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In this work we develop a theoretical framework for Gauss-Bonnet modified gravity theories, in which
ghost modes can be eliminated at the level of the equations of motion. In particular, after we present how
the ghosts can occur at the level of the equations of motion, we employ the Lagrange multiplier technique,
and by means of constraints we are able to eliminate the ghost modes from Gauss-Bonnet theories of the
forms fðGÞ and FðR;GÞ. Some cosmological realizations in the context of ghost-free fðGÞ gravity are
presented, by using the reconstruction technique we developed. Finally, we explore the modifications to
Newton’s law of gravity generated by the ghost-free fðGÞ theory.
DOI: 10.1103/PhysRevD.99.044050

I. INTRODUCTION

Undoubtedly one of the ultimate goals of theoretical
physics is to find a consistent way to describe all the observed
interactions under the same theoretical framework. This
would require quantizing gravity in some way and to date
only string theory seems to provide a complete UV com-
pletion of all known particle physics theories. In cosmology,
the quantum gravity era controls the preinflationary era,
during which gravity is expected to be unified with the other
three interactions. It is evident that during this preinflationary
era, string theory would be the most appropriate theory to
describe the physical laws of our Universe; however it is not
easy to prove that this is indeed the case.However some string
theory effects could have an impact on the inflationary era,
and this impact may be in fact measurable. There exist many
theories in modern theoretical cosmology which take into
account string-theory-motivated terms in the interaction
Lagrangian of the model, such as the scalar-Einstein-
Gauss-Bonnet gravity theory [1,2], in which case the
Lagrangian is of the form,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
∂μ χ∂μ χ þ hðχÞG

− VðχÞ þ Lmatter

�
; ð1Þ

where G is the Gauss-Bonnet invariant defined as follows:

G≡ R2 − 4RμνRμν þ RμνρσRμνρσ: ð2Þ

The scalar-Einstein-Gauss-Bonnet models are motivated by
α0 corrections in superstring theories [3], and they serve as a
consistent example of how string theory may leave its impact
on the primordial acceleration era of the Universe. Another
very well-studied class of theories in the same context, is that
of fðGÞ gravity [4–9], in which case the Lagrangian is of the
form,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ fðGÞ þ Lmatter

�
: ð3Þ

These theories contain a function of the Gauss-Bonnet
invariant, and therefore thepresence of this functiongenerates
nontrivial effects in the theory, due to the fact that the effect of
the Gauss-Bonnet term does not appear as a total derivative
anymore, as in the linear theory of the Gauss-Bonnet scalar.
Both these theories belong to a wider class of cosmological
modelswhich are knownasmodified gravitymodels [10–16],
and which generalize the standard Einstein-Hilbert theory.
Themotivation for studying such theories comes from the fact
that in the context of these, several cosmological eras may be
described by the same theory in a unified way; see e.g.,
Ref. [17] in which the unified description of the inflationary
and dark energy eras was given in terms of fðRÞ gravity.
In addition, similar studies were presented in terms of
scalar-Einstein-Gauss-Bonnet models [18] and fðGÞmodels.
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Due to the importance of the models containing or
involving the Gauss-Bonnet scalar, which are string theory
motivated in most cases, in this paper we shall address an
important shortcoming of these theories, namely the
existence of ghosts. Usually, higher-derivative theories
contain ghost degrees of freedom (d.o.f.) due to the
Ostrogradsky instability; see e.g., Ref. [19]. As was pointed
out in Ref. [20], ghost d.o.f. may occur at various levels of
the theory, even at the cosmological perturbation level of
FðR;GÞ theories, where superluminal modes ∼k4 occur,
where k is the associated wave number. Having these issues
in mind, in this paper we shall investigate how the ghosts
may be eliminated from fðGÞ and FðR;GÞ theories. In
particular, by using an appropriate constraint used first in
the context of mimetic gravity [21–23], we shall demon-
strate that the resulting theories are ghost free. Similar
constrained Gauss-Bonnet theories in the context of mim-
etic gravity were studied in Ref. [24]. Also ghost-free
theories were also developed in Refs. [25,26], but in a
different context. In this work we shall also consider the
cosmological evolution of the resulting theories, and we
shall investigate how several cosmological evolutions may
be realized by the ghost-free models we will develop,
focusing on the dark energy era and inflationary era.
Finally, we shall investigate how Newton’s law is modified
in the context of ghost-free fðGÞ gravity.
This paper is organized as follows. In Sec. II we address

the ghost issue in the context of fðGÞ gravity. We first
demonstrate how ghosts may occur in this theory and we
provide two remedy theories, which are ghost-free exten-
sions of fðGÞ gravity. In Sec. III we investigate how several
cosmological evolutions may be realized in the context of
the proposed ghost-free fðGÞ theory. In Sec. IV we discuss
how Newton’s law is modified in the context of ghost-free
fðGÞ gravity, and finally in Sec. V we briefly investigate
how a general FðR;GÞ theory may be rendered ghost free.

II. GHOST-FREE f ðGÞ GRAVITY

In this sectionwe shall investigate how toobtain ghost-free
fðGÞ gravity, and we shall employ the Lagrange multiplier
formalism in order to achieve this. Before getting into the
details of our formalism, we will start the presentation by
showing explicitly how ghost modes may occur in fðGÞ
gravity at the level of the equations of motion, and the ghost-
free version construction of the theory follows.

A. Ghosts in f ðGÞ gravity
In order to investigate if any ghost modes could appear in

the fðGÞ gravity model (3), we investigate the equations of
motion, by considering a general variation of the metric of
the following form:

gμν → gμν þ δgμν: ð4Þ

Effectively, the variations of δΓκ
μν, δRμνλσ, δRμν, and δR read,

δΓκ
μν ¼

1

2
gκλð∇μδgνλ þ∇νδgμλ −∇λδgμνÞ;

δRμνλσ ¼
1

2
½∇λ∇νδgσμ −∇λ∇μδgσν −∇σ∇νδgλμ

þ∇σ∇μδgλν þ δgμρRρ
νλσ − δgνρRρ

μλσ�;

δRμν ¼
1

2
½∇μ∇ρδgνρ þ∇ν∇ρδgμρ −□δgμν

−∇μ∇νðgρλδgρλÞ − 2Rλ
ν
ρ
μδgλρ

þ Rρ
μδgρν þ Rρ

νδgρμ�;
δR ¼ −δgμνRμν þ∇μ∇νδgμν −□ðgμνδgμνÞ: ð5Þ

Accordingly the variation of the Gauss-Bonnet scalar δG
reads,

δG ¼ 2Rð−δgμνRμν þ∇μ∇νδgμν −∇2ðgμνδgμνÞÞ
þ 8RρσRμ

ρ
ν
σδgμν − 4ðRρν∇ρ∇μ þ Rρμ∇ρ∇νÞδgμν

þ 4Rμν∇2δgμν þ 4Rρσ∇ρ∇σðgμνδgμνÞ
− 2RμρστRν

ρστδgμν − 4Rρμσν∇ρ∇σδgμν: ð6Þ

Then for the fðGÞ gravity model (3), by varying the action
with respect to the metric tensor gμν, we obtain the following
equations of motion:

0 ¼ 1

2κ2

�
−Rμν þ 1

2
gμνR

�
þ Tμν

matter þ
1

2
gμνfðGÞ

þ ð−2RRμν þ 8RρσRμ
ρ
ν
σ − 2RμρστRν

ρστÞf0ðGÞ
þ 2ð∇μ∇ν − gμν□ÞðRf0ðGÞÞ − 4∇μ∇ρðRρνf0ðGÞÞ
− 4∇ν∇ρðRρμf0ðGÞÞ þ 4□ðRμνf0ðGÞÞ
þ 4gμν∇ρ∇σðRρσf0ðGÞÞ − 4∇ρ∇σðRρμσνf0ðGÞÞ: ð7Þ

By using the Bianchi identities,

∇ρRρτμν ¼ ∇μRντ −∇νRμτ;

∇ρRρμ ¼
1

2
∇μR;

∇ρ∇σRμρνσ ¼ □Rμν −
1

2
∇μ∇νRþ RμρνσRρσ − Rμ

ρRνρ;

∇ρ∇σRρσ ¼ 1

2
□R; ð8Þ

we can rewrite Eq. (7) as follows:
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0 ¼ 1

2κ2

�
−Rμν þ 1

2
gμνR

�
þ Tμν

matter þ
1

2
gμνfðGÞ

þ ð−2RRμν − 2RμρστRν
ρστ þ 4Rμ

ρRνρ

þ 4RρσRμ
ρ
ν
σÞf0ðGÞ þ 2R∇μ∇νf0ðGÞ − 2gμνR□f0ðGÞ

− 4Rρν∇μ∇ρf0ðGÞ − 4Rρμ∇ν∇ρf0ðGÞ þ 4Rμν□f0ðGÞ
þ 4gμνRρσ∇ρ∇σf0ðGÞ − 4Rρμσν∇ρ∇σf0ðGÞ: ð9Þ

Also in four dimensions, we have the following identity:

0¼ 1

2
gμνG−2RRμν−2RμρστRν

ρστþ4Rμ
ρRνρþ4RρσRμ

ρ
ν
σ:

ð10Þ

Then Eq. (9) takes the following form:

0¼ 1

2κ2

�
−Rμνþ1

2
gμνR

�
þTμν

matterþ
1

2
gμνðfðGÞ−Gf0ðGÞÞ

þ2R∇μ∇νf0ðGÞ−2gμνR□f0ðGÞ
−4Rρν∇μ∇ρf0ðGÞ−4Rρμ∇ν∇ρf0ðGÞþ4Rμν□f0ðGÞ
þ4gμνRρσ∇ρ∇σf0ðGÞ−4Rρμσν∇ρ∇σf0ðGÞ: ð11Þ

We now rewrite Eq. (11) in the following form:

0 ¼ 1

2κ2

�
−Rμν þ

1

2
gμνR

�
þ 1

2
Tmatter μν þ

1

2
gμνðfðGÞ

− Gf0ðGÞÞ þDμν
τη∇τ∇ηf0ðGÞ;

Dμν
τη ≡ ðδμτδνη þ δν

τδμ
η − 2gμνgτηÞR

þ ð−4gρτδμηδνσ − 4gρτδνηδμσ þ 4gμνgρτgσηÞRρσ

þ 4Rμνgτη − 2Rρμσνðgρτgση þ gρηgστÞ: ð12Þ

Having in mind that,

gμνDμν
τη ¼ 4

�
−
1

2
gτηRþ Rτη

�
; ð13Þ

we find in component form,

D00
00 ¼ 2R − 2g00g00R − 8R0

0 þ 4g00R00 þ 4g00R00

− 4R0
0
0
0;

Dij
00 ¼ 4gijR00 − 4R0

i
0
j − 2gijg00Rþ 4Rijg00: ð14Þ

If we choose the gauge in which g0i ¼ 0, then the quantity
D00

00 vanishes but Dij
00 does not vanish in general. This

indicates that Eq. (11) includes the fourth derivative of the
metric with respect to the cosmic time coordinate and
therefore ghost modes might appear. We may see the
existence of ghost modes explicitly, by considering pertur-

bations. Let a solution of Eq. (11) be gμν ¼ gð0Þμν and we

denote the curvatures and connections given by gð0Þμν by using

the index “(0).”Then in order to investigate if any ghost could
exist, we may consider the variation of Eq. (11) around the

solution gð0Þμν as follows: gμν ¼ gð0Þμν þ δgμν. For the variation
of δgμν, we may impose the following gauge condition:

0 ¼ ∇μδgμν: ð15Þ
Then Eq. (6) reduces to,

δG ¼ 2Rð−δgμνRμν −∇2ðgμνδgμνÞÞ þ 8RρσRμ
ρ
ν
σδgμν

þ 4Rμν∇2δgμν þ 4Rρσ∇ρ∇σðgμνδgμνÞ
− 2RμρστRν

ρστδgμν − 4Rρμσν∇ρ∇σδgμν: ð16Þ
Even if we impose the condition δgμμ ¼ 0, Eq. (16) has the
following form:

δG ¼ −2RRμνδgμν þ 8RρσRμ
ρ
ν
σδgμν þ 4Rμν∇2δgμν

− 2RμρστRν
ρστδgμν − 4Rρμσν∇ρ∇σδgμν; ð17Þ

which also contains the second derivative of the metric gμν
with respect to the cosmic time coordinate. Under the

perturbation gμν ¼ gð0Þμν þ δgμν, the term Dμν
τη∇τ∇ηf0ðGÞ

takes the following form:

Dμν
τη∇τ∇ηf0ðGÞ→Dμν

τη∇τ∇ηf0ðGð0ÞÞ
þDμν

τη∇τ∇ηðf00ðGð0ÞÞδGÞþ �� � ; ð18Þ

which contains the fourth derivative of the metric gμν with
respect to the cosmic time coordinate, and therefore the
perturbed equation (12) may have a ghost mode. Note that in
Eq. (18), the “� � �” represents the terms arising from the
variation of Dμν

τη∇τ∇η. The propagating mode is a scalar
expressed by the Gauss-Bonnet invariant as it is clear from
Eq. (12). Having presented explicitly how a ghost modemay
occur in fðGÞ gravity, we now demonstrate how the ghost
modesmay be eliminated or avoided in this theory. This is the
subject of the next subsection.

B. Development of ghost-free f ðGÞ gravity
In this subsection, we consider how we can avoid the

ghost in fðGÞ gravity. To this end, we rewrite the action of
Eq. (3) by introducing an auxiliary field χ as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ hðχÞG − VðχÞ þ Lmatter

�
: ð19Þ

Then by varying the action (19) with respect to the auxiliary
field χ, we obtain the following equation:

0 ¼ h0ðχÞG − V 0ðχÞ; ð20Þ

which can be solved with respect to χ as a function
of the Gauss-Bonnet invariant G as χ ¼ χðGÞ. Then by
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substituting the obtained expression into Eq. (20), we
reobtain the action of Eq. (3) with fðGÞ being equal to,

fðGÞ ¼ hðχðGÞÞG − VðχðGÞÞ: ð21Þ

On the other hand, by varying the action (20) with respect
to the metric tensor, we obtain,

0 ¼ 1

2κ2

�
−Rμν þ

1

2
gμνR

�
þ 1

2
Tmatter μν

−
1

2
gμνVðχÞ þDμν

τη∇τ∇ηhðχÞ; ð22Þ

with Dμν
τη being defined in Eq. (12). Since χ can be given

by a function of the Gauss-Bonnet invariant G, Eq. (22) is
the fourth-order differential equation for the metric, which
may actually generate the ghost modes. Equation (22)
indicates that the propagating scalar mode is quantified in
terms of χ. Then in order for the scalar mode to not be a
ghost, we may add a canonical kinetic term of χ in the
action (19) as in the model of Eq. (1) [1], where we have
chosen the mass dimension of χ to be unity. Then instead of
Eqs. (20) and (22), we obtain,

0 ¼ □χ þ h0ðχÞG − V 0ðχÞ; ð23Þ

0 ¼ 1

2κ2

�
−Rμν þ

1

2
gμνR

�
þ 1

2
Tmatter μν þ

1

2
∂μ χ∂ν χ

−
1

2
gμν

�
1

2
∂ρ χ∂ρ χ þ VðχÞ

�
þDμν

τη∇τ∇ηhðχÞ: ð24Þ

Since the equations derived above do not contain higher
than second-order derivatives, if we impose initial con-
ditions for the quantities gμν, _gμν, χ, and _χ on a spatial
hypersurface of constant cosmic time, the evolution of gμν
and χ is uniquely determined, and as it is clear from
Eq. (24), these could not be ghosts. In the model of Eq. (1),
we have introduced a new dynamical d.o.f., namely χ, but if
we want to reduce the dynamical d.o.f., we may impose a
constraint as in the mimetic gravity case [21–23], by
introducing the Lagrange multiplier field λ, as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ λ

�
1

2
∂μ χ∂μ χ þ μ4

2

�

−
1

2
∂μ χ∂μ χ þ hðχÞG − VðχÞ þ Lmatter

�
; ð25Þ

where μ is a constant with mass-dimension one. Then, by
varying the above action (25) with respect to λ, we obtain
the constraint,

0 ¼ 1

2
∂μ χ∂μ χ þ μ4

2
: ð26Þ

Then due to the fact that the kinetic term becomes a
constant, the kinetic term in the action of Eq. (25) can be
absorbed into the redefinition of the scalar potential VðχÞ
as follows:

ṼðχÞ≡ 1

2
∂μ χ∂μ χ þ VðχÞ ¼ −

μ4

2
þ VðχÞ; ð27Þ

and we can rewrite the action of Eq. (25) as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ λ

�
1

2
∂μ χ∂μ χ þ μ4

2

�

þ hðχÞG − ṼðχÞ þ Lmatter

�
: ð28Þ

For the model of Eq. (28), in addition to Eq. (26), we have
the following two equations of motion:

0 ¼ −
1ffiffiffiffiffiffi−gp ∂μðλgμν

ffiffiffiffiffiffi
−g

p ∂ν χÞ þ h0ðχÞG − Ṽ 0ðχÞ; ð29Þ

0 ¼ 1

2κ2

�
−Rμν þ

1

2
gμνR

�
þ 1

2
Tmatter μν −

1

2
λ∂μ χ∂ν χ

−
1

2
gμνṼðχÞ þDμν

τη∇τ∇ηhðχÞ; ð30Þ

where we have also used Eq. (26). By multiplying Eq. (30)
with gμν, we obtain,

0 ¼ R
2κ2

þ 1

2
Tmatter þ

μ4

2
λ − 2ṼðχÞ

− 4

�
−Rτη þ 1

2
gτηR

�
∇τ∇ηhðχÞ; ð31Þ

where we used Eq. (26) and Tmatter ≡ gμνTmatter μν.
Equation (31) can be solved with respect to the
Lagrange multiplier field λ, and the result is,

λ ¼ −
2

μ4

�
R
2κ2

þ 1

2
Tmatter − 2ṼðχÞ

− 4

�
−Rτη þ 1

2
gτηR

�
∇τ∇ηhðχÞ

�
: ð32Þ

We expect that the model (28) could not contain a ghost
mode. And actually by using perturbations of the metric, we
now show explicitly that indeed the model (28) is ghost free.

Let the general solutions of Eqs. (26), (29), and (30) be gð0Þμν ,
χð0Þ, and λð0Þ and we consider the following perturbation:

gμν ¼ gð0Þμν þδgμν; χ¼ χð0Þ þδχ; λ¼ λð0Þ þδλ: ð33Þ

Then Eqs. (26), (29), and (30) can be written as

0 ¼ ∂μ χð0Þ∂μδχ − δgμν∂μ χð0Þ∂ν χð0Þ; ð34Þ
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0¼gð0Þρσδgρσ
2

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂μ

�
λð0Þgð0Þμν

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
∂ν χ

ð0Þ
�
−

1ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂μ

�
δλgð0Þμν

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
∂ν χ

ð0Þ
�

þ 1ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂μ

�
λð0Þgð0Þμρδgρσgð0Þσν

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
∂ν χ

ð0Þ
�
−

1

2
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂μ

�
λð0Þgð0Þμνgð0Þρσδgρσ

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
∂ν χ

ð0Þ
�

−
1ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂μ

�
λð0Þgð0Þμν

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
∂νδχ

�
þh00ðχð0ÞÞδχGð0Þ−Ṽ 00ðχð0ÞÞδχ

þh0ðχð0ÞÞð2Rð0Þð−δgμνRð0Þμνþ∇ð0Þμ∇ð0Þνδgμν−□ð0Þðgð0ÞμνδgμνÞÞþ8Rð0ÞρσRð0Þμ
ρ
ν
σδgμν

−4ðRð0Þρν∇ð0Þ
ρ ∇ð0ÞμþRð0Þρμ∇ð0Þ

ρ ∇ð0ÞνÞδgμνþ4Rð0Þμν□ð0Þδgμνþ4Rð0Þρσ∇ð0Þ
ρ ∇ð0Þ

σ ðgð0ÞμνδgμνÞ
−2Rð0ÞμρστRð0Þν

ρστδgμν−4Rð0Þρμσν∇ð0Þ
ρ ∇ð0Þ

σ δgμνÞ; ð35Þ

0 ¼ 1

2κ2

�
−
1

2
ð∇ð0Þ

μ ∇ð0Þ ρδgνρ þ∇ð0Þ
ν ∇ð0Þ ρδgμρ −□ð0Þδgμν −∇ð0Þ

μ ∇ð0Þ
ν ðgð0Þ ρλδgρλÞ

− 2Rð0Þ λ
ν
ρ
μδgλρ þ Rð0Þ ρ

μδgρν þ Rð0Þ ρ
νδgρμÞ þ

1

2
Rð0Þδgμν þ

1

2
gð0Þμν ð−δgρσRð0Þ ρσ þ∇ð0Þ ρ∇ð0Þ σδgρσ −□ð0Þðgð0Þ ρσδgρσÞÞ

�

þ 1

2
δTmatter μν −

1

2
δλ∂μ χ

ð0Þ∂ν χ
ð0Þ −

1

2
λð0Þ∂μδχ∂ν χ

ð0Þ −
1

2
λð0Þ∂μ χ

ð0Þ∂νδχ −
1

2
δgμνṼðχð0ÞÞ −

1

2
gð0Þμν Ṽ 0ðχð0ÞÞδχ

þ f−2ðδgμνgð0Þ τη − gð0Þμν gð0Þ τζδgζξgð0Þ ξηÞRð0Þ þ ðδμτδνη þ δν
τδμ

η − 2gð0Þμν gð0Þ τηÞð−δgζξRð0Þ ζξ þ∇ð0Þ ζ∇ð0Þ ξδgζξ

−□ð0Þðgð0Þ ζξδgζξÞÞ þ 4ðgð0Þ ρζδgζξgð0Þ ξτδμηδνσ þ gð0Þ ρζδgζξgð0Þ ξτδνηδμσ þ δgμνgð0Þ ρτgð0Þ ση þ gð0Þμν gð0Þ ρζδgζξgð0Þ ξτgð0Þ ση

þ gð0Þμν gð0Þ ρτgð0Þ σζδgζξgð0Þ ξηÞRð0Þ
ρσ þ 2ð−gð0Þ ρτδμηδνσ − gð0Þ ρτδνηδμσ þ gð0Þμν gð0Þ ρτgð0Þ σηÞð∇ð0Þ

ρ ∇ð0Þ ξδgσξ þ∇ð0Þ
σ ∇ð0Þ ξδgρξ

−□ð0Þδgρσ −∇ð0Þ
ρ ∇ð0Þ

σ ðgð0Þ ζξδgζξÞ − 2Rð0Þ ζ
σ
ξ
ρδgζξ þ Rð0Þ ξ

ρδgξσ þ Rð0Þ ξ
σδgξρÞ − 4Rð0Þ

μν gð0Þ τζδgζξgð0Þ ξη

þ 4gð0Þ τηð∇ð0Þ
μ ∇ð0Þ ξδgνξ þ∇ð0Þ

ν ∇ð0Þ ξδgμξ −□ð0Þδgμν −∇ð0Þ
μ ∇ð0Þ

ν ðgð0Þ ζξδgζξÞ − 2Rð0Þ ζ
ν
ξ
μδgζξ þ Rð0Þ ξ

μ δgξν þ Rð0Þ ξ
ν δgξμÞ

− 2ð∇ð0Þ
σ ∇ð0Þ

μ δgνρ −∇ð0Þ
σ ∇ð0Þ

ρ δgνμ −∇ð0Þ
ν ∇ð0Þ

μ δgσρ þ∇ð0Þ
ν ∇ð0Þ

ρ δgσμ þ δgρξRð0Þ ξ
μσν − δgμξRð0Þ ξ

ρσνÞgð0Þ ρτgð0Þ ση

− 4Rð0Þ
ρμσνðgð0Þ ρζδgζξgð0Þ ξτgð0Þ ση þ gð0Þ ρτgð0Þ σζδgζξgð0Þ ξηÞg∇ð0Þ

τ ∇ð0Þ
η hðχð0ÞÞ

−
1

2
Dð0Þ τη

μν gð0Þ ζξð∇ð0Þ
τ δgηξ þ∇ð0Þ

η δgτξ −∇ð0Þ
ξ δgτηÞ∂ζhðχð0ÞÞ þDð0Þ τη

μν ∇ð0Þ
τ ∇ð0Þ

η ðh0ðχð0ÞÞδχÞ: ð36Þ

On the other hand, Eq. (32) yields,

δλ¼−
2

μ4

�
1

2κ2
ð−δgρσRð0Þρσþ∇ð0Þρ∇ð0Þσδgρσ −□ð0Þðgð0ÞρσδgρσÞÞþ

1

2
δTmatter−2Ṽ 0ðχð0ÞÞδχ−4

�
−
1

2
ðgð0Þηξ∇ð0Þτ∇ð0Þρδgξρ

þgð0Þτξ∇ð0Þη∇ð0Þρδgξρ−gð0Þτξgð0Þηζ□ð0Þδgξζ −∇ð0Þτ∇ð0Þηðgð0ÞρλδgρλÞ−2Rð0ÞληρτδgλρþRð0Þρτgð0ÞηξδgρξþRð0Þρηgð0ÞτξδgρξÞ

þ1

2
Rð0Þgð0Þτζgηξδgζξþ

1

2
gð0Þτηð−δgρσRð0Þρσþ∇ð0Þρ∇ð0Þσδgρσ −□ð0Þðgð0ÞρσδgρσÞ

��
∇ð0Þ

τ ∇ð0Þ
η hðχð0ÞÞ

−4ðgð0Þτζδgζξgð0Þξαgð0Þηβþgð0Þηζδgζξgð0Þξαgð0ÞτβÞ
�
−Rð0Þ

αβ þ
1

2
gð0Þαβ R

ð0Þ
�
∇ð0Þ

τ ∇ð0Þ
η hðχð0ÞÞ−4

�
−Rð0Þτηþ1

2
gð0ÞτηRð0Þ

�

×

�
−
1

2
Dð0Þτη

μν gð0Þζξð∇ð0Þ
τ δgηξþ∇ð0Þ

η δgτξ−∇ð0Þ
ξ δgτηÞ∂ηhðχð0ÞÞþDð0Þτη

μν ∇ð0Þ
τ ∇ð0Þ

η ðh0ðχð0ÞÞδχÞÞ
�
: ð37Þ

By substituting Eq. (37) into Eq. (36), wemay eliminate δλ. The obtained equation contains first and second derivatives of δgμν
and χ, especially the first and second derivatives with respect to the cosmic time t. We can choose χð0Þ to be,

χð0Þ ¼ μ2t: ð38Þ

Then Eq. (34) takes the following form:
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0 ¼ δ _χ − μ2δgtt; ð39Þ
andwe also have δ ̈χ ¼ μ2δ_gtt. Thenwe can further eliminate
the variation terms δ _χ and δ ̈χ, and the obtained equation
contains the first and second derivatives of δgμν with respect
to the cosmic time t, but does not include the first and second
derivative terms δχ again with respect to time t. Then by
providing the initial conditions for δgμν, δ_gμν, and χ on a
spatial hypersurface, we can determine the time evolution of
δgμν uniquely up to the gauge invariance corresponding to the
general covariance of the model, and the corresponding
constraints. This indicates that the number of physical d.o.f.
is only two. Equation (39) also indicates that χ is not
dynamical and the time evolution of χ is given by
Eq. (39). Therefore, no additional d.o.f. occur, compared
to the standard Einstein-Hilbert gravity, and in effect, no

ghost modes actually occur in the theory. Having demon-
strated that themodified fðGÞ gravity theory can be rendered
ghost free, let us consider several examples of cosmological
evolutions which can be realized in the context of this theory.
This is the subject of the next subsection.

C. Boundary terms of ghost-free f ðGÞ gravity
In the present paper, our main motivation for deriving the

ghost-free equations of motion is their cosmological appli-
cations, sowe are not concernedwith the boundary terms.We
shall come to this issue soon; however it is worth discussing
the effects of certain boundary termswhenone is interested in
working on spacetimes with boundaries. In this case, for
spacetimesM with boundary ∂M, the variation of the action
(28) induces the following terms on the boundary:

δSboundary¼
Z
∂M

d3x
ffiffiffiffiffiffi
−q

p �
1

2κ2
fnμ∇νδgμν−nρ∇ρðgμνδgμνÞgþhðχÞfRnμ∇νδgμνþRnν∇μδgμν−ð∇μRÞnνδgμν−ð∇νRÞnμδgμν

−4nρðRρν∇μδgμνþRρμ∇νδgμνÞþ4ðnμð∇ρRρνÞþnνð∇ρRρμÞÞδgμνþ4nρRμν∇ρδgμν−4nρð∇ρRμνÞδgμν
þ4nρσR ∇σðgμνδgμνÞ−4nσð∇ρRρσÞgμνδgμν−4nρRρμσν∇σδgμνþ4nσð∇ρRρμσνÞδgμνgþh0ðχÞf−Rð∇μ χÞnνδgμν
−Rð∇ν χÞnμδgμνþ4ðnμRρνð∇ρ χÞþnνRρμð∇ρ χÞÞδgμν−4nρRμνð∇ρ χÞδgμν−4nσRρσð∇ρ χÞgμνδgμν
þ4nσRρμσνð∇ρ χÞδgμνg−λnμ∂μ χ

�
; ð40Þ

where nμ is a unit vector (nμnμ ¼ 1 if nμ is spacelike and nμnμ ¼ −1 if nμ is timelike) which is perpendicular and directed
outward at the boundary, lμν ≡ gμν − nμnν is the induced metric on the boundary and l is the determinant of lμν. In order for the
variational principle to be well defined, we need to require δSboundary ¼ 0, which cannot be realized because δSboundary includes
both δgμν without a derivative and∇σδgμν. In order to avoid this problem, we can add Gibbons-Hawking boundary terms [27],

wSGH ¼ 1

κ2

Z
∂M

d3
ffiffiffiffiffi
−l

p
lμν∇μnν; ð41Þ

for the part corresponding to the Einstein-Hilbert term, which is proportional to 1
κ2
in (40) or Myers-like boundary terms [28],

SM ¼ 2

Z
∂M

d3x
ffiffiffiffiffi
−l

p
hðχÞ

	
1

3
ð2KKμρKρν þ KρσKρσK − 2KμρKρσKσ

μ − K3Þ −Gμν
l Kμν



;

Kμν ≡ lρμlσν∇ρnσ; ð42Þ

for the terms proportional to hðϕÞ but not to h0ðϕÞ. For
some recent useful applications of Gibbons-Hawking-like
terms in Euclidean gravity, see Refs. [29,30]. In particular,
the terms proportional to h0ðϕÞ and λ give some boundary
conditions for the scalar fields χ and λ, which could be,
e.g.,

h0ðχÞ ¼ 0; λ ¼ 0; ð43Þ

which could correspond to the boundary conditions chosen
in Refs. [29,30].
However in most cosmologies with a homogeneous and

isotropic metric, the most characteristic type of metric

chosen is a Friedmann-Robertson-Walker (FRW) metric,
with or without spatial curvature. In the flat FRW case, the
topological spaces not excluded by current are the three-
torus which is flat in four-dimensional spacetime and the
infinitely large three-dimensional Euclidean flat plane, in
which case no boundaries occur, unless some strong finite-
time singularity occurs in the future. In that case, the
singularities which lead to geodesic incompleteness, like
the big rip, may eventually lead to certain forms of
boundaries on the spacelike hypersurface on which the
singularities occur, but this effect is hard to quantify with
Gibbons-Hawking terms because the end of a future
timelike geodesic is highly nontrivial to define from a
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mathematical point of view, so no induced metric can be
defined on it, and actually closed timelike curves can occur
and at the same time be absorbed in the same notion as the
future singularity. Some useful treatment of these issues can
be found in [31]. So we refrain from discussing the
boundary terms issue further, which is however useful
for noncosmological applications.

III. FRW COSMOLOGY IN
GHOST-FREE f ðGÞ GRAVITY

In this section, we consider the cosmology produced by
the ghost-free fðGÞ gravity model of Eq. (28). In particular,
we show that it is possible to realize any cosmological era
of the Universe, by using the model under consideration.
Specifically, we will try to realize the late- and early-time
acceleration eras.

A. A reconstruction technique for model building

Let us first demonstrate how the equations of motion of
the model (28) are modified in the case where the metric is
a flat FRW metric with line element,

ds2 ¼ −dt2 þ aðtÞ2
X

i¼1;2;3

ðdxiÞ2: ð44Þ

For this metric, we have,

Γt
ij ¼ a2Hδij; Γi

jt ¼ Γi
tj ¼ Hδij; Γi

jk ¼ Γ̃i
jk;

Ritjt ¼ −ð _H þH2Þa2δij; Rijkl ¼ a4H2ðδikδlj − δilδkjÞ;
Rtt ¼ −3ð _H þH2Þ; Rij ¼ a2ð _H þ 3H2Þδij;
R ¼ 6 _H þ 12H2; other components ¼ 0;

G ¼ 24H2ð _H þH2Þ; ð45Þ

whereH ≡ _a
a. We also assume that λ and χ depend solely on

the cosmic time t, that is, λ ¼ λðtÞ and χ ¼ χðtÞ. We also
assume Tmatter μν ¼ 0 just for simplicity. Then a solution of
Eq. (26) is given as

χ ¼ μ2t: ð46Þ

In effect, the ðt; tÞ component and ði; jÞ component of
Eq. (30) yield,

0 ¼ −
3H2

2κ2
−
μ4λ

2
þ 1

2
Ṽðμ2tÞ − 12μ2H3h0ðμ2tÞ; ð47Þ

0 ¼ 1

2κ2
ð2 _H þ 3H2Þ − 1

2
Ṽðμ2tÞ þ 4μ4H2h00ðμ2tÞ

þ 8μ2ð _H þH2ÞHh0ðμ2tÞ: ð48Þ

On the other hand, Eq. (29) gives,

0 ¼ μ2 _λþ 3μ2Hλþ 24H2ð _H þH2Þh0ðμ2tÞ − Ṽ0ðμ2tÞ:
ð49Þ

Equation (47) can be solved with respect to λ as follows:

λ ¼ −
3H2

μ4κ2
þ 1

μ4
Ṽðμ2tÞ − 24

μ2
H3h0ðμ2tÞ: ð50Þ

Then by substituting Eq. (50) into Eq. (49), we reobtain
Eq. (49). On the other hand, Eq. (48) can be solved with
respect to Ṽðμ2tÞ as follows:

Ṽðμ2tÞ ¼ 1

κ2
ð2 _H þ 3H2Þ þ 8μ4H2h00ðμ2tÞ

þ 16μ2ð _H þH2ÞHh0ðμ2tÞ; ð51Þ

which tells that for arbitrary hðχÞ, if the potential ṼðχÞ is
assumed to be equal to,

ṼðχÞ ¼
�
1

κ2
ð2 _H þ 3H2Þ þ 8μ4H2h00ðμ2tÞ

þ16μ2ð _H þH2ÞHh0ðμ2tÞ
�
t¼ χ

μ2

; ð52Þ

then an arbitrary cosmological evolution of the Universe
with Hubble rate H ¼ HðtÞ can be realized. By combining
Eqs. (50) and (51), we also obtain,

λ ¼ 2 _H
μ4κ2

þ 8H2h00ðμ2tÞ þ 8

μ2
ð2 _H −H2ÞHh0ðμ2tÞ: ð53Þ

Basically the above procedure is a reconstruction method
for the model (28) and by using this method it is possible to
realize an arbitrarily given cosmological evolution. In the
next subsection we shall use this reconstruction method.

B. Early- and late-time accelerating universe
cosmologies with ghost-free f ðGÞ gravity

In this subsection, we consider some examples of models
which describe an accelerating universe. As a first example,
we consider a de Sitter spacetime realization, in which case
the Hubble rate H is a constant H ¼ H0. Then by using
Eq. (52), for an arbitrarily chosen function hðχÞ, the
corresponding scalar potential is given by,

ṼðχÞ ¼ 3H2
0

κ2
þ 8μ4H2

0h
00ðχÞ þ 16μ2H3

0h
0ðχÞ: ð54Þ

Equation (53) also indicates how the Lagrange multiplier λ
in this model behaves, and it is equal to,

λðtÞ ¼ 8H2
0h

00ðμ2tÞ − 8

μ2
H3

0h
0ðμ2tÞ: ð55Þ
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Then by appropriately choosing the functional form of hðχÞ,
we can obtain several different ghost-freefðGÞmodelswhich
can realize a de Sitter evolution. Next we consider the model
which mimics the Λ cold dark matter (ΛCDM) model, in
which case the Hubble rate H is given by,

H ¼ H0 coth
�
3

2
H0t

�
: ð56Þ

At late times, that is in the limit t → þ∞, H in Eq. (56)
behaves as follows:

H → H0; ð57Þ

which corresponds to an asymptotic de Sitter spacetime. On
the other hand, at early times, that is in the limit t → 0, the
Hubble rate behaves as follows:

H →
3

2t
; ð58Þ

which corresponds to a matter- or dust-dominated universe.
Then by using Eq. (52), we find,

ṼðχÞ¼ 3H2
0

κ2
þ8μ4H2

0coth
2

�
3H0

2μ2
χ

�
h00ðχÞ

þ16μ2H3
0

�
1−

1

2sinh2ð3H0

2μ2
χÞ

�
coth

�
3H0

2μ2
χ

�
h0ðχÞ;

ð59Þ

and from Eq. (53) we can determine the functional form of
the Lagrange multiplier λ, which is,

λ¼ 3H2
0

μ4κ2sinh2ð3
2
H0tÞ

þ8H2
0coth

2

�
3

2
H0t

�
h00ðμ2tÞ

−
8H3

0

μ2

�
1þ 4

sinh2ð3
2
H0tÞ

�
coth

�
3

2
H0t

�
h0ðμ2tÞ: ð60Þ

The model of Eq. (56), which is generated in the context of
ghost-free fðGÞ gravity by the scalar potential of Eq. (59),
realizes the ΛCDM model without introducing any dark
matter perfect fluid. Therefore, the model incorporates the
cosmological constant part, corresponding to an equation-of-
state (EoS) parameter being equal to w ¼ −1, and also
incorporates the CDM part, corresponding to an EoS
parameter exactly equal to w ¼ 0. Thus we have realized
the present accelerating expansion of the Universe by using
the ghost-freefðGÞgravitymodel.Notably, the cosmological
evolution (56) can be realized in the context of ghost-free
fðGÞ gravity by using a function hðχÞ and an arbitrary
parameter μ2. In the case of the standard Einstein-Hilbert
gravity, the FRW equations have the following form:

3

κ2
H2 ¼ ρtotal; −

1

κ2
ð2 _H þ 3H2Þ ¼ ptotal; ð61Þ

where ρtotal andptotal are the total energy density and the total
pressure. In effect, the total EoS parameter wtotal defined by
wtotal ¼ ptotal

ρtotal
is equal to,

wtotal ¼ −1 −
2 _H
3H2

: ð62Þ

We should note that the effective total EoS parameter wtotal
includes the contributions of all the fluid components of the
Universe like dark energy, darkmatter, and so on. The Planck
2018 results [32], constrain theHubble constant, which is the
present value of the Hubble rate, as follows: Hpresent ¼
ð67.4� 0.5Þ km s−1Mpc−1. Also the matter density param-
eter is constrained as Ωm ¼ 0.315� 0.007 and finally, the
dark energy EoS parameter is constrained as w0 ¼ −1.03�
0.03 although w0 is different from weff

total. Since ptotal ¼
ð1 −ΩmÞw0ρtotal, the Planck 2018 results indicate that,

wtotal ¼ ð1 −ΩmÞw0 ∼ −0.705: ð63Þ

Even for a general modified gravity theory, in the case of
ghost-free fðGÞ gravity we developed in this paper, the
effective total EoS parameter weff

total is defined in Eq. (62),
that is,

weff
total ¼ −1 −

2 _H
3H2

: ð64Þ

Then in the case of the de Sitter space as in the model (52) in
this paper, since the Hubble rate is a constant, H ¼ H0, we
find weff

total ¼ −1. On the other hand, in the case of the model
mimicking the ΛCDM model, namely Eq. (56), we find,

weff
total ¼ −1 −

1

cosh2ð3
2
H0tpresentÞ

; ð65Þ

where tpresent is the value of the cosmic time today. In the
model (56), the dark matter contribution to the evolution
is effectively included. Then the Planck 2018 results
(63) constrain the parameters of the model (56). Due to
the fact that the observed Hubble constant is Hpresent ¼
ð67.4� 0.5Þ km s−1Mpc−1, by using Eq. (56) we find,

H0 coth

�
3

2
H0tpresent

�
¼ð67.4�0.5Þ kms−1Mpc−1: ð66Þ

On the other hand, combined with Eq. (65), the Planck 2018
results (63) indicate that,

1

cosh2ð3
2
H0tpresentÞ

∼ 0.294: ð67Þ
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Then Eqs. (66) and (67) actually constrain the parametersH0

and tpresent of the model, so these can appropriately be chosen
so that the constraints are satisfied.
In addition, since the ΛCDM model is still consistent

with any constraint obtained from the observations on the
current expansion of the Universe, the model (56) mim-
icking the ΛCDM model should be consistent with the
current observational data. In the future, perhaps some
deviations from the standard ΛCDM model may be
observed. Then by using the formulation of ghost-free
fðGÞ gravity presented in this paper, we can always
construct a more realistic model than the ΛCDM model,
according to future observations.
As another model, we shall consider the following

cosmological model with parameters, δ,H0,Hi, ts, μ, andΛ:

HðtÞ ¼ δeH0−Hit tanh
�
ts − t
μ

�
þ Λ; ð68Þ

where the parameters μ and Hi are measured in seconds in
natural units, while the parameter δ has dimensions sec−2 in
natural units. In addition, the parameter H0 is considered to
be dimensionless. The above model has quite interesting
early- and late-time phenomenology if the free parameters
are appropriately chosen, since it can qualitatively describe a
quasi–de Sitter cosmological evolution at early times and an
accelerating era of de Sitter form at late times. Indeed, if the
parameter ts is chosen to be the age of the present Universe,
and also if the parameter Λ is chosen to be the present-time

cosmological constant, then at early times when t ≪ ts, the
first term is approximated as follows:

HðtÞ ∼ δðeH0 − eH0HitÞ − Λ; ð69Þ

due to the fact that at early times,

tanh

�
ts − t
μ

�
∼ 1: ð70Þ

Hence, if H0 and Hi are appropriately chosen so that
eH0 ; Hi ≫ Λ, the early-time evolution is a quasi–de Sitter
evolution of the form,

HðtÞ ∼ δðeH0 − eH0HitÞ; ð71Þ

and the effective EoS parameter is nearly weff
total ∼ −1.

Accordingly, at late times when t ∼ ts, the exponential in
Eq. (68) tends to zero, and also we have,

tanh

�
ts − t
μ

�
∼ 0: ð72Þ

In effect, the Hubble rate is again approximated by an exact
de Sitter evolution,

HðtÞ ∼ Λ: ð73Þ

The realization of the model (69) in the context of ghost-free
fðGÞ gravity is possible, if the scalar potential is equal to,

VðχðtÞÞ ¼
3ðeH0−Hit tanhðts−tμ Þ þ ΛÞ2 − 2eH0−HitðHiμ tanhðts−tμ Þþsech2ðts−tμ ÞÞ

μ

κ2
þ 16μ2

�
eH0−Hit tanh

�
ts − t
μ

�
þ Λ

�

× h0ðχÞ
��

eH0−Hit tanh

�
ts − t
μ

�
þ Λ

�
2

−HieH0−Hit tanh

�
ts − t
μ

�
−
eH0−Hitsech2ðts−tμ Þ

μ

�

þ 8μ4h00ðχÞ
�
eH0−Hit tanh

�
ts − t
μ

�
þ Λ

�
2

; ð74Þ

and the Lagrange multiplier function λðχðtÞÞ is chosen as,

λðχðtÞÞ ¼ 2ð−HieH0−Hit tanhðts−tμ Þ − eH0−Hitsech2ðts−tμ Þ
μ Þ

κ2μ4
þ 8h0ðχÞ

μ2

�
eH0−Hit tanh

�
ts − t
μ

�
þ Λ

�

×

�
2

�
−HieH0−Hit tanh

�
ts − t
μ

�
−
eH0−Hitsech2ðts−tμ Þ

μ

�
−
�
eH0−Hit tanh

�
ts − t
μ

�
þ Λ

�
2
�

þ 8h00ðχÞ
�
eH0−Hit tanh

�
ts − t
μ

�
þ Λ

�
2

: ð75Þ

By appropriately choosing the function hðχÞ, one may obtain different models which can realize the same cosmological
evolution (69), so a rich phenomenology can be obtained. The scalar potential at early times is much more simple, since it
takes the form,
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VðχðtÞÞ ∼ 3ðeH0 − eH0HitÞ2 − 2eH0Hi

κ2

þ 8μ4h00ðχÞðeH0 − eH0HitÞ2
þ 16μ2h0ðχÞðeH0 − eH0HitÞ
× ððeH0 − eH0HitÞ2 − eH0HiÞ; ð76Þ

while at late times it is approximated by,

VðχðtÞÞ ∼ 8Λ2μ4h00ðχÞ þ 16Λ3μ2h0ðχÞ þ 3Λ2

κ2
: ð77Þ

The most interesting feature of the ghost-free model can be
seen by looking at Eqs. (76) and (77), due to the presence of
the function hðχÞ in both equations. This means that by
appropriately choosing the function hðχÞ so that a viable
early-time phenomenology is obtained, this choice will
affect the late-time phenomenology to some extent, not via
the late-time Hubble rate, but certainly through the scalar
potential and the Lagrange multiplier function λ. Therefore,
quite interesting phenomenologies may be obtained, due to
the fact that during the two eras the EoS parameter is nearly
weff
total ∼ −1, and hence the potential and the Lagrange

multiplier function may affect other observable quantities
and render the model more compatible with the observa-
tional data. Work is in progress in this direction.

Before closing this section we should note that other
cosmological evolutions can be realized in the context
of the ghost-free fðGÞ theory developed in this paper.
For example, consider the symmetric bounce with Hubble
rate,

HðtÞ ¼ eαt
2

; ð78Þ

which a well-known bounce cosmology [33,34]. The sym-
metric bounce has interesting phenomenology, since in the
limit t → −∞, the EoS parameter is approximately,
weff
total ∼ −1, which is a nearly de Sitter phase. After that

and as the bouncing point at t ¼ 0 is approached, the
Universe experiences quintessential acceleration which
gradually turns into a decelerating expansion. Near the
bouncing point, the Universe experiences another nearly
de Sitter accelerating era, and as the cosmic time grows it is
followed by a phantom accelerating era, which eventually
tends to a nearly de Sitter expansion at t → ∞. It is
conceivable that the most interesting part of this bounce
cosmology, from a phenomenological point of view, is the
contracting
phase. This cosmological evolution can be realized by the
scalar potential,

VðχÞ ¼ eαt
2ð8κ2μ4eαt2h00ðχÞ þ 16κ2μ2eαt

2ðeαt2 þ 2αtÞh0ðχÞ þ 3eαt
2 þ 4αtÞ

κ2
; ð79Þ

where χ ¼ tμ2, and also by the Lagrange multiplier
function λðχÞ,

λðχÞ¼ 8e2αt
2

h00ðχÞþ8eαt
2ð4αteαt2 − e2αt

2Þh0ðχÞ
μ2

þ4αteαt
2

κ2μ4
;

ð80Þ

where in both Eqs. (79) and (80), the function hðχÞ is
arbitrary. Thus in the context of the formalism we developed,
we do not have a single model realizing the symmetric
bounce, but rather a class of models which can realize this
cosmological evolution. In principle, the choice of the func-
tion hðχÞ can be made in such a way that the phenomeno-
logical constraints can be satisfied. We do not discuss this
topic further for brevity, but it is conceivable that there is
much room for realizing interesting phenomenologies.

IV. NEWTON’S LAW IN
GHOST-FREE f ðGÞ GRAVITY

In this section we shall consider Newton’s law in the
context of ghost-free fðGÞ gravity and we shall investigate

how it is modified in the ghost-free theory. Some
alternative solutions in the context of general Gauss-
Bonnet theories can be found in Refs. [35,36]. In order to
consider the correction to Newton’s law, we assume that
the geometric background is flat, by considering the limit
of H → 0 in the last section. This is because we like to
consider Newton’s law at scales much smaller in com-
parison to the cosmological scales, which are of the order
∼ 1

H in an asymptotically de Sitter spacetime during the
present era of the Universe. Then Eq. (51) or Eq. (52)
indicates that ṼðχÞ ¼ 0 although hðχÞ can be an arbitrary
function in general. Therefore Eq. (50) suggests that
λ ¼ λð0Þ ¼ 0. We also assume that the gauge condition
(15) holds true. Then by using Eqs. (38), (34), (35), (36),
and (37), we obtain,

0 ¼ −μ2∂tδχ − μ4δgtt; ð81Þ

0 ¼ μ2∂tδλ − h0ðχð0ÞÞ□ð0ÞðημνδgμνÞ; ð82Þ
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0 ¼ −
1

4κ2
ð−□ð0Þδgμν − ∂μ∂νðηρλδgρλÞ þ gð0Þμν □

ð0ÞðηρσδgρσÞÞ þ
1

2
δTmatter μν −

1

2
μ4δtμδtνδλ

þ μ4f2ημν□ð0ÞðηζξδgζξÞ þ 2ð−ηρtδμtδνσ − ηρtδν
tδμ

σ þ ημνη
ρtησtÞð−□ð0Þδgρσ − ∂ρ∂σðηζξδgζξÞÞ

− 4ð−□ð0Þδgμν − ∂μ∂νðηζξδgζξÞÞ − 2ð∂t∂μδgνt − ∂2
t δgνμ − ∂ν∂μδgtt þ ∂ν∂tδgtμÞgh00ðχð0ÞÞ; ð83Þ

δλ ¼ −
2

μ4

�
−

1

2κ2
□ð0ÞðηρσδgρσÞ þ

1

2
δTmatter − 2μ4ð□ð0Þδgtt þ ∂2

t ðηρλδgρλÞ þ□ð0ÞðηρσδgρσÞÞh00ðχð0ÞÞ
�
: ð84Þ

By substituting Eq. (84) into Eq. (83), we obtain,

0 ¼ −
1

4κ2
ð−□ð0Þδgμν − ∂μ∂νðηρλδgρλÞ þ gð0Þμν □

ð0ÞðηρσδgρσÞÞ þ
1

2
δTmatter μν

þ δtμδtν

	
−

1

2κ2
□ð0ÞðηρσδgρσÞ þ

1

2
δTmatter − 2μ4ð□ð0Þδgtt þ ∂2

t ðηρλδgρλÞ þ□ð0ÞðηρσδgρσÞÞh00ðχð0ÞÞ



þ μ4f2ημν□ð0ÞðηζξδgζξÞ þ 2ð−ηρtδμtδνσ − ηρtδν
tδμ

σ þ ημνη
ρtησtÞð−□ð0Þδgρσ − ∂ρ∂σðηζξδgζξÞÞ

− 4ð−□ð0Þδgμν − ∂μ∂νðηζξδgζξÞÞ − 2ð∂t∂μδgνt − ∂2
t δgνμ − ∂ν∂μδgtt þ ∂ν∂tδgtμÞgh00ðχð0ÞÞ: ð85Þ

We shall consider a static point gravitational source for the matter at the spatial origin, that is,

δTmatter tt ¼ Mδð3ÞðxÞ; other components of δTmatter μν ¼ 0; ð86Þ

where ðxÞ ¼ ðxiÞ. In the following two subsections, we shall investigate how Newton’s law is modified in the context of
Lagrange-multiplier-constrained Einstein-Hilbert gravity and in the context of ghost-free fðGÞ gravity.

A. Newton’s law for Lagrange-multiplier-constrained Einstein-Hilbert gravity

Let us first consider the constrained Einstein-Hilbert gravity case, in which case hðχÞ ¼ 0. Then Eq. (85) reduces to,

0 ¼ −
1

4κ2
f−□ð0Þδgμν − ∂μ∂νðηρλδgρλÞ þ gð0Þμν □

ð0ÞðηρσδgρσÞg þ
1

2
δTmatter μν

þ δtμδtν

	
−

1

2κ2
□ð0ÞðηρσδgρσÞ þ

1

2
δTmatter



: ð87Þ

The ðt; tÞ, ði; jÞ, and ðt; iÞ components of Eq. (87) yield,

0 ¼ −
1

4κ2
f−□ð0Þδgtt − ∂2

t ðηρλδgρλÞ□ð0ÞðηρσδgρσÞg; ð88Þ

0 ¼ −
1

4κ2
f−□ð0Þδgij − ∂i∂jðηρλδgρλÞ þ δij□

ð0ÞðηρσδgρσÞg; ð89Þ

0 ¼ −
1

4κ2
f−□ð0Þδgti − ∂t∂iνðηρλδgρλÞg; ð90Þ

and Eq. (84) has the following form:

δλ ¼ −
2

μ4

�
−

1

2κ2
□ð0ÞðηρσδgρσÞ þ

1

2
δTmatter

�
: ð91Þ

We now assume that,

δgtt ¼ AðrÞ; δgij ¼ BðrÞδij þ CðrÞxixj; δgti ¼ 0; ð92Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i¼1;2;3ðxiÞ2
q

. Then Eq. (90) is trivially satisfied and since,
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ηρλδgρλ ¼ −Aþ 3Bþ r2C;

△ðxixjCðrÞÞ ¼ 2δijCðrÞ þ
6xixj

r
C0ðrÞ þ xixjC00ðrÞ

∂i∂jð−Aþ 3Bþ r2CÞ ¼ δij
r
ð−A0 þ 3B0 þ 2rCþ r2C0Þ þ xixj

r3
ðA0 − rA00 − 3B0 þ 3rB00 þ 3r2C0 þ r3C00Þ

△ð−Aþ 3Bþ r2CÞ ¼ 1

r
ð−2A0 − rA00 þ 6B0 þ 3rB00 þ 6rCþ 6r2C0 þ r3C000Þ ð93Þ

Eqs. (88) and (89) have the following forms:

0 ¼ 1

4κ2
△ð3Bþ r2CÞ; ð94Þ

0¼−
1

4κ2

	
−
δij
r
ðA0þrA00−B0−2rB00−2rC−5r2C0−r3C00Þ

−
xixj

r3
ðA0−rA00−3B0þ3rB00þ9r2C0þ2r3C00Þ



: ð95Þ

In effect, we have,

0 ¼ 3Bþ r2C; ð96Þ

0 ¼ A0 þ rA00 − B0 − 2rB00 − 2rC − 5r2C0 − r3C00; ð97Þ

0 ¼ A0 − rA00 − 3B0 þ 3rB00 þ 9r2C0 þ 2r3C00: ð98Þ

By using Eq. (96), we can eliminate B from Eqs. (97) and
(98), so we get,

0 ¼ A0 þ rA00 − 2r2C0 −
r3

3
C00; ð99Þ

0 ¼ A0 − rA00 þ 6r2C0 þ r2C00: ð100Þ

By also eliminating C from Eqs. (99) and (100), we obtain,

0 ¼ 4A0 þ 2rA00: ð101Þ

Under the boundary condition that A → 0when r → ∞, the
solution of Eq. (101) is given by,

A ¼ A0

r
; ð102Þ

with a constant A0. Then Eq. (97) takes the following form:

0 ¼ A0

r2
−

1

3r3
ðr6C0Þ0; ð103Þ

and a solution of the above equation is,

C ¼ −
A0

2r3
: ð104Þ

In effect, Eq. (96) indicates that,

B ¼ A0

6r
; ð105Þ

where we have assumed that the boundary condition
B;C → 0 when r → ∞ holds true. Equation (91) also
suggests that,

δλ ¼ −
2

μ4

�
−
4πA0

2κ2
δð3ÞðxÞ þ 1

2
Mδð3ÞðxÞ

�
: ð106Þ

If we put δλ ¼ 0, we find,

A0 ¼
κ2M
4π

; ð107Þ

which reproduces the standard Newtonian potential
ϕNewton, that is,

ϕNewton ≡ A
2
¼ κ2M

8π
¼ GM

r
; ð108Þ

where G ¼ κ2

8π is Newton’s gravitational constant. We
should note, however, that Eq. (106) indicates that there
is an infinite number of solutions, which do not always
reproduce the standard Newton’s law if δλ ≠ 0. In addition,
Eq. (82) indicates that 0 ¼ ∂tδλ if h ¼ 0, which corre-
sponds to the Einstein-Hilbert gravity case. Therefore, if
we put δλ ¼ 0 as an initial condition, then the term δλ
always vanishes, and the model reproduces the standard
Newton’s law.

B. Newton’s law in ghost-free f ðGÞ gravity
Let us now investigate how Newton’s law is modified in

the context of the ghost-free fðGÞ gravity model (28). First
we assume that Eq. (92) holds true in this case too. Then the
general solutions of Eqs. (81) and (82) are given by,

δχ ¼ −μ2tAðrÞ þ c1ðxÞ;

δλ ¼ 1

μ2r2
hðμ2tÞðr2ð−AðrÞ þ 3BðrÞ þ r2CðrÞÞ0Þ0 þ c2ðxÞ;

ð109Þ
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where c1ðxÞ and c2ðxÞ appear by integrating with respect
to t, and these can be determined by Eq. (83). However if
we assume spherical symmetry, then c1ðxÞ and c2ðxÞ
should depend on x via the radial coordinate r, that is,
c1ðxÞ ¼ c1ðrÞ and c2ðxÞ ¼ c2ðrÞ. On the other hand,
Eq. (84) has the following form:

δλ ¼ −
2

μ4

	
−

1

2κ2
ðr2ð−AðrÞ þ 3BðrÞ þ r2CðrÞÞ0Þ0

−
M
2
δð3ÞðxÞ − 2μ4

r2
ðr2ð3BðrÞ þ r2CðrÞÞ0Þ0h00ðμ2tÞ



:

ð110Þ

By comparing δλ fromEq. (109) with Eq. (110), for arbitrary
hðχÞ, we find AðrÞ ¼ 3BðrÞ þ r2CðrÞ ¼ 0 and c2ðrÞ ¼
−M

2
δð3ÞðxÞ. If surely AðrÞ ¼ 0, the result is in conflict with

the resultingNewton’s law of the constrained Einstein gravity
case, given in Eq. (108). This indicates that the assumption
(92) is not satisfied and the correction toNewton’s law should
be time dependent, which could constrain μ2, hðχÞ, and/or
ṼðχÞ, so that the correction could be consistent with any
experiment or observation. Equation (85) indicates that the
correction to Newton’s law in the case of Einstein-Hilbert
gravity is proportional to the parameter μ4 and the function
hðχÞ, and therefore if μ4 or hðχÞ is small enough, the
constraint for Newton’s law is always satisfied. For the case
of themodel (56)whichmimics theΛCDMmodel, as long as
we consider Newton’s law at scales much smaller than the
cosmological scales ∼ 1

H and as long as hðχÞ is small, the
constraint for Newton’s law is independent of the cosmo-
logical constraints. So the constraints (66) and (67) can be
imposed without restricting μ and hðχÞ.

V. GHOST-FREE F(R;G) GRAVITY

As a final task we shall demonstrate how to obtain a
ghost-free FðR;GÞ theory of gravity. The vacuum FðR;GÞ
gravity action is,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
FðR;GÞ; ð111Þ

where FðR;GÞ is a function of the scalar curvature R and G
stands for the Gauss-Bonnet invariant given in Eq. (2). It
was claimed that this model (111) has ghost instabilities
[20], so let us see how ghost d.o.f. are manifested at the
level of the equations of motion. By introducing two
auxiliary fields Φ and Θ, the action of Eq. (111) can be
rewritten as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 	
ΦR
2κ2

þ ΘG − VðΦ;ΘÞ


; ð112Þ

where we have introduced the gravitational coupling κ in
order to make Φ and Θ dimensionless. By varying the
action (112) with respect to Φ and Θ, we obtain,

R
2κ2

¼ ∂VðΦ;ΘÞ
∂Φ ; G ¼ ∂VðΦ;ΘÞ

∂Θ ; ð113Þ

which can be algebraically solved with respect to
Φ and Θ, that is, Φ ¼ ΦðR;GÞ and Θ ¼ ΘðR;GÞ. Then
by substituting the obtained expressions for Φ ¼ ΦðR;GÞ
and Θ ¼ ΘðR;GÞ into Eq. (112), we obtain the action (111)
with,

FðR;GÞ ¼ ΦðR;GÞRþ ΘðR;GÞG − VðΦðR;GÞ;ΘðR;GÞÞ:
ð114Þ

In order to investigate the properties of the action (112), we
work in the Einstein frame, so under a conformal trans-
formation of the form gμν → eϕgμν, the curvatures are
transformed as follows [17,37]:

Rζμρν →

	
Rζμρν −

1

2
ðgζρ∇ν∇μϕþ gμν∇ρ∇ζϕ − gμρ∇ν∇ζϕ − gζν∇ρ∇μϕÞ

þ 1

4
ðgζρ∂νϕ∂μϕþ gμν∂ρϕ∂ζϕ − gμρ∂νϕ∂ζϕ − gζν∂ρϕ∂μϕÞ −

1

4
ðgζρgμν − gζνgμρÞ∂σϕ∂σϕ



;

Rμν → Rμν −
1

2
ð2∇μ∇νϕþ gμν□ϕÞ þ 1

2
∂μϕ∂νϕ −

1

2
gμν∂σϕ∂σϕ;

R →

�
R − 3□ϕ −

3

2
∂σϕ∂σϕ

�
e−ϕ: ð115Þ

Therefore the Gauss-Bonnet invariant G in Eq. (2) is transformed in the following way:

G → e−2ϕ
�
Gþ∇μ

	
4

�
Rμν −

1

2
gμνR

�
∂νϕþ 2ð∂μϕ□ϕ − ð∇ν∇μϕÞ∂νϕÞ þ ∂νϕ∂νϕ∂μϕ


�
: ð116Þ
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Then by writing Φ ¼ e−ϕ, the action of Eq. (112) can be rewritten by taking into account the conformal transformation
gμν → eϕgμν as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 	
1

2κ2

�
R −

3

2
∂σϕ∂σϕ

�

þ ΘG − ∂μΘ
	
4

�
Rμν −

1

2
gμνR

�
∂νϕþ 2ð∂μϕ□ϕ − ð∇ν∇μϕÞ∂νϕÞ þ ∂νϕ∂νϕ∂μϕ



− e2ϕVðe−ϕ;ΘÞ



: ð117Þ

This action (117) may have ghost d.o.f. due to the existence of Θ. As in the last section, we might eliminate the ghost d.o.f.
by writing Θ as Θ ¼ eθ and add a constraint to the action (117) by using the Lagrange multiplier field λ, in the following
way:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 	
1

2κ2

�
R −

3

2
∂σϕ∂σϕ − λð∂μθ∂μθ þ μ2Þ

�

þ eθG − eθ∂μθ

	
4

�
Rμν −

1

2
gμνR

�
∂νϕþ 2ð∂μϕ□ϕ − ð∇ν∇μϕÞ∂νϕÞ þ ∂νϕ∂νϕ∂μϕ



− e2ϕVðe−ϕ; eθÞ



: ð118Þ

As in the previous section, the scalar fields θ and λ are not dynamical d.o.f. and the dynamical d.o.f. are actually the metric
and the scalar field ϕ, as in the standard FðRÞ gravity, therefore no ghost d.o.f. occur in the theory.

VI. CONCLUSIONS

The focus of this work was to alleviate the ghost problem
of themodified gravity theories containing theGauss-Bonnet
scalar G. In particular, we studied two kinds of theories,
namely fðGÞ gravity and FðR;GÞ gravity. In both cases we
investigated how the ghost d.o.f. may appear even at the level
of the equations of motion, by using perturbations of the
metric, and aswe demonstrated, ghost d.o.f. haunt both of the
aforementioned modified gravity theories. In both cases, we
provided a theoretical remedy by using the Lagrange
multiplier formalism which provides constraints in terms
of the Lagrange multipliers. As we demonstrated, our
formalism leads to the elimination of the ghost d.o.f. in both
the fðGÞ gravity and FðR;GÞ gravity theories, and thus the
resulting theories can in principle produce ghost-free pri-
mordial curvature perturbations. Specifically, in the FðR;GÞ
gravity case, this was a serious issue due to the fact that
modes ∼k4 occurred in the master equation which governed
the evolution of the primordial curvature perturbations. For
the case of theghost-freefðGÞgravity theory,we investigated
how accelerating cosmologies can be realized by these

theories. The formalism which we presented can be used
as a reconstruction technique, and as we demonstrated there
is room for rich model building, since in principle any
cosmological evolution can be realized by a number of
different ghost-free fðGÞ theories, due to the freedom
provided by the Lagrange multiplier formalism. A future
direction for the results we presented, is to provide a concrete
formalism to study the inflationary period which can be
technically difficult, due to the presence of the Lagrange
multiplier. Work is in progress in this direction.
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