall confirm that the
simplifying choice p ¼ 4 yields a good representation of
the tidal interaction; similarly, the value p≳ 5 seems to
universally overestimate the strength of the tidal forces in
the last few orbits up to merger. The TEOBResummodel of
Ref. [6] employs PN series for all the tidal potentials with
the exception of ð2þÞ for which the GSF series of Ref. [21]
is adopted with p ¼ 4. Additionally, as explained in
Ref. [6], TEOBResum replaces the Schwarzschild LR,
u ¼ 1=3, with the maximum of u2ANNLO, i.e., the EOB
effective photon potential. ANNLOðuÞ is the EOB potential
in which the point-mass A0 potential is added to the tidal AT
potential containing only the PN series for the
ð2þÞ; ð3þÞ; ð4þÞ tidal terms (see Ref. [6] and Sec. III A
of Ref. [30]).
Following then Ref. [6] to obtain the complete tidal

potential we have to finally replace the denominators
ð1 − 3uÞ in Eq. (28) with ð1 − rNNLOLR uÞ, where rNNLOLR
corresponds to the peak of u2ðA0 þ ANNLO

T ðuÞÞ. Such a
new GSF-resummed potential will then yield a different
effective light ring, defined this time as the peak of
u2ðA0 þ AGSF�

T ðuÞÞ, where AGSF�
T indicates any tidal poten-

tial with GSF-resummed information. Clearly, one has to
a posteriori check that the so-constructed dynamics never
passes through rNNLOLR in the physically meaningful region.
To do so easily, we can monitor the behavior of the orbital

frequency and identify the radius where it peaks. This point
rpeak, is close to the peak of the l ¼ m ¼ 2 waveform
amplitude that we conventionally identify as the merger
point. In Fig. 1 we plot rpeak vs rLR for 250 points in the
fq;ΛA;ΛBg parameter space for TEOBResum of Ref. [6]
and TEOBResum supplied with (3þ) and (2�) tides as
GSF series. The figure illustrates that the EOB radial
separation never hits the rNNLOLR effective light-ring location.
With our new GSF series for the ð2−Þ; ð3þÞ potentials we
now have several different options to flex the original
TEOBResummodel. We show some of our main choices in
Fig. 2, where the legend is explained in Table I.
Our final addition to TEOBResum regards the tidal

contribution BTðuÞ to the EOB B potential in the EOB
Hamiltonian. From Ref. [17], one has that the contribution
that is added to the PN-expanded point-mass part of the
potential B0 is

BTðuÞ ¼ 3κT2 ð3 − 5νÞu6: ð31Þ

To incorporate this information within TEOBResum we
first need to review the choices previously made. In
particular, let us remember that the current B function is
defined as B≡D=A, where the D function is the 3PN-
accurate one that is resummed as a Padé (0,3) approximant
as D≡ ð1þ 6νu2 − 2ð3ν − 26Þνu3Þ−1, and A≡ A0 þ AT ,
i.e., the total potential as a sum of the point-mass with the

3.0 3.5 4.0 4.5 5.0 5.5

3

4

5

6

7

8

FIG. 1. Distribution of values for rpeak vs rLR for 250 points
chosen from the fq;ΛA;ΛBg parameter space. The black dots
represent data obtained using the TEOBResummodel of Ref. [30]
dubbed GSF2ðþÞnm in Table I. The data for the cyan (light
colored) points are obtained by augmenting this TEOBResum

with Âð3þÞ þ Âð2−Þ (GSF23ðþÞPNð−Þ). As rLR is determined by
finding the maximum of r−2ANNLOðrÞ (see text) the resulting
values for rLR are the same regardless of how we augment
TEOBResum. However, the values of rpeak do differ slightly, but
this is not easily discernible in this plot, which is why the 250
cyan points appear to lie exactly on top of the 250 black points.
The linear fit is given by rpeak ≈ 1.37rLR þ 0.09. The red region is
the forbidden zone corresponding to rpeak ≤ rLR.
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tidal part. As a consequence, the B function obtained in this
way already incorporates the tidal contribution, that is,
however, inconsistent, once PN expanded, with Eq. (31).
There are several ways to overcome this difficulty and

have the correct PN expansion of the tidal B potential.
The simplest is just to add to the current B potential a term
B0
TðuÞ such that the term proportional to κT2 of the PN-

expanded Bþ B0
T coincides with Eq. (31). This condition

yields

B0
TðuÞ ¼ κT2 ð8 − 15νÞu6: ð32Þ

We shall investigate the effect of this additional term on
phasing in Sec. III below.

B. Tidal waveform

When including the effects of the tides on the waveform,
the point-mass waveform h0lm is augmented via [19]

hlm ¼ h0lm þ hTlm ¼ hNewtlm ðĥ0lm þ ĥTlmÞ; ð33Þ

with the general expression for hNewtlm given, e.g., by
Eq. (18) of Ref. [55] modulo normalization and sign
conventions. Until recently, only the ð2þÞ NLO contribu-
tion to ĥT22 was known [18], but thanks to Ref. [22], we now
have access to all the NLO information for the ð2þÞ
contributions to ĥT21; ĥ

T
31; ĥ

T
33 as well as the ð2þÞ LO

contribution to ĥT32, and the LO ð2−Þ contributions for
l ≤ 3; m ≤ l. We add all of this new information to all of
our tidal choices for TEOBResum with one exception
which we label by “nm” (no multipoles) in Table I
and Fig. 5.
Rewriting the results for ĥTlm from Appendix A of

Ref. [22] in our own notation, and using XB ¼ 1 − XA,
we obtain

ĥT22 ¼ κð2þÞ
A

�
3 − 2XA

1 − XA

�
x5 þ

�
14

9
κð2−ÞA

− κð2þÞ
A

ð202 − 560XA þ 340X2
A − 45X3

AÞ
42ð1 − XAÞ

�
x6

þ ðA ↔ BÞ; ð34Þ

ĥT21¼
�
κð2þÞ
A

�
−
9

2
þ6XA

�
−κð2−ÞA

1

2ð1−XAÞ
�
x5− ðA↔BÞ;

ð35Þ

ĥT33 ¼ −6κð2þÞ
A ð1 − XAÞx5 þ

�
κð2þÞ
A

�
21 −

89

2
XA

þ 55

2
X2
A − 5X3

A

�
þ 1

2
κð2−ÞA ð9XA − 5Þ

�
x6 − ðA ↔ BÞ;

ð36Þ

ĥT32 ¼
�
4κð2þÞ

A ð2 − 4XA þ 3X2
AÞ þ

4

3
κð2−ÞA

�
x5 þ ðA ↔ BÞ;

ð37Þ
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FIG. 2. A sample of the tidal EOB potentials at our disposal
shown against each other for q ¼ 1, Λ ¼ 1531.34 corresponding
to κT2 ¼ 287.126. The vertical gray region marks the various
values for rpeak at which the orbital frequency peaks for each EOB
variant plotted here. See Table I for an explanation of the legend
labels. The vertical red dashed line marks the location of the
NNLO effective light ring, uNNLOLR ≈ 0.228, for this set of
parameters. The vertical gray dotted line marks the Schwarzschild
last stable orbit at u ¼ 1=6. As the relative contribution of
the ð2−Þ tides is ≲Oð10−2Þ, the potentials with ð2−Þ tides
overlap rather well with their counterparts with no ð2−Þ tides.
Therefore, to distinguish these, we opted to plot them over limited
domains as shown by the solid black, green, and red curves with
the black curve under the green one. Note that the dashed, gray,
line corresponds to the potential with p ¼ 4 replaced by p ¼ 4.5,
in order to appreciate the sensitivity to this parameter.

TABLE I. Summary of the key analytical terms and compo-
nents of TEOBResum tested in this work. GSF-R and PN stand
for the “GSF resummed” and post-Newtonian expressions
described in Sec. II A. All models include the BT term of
Eq. (31), which is individually tested in Fig. 6. All models
except GSF2ðþÞnm include the waveform multipoles described in
Sec. II B. For example, GSF2ðþÞPNð−Þ represents the EOB model
in which the ð2þÞ tide is modeled as a GSF series and the ð2−Þ
tide as a PN series.

Abbreviation Âð2þÞ Âð3þÞ Âð2−Þ p ĥTlm

PNðþÞ PN PN PN � � � ✓
GSF2ðþÞnm GSF-R PN ✗ 4 ✗
GSF2ðþÞ GSF-R PN ✗ 4 ✓
GSF2ðþÞPNð−Þ GSF-R PN PN 4 ✓
GSF2ðþÞGSF2ð−Þ GSF-R PN GSF-R 4 ✓
GSF23ðþÞ GSF-R GSF-R ✗ 4 ✓
GSF23ðþÞPNð−Þ GSF-R GSF-R PN 4 ✓
GSF23ðþÞGSF2ð−Þ GSF-R GSF-R GSF-R 4 ✓
GSF23ðþÞ

4.5 GSF2
ð−Þ
4.5 GSF-R GSF-R GSF-R 4.5 ✓
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ĥT31 ¼ −6κð2þÞ
A ð1 − XAÞx5

þ
�
κð2þÞ
A

�
1þ 5

6
XA −

131

6
X2
A þ 65

3
X3
A

�

þ 1

2
κð2−ÞA ð17XA − 13Þ

�
x6 − ðA ↔ BÞ: ð38Þ

Note that some of the (A ↔ B) terms are preceded by a
minus sign. This PN-expanded tidal part is then incorpo-
rated into TEOBResum following Appendix A of Ref. [19],
in particular with the tail factor factorized in front of the
tidal waveform contribution as above. As usual in EOB
models, the PN variable x is replaced by the EOB velocity
variable vΩ ¼ rΩΩ, where rΩ ¼ rψ1=3 and ψ is computed
using the EOB Hamiltonian [10,56].

III. EFFECT OF ENHANCED ANALYTICAL
INFORMATION ON GW PHASING

In this section we evaluate the impact, in terms of
accumulated GW phase, of the new analytical information
discussed above. In particular we separately focus on the
effect of the GSF-resummed l ¼ 3 potential and on all
other contributions (gravitomagnetic effects and additional
tidal corrections to the waveform amplitude etc.) that turn
out to be largely subdominant. The key options for the
models investigated here are summarized in Table I.
For example, GSF23ðþÞGSF2ð−Þ represents TEOBResum
employing ð2�Þ; ð3þÞ GSF-resummed tides, with our
standard choice p ¼ 4. Finally, we also mention the
possibility of flexing p, with the subscript 4.5 representing
the choice p ¼ 9=2. The default, or baseline, TEOBResum
model that is used as a benchmark for our comparisons
is GSF2ðþÞ.

A. Impact of the l= 3 GSF-resummed potential

Let us start by investigating the impact of the GSF-
resummed l ¼ 3 contribution to the tidal potential. Its
effect is to make the EOB A potential more negative (i.e.,
more attractive) with respect to the corresponding PN-
expanded NNLO l ¼ 3 part, so that the binary inspirals
faster up to merger. Figure 3 shows the effect of the l ¼ 3
1GSF and 2GSF terms individually, where we employed
three equal-mass BNS configurations: SLy, H4, and MS1b
with κT2 ¼ 73.53, 191.4, and 289.6, respectively. We recall
that the 1GSF and 2GSF terms come from Eq. (28) above,
with rLR of the Schwarzschild geometry replaced by the
corresponding EOB one of the NNLO tidal potential, and
having fixed p ¼ 4. The figure shows the phase differ-
ence vs GW frequency Mω22. Note that the curves end at
the peak values of Mω22, which approximately corre-
spond to the peak of the (2,2) waveform mode amplitude
that was found to be rather close and consistent with
the merger frequency coming from NR simulations [6].

The figure illustrates the contribution of each term to the
total (2,2)-mode phase of a baseline tidal model consist-
ing of only the l ¼ 2 0GSF, 1GSF terms (no l > 2 tides
whatsoever).
Note that, the phase accumulation due to the new terms

starts very late in the inspiral,Mω22 ≳ 0.06, consistent with
the fact that the l ¼ 3 GSF-resummed potential becomes
distinguishable only in the last few cycles before the merger
as can be seen by comparing the brown and blue curves in
Fig. 2. Overall, we see that the first-order l ¼ 3 GSF term
contributes up to Oð1Þ rad and the second-order term up to
roughly 4 rad.
Having gained a quantitative understanding of the

impact of the separate l ¼ 3 GSF-resummed contributions
to the potential, we incorporate them, Eq. (28), into
TEOBResum, thus replacing the previously used PN series
truncated at NNLO. According to the summary of the
various terms listed in Table I, we name this flavor of the
model GSF23ðþÞ. We gauge its effect on the (2,2) phase by
comparing it to the phase resulting from the GSF2ðþÞ model
which will serve as our standard baseline for the remainder
of this article unless otherwise noted. We show the resulting
phase differences, ΔϕX

22 ≡ ϕGSF2ðþÞ
22 − ϕX

22, in Fig. 4 for
three equal-mass configurations: fEOS; q;Λg ¼ fSLy; 1;
392.151g; fALF2; 1; 733.323g; fMS1b; 1; 1544.53g, and
MS1b with q ¼ 1.5;ΛA ¼ 1099.9;ΛB ¼ 4391.144 trans-
lating to κT2 ¼ 73.53, 137.5, 289.6, and 373.4, respectively.
As GSF23ðþÞ is more attractive than GSF2ðþÞ, because
of the stronger l ¼ 3 contribution, it plunges faster, it
accumulates less phase, and therefore ΔϕX

22 is positive.
Also note, in passing, that the merger frequency decreases
as κT2 increases because of the correspondingly augmented
tidal interaction [57].

0.02 0.04 0.06 0.08 0.10 0.12 0.14

0

1

2

3

4

FIG. 3. The effect of the 1GSF and 2GSF l ¼ 3 terms on the
(2,2) mode phase. Here, ΔϕX

22 ≡ ϕb
22 − ϕX

22, where ϕb
22 is the

phase of the baseline BNS run that contains only the l ¼ 2 0GSF,
1GSF terms for tides. We then add to this base either the 1GSF or
2GSF l ¼ 3 tides and reevolve the inspiral to obtain the
corresponding ϕX

22. We used κT2 ¼ 73.53, 191.4, 289.6 for the
SLy, H4, MS1b EOS, respectively.
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B. Impact of all other tidal contributions

As detailed in Sec. II we have added the gravitomagnetic
tidal interaction to TEOBResum either as a PN series or a
GSF resummation. We have additionally augmented the
EOB B potential and the multipolar waveforms with new
analytical tidal information. The contributions of these
new terms are subdominant compared to the l ¼ 3

GSF-resummed tide. Their effects on the evolution of
the GW phase is shown in Fig. 5 once again in terms of
ΔϕX

22 ≡ ϕGSF2ðþÞ
22 − ϕX

22. As ΔϕX
22 varies in sign and over

several orders of magnitude, we opted to display jΔϕX
22j as

semilog plots in the figure, where the four panels corre-
spond to the same four cases chosen for Fig. 4. In the
following subsections, we discuss the effects of these
subdominant terms.

1. Gravitomagnetic tides: Irrotational fluids

Since the gravitomagnetic Love number is negative, the
contribution of the ð2−Þ tide, whether as a PN or GSF
series, yields Δϕ22 < 0. This is in concordance with our
physical intuition if we recall that the overall sign of the
tidal potential is negative. Hence, gravitomagnetic terms
make it less negative thus extending the inspiral time and
increasing the accumulated phase which, when subtracted
from the smaller phase of GSF2ðþÞ, expectedly yields a
negative number.
We see in Fig. 5 that the contribution of the negative

gravitomagnetic terms (red, blue curves) to the phase is
≲0.1 rad up to the EOB mergers given roughly by 0.12≲
Mω22 ≲ 0.14 depending on κT2 . Moreover, the difference
between using PN vs GSF series for the ð2−Þ tides is almost
indistinguishable as can be seen both in the GSF2ðþÞ (red vs
blue curves) and GSF23ðþÞ cases (black vs brown curves).
Note that the sign change of the black, brown curves in
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FIG. 4. The effect of the entire GSF-resummed l ¼ 3 con-
tribution, model GSF23ðþÞ, on the (2,2)-waveform phase as
compared to the phase of the baseline GSF2ðþÞ model. Here,
ΔϕX

22 ≡ ϕGSF2ðþÞ
22 − ϕX

22. As κT2 increases, the phase difference
grows corresponding to the tides becoming more attractive, and
thus the neutron stars merge sooner.
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FIG. 5. The phase difference ΔϕX
22 ≡ ϕGSF2ðþÞ

22 − ϕX
22, between the baseline TEOBResum model, GSF2ðþÞ, and various tidally

augmented TEOBResum variants listed in Table I. Starting from the upper-left panel and going clockwise, we have fEOS; q;Λg ¼
fSLy; 1; 392.151g; fALF2; 1; 733.323g; fMS1b; 1; 1544.53g. The lower-right panel corresponds to MS1b with q ¼ 1.5;ΛA ¼ 1099.9;
ΛB ¼ 4391.144. The blue and the red curves are negative because the gravitomagnetic Love number Σ is negative for irrotational fluids.
The sign change of the GSF23ðþÞ curves (brown and black) is explained in the text.
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Fig. 5 is due to the sign change in the corresponding tidal
potential Að2−Þ þ Að3þÞ because these terms have opposite
signs and different weak-field behavior (u7 vs u10, respec-
tively). Even less distinguishable than the gravitomagnetic
contribution is the effect of augmenting the waveform by
adding the ð2þÞNLO and ð2−ÞLO terms to ĥT22. This effect
is represented by the dashed brown curves labeled
GSF2ðþÞnm and amounts to at most ∼0.02 rad.

2. Gravitomagnetic tides: Static fluid

For the sake of comparison, we also consider gravito-
magnetic tides for static fluids. As a generic difference, we
note that static gravitomagnetic Love numbers are positive
as opposed to irrotational ones, and, for polytropes, their
absolute values are about twice those of irrotational Love
numbers (see Fig. 1 of Ref. [42]). For realistic EOSs, we
obtain the static Love numbers from the quasiuniversal
relations of Ref. [52] which yield Σstat ∼ 2jΣj, roughly in
agreement with the polytropic ratio mentioned above. As a
result, we would expect static Love numbers to result in
phase differences that are roughly twice the magnitude of
Δϕred;blue

22 of Fig. 5 and with a positive sign. Repeating the
runs of Fig. 5 for GSF2ðþÞPNð−Þ and GSF2ðþÞGSF2ð−Þ with
Σstat, we indeed find that Δϕ22 now accumulates up to
∼0.2 rad at the EOB merger (0.12≲Mω22 ≲ 0.14), but
has, as expected, the opposite sign to the irrotational case.
We opt for irrotational Love numbers because we think

they represent more realistic scenarios: in Ref. [42],
Landry and Poisson studied gravitomagnetic tidal inter-
actions by relaxing the hypothesis that the NS fluid is in
hydrostatic equilibrium. Instead, they considered fluids in
an irrotational state, thus allowing for internal currents
induced by gravitomagnetic tidal fields. It was only
recently shown [51] that the independent formalism for
relativistic tides in Ref. [14] by Damour and Nagar indeed
implicitly forces the fluid into an irrotational state and is
equivalent to the Landry-Poisson formulation. Here we
follow the Damour-Nagar conventions for Love numbers
as shown in Sec. II A.

3. Leading-order tidal term in the EOB B potential

The consequence of augmenting the B potential by B0
T of

Eq. (32) is shown in Fig. 6, once again in terms of ΔϕX
22

where X now represents GSF2ðþÞ augmented with B0
T.

We show the phase difference again for four points in
fq;ΛA;ΛBg space with increasing κT2 . Even for very large
κT2 , the effect of the B

0
T term on the phase of the waveform is

too small to matter for the current generation of ground-
based detectors. Note that, unlike in Fig. 5, Δϕ22 is now
negative because _r ∝ B−1=2 [cf. Eq. (6b) of Ref. [55]].
Hence increasing B decreases _r, thus lengthening the
inspiral time. The B0

T term has been added to all models
of Table I.

IV. EOB-NR COMPARISONS: ENERGETICS
AND WAVEFORMS

We assess the new analytical results against NR data
from the public database3 of the CoRe Collaboration [32].
The employed data sets are summarized in Table II and
cover a relevant range of EOSs, masses and mass ratios.
Most of the NR data consist of the eccentricity-reduced,
error-controlled waveforms computed in Ref. [43]. Note
that much of the data employed here are of higher quality
than those employed in Ref. [6] to verify the performance
of TEOBResum.4 As a consequence, the newest data
enable a more detailed assessment of the analytical EOB
model than previously done. We also include simulations
from Refs. [31,44,45] in order to explore mass ratios
significantly different from q ¼ 1. Roughly half of our
chosen data sets show clear convergence with grid
resolution and allow us to consistently compute the error
budget [26,58]. The rest, specifically the BAM:0011,
0017,0021,0048,0058,0091,0127 runs, do not
show robust convergence and do not allow us to compute
consistent error bars for the phase. Following the above
references, the error from these data sets is estimated as
the difference of the two highest resolutions and shown
using pink shading in Figs. 7–10. Therefore, the com-
parisons with these data sets cannot be considered
conclusive. Nonetheless, we present EOB-NR compar-
isons for all 12 cases with the double aim of (i) suggesting
possible limitations of the analytical model and (ii) indi-
cating a possible direction for improving current NR
simulations.
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FIG. 6. The effect of augmenting the B potential with the tidal
term B0

T of Eq. (32) on the GW phase ϕ22 for the four cases of
Fig. 5. In each case, the phase difference is computed with respect
to the baseline model GSF2ðþÞ (see Table I). Note that we plot
−Δϕ22. See Sec. III B 3 for why Δϕ22 is negative in this
comparison.

3www.computational-relativity.org.
4In particular, Ref. [6] compared GSF2ðþÞnm with PNðþÞ.
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TABLE II. The initial configuration for the BAM and EOB runs that we use for the EOB-NR comparisons. Note that q≡mA=mB > 1
and the numbers for the BAM NR runs are approximate as they are extracted from NR initial data. See Sec. II A for the notation.

BAM EOS κT2 mA½M⊙� q ΛA ΛB kð2ÞA kð2ÞB CA CB ΣA ΣB jð2ÞA jð2ÞB Ref.

0011 ALF2 72.12 1.500 1.000 384.7 384.7 0.1044 0.1044 0.1784 0.1784 −3.775 −3.775 −0.03278 −0.03278 [43]
0095 SLy 73.53 1.350 1.000 392.2 392.2 0.09333 0.09334 0.1738 0.1738 −3.823 −3.823 −0.02911 −0.02911 [43]
0127 SLy 78.05 1.650 1.503 1371. 93.45 0.1172 0.06433 0.1416 0.2150 −8.761 −1.553 −0.02398 −0.03421 [31,45]
0017 ALF2 132.7 1.650 1.500 2218. 196.6 0.1443 0.08692 0.1341 0.1967 −12.17 −2.460 −0.02533 −0.03480 [43]
0107 SLy 136.6 1.354 1.224 1320. 383.9 0.1174 0.09288 0.1427 0.1744 −8.542 −3.770 −0.02430 −0.02919 [59]
0021 ALF2 139.6 1.750 1.750 122.3 3528. 0.07505 0.1517 0.2101 0.1234 −1.830 −16.78 −0.03596 −0.02309 [43]
0037 H4 191.4 1.372 1.000 1020. 1021. 0.1140 0.1140 0.1494 0.1494 −7.181 −7.182 −0.02567 −0.02567 [43]
0048 H4 192.8 1.528 1.250 1990. 500.2 0.1262 0.09762 0.1334 0.1671 −11.30 −4.478 −0.02293 −0.02797 [43]
0058 MPA1 115.3 1.350 1.000 614.9 614.9 0.1120 0.1120 0.1648 0.1648 −5.128 −5.128 −0.02988 −0.02988 [43]
0094 MS1b 250.2 1.944 2.059 9249. 183.7 0.1619 0.08698 0.1031 0.1994 −33.14 −2.358 −0.01855 −0.03572 [44,45]
0091 MS1b 280.4 1.650 1.500 502.2 4391. 0.1099 0.1525 0.1709 0.1183 −4.490 −19.56 −0.03143 −0.02173 [31,45]
0064 MS1b 289.6 1.350 1.000 1542. 1546. 0.1347 0.1347 0.1422 0.1422 −9.492 −9.508 −0.02653 −0.02651 [43]
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FIG. 7. EOB-NR comparison in terms of binding energy as a function of angular momentum for the q ¼ 1 binaries of Table II and the
q ≈ 1.22 case. In each subfigure, the upper panel shows the TEOBResum EbðjÞ curves for three different models listed in Table I (solid
red, dashed black and dashed gray) along with the corresponding NR data represented by the solid blue curves. The dots and the squares
mark the peak orbital frequency of each run with the corresponding color. The values for NR Eb and j at the merger are listed in Table III.
The lower panel of each subfigure shows the difference between EOB and NR results,ΔEEOBNR

b ≡ EEOB
b − ENR

b , with the shaded regions
representing our estimation of the NR error. The blue error regions are more reliable because they come from convergent simulations,
while the pink ones are obtained from differences between the two highest NR resolutions, and thus are less certain (cf. Sec. IV). Note
that we amplify the error region by a factor of 104 to improve its visibility. The oscillations in the panel for BAM: 0058 are due to
residual eccentricity.
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A. Energetics

EOB and NR dynamics are compared by considering
the gauge-invariant relation between binding energy per
reduced mass, Eb ¼ ðE −MÞ=ðMνÞ and orbital angular
momentum j≡ pφ [5,6,60]. We recall that in the EOB case

E is just the Hamiltonian function computed along the
EOB dynamics. For the NR configurations, ðENR; jNRÞ is
obtained as detailed in Refs. [5,60]. Figure 7 collects
several q ¼ 1 configurations with increasingly larger
tidal interactions, as well as a q ¼ 1.22 case. We display
1.25≲ q≲ 2 cases in Fig. 8. In each subfigure, the bottom
panels show ΔEEOBNR

b ≡ EEOB
b − ENR

b with the shaded
region representing our estimated NR error. We recall
that the blue-shaded regions come from convergent sim-
ulations, while the pink-shaded regions are obtained as the
difference between the two highest resolutions. For the
purposes of relating our results to that of Ref. [30], we show
GSF2ðþÞnm as the solid red curves. On both the NR
and EOB curves, the markers indicate the conventional
merger points, i.e., the values corresponding to the peak of
the amplitude of the l ¼ m ¼ 2 waveforms. The black
dashed curves terminating at the black dots represent
GSF23ðþÞGSF2ð−Þ, while the dashed gray curves terminat-

ing at the gray squares represent GSF23ðþÞ
4.5 GSF2

ð−Þ
4.5 to

illustrate the sensitivity of this quantity to the choice of the
value of the exponent p.
The performances of the analytical models are in broad

agreement with NR within their errors, but agreement in the
j interval corresponding to the last few cycles up to merger

TABLE III. BAM merger (mrg) data. The merger is taken to
occur at the peak of the amplitude of the l ¼ m ¼ 2 mode. f is
the corresponding quadrupole GW frequency in Hz. j is the
angular momentum and Eb is the binding energy (Sec. IVA) in
dimensionless units with the latter rescaled by ν.

BAM ω̂mrg fmrg (Hz) jmrg Emrg
b

0011 0.1615 1739 3.358 −0.06302
0095 0.1711 2048 3.318 −0.06520
0127 0.1364 1604 3.404 −0.05969
0017 0.1197 1406 3.532 −0.05388
0107 0.1333 1750 3.489 −0.05592
0021 0.1075 1263 3.584 −0.05151
0037 0.1357 1598 3.516 −0.05467
0048 0.1168 1371 3.568 −0.05213
0058 0.1486 1778 3.451 −0.05804
0094 0.08877 993 3.700 −0.04686
0091 0.1014 1191 3.658 −0.04864
0064 0.1234 1477 3.612 −0.05068
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FIG. 8. Same as Fig. 7 but for binaries with q≳ 1.25 with the top panels showing the q ≈ 1.5 cases. The error regions for
BAM:0017,0021,0048,0091,0127 are less certain and thus have been shaded in light pink.
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depends on the value of κT2 . Let us focus first on Fig. 7. As a
general statement, the, already good, EOB-NR agreement
yielded by the GSF2ðþÞ model is even improved when the
ð3þÞ-GSF resummed physical information is considered,
i.e., with the GSF23ðþÞGSF2ð−Þ variant. The latter predicts
a conventional merger point occurring at slightly lower
values of j than the previous case though, especially when
κT2 is increased, it gets closer to the NR prediction. This
seems to be a robust conclusion driven by inspecting the
lower panels of Fig. 7, where it was possible to obtain
robust error bars for NR run. The same conclusion holds
true, for the same configurations, for the values of Emrg

b (see
especially BAM:0064 and BAM:0107). By contrast, the

variant GSF23ðþÞ
4.5 GSF2

ð−Þ
4.5 predicts values for the angular

momentum at conventional merger that are systematically
larger than the NR ones.
Figure 7 (q ≈ 1) shows that our p ¼ 4 GSF-resummed

tidal models go from slightly overestimating the tidal
interaction to slightly underestimating it as κT2 grows.
This means that there is a certain region, 100≲κT2 ≲200,
where the energetics yielded by GSF23ðþÞ agrees rather
well with the NR one. This region corresponds to moder-
ately stiff EOSs with 500≲ Λ≲ 1000 which translates to
500≲ Λ̃≲ 2200 using, e.g., the low-spin prior inferred
mass ratio, q ∈ ½1; 1.37� of GW170817 [3]. Our region has
some overlap with the LIGO-Virgo constraint of Λ≲ 800
[1–3,61] and the one from the electromagnetic counterpart,
Λ̃≳ 400 [62].
We see a similar pattern in the top panels of Fig. 8

corresponding to q ≈ 1.5 where the TEOBResum models
overshoot the NR merger with increasing κT2 . However,
as was the case with q ¼ 1, there might be a similar
region of good agreement, but for κT2 ≲ 80. It seems that

GSF23ðþÞ
4.5 GSF2

ð−Þ
4.5 may be the most suitable model for

when q≳ 1.25. This could be indicative of this variant
effectively accounting for the increased NS deformability
of the q > 1 situations. In order to draw more definitive
conclusions, we require a larger set of NR data with robust
errors. A good agreement between energetics would
probably be obtained with a value of p ∼ 9=2 for large
values of κT2 and slightly smaller than 4 for smaller values
of κT2 . Since a meaningful assessment of the effective value
of p would require more error-controlled NR simulations,
we leave such exploration to future work.

B. GW phasing

We compare the EOB and NR multipolar waveforms by
using a standard (time and phase) alignment procedure
in the time domain [4]. Relative time and phase shifts are
determined by minimizing the L2 distance between the
EOB and NR phases integrated on a time interval corre-
sponding to the dimensionless frequency interval Iω ¼
ðω̂L; ω̂RÞ ≈ ð0.04; 0.06Þ. Such a choice for Iω allows one to

average out the phase oscillations linked to the residual
eccentricity. As a consistency check, we employed two
separate codes using different alignment routines. The
waveforms we show in Figs. 9 and 10 were agreed upon
by both codes.
In Fig. 9 we show several EOB (2,2) waveforms aligned

with NR ones for five q ≈ 1 cases along with q ≈ 1.22.
For this comparison, we opted to include the following
TEOBResum variants: GSF2ðþÞ (red) and GSF23ðþÞ

GSF2ð−Þ (dashed black). In each subfigure, the upper-left
panels show the waveforms in the late inspiral stage with
the upper-right panels showing the merger and the last few
cycles before the merger. The lower panels display the
phase disagreement between EOB and NR defined as
ΔϕEOBNR

22 ≡ ΔϕX
22 − ΔϕNR

22 with X representing the differ-
ent TEOBResum variants. The shaded (gray or pink)
regions represent our estimated NR phase error.
Looking at Fig. 9, one notices that GSF23ðþÞGSF2ð−Þ

behaves very similar to GSF2ðþÞ, but merges slightly earlier
due to increased tidal attraction. Within the moderate range
of 100≲ κT2 ≲ 200, GSF23ðþÞGSF2ð−Þ runs seem to termi-
nate closer to the NR merger and yield marginally smaller
ΔϕEOBNR

22 than GSF2ðþÞ.
These trends appear to carry on to the q ≳ 1.25 cases,

albeit with greater ΔϕEOBNR
22 as can be seen from Fig. 10. In

all cases shown, the EOB models seem to overshoot the NR
merger indicating that they underestimate the tidal attrac-
tion. The q ≈ 1.25 case is consistent with the q ≈ 1.22 case
with ΔϕEOBNR

22 ≈ −3 rad at the NR merger. Additionally,
we see in the q ≈ 1.5 comparisons that as κT2 increases,
EOBmodels diverge from the NR phase rather significantly
at the merger. Overall, there is an indication that the tides
might be stronger for larger κT2 , which could be mimicked

by p > 4 as in the model GSF23ðþÞ
4.5 GSF2

ð−Þ
4.5 .

C. GW higher multipoles

As an additional comparison, we took the best-quality
subset of our NR data, namely {BAM: 0037,0064,
0091,0094,0095,0107}, and compared the NR
waveforms to EOB ones for higher multipolar modes
beyond the quadrupole. This is an extension of the work
of Ref. [5] where they made one comparison for the (4,4)
mode and another for the (3,2) mode in the q ¼ 1 case. For
q ¼ 1, only the (3,2),(4,2),(4,4) modes are nonzero due to
symmetry. Figure 11 presents the (3,2) and (4,4) modes for
BAM:0095 (q ¼ 1) as well as the (2,1),(3,3),(4,3),(4,4)
modes for BAM:0107 (q ≈ 1.22). Among all our NR data
sets, we chose, for illustrative purposes, the two where
the most important higher modes are better resolved. The
other NRmodes [e.g., the (4,2) mode] are omitted as they are
too noisy to allow for a meaningful comparison with the
analytical models. We consider the two main TEOBResum
variants of above, GSF2ðþÞ and GSF23ðþÞGSF2ð−Þ. The
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FIG. 9. Dephasing between BAM NR simulations and two TEOBResum variants for q ≈ 1 in terms of increasing κT2 . We also
include the q ≈ 1.224 BAM: 0107 EOB-NR comparison here. The NR waveforms and amplitudes are plotted as solid blue curves.
The TEOBResum variants plotted are GSF2ðþÞ (red) and GSF23ðþÞGSF2ð−Þ (dashed black). In each subfigure, the upper-left panels
show the waveforms starting from ω̂ ∼ 0.03–0.04 corresponding roughly to (M⊙=M) kHz. The upper-right panels show roughly the
last cycle before and after the NR merger. The lower panels display the phase disagreement ΔϕEOBNR

22 ≡ ΔϕX
22 − ΔϕNR

22 with X
representing the two TEOBResum variants. The shaded (pink or gray) regions represent our estimated NR phase error. The vertical
cyan dashed lines mark the peak of the NR waveform amplitude. The red, green, blue dots respectively represent the same for the
three TEOBResum variants listed above. The vertical, dashed gray lines mark the waveform alignment interval Iω ¼ ðω̂L; ω̂RÞ
introduced in Sec. IV B.
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relative time shift used is the one determined on the
l ¼ m ¼ 2 mode as above. For definiteness, the figure only
reports thewaveform amplitude and frequency. Note that NR
error bars are omitted from the plots for clarity.
For BAM:0095, which is probably the most reliable

among our NR simulations, one finds an excellent

consistency between both the EOB and NR amplitude
and frequency essentially up to the conventional merger
time as shown by the insets in the top-left panels of Fig. 11
representing the (4,4) and (3,2) modes.
For these cases, we computed ΔϕEOBNR

lm with respect to
the NR merger. The dephasing of the various EOB variants

FIG. 10. Same as Fig. 9, but for the q≳ 1.25 cases. The figures in the left column correspond to q ≈ 1.50 in terms of κT2 increasing
downward. See the caption of Fig. 9 for details.
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for these modes is roughly consistent with the dephasing of
the (2,2) mode shown in Fig. 9 for BAM:0095, 0107.
Note that the NR data is somewhat noisy for the (2,1),(3,2),
(4,3) modes; more accuracy in the NR multipoles would
be necessary for further assessments. Overall, we find a
robust agreement between current NR data and EOB
waveforms up until the last few cycles before the merger,
that corresponds to the GW frequencies currently observed.
Additionally, despite the noise in the NR data, the various
EOB waveforms are consistent with the NR ones, and thus
they deliver a reliable description of the multipolar ampli-
tudes up to a few orbits before the merger.

V. CONCLUSIONS

In this article, we have investigated analytical improve-
ments to the tidal sector of TEOBResum [6,30] for the
description of quasicircular binary neutron star waveforms
valid up to merger. Our main findings are summarized
in below.

New resummed gravitoelectric terms in the EOB A
potential: The GSF-resummation of the LO gravitoelectric
l ¼ 3 term in the tidal EOB potential has the largest effect
on the GW phasing. For various binaries, the dephasing
accumulated from 10 Hz is −Δϕ22 ∼ 0.5–3 rad.
New resummed gravitomagnetic terms in the A potential:

The l ¼ 2 LO gravitomagnetic term, either in PN or GSF-
resummed form, gives a smaller contribution to the GW
phasing than the l ¼ 3 gravitoelectric term. In the most
relevant case (stiff EOS) we find thatΔϕ22 ≲ 0.1 rad from
10 Hz up to merger, cf. Fig. 5. The effect on the phasing is
larger by of a factor ∼2 and has the opposite sign if we
assume that the gravitomagnetic interaction is parame-
trized by static Love numbers. The inclusion of grav-
itomagnetic terms in the Taylor F2 approximant is found
to be negligible for the GW data analysis of LIGO-Virgo
data [52]. Our results seem to support this conclusion,
but we leave for the future a detailed assessment using
TEOBResum waveforms.

FIG. 11. EOB-NR comparisons for higher multipoles. Labels are as in Fig. 9. The upper panels of each subfigure show the amplitudes
of the aligned EOB variants against the corresponding NR waveform amplitude. The lower panels show the dimensionless frequencies
Mωlm from the NR and the EOB data. The insets show data near the NR merger. For modes with the smallest amplitudes, the noise in
the NR data is clearly visible.
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Tidal correction to the B potential: The LO tidal
correction to the EOB B potential computed in Ref. [17]
is positive leading to a (small) repulsive effect. Its impact
on the GW phasing is rather small and it is quantified in
Fig. 6 for a sample of binaries with jΔϕ22j ∼ 0.03 at most.
Tidal corrections in multipolar waveform and flux: The

inclusion of the gravitoelectric and magnetic terms of
Ref. [22] in the multipolar waveform and the dynamics
(via the flux) has a subleading contribution as shown by the
brown dashed curves in Fig. 5 with −Δϕ22 ∼ 0.03 at most,
roughly equal and opposite to the contribution to the B
potential.
Effective light-ring pole: We have investigated the effect

of two values for the free parameter p describing the order
of the 2GSF pole at the light ring, cf. Eq. (27). It is expected
to be in the range p ∈ ½4; 6� [21]; NR comparisons suggest
that the effective value of p ¼ 4 (as in Ref. [6]) is a simple
and sufficient choice to yield good agreement (within NR
errors) between the EOB and the NR waveforms. We
briefly explored, at the level of energetics, the sensitivity of
the analytical models to varying p by considering the value
p ¼ 9=2. We stress that the light-ring pole in TEOBResum
is always “dressed” in the sense that for all the possible
neutron star binaries, the EOB dynamics terminate at larger
radii, roughly given by rpeak ∼ ð1.35 − 1.4ÞrLR, than the
GSF pole at rLR (cf. Fig. 1). On the other hand, the light-
ring pole is a gauge artifact, resulting, in particular, from
working in the Damour-Jaranowski-Schäfer gauge [63]. It
was shown in Ref. [64] that the LR pole is a coordinate
singularity in EOB phase space, which was eliminated via a
canonical transformation in Ref. [37]. Recent approaches
based on the post-Minkowskian expansion employ a
different gauge with no LR singularity in the A potential
including the GSF, XA ≪ 1, limit [65].
Inspiral-merger BNS waveforms: We found that the

new analytical waveform information improves the agree-
ment between TEOBResum and high-resolution NR sim-
ulations. We require more high-quality NR data to fully
assess the potential benefits of the ð3þÞ-GSF resummed
tidal models with p > 4. The binding energy vs angular
momentum plots of Figs. 7 and 8 are the most telling of our
comparisons made in this article since they contain plots of
gauge-invariant quantities, thus enabling unambiguous
EOB-NR comparisons. The subset of NR data with robust
errors (shaded blue regions) in these figures carry the most
weight in judging the faithfulness of EOB models. For this
reason, GSF2ðþÞ supplied with either PN or GSF ð2−Þ tides
should be taken as the current most faithful TEOBResum
variant.
Higher multipoles: We also presented EOB-NR wave-

form comparisons for multipoles beyond the leading-order
quadrupole. In Fig. 11, we showed a small sample of
various modes up to (4,4) showing good phase alignment
between TEOBResum and NR up to frequencies corre-
sponding to the last one to two orbits before the merger.

Our results indicate that the TEOBResum multipolar
waveform can be accurately used in current GW parameter
estimation studies. At the analytical level, more information
on the amplitudes would be desirable to verify the match of
the NR waveform amplitudes up to merger.
The improvements in the tidal sector presented in this

paper carry over to spinning binaries. We show in Fig. 12,
as a preliminary example, a comparison between the spin-
accommodating TEOBResumS and BAM:0039, a high-
quality BNS waveform with q ≈ 1, Λ ≈ 1001.8, and
dimensionless spins equaling 0.14. The new GSF resum-
mation of the gravitoelectric LO term seems to reduce the
disagreement with NR data. We will present elsewhere a
detailed comparison with NR binary neutron star wave-
forms that include spin effects. The reason is that we are
currently improving the spinning vacuum sector of
TEOBResumS with the new waveform resummation pre-
sented in Refs. [66,67] and with a resummed expression for
self-spin terms that include the NLO PN terms [30,68]. It
will also be interesting to incorporate more spin-tidal
couplings [69–74], although their effect is likely to be
negligible for realistic spins [52].
TEOBResumS has been used for a recent analysis of

GW170817 [2] within the rapid parameter estimation
approach of Ref. [75]. Parameter estimation with the direct
use of TEOBResum (or TEOBResumS [30]) waveforms
might be possible by generating the waveform using
the post-adiabatic (PA) approximation as pointed out in
Ref. [46]. The procedure and performance for BNSs are
discussed in detail in Appendix B. We find that BNS
waveforms from 10 Hz can be generated in about ∼0.06 s
in the PA approximation while they require 1.26 s when
solving the ordinary differential equation (ODE) on an
adaptive grid. The relative phase difference accumulated
between the PA approximation at eighth order and the ODE

FIG. 12. Phasing comparison for the case involving BNSs
with spins, specifically BAM:0039 with q ¼ 1, Λ ¼ 1001.8 and
dimensionless spins χ1 ¼ χ2 ¼ 0.14. See the caption of Fig. 9
for details.
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runs is below 10−5 rad, and thus practically negligible. Fast
waveform evaluation can usually be performed by con-
structing surrogate models based on reduced-order models
[76]. The current implementation of TEOBResum (as well
as TEOBResumS [30]) proves competitive with these
approaches. In addition, TEOBResum can be used as a
key building block for the construction of closed-form
frequency-domain approximants [43,77,78].
A public implementation of our C code is available at

https://bitbucket.org/account/user/eob_ihes/projects/EOB.
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APPENDIX A: DERIVATION OF THE
GSF-RESUMMED ð3 + Þ POTENTIAL

We follow the formalism and notation of Ref. [21]
(henceforth BD). For more details, see their work.
Setting the NS label A ¼ 1 we have

Âð3þÞ
1 ¼ Âð3þÞ0GSF

1 þ Âð3þÞ1GSF
1 X1 þ Âð3þÞ2GSF

1 X2
1: ðA1Þ

To obtain the explicit expression for Âð3þÞ1GSF
1 we start

with Eq. (6.11) of BD

Âð3þÞ
1 ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðu; νÞ

p
Γ−1½yðuÞ� J3þ½yðuÞ�

JNewt3þ ðuÞ ; ðA2Þ

where ΓðyÞ is the usual redshift factor and y≡ ðm2ΩÞ2=3
is the GSF inverse separation. Fðu; νÞ is a function of
the circular-orbit, “bare” potential AðuÞ and its derivative,
and JNewt3þ ¼ 90m2

2=r
8
EOB which becomes JNewt3þ ðuÞ ¼

90X8
2u

8=m6
2 using rEOB ¼ M=u. This results in

Âð3þÞ
1 ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðu; νÞp

ð1 − X1Þ8
Γ−1½yðuÞ�m

6
2J3þ½yðuÞ�
90u8

; ðA3Þ

which is the ð3þÞ version of Eq. (7.3) in BD. Note that
Eq. (A2) is a general expression that holds for all orders
of X1, but current GSF knowledge limits us to OðX1Þ.
Additionally, the OðX1Þ difference between the EOB
inverse separation u and the GSF inverse separation y
needs to be accounted for [cf. Eqs. (2.18)–(2.19) of BD].
Combining the work of Ref. [54] and Appendix D of BD

we have that J3þ ¼ K3þ þ 1
3
J _2þ where the latter are given

as a series in q≡ X1=X2 ≪ 1

K3þ ¼ K0GSF
3þ ½1þ qðδ̂k3þ þ 2huuÞ�; ðA4Þ

J _2þ ¼ J0GSF_2þ ½1þ qΔj_2þ�≡ J0GSF_2þ ½1þ qðδ̂j_2þ þ 3huuÞ�;
ðA5Þ

where numerical values for δ̂k3þ are given in Table V of
Ref. [54] andΔj_2þ can be obtained from Eqs. (2.44)–(2.45)
of Ref. [54] in terms of Ref. [27]’s redshift and spin-
precession invariants. δ̂j_2þ is given as a PN series in
Appendix D of BD. huu ≡ 2ΔU=U0 where U0 ¼
ð1 − 3yÞ−1=2.
The background, i.e., 0GSF terms in Eqs. (A4)–(A5)

can be extracted from Ref. [54] or Appendix D of BD.
They read

K0GSF
3þ ¼ 6y8ð1 − 2yÞ ð42y

2 − 46yþ 15Þ
ð1 − 3yÞ2 ; ðA6Þ

J0GSF_2þ ¼ 18y9ð1 − 2yÞ2
ð1 − 3yÞ2 : ðA7Þ

With the above equations and the numerical data of
Refs. [27,54] we can now calculate the 1-GSF contribution
to Âð3þÞ. We perform several checks on our result:
(1) 0-GSF limit: Simply taking the q ∼ X1 → 0 limit of

our expression for Âð3þÞ yields

Âð3þÞ0GSF ¼ ð1 − 2uÞ
�
1þ 8

3

u2

ð1 − 3uÞ
�
: ðA8Þ

This agrees with the test-mass limit result given by
Eq. (6.45) of Ref. [20].

(2) Weak-field limit: Using BD’s PN series expansions
for δ̂k3þ and δ̂j_2þ and Ref. [79]’s series for ΔU we

straightforwardly obtain the PN series for Âð3þÞðuÞ

lim
u→0

Âð3þÞ1GSF ¼ 15

2
u −

311

24
u2 þOðu3Þ ðA9Þ

which agrees with the OðX1Þ part of Eq. (14). Our
numerical data is also consistent with this as can be
seen in Fig. 13.

We next investigate the LR limit. BD provided ample
explanations on how to ascertain the singular behavior
of Âðl�Þ as u → 1=3 and how to obtain the LR limit
of singularity-factored potentials Ãð2�Þ ≡ ð1 − 3uÞ7=2×
Âð2�Þ1GSF. Following the same analysis, we straightfor-
wardly establish that

lim
u→1

3

Âð3þÞ1GSF ¼ −
ζ

162
ð1 − 3uÞ−7=2

¼ 8

27

�
−

ζ

48
ð1 − 3uÞ−7=2

�
; ðA10Þ

EFFECTIVE-ONE-BODY MULTIPOLAR WAVEFORM FOR … PHYS. REV. D 99, 044051 (2019)

044051-17

https://bitbucket.org/account/user/eob_ihes/projects/EOB
https://bitbucket.org/account/user/eob_ihes/projects/EOB


where the last quantity in parentheses is the LR limit
of Âð2�Þ1GSF.
Accordingly, we now introduce the LR rescaled function

Ãð3þÞðuÞ≡ ð1 − 3uÞ7=2Âð3þÞ1GSFðuÞ ðA11Þ

whose PN series expansion

Ãð3þÞðu ≪ 1Þ ¼ 15

2
u

�
1 −

2201

180
uþOðu2Þ

�
ðA12Þ

hints at a cubic strong-field fit to the data of the form
15
2
uð1þ C1uþ C2u2Þ. However, after much experimenting

we settled on the following best fit to the data:

Ãð3þÞðuÞ≈ Ãð3þÞ
fit ðuÞ

¼ 15

2
uð1þC1uþC2u2þC3u3Þ

1þC4uþC5u2

1þC6u2
;

ðA13Þ

where

C1 ¼ −3.682095; C2 ¼ 5.171003;

C3 ¼ −7.639164; C4 ¼ −8.632781;

C5 ¼ 16.36009; C6 ¼ 12.31964: ðA14Þ

This fit and a 2PN expression for Ãð3þÞ are shown as the
black and blue curves in Fig. 13, respectively. Although our
fitting procedure excluded the data point at the light ring,
our fit nearly crosses it anyway (see Fig. 13). Additionally,
the fit approximates every one of the 23 data points to a
relative difference of < 5 × 10−4 with the exception of one
point with a 1% mismatch and another with a 0.1%

mismatch. The norm of the relative disagreement over
the entire data set is

jj1 − Ãð3þÞ
fit =Ãð3þÞ1SF

num jj ≈ 0.0118: ðA15Þ

Putting everything together, we arrive at

Âð3þÞ
A ¼ ð1 − 2uÞ

�
1þ 8

3

u2

ð1 − 3uÞ
�

þ XA
Ãð3þÞ
fit ðuÞ

ð1 − 3uÞ7=2 þ X2
A
110

3

u2

ð1 − 3uÞp3þ
: ðA16Þ

APPENDIX B: POST-ADIABATIC DYNAMICS

Within TEOBResumS, the dynamics of a (nonprecessing)
binary system is usually determined by numerically solving
four Hamilton’s equations. The time needed to solve these
four ODEs is the main contribution to the waveform
evaluation time. Using our publicly available C code (see
main text) a typical time-domain BNS waveform requires
∼1 sec to be generated starting from a GW frequency of
10 Hz and employing standard Runge-Kutta integration
routines with an adaptive time step. Thus, ODE integration
cannot be used in parameter estimation runs that require the
generation of 107 waveforms. Reference [46] pointed out a
way of reducing the evaluation time by making use of the PA
approximation to compute the system dynamics. While the
approach was then restricted to the inspiral phase, we present
here, for the first time, results that include the full evolution
up to merger.
We start by briefly summarizing the procedure described

in Ref. [46]. The PA approximation is an extension of
the one introduced in Refs. [8,9] (and expanded in
Refs. [55,80]) and is currently used to determine the initial
conditions of TEOBResumS. Using this approximation, it
is possible to analytically compute the radial and angular
momentum of a binary system, under the assumption that
the GW flux is small. This is obviously true in the early
inspiral phase and progressively loses validity when the
two objects get close. The approach starts by considering
the conservative system, when the flux is null, and then
computes the successive corrections to the momenta. We
denote with nPA the nth-order iteration of this procedure.
Practically, to compute the PA dynamics, we first build a
uniform radial grid from the initial radius r0 to an rmin up
until which we are sure the approximation holds. We then
analytically compute the momenta that correspond to each
radius at a chosen PA order. Finally, we determine the full
dynamics and recover the time and orbital phase by
quadratures. From rmin we can then start the usual ODE-
based dynamics using the PA quantities as initial data as it
is usually done (at 2PA order) in TEOBResumS. The
benefits of using this method come from the fact that we
can avoid the numerical solution of two Hamilton’s

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
–0.2

–0.1

0.0

0.1

0.2

FIG. 13. Ãð3þÞ ≡ ð1 − 3uÞ7=2Âð3þÞ1GSF data (red dots) with the
PN series (blue dashed curve). The values for the Ãð3þÞðuÞ data
set are obtained using the numerical data for the tidal invariants of
Refs. [27,54]. The black curve is our six-parameter fit given by
Eqs. (A13)–(A14). The green dot marks the light-ring limit and
the brown dot marks the u → 0 limit. The vertical dashed black
line marks the position of the light ring.
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equations and that we can integrate the other two on a very
sparse radial grid.
With the initial radius fixed, there are three parameters

that can be chosen at will in the PA procedure. These are the
PA order, the number of grid points (or, equivalently, the
grid step), and rmin. We use the 8PA order, a grid separation
Δr ∼ 0.2, and rmin ∼ 12 (note the latter value can be tuned
depending on the BNS spin).
This is a conservative choice of parameters that guarantees

a remarkable agreement with the dynamics computed by

solving the ODEs. We show in Fig. 14 the waveform
fractional-amplitude difference (top panel) and phase differ-
ence (medium panel) for a nonspinning BNS system with
1.35 M⊙ þ 1.35 M⊙ and SLy EOS. The vertical dashed line
marks the stitching point between the PA evolution and the
ODE evolution for the last orbits where the PA approxima-
tion breaks down. Table IV highlights the performance of the
C code for such a case. Here, the initial radius is determined
by solving the circular Hamilton’s equations instead of
relying on Kepler’s law, as discussed in Sec. VI of Ref. [30].
We can see that the waveform computed using the PA

dynamics (completed with the ODE for the last few orbits)
only takes around 60 milliseconds to be evaluated. Such a
time is competitive with respect to the surrogate models
that are currently being constructed in order to reduce
waveform evaluation times [76]. Finally, Table V illus-
trates the performance of TEOBResumS when the wave-
form, which is obtained on a nonuniform temporal grid,
is interpolated on an evenly spaced time grid, sampled at
Δt−1 ¼ 4096 Hz. Note that the interpolation routine is not
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FIG. 14. Comparison between the waveforms computed solv-
ing the ODEs with the GSL rk8 routine and an adaptive time
step, and the PAwaveform completed with the same ODE solver
after r < rmin for a nonspinning BNS system with 1.35 M⊙ þ
1.35 M⊙ and SLy EOS starting at 10 Hz. The PA parameters used
are the ones described in the second row of Table IV. The dashed
grey line marks the stitching point, rmin, between the PA and
ODE-based dynamics. Having written the waveform strain as
h=ν≡ Ae-iϕ, we define the phase difference as ΔϕODE−8PA ≡
ϕODE − ϕ8PA and the fractional amplitude difference as
ΔAODE−8PA ≡ ðAODE − A8PAÞ=AODE. The higher differences at
the start of the evolution are due to the fact that the complete ODE
is currently started using only 2PA data.
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FIG. 15. Comparison of Fig. 14 in the case of a BBH system
with mA ¼ mB ¼ 3 M⊙ and χA ¼ χB ¼ −0.99. The evolution is
started at a GW frequency f0 ¼ 20 Hz, which corresponds to an
initial radius r0 ¼ 66.34. The 8PA dynamics is computed using a
grid separation Δr ¼ 0.2 and then stitched to the ODE-based one
at rmin ¼ 13.

TABLE IV. Performance of the TEOBResumS C code for a
nonspinning BNS system with 1.35 M⊙ þ 1.35 M⊙ and SLy
EOS. f0 and r0 denote the initial GW frequency and radial
separation [in units of ðGMÞ=c2]. The 8PA dynamics is computed
on a grid with Nr points and grid separation Δr that ends at rmin
and is then completed by the standard ODE one. The evaluation
times τ are determined using a standard 1.8 GHz Intel Core i7 and
16 GB RAM. The code is compiled with the GNU gcc compiler
using O3 optimization.

f0 [Hz] r0 rmin Nr Δr τ8PA [sec] τODE [sec]

20 112.80 12 500 0.20 0.04 0.53
10 179.01 12 800 0.21 0.06 1.26

TABLE V. Performance of the TEOBResumS C code when
the final waveform is interpolated on a time grid sampled at
1/(4096 Hz). We use a standard, nonoptimized, GSL interpolation
routine. The considered system coincides with that of Table IV.

f0 [Hz] r0 τint8PA [sec] τintODE [sec]

20 112.80 0.54 1.06
10 179.01 3.2 4.4
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optimized, and as such, it by far comprises the dominant
contribution to the global computational cost.

1. Binary black hole case

For completeness, we also show in Fig. 15 the case of
a binary black hole (BBH) system, completed with the

post-merger and ringdown phase. We consider an equal-
mass black-hole binary with mA ¼ mB ¼ 3 M⊙ and nearly
extremal antialigned spins, χA ¼ χB ¼ −0.99. We do not
want to discuss these cases in detail here. It suffices to note
that the main conclusions do not change when we take into
account BBH systems.
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