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In this work we develop a theoretical framework for Gauss-Bonnet modified gravity theories, in which
ghost modes can be eliminated at the level of the equations of motion. In particular, after we present how
the ghosts can occur at the level of the equations of motion, we employ the Lagrange multiplier technique,
and by means of constraints we are able to eliminate the ghost modes from Gauss-Bonnet theories of the
forms f(G) and F(R,G). Some cosmological realizations in the context of ghost-free f(G) gravity are
presented, by using the reconstruction technique we developed. Finally, we explore the modifications to
Newton’s law of gravity generated by the ghost-free f(G) theory.
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I. INTRODUCTION

Undoubtedly one of the ultimate goals of theoretical
physics is to find a consistent way to describe all the observed
interactions under the same theoretical framework. This
would require quantizing gravity in some way and to date
only string theory seems to provide a complete UV com-
pletion of all known particle physics theories. In cosmology,
the quantum gravity era controls the preinflationary era,
during which gravity is expected to be unified with the other
three interactions. It is evident that during this preinflationary
era, string theory would be the most appropriate theory to
describe the physical laws of our Universe; however it is not
easy to prove that this is indeed the case. However some string
theory effects could have an impact on the inflationary era,
and this impact may be in fact measurable. There exist many
theories in modern theoretical cosmology which take into
account string-theory-motivated terms in the interaction
Lagrangian of the model, such as the scalar-Einstein-
Gauss-Bonnet gravity theory [1,2], in which case the
Lagrangian is of the form,

1 1
S = / d4x,/“—g<ﬁR - 56,,)(8")( +h(x)g

- V()() + ﬁmatter) ’ (1)
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where G is the Gauss-Bonnet invariant defined as follows:

G =R>— 4R, R™ + R, . R""". (2)

HUPO
The scalar-Einstein-Gauss-Bonnet models are motivated by
a corrections in superstring theories [3], and they serve as a
consistent example of how string theory may leave its impact
on the primordial acceleration era of the Universe. Another
very well-studied class of theories in the same context, is that
of f(G) gravity [4-9], in which case the Lagrangian is of the
form,

5= / d4x\f:g'<%R +1(G) + cmm). (3)

These theories contain a function of the Gauss-Bonnet
invariant, and therefore the presence of this function generates
nontrivial effects in the theory, due to the fact that the effect of
the Gauss-Bonnet term does not appear as a total derivative
anymore, as in the linear theory of the Gauss-Bonnet scalar.
Both these theories belong to a wider class of cosmological
models which are known as modified gravity models [10-16],
and which generalize the standard Einstein-Hilbert theory.
The motivation for studying such theories comes from the fact
that in the context of these, several cosmological eras may be
described by the same theory in a unified way; see e.g.,
Ref. [17] in which the unified description of the inflationary
and dark energy eras was given in terms of f(R) gravity.
In addition, similar studies were presented in terms of
scalar-Einstein-Gauss-Bonnet models [18] and f(G) models.
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Due to the importance of the models containing or
involving the Gauss-Bonnet scalar, which are string theory
motivated in most cases, in this paper we shall address an
important shortcoming of these theories, namely the
existence of ghosts. Usually, higher-derivative theories
contain ghost degrees of freedom (d.o.f.) due to the
Ostrogradsky instability; see e.g., Ref. [19]. As was pointed
out in Ref. [20], ghost d.o.f. may occur at various levels of
the theory, even at the cosmological perturbation level of
F(R,G) theories, where superluminal modes ~k* occur,
where k is the associated wave number. Having these issues
in mind, in this paper we shall investigate how the ghosts
may be eliminated from f(G) and F(R,G) theories. In
particular, by using an appropriate constraint used first in
the context of mimetic gravity [21-23], we shall demon-
strate that the resulting theories are ghost free. Similar
constrained Gauss-Bonnet theories in the context of mim-
etic gravity were studied in Ref. [24]. Also ghost-free
theories were also developed in Refs. [25,26], but in a
different context. In this work we shall also consider the
cosmological evolution of the resulting theories, and we
shall investigate how several cosmological evolutions may
be realized by the ghost-free models we will develop,
focusing on the dark energy era and inflationary era.
Finally, we shall investigate how Newton’s law is modified
in the context of ghost-free f(G) gravity.

This paper is organized as follows. In Sec. II we address
the ghost issue in the context of f(G) gravity. We first
demonstrate how ghosts may occur in this theory and we
provide two remedy theories, which are ghost-free exten-
sions of f(G) gravity. In Sec. III we investigate how several
cosmological evolutions may be realized in the context of
the proposed ghost-free f(G) theory. In Sec. IV we discuss
how Newton’s law is modified in the context of ghost-free
f(G) gravity, and finally in Sec. V we briefly investigate
how a general F(R, G) theory may be rendered ghost free.

II. GHOST-FREE f(G) GRAVITY

In this section we shall investigate how to obtain ghost-free
f(G) gravity, and we shall employ the Lagrange multiplier
formalism in order to achieve this. Before getting into the
details of our formalism, we will start the presentation by
showing explicitly how ghost modes may occur in f(G)
gravity at the level of the equations of motion, and the ghost-
free version construction of the theory follows.

A. Ghosts in f(G) gravity

In order to investigate if any ghost modes could appear in
the f(G) gravity model (3), we investigate the equations of
motion, by considering a general variation of the metric of
the following form:

G = G + 69 (4)

Effectively, the variations of 6T, and 6R read,

s OR )55 OR

Hvs

1
SFZD = Eg)d(vﬂagwl + vyégld - v/15g/w>7

1
5R;w/10 = E [vivbégaﬂ - vﬂvpégm/ - vavuégﬂu

+ vﬂvﬂég/h/ + 5gupRpu/10' - 5gupRp/MO']’

1
OR,, = 5 V,Vrsg,, + V,Vrsg,, — 08,
- vﬂvv (gglégpxﬂ - 2R/1bp;45.g,1p
+ Rp;tégpy + Rpl/5gp/4]ﬂ
OR = _59/41/RW + VﬂVub‘gM _ D(g/w&g;w)- (5)

Accordingly the variation of the Gauss-Bonnet scalar 6G
reads,

8G = 2R(—58g,,R™ + VFV¥5q,, — V*(¢"*5g,,))
+ 8RR Y _Sg,, — A(RMN V* + RV V¥)8g,,
+4RN?8g,, + 4RV, V (¢ 59,,)
— 2RM°RY .80, — ARV N 18, (6)

Then for the f(G) gravity model (3), by varying the action
with respect to the metric tensor g, we obtain the following
equations of motion:

0— 2—; (—R’“’ + %gﬂ”R) T+ %g“”f (9)
+ (=2RR™ + 8R/RH Y — 2RM"RY ) f'(G)
+2(VAVY — ¢*O0)(Rf'(G)) — 4VFV, (R £/(G))

— 4V (R f(G)) + 40(R™ f(9))
+4¢“V V(R f(G) — AV, V (R¥ f(G)).  (7)

By using the Bianchi identities,

VPR V,R

pruy — vwa - Volturs

1
V’R,, =

=SV,

1
V,V R0 = OR™ — - VAVR + R**°R,, — R, RY.

V, VR = JOR, (8)

we can rewrite Eq. (7) as follows:
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1 1 1
— | —_pw "1 HY "7
0 2K2< R +29 R)+Tmatter+2g” f(g)
+ (—=2RR* — 2R¥TR . + 4R R
+A4R7RY, ) f(G) + 2RVIVEf1(G) — 2¢ RIS (G)
— 4RVRY, f(G) — ARV, £(G) + 4R TIF(G)
(

+4g ROV NV, f'(G) — 4RV Y, f'(G). 9)

Also in four dimensions, we have the following identity:

1
0=30"G~2RR" ~ 2R R joy +- 4RV, R +ARVRA ¢ .
(10)

Then Eq. (9) takes the following form:
1 1 v 1 v !
0= ? <_Rﬂb +29MDR> + T?natter +§gﬂ (f(g) - gf (g))
+2RVHVY1(G) = 2¢"ROS(G)
— 4RIV f1(G) —4RPFVPN L f(G) +4RMS(G)
+4g" RV NV, f'(G) = 4RHN NV, f'(G). (11)

We now rewrite Eq. (11) in the following form:
0= (—RM + lg,wR> 2 Tt + 5.9/ (9)
2k 2 2 2
—Gf(9)) + DV NV, f(G).
J1=(8,6,"+6,76," = 2g,,9™)R
+ (=49776,"6,° = 49°°6,"6,° + 49, 9" 9" )R s
4R, 9" = 2R 5 (997 + 9GT). (12)

D,

Having in mind that,
1
gD, =4 _EngR + R™ ), (13)

we find in component form,

DOOOO = 2R —_ ZgoogOOR —_ 8R00 + 4gOOROO + 4900R00
—4R%°,
Dijoo = 49in00 - 4R0ioj - ZgijgooR + 4Rij900' (14)

If we choose the gauge in which gy, = 0, then the quantity
D™ vanishes but D;;’° does not vanish in general. This
indicates that Eq. (11) includes the fourth derivative of the
metric with respect to the cosmic time coordinate and
therefore ghost modes might appear. We may see the
existence of ghost modes explicitly, by considering pertur-

bations. Let a solution of Eq. (11) be g,, = g,(,(p and we

denote the curvatures and connections given by g,(g) by using

the index “(0).” Then in order to investigate if any ghost could
exist, we may consider the variation of Eq. (11) around the
solution g/(f,),) as follows: g, = g,(f,),> + &gy, - For the variation

of 4g,,, we may impose the following gauge condition:
0 = V¥ég,,. (15)
Then Eq. (6) reduces to,

6G = 2R(=6g,, R* — V*(¢5g,,)) + 8RR* ¥ .50,
-+ 4R””V259,,,, + 4Rﬂ6vpva (gﬂb5gﬂb)
_ 2RﬂP01Rv/)015gﬂD — 4Rpﬂ‘7”vpva(3gm,. (16)

Even if we impose the condition 6¢*, = 0, Eq. (16) has the
following form:

G = —2RR"6g,, + 8RR ¥ 89, + ARV 6y,
— 2RMTRY )80, — ARV N 150, (17)

which also contains the second derivative of the metric g,
with respect to the cosmic time coordinate. Under the
perturbation g,, = gl(f,i) + 89, the term D, V.V, f'(G)
takes the following form:

Dllumvrvﬂf/(g) - D}H/mvaﬂf/(g<0))
+Dm/ﬂ7va’7 (f"(g<0>)5g) tee (18)

which contains the fourth derivative of the metric g,, with
respect to the cosmic time coordinate, and therefore the
perturbed equation (12) may have a ghost mode. Note that in
Eq. (18), the “ --” represents the terms arising from the
variation of D, V.V, . The propagating mode is a scalar
expressed by the Gauss-Bonnet invariant as it is clear from
Eq. (12). Having presented explicitly how a ghost mode may
occur in f(G) gravity, we now demonstrate how the ghost
modes may be eliminated or avoided in this theory. This is the
subject of the next subsection.

B. Development of ghost-free f(G) gravity

In this subsection, we consider how we can avoid the
ghost in f(G) gravity. To this end, we rewrite the action of
Eq. (3) by introducing an auxiliary field y as follows:

S = /d“x\/:ﬁ <2—’1<2R +h(x)G—V(x) + Emaner)- (19)

Then by varying the action (19) with respect to the auxiliary
field y, we obtain the following equation:

0="n(x)G-V(x). (20)

which can be solved with respect to y as a function
of the Gauss-Bonnet invariant G as y = y(G). Then by
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substituting the obtained expression into Eq. (20), we
reobtain the action of Eq. (3) with f(G) being equal to,

f(9) = h(x(9))G = V(x(9))- (21)

On the other hand, by varying the action (20) with respect
to the metric tensor, we obtain,

1 1 1
0= =~ (—R,w + _g/wR) + 5 Tmﬁtterﬂ”

2K 2
1
- Eg;wv()() + Duvmvanh()()’ (22)

with D, being defined in Eq. (12). Since y can be given
by a function of the Gauss-Bonnet invariant G, Eq. (22) is
the fourth-order differential equation for the metric, which
may actually generate the ghost modes. Equation (22)
indicates that the propagating scalar mode is quantified in
terms of y. Then in order for the scalar mode to not be a
ghost, we may add a canonical kinetic term of y in the
action (19) as in the model of Eq. (1) [1], where we have
chosen the mass dimension of y to be unity. Then instead of
Egs. (20) and (22), we obtain,

0=0x+n(xG-V(x), (23)

1 1 1 1
0= 27(2 <_R;w + zg;wR) + E Tmatter;w + 5 aﬂ)(au)(

1

1
- Eg;w (E 8/7)(8/))( + V(%)) + Dyvmvrvﬂh()()‘ (24)

Since the equations derived above do not contain higher
than second-order derivatives, if we impose initial con-
ditions for the quantities g,,, g,,,» ¥, and y on a spatial
hypersurface of constant cosmic time, the evolution of g,,
and y is uniquely determined, and as it is clear from
Eq. (24), these could not be ghosts. In the model of Eq. (1),
we have introduced a new dynamical d.o.f., namely y, but if
we want to reduce the dynamical d.o.f., we may impose a
constraint as in the mimetic gravity case [21-23], by
introducing the Lagrange multiplier field 4, as follows:

1 1 u?
— A ol — — M =
S /d Xxy/ g<2K2R+/1<2(9M)(8 X+ 2)
1
- 58”)((9”)( + h(}()g - V()() + Ematter) s (25)

where u is a constant with mass-dimension one. Then, by
varying the above action (25) with respect to 4, we obtain
the constraint,

4

1 H
0=20,10"r+75 . (26)

Then due to the fact that the kinetic term becomes a
constant, the kinetic term in the action of Eq. (25) can be
absorbed into the redefinition of the scalar potential V()
as follows:

4
Qurdx + V() = =S+ V(). (27)

Viy) =

N —

and we can rewrite the action of Eq. (25) as
s— [ ary=g( LR+ a(to, 00, 11
- N2 R WHTHT
FH)G= V) + Lo ). (28)

For the model of Eq. (28), in addition to Eq. (26), we have
the following two equations of motion:

1 -
0=——"=0,A0"\/=90,x) + W (x)G—V'(x), (29
\/__gﬂ(g"\/g X))+ R (%) (). (29)
1 1 1 1
0= ﬁ (_R/ﬂ/ + Eg;wR> + 5 Tmatter;w - E/Iay)(av)(
1 -
- Eg;wv()() + Dyymvar/h()()’ (30)

where we have also used Eq. (26). By multiplying Eq. (30)
with ¢/, we obtain,

R 1 pho e
0= 22 + ETmatter + ?’1 —2V(x)
1
_4<_Rm+§ng>vanh(1), (31)

where we used Eq. (26) and Tpauer = 7T inatter po-
Equation (31) can be solved with respect to the
Lagrange multiplier field 4, and the result is,

2 (R 1 .
A= _/F <ﬁ + ETmatter - 2‘/()()

—4 <—R“7 + %gf”R> VNM(J()) . (32)

We expect that the model (28) could not contain a ghost
mode. And actually by using perturbations of the metric, we
now show explicitly that indeed the model (28) is ghost free.
Let the general solutions of Egs. (26), (29), and (30) be g\’
79, and 2 and we consider the following perturbation:

0)

G = 950 +8G. A1=1015.  (33)

x=x0+6y.
Then Egs. (26), (29), and (30) can be written as

0=0H )((0) 3”5 y — 5glwaﬂ )((0)3v )((0)7 (34)
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( )/)”égpo' a a
s ) (5/19 s )
=g (19 v
I
+——=0, ( 20 gOmrsg g0 [— g0, x“”) _ﬁa” ( 20) g0 gOogg /g0, %<o>)

-9

1
= 0, (20O =g00,87) + " ()37G0) = V" (1961

-9
+H (y <O))(2R<O>(—5g,4 ROmw 4 y(0) quv(sglw_D(O)( (0>ﬂvggw))+8R(0)/)6R(0)Mpv65gﬂy
—4(ROVVIVO L ROMY IGO0 59 +4AROWOO5g 14ROV (gOmsg )

—2RO)ppoz p(0 )upm5g’w_4R /J/wuv v 0)69”V)’ (35)
1 0 0)(0
0= 2% <_ (V;g IV0)rs » + V AvC /’(Sgﬂp D(O)‘Sg/w - v/(4 )VZ(, )(g(())/”l(‘)'gpl)

1
- 2R( )4 v uégﬂp + R ©)p 6g/w + R(O) 69/);1) + ER(())&QMD +

N[ =

1
S 9 (=89,0ROP7 + VOV Osg, - O (9(0”"59/)0)))

1 1 1 1 1. - 1 o«
+ 5 5Tmatterm/ - E‘slay)((())av)((()) - 51(0)8/45)(8”){(0) - 5’1(0) aﬂ)((o) avé)( - Eégﬂvv(ﬂf(o)) - E /(w) 14 ()((0))5)(

+ {=2(8g,,99 7 - g g0 S99 VRO 4 (5,75, + 5,75, — 29 60) ) (=8g,:R©O % + VOV sy,

— OO (g0 %5g,.)) + 4(g<0>p<5ggg<0> £5,15,% + 075G, g 05,15, + 85,90 rr g 4 g g PESgeeg @& g0 on
+glg(;)g(o)ﬂfg(o)ﬂéggggg(o)fn)R£%> +2(=g0r78,15,0 — g5, 18,0 + g g0 e g ny (7 Qg0 )€8g,: + \WAVOEE W »
~005g,, - VOV (40¢5g..) — 2RO E 5g.: + RO% 5g,, + RO, 5g.,) — 4R O 5g,. g0 e

+ 4O (v< V05, + VIVOEsg,. —O0sg,, — VOV (g0 ¢5g,) — 2RO e“,,fﬂ(sgq + R %5gs, + R %5ge,)

—2(VOVPsg,, - VOV sg,, - VIV sg,, + VOV 5g,,ﬂ—|—5gp§R() ) — 89, ROE, ) gOp g0
_4R/(J(/)4)0v( (0 )pé5g g( ) &z ( )0’7+g( ) pT ( )0459459 5n)}v1 n ()((0))

1 0 0 0 0) 111 (0) o (0
=5 D "9V 80, + V3 891 = I 894)0ch(2%) + D VG (1 () 5). (36)

On the other hand, Eq. (32) yields,

271 1 - 1
oA=— <2K ( 59/)6 0)p0 + v(O)pv(O)aégpo_ - D(O) (g(O)pnégpo_)) —+ §5Tmatter - 2V/(Z(O>)5)( -4 <_§ (g(0>ﬂ§v(0)rv(o)pég§p
+ g0y 0 nv(0>pgg§/) — g0 g0 89z — Vv On(gOrisg i) —2 R(O)Wf(sgﬂﬂ 4 R(0>pfg(0)né‘59p £+ R©)pn g(O)rf(sgp c)

1 1
+2R TC94559§§+29() n(— 59/)6]3(0)/)0+V(O)PV(0)059M_D(O)(g(O)/)o(;glm)))vgo)vgo)h(x(O))
: . a g 0)r 0_ 1 o 0)g(0 o Lo
—4(gO0 5, g O2a g 4 GO0t sg, . g(0)ag0)p) (—Riﬂ)+§g(aﬂ) R<o>>vg v )h(;(<0))—4<—R(°) T4 nR<0)>
LSOm0y o (0) o ' (0)
x|\ =5 Dw g (Ve 0g,e + Vi 89ce =V 8G0) 0y () + Dy VT (W (")6)) ) (37)

By substituting Eq. (37) into Eq. (36), we may eliminate 4. The obtained equation contains first and second derivatives of 5g,,
and y, especially the first and second derivatives with respect to the cosmic time 7. We can choose »© to be,

2O = e (38)

Then Eq. (34) takes the following form:
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0 =6} — 1*6gy. (39)

and we also have 57 = 57, Then we can further eliminate
the variation terms 6y and dy, and the obtained equation
contains the first and second derivatives of 6g,, with respect
to the cosmic time 7, but does not include the first and second
derivative terms 6y again with respect to time 7. Then by
providing the initial conditions for &g,,, 6g,,, and y on a
spatial hypersurface, we can determine the time evolution of
d4,, uniquely up to the gauge invariance corresponding to the
general covariance of the model, and the corresponding
constraints. This indicates that the number of physical d.o.f.
is only two. Equation (39) also indicates that y is not
dynamical and the time evolution of y is given by
Eq. (39). Therefore, no additional d.o.f. occur, compared
to the standard Einstein-Hilbert gravity, and in effect, no
|

ghost modes actually occur in the theory. Having demon-
strated that the modified f(G) gravity theory can be rendered
ghost free, let us consider several examples of cosmological
evolutions which can be realized in the context of this theory.
This is the subject of the next subsection.

C. Boundary terms of ghost-free f(G) gravity

In the present paper, our main motivation for deriving the
ghost-free equations of motion is their cosmological appli-
cations, so we are not concerned with the boundary terms. We
shall come to this issue soon; however it is worth discussing
the effects of certain boundary terms when one is interested in
working on spacetimes with boundaries. In this case, for
spacetimes M with boundary OM, the variation of the action
(28) induces the following terms on the boundary:

Sty = || /7| (0900 =9, 05,)) + 1) RV, R V¥, (PRI, (PRI
4, (RP¥5,+ RO+, 40 (7 R) 417 R+, R0, 4 (5, )5,
A, (50,0) ~ 4, (VRO i RO 5, 4 (7, R, 14 (1) (R (V)5
RV 00+ AR (5,) 40RO ,1)) 60— 40 RO (¥, )30, ~ A RO (7, )05,

+4n,R¥(V ,5)8G,, } — An* 8#)(} ,

where n,, is a unit vector (n,n, = 1 if n, is spacelike and n

n#:—lifn

(40)

, 1s timelike) which is perpendicular and directed

outward at the boundary, /,, = g,, — n,n, is the induced metric on the boundary and / is the determinant of /,, . In order for the
variational principle to be well defined, we need to require 6Spounaary = 0, Which cannot be realized because 6Spoundary includes
both 6g,, without a derivative and V ,6g,, . In order to avoid this problem, we can add Gibbons-Hawking boundary terms [27],

1
WSGH = —2/ d3 V —ll’”’V”nw (41)
K= Jom

for the part corresponding to the Einstein-Hilbert term, which is proportional toKl2 in (40) or Myers-like boundary terms [28],

1 v
Sm =2 L da/=ln(y) {5 (2KK,, K" + K,,K”’K — 2K, K"K — K*) — G} K,w},

K, =0,0,V,n,,

for the terms proportional to /(¢) but not to h'(¢). For
some recent useful applications of Gibbons-Hawking-like
terms in Euclidean gravity, see Refs. [29,30]. In particular,
the terms proportional to 4’'(¢) and 4 give some boundary
conditions for the scalar fields y and A, which could be,

e.g.,
A=0, (43)

which could correspond to the boundary conditions chosen
in Refs. [29,30].

However in most cosmologies with a homogeneous and
isotropic metric, the most characteristic type of metric

(42)

chosen is a Friedmann-Robertson-Walker (FRW) metric,
with or without spatial curvature. In the flat FRW case, the
topological spaces not excluded by current are the three-
torus which is flat in four-dimensional spacetime and the
infinitely large three-dimensional Euclidean flat plane, in
which case no boundaries occur, unless some strong finite-
time singularity occurs in the future. In that case, the
singularities which lead to geodesic incompleteness, like
the big rip, may eventually lead to certain forms of
boundaries on the spacelike hypersurface on which the
singularities occur, but this effect is hard to quantify with
Gibbons-Hawking terms because the end of a future
timelike geodesic is highly nontrivial to define from a
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mathematical point of view, so no induced metric can be
defined on it, and actually closed timelike curves can occur
and at the same time be absorbed in the same notion as the
future singularity. Some useful treatment of these issues can
be found in [31]. So we refrain from discussing the
boundary terms issue further, which is however useful
for noncosmological applications.

III. FRW COSMOLOGY IN
GHOST-FREE f(G) GRAVITY

In this section, we consider the cosmology produced by
the ghost-free f(G) gravity model of Eq. (28). In particular,
we show that it is possible to realize any cosmological era
of the Universe, by using the model under consideration.
Specifically, we will try to realize the late- and early-time
acceleration eras.

A. A reconstruction technique for model building

Let us first demonstrate how the equations of motion of
the model (28) are modified in the case where the metric is
a flat FRW metric with line element,

ds® = —df* +a(1)? > (dx'). (44)
=123

For this metric, we have,

I, =aHs;, T =T, =Hs, T =T,
Rijo = —(H + H*)a%;. Ry = a*H*(6,8;; — 8,6;).
R,=-3(H+H?, R;=d(H+3H)5,
R = 6H + 12H?, other components = 0,
G = 24H2(H + H?), (45)
where H = g We also assume that 4 and y depend solely on

the cosmic time 7, that is, A = A(¢) and y = y(r). We also
assume T = O just for simplicity. Then a solution of
Eq. (26) is given as

X =Wt (46)

In effect, the (z,
Eq. (30) yield,

t) component and (i,j) component of

3H? u*h 1.
0=-""-"24 — 1242H3H 47
>~ 3 13 V(pe) = 12p (w1), (47)
1 5
0= 55 (2H + 3H?) = 3V (u21) + 4 H2H' (421)
+ 8u?(H + H?)HN (u*1). (48)

On the other hand, Eq. (29) gives,

0 = u?A + 3u2HA + 24H2(H + H*) I (u2t) — V' (421).

(49)
Equation (47) can be solved with respect to 4 as follows:

3H2 1 24
A=—-—5+— V( t) — —2H3h’(,uzt). (50)
ﬂ Kot H
Then by substituting Eq. (50) into Eq. (49), we reobtain
Eq. (49). On the other hand, Eq. (48) can be solved with

respect to V(u?t) as follows:

- 1 .
V(u?t) = = (2H + 3H?) + 8u*H* " (1)

+ 1642 (H + H*)HI (1%1), (51)

which tells that for arbitrary 4(y), if the potential V() is
assumed to be equal to,

- 1 .
V(x) = | (2H +3H?) + 8u*H* " (1)
K
+16p*(H + H)HK (u?1)| . (52)

pa
=%
2

then an arbitrary cosmological evolution of the Universe
with Hubble rate H = H(r) can be realized. By combining
Egs. (50) and (51), we also obtain,

2H 8
A= ——+8H*H' (1’t) + —
i H

(2H — HYHK (u%1).  (53)
Basically the above procedure is a reconstruction method
for the model (28) and by using this method it is possible to

realize an arbitrarily given cosmological evolution. In the
next subsection we shall use this reconstruction method.

B. Early- and late-time accelerating universe
cosmologies with ghost-free f(G) gravity

In this subsection, we consider some examples of models
which describe an accelerating universe. As a first example,
we consider a de Sitter spacetime realization, in which case
the Hubble rate H is a constant H = H,,. Then by using
Eq. (52), for an arbitrarily chosen function h(y), the
corresponding scalar potential is given by,

3H0

Viy) = + 8utHZK (y) + 16> HW (y).  (54)

Equation (53) also indicates how the Lagrange multiplier 4
in this model behaves, and it is equal to,

8
A(t) = 8H3h" (u*t) — ?th’(;ﬂt). (55)
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Then by appropriately choosing the functional form of i(y),
we can obtain several different ghost-free f(G) models which
can realize a de Sitter evolution. Next we consider the model
which mimics the A cold dark matter (ACDM) model, in
which case the Hubble rate H is given by,

H = HO coth (%H0[> . (56)

At late times, that is in the limit t — +oc0, H in Eq. (56)
behaves as follows:

H — H,, (57)

which corresponds to an asymptotic de Sitter spacetime. On
the other hand, at early times, that is in the limit  — 0, the
Hubble rate behaves as follows:

3
H- 58
=5 (58)

which corresponds to a matter- or dust-dominated universe.
Then by using Eq. (52), we find,

3H? 3H
Viy) = K—20+ 8u* H3coth? (ﬁ;{) h'(x)

1 3H,
16 2H3<1—7) coth(— >h’ ,
e 2sinh2(%)() 2”2)( (x)
(59)

and from Eq. (53) we can determine the functional form of
the Lagrange multiplier A, which is,

o
- p*k?sinh?(3H,t)
8H}

4 3
1 +——5—=——|coth( =Ht | W' (u%t). 60
% ( +sinh2<%Hor>)C° (2 0) o (0

The model of Eq. (56), which is generated in the context of
ghost-free f(G) gravity by the scalar potential of Eq. (59),
realizes the ACDM model without introducing any dark
matter perfect fluid. Therefore, the model incorporates the
cosmological constant part, corresponding to an equation-of-
state (EoS) parameter being equal to w = —1, and also
incorporates the CDM part, corresponding to an EoS
parameter exactly equal to w = 0. Thus we have realized
the present accelerating expansion of the Universe by using
the ghost-free f(G) gravity model. Notably, the cosmological
evolution (56) can be realized in the context of ghost-free
f(G) gravity by using a function h(y) and an arbitrary
parameter y°. In the case of the standard Einstein-Hilbert
gravity, the FRW equations have the following form:

3
+ SFI%COth2 <§H0t) h//(ﬂzt)

2 __
_ZH = Protals

1 .
: ~ 5 (CH+3H) = pour. (61)

where .1 and py are the total energy density and the total
pressure. In effect, the total EoS parameter w, defined by
Wiotal = fj wal jg equal to,

‘total

2H

- (62)

Wiota = —1 —
We should note that the effective total EoS parameter wi,
includes the contributions of all the fluid components of the
Universe like dark energy, dark matter, and so on. The Planck
2018 results [32], constrain the Hubble constant, which is the
present value of the Hubble rate, as follows: Hpen =
(67.4 +0.5) kms~! Mpc~!. Also the matter density param-
eter is constrained as Q,, = 0.315 4 0.007 and finally, the
dark energy EoS parameter is constrained as wy = —1.03 &
0.03 although wy is different from well . Since p =
(1 — Qu)Woprorl> the Planck 2018 results indicate that,

Wiotal = (1 = Qp)wo ~ —0.705. (63)

Even for a general modified gravity theory, in the case of
ghost-free f(G) gravity we developed in this paper, the
effective total EoS parameter ngal is defined in Eq. (62),
that is,

2H
Wiow = —1 = Yok (64)
Then in the case of the de Sitter space as in the model (52) in
this paper, since the Hubble rate is a constant, H = H,, we
find wef | = —1. On the other hand, in the case of the model
mimicking the ACDM model, namely Eq. (56), we find,

1
well — 1 — , 65
ol COSh2 (% H 0 Z‘prf:s@nt) ( )

where f,eene 18 the value of the cosmic time today. In the
model (56), the dark matter contribution to the evolution
is effectively included. Then the Planck 2018 results
(63) constrain the parameters of the model (56). Due to
the fact that the observed Hubble constant is Hpen =

(67.4 £0.5) kms~! Mpc~!, by using Eq. (56) we find,
3 1 Mpe-]
Hcoth EHOtpresent =(67.4+0.5) kms™'Mpc™. (66)

On the other hand, combined with Eq. (65), the Planck 2018
results (63) indicate that,

1
2(3
cosh (E Hotpresent)

~0.294, (67)
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Then Egs. (66) and (67) actually constrain the parameters H,,
and fpyeqene Of the model, so these can appropriately be chosen
so that the constraints are satisfied.

In addition, since the ACDM model is still consistent
with any constraint obtained from the observations on the
current expansion of the Universe, the model (56) mim-
icking the ACDM model should be consistent with the
current observational data. In the future, perhaps some
deviations from the standard ACDM model may be
observed. Then by using the formulation of ghost-free
f(G) gravity presented in this paper, we can always
construct a more realistic model than the ACDM model,
according to future observations.

As another model, we shall consider the following
cosmological model with parameters, 6, Hy, H;, t,, i, and A:

H(#) = 6e -1t tanh <ts - ’) A, (68)
u

where the parameters u and H; are measured in seconds in
natural units, while the parameter 5 has dimensions sec™? in
natural units. In addition, the parameter H, is considered to
be dimensionless. The above model has quite interesting
early- and late-time phenomenology if the free parameters
are appropriately chosen, since it can qualitatively describe a
quasi—de Sitter cosmological evolution at early times and an
accelerating era of de Sitter form at late times. Indeed, if the
parameter £, is chosen to be the age of the present Universe,
and also if the parameter A is chosen to be the present-time

|

5 2eM07Mi(Hiptanh (%) +-sech? (X))

cosmological constant, then at early times when ¢ < t,, the
first term is approximated as follows:

H(t) ~5(eflo —efloH 1) — A, (69)

due to the fact that at early times,

t,—1t
tanh( : > ~1. (70)
u

Hence, if H, and H; are appropriately chosen so that
efo H; > A, the early-time evolution is a quasi—de Sitter
evolution of the form,

H(t) ~ 6(ef — eHoH 1), (71)

and the effective EoS parameter is nearly weff ~ —I.
Accordingly, at late times when ¢ ~ t,, the exponential in

Eq. (68) tends to zero, and also we have,

t,—1
tanh< > ) ~0. (72)
u

In effect, the Hubble rate is again approximated by an exact
de Sitter evolution,

H(r) ~ A. (73)

The realization of the model (69) in the context of ghost-free
f(G) gravity is possible, if the scalar potential is equal to,

3(eH0‘”i’tanh(%) +A)

V() = S

t,—t
+ 1642 <e”0‘”f’ tanh( z > + A>
U

i =1 : t—1\ efoHitsech?(:1)
x h’(%)((e”O‘”f’tanh< : > +A> —HieHo—Hf’tanh< ! ) - v >

p It p
4101 Hy—H;t Iy —1 :
+ 8uth" ()| efo~Hi" tanh +A), (74)
U
and the Lagrange multiplier function A(x(z)) is chosen as,
2(—H~eH0_H"ttanh(ﬁ) - % 81 (x) fo—t
PO — oty S (e (1) )
K p p
ro—1\ efloHilsech? (i) ty—t 2
X <2 (—H,»eHO‘Hi’tanh< > > - u ) - <eH0‘Hf’tanh< z ) —|—A> >
H H H
" Hy—H;t L=t :
+8h" ()| eo~"i' tanh +A. (75)
U

By appropriately choosing the function /(y), one may obtain different models which can realize the same cosmological
evolution (69), so a rich phenomenology can be obtained. The scalar potential at early times is much more simple, since it

takes the form,
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3(efo — efoH 1)? — 2eM0 H,
Virto) ~ I

8 (1) (e — o H

162K () (eHo — 0,1

x ((efo —efoH,1)? —efoH;),  (76)

while at late times it is approximated by,

3A°
V(x(1) ~ 8A%u*h" () + 16A° W1 (1) + = (77)

The most interesting feature of the ghost-free model can be
seen by looking at Egs. (76) and (77), due to the presence of
the function /() in both equations. This means that by
appropriately choosing the function A(y) so that a viable
early-time phenomenology is obtained, this choice will
affect the late-time phenomenology to some extent, not via
the late-time Hubble rate, but certainly through the scalar
potential and the Lagrange multiplier function 4. Therefore,
quite interesting phenomenologies may be obtained, due to
the fact that during the two eras the EoS parameter is nearly
well '~ —1, and hence the potential and the Lagrange
multiplier function may affect other observable quantities
and render the model more compatible with the observa-
tional data. Work is in progress in this direction.

e“’2(8K2;44e"’2h”()() + 16K2u2e” (e"”2 + 20t () + 3e” + dat)

Before closing this section we should note that other
cosmological evolutions can be realized in the context
of the ghost-free f(G) theory developed in this paper.
For example, consider the symmetric bounce with Hubble
rate,

H(t) = e, (78)

which a well-known bounce cosmology [33,34]. The sym-
metric bounce has interesting phenomenology, since in the
limit t - —oco, the EoS parameter is approximately,
well |~ =1, which is a nearly de Sitter phase. After that
and as the bouncing point at t = 0 is approached, the
Universe experiences quintessential acceleration which
gradually turns into a decelerating expansion. Near the
bouncing point, the Universe experiences another nearly
de Sitter accelerating era, and as the cosmic time grows it is
followed by a phantom accelerating era, which eventually
tends to a nearly de Sitter expansion at t — oo. It is
conceivable that the most interesting part of this bounce
cosmology, from a phenomenological point of view, is the
contracting

phase. This cosmological evolution can be realized by the
scalar potential,

Vix) =

where y = tu?, and also by the Lagrange multiplier
function A(y),

o 8¢ (4ate® — Vi (y) Adare™”
/1(/'{/) = 862 ’ h”(,’() + /,tz K2’[,[4 ’

(30)

where in both Egs. (79) and (80), the function h(y) is
arbitrary. Thus in the context of the formalism we developed,
we do not have a single model realizing the symmetric
bounce, but rather a class of models which can realize this
cosmological evolution. In principle, the choice of the func-
tion i(y) can be made in such a way that the phenomeno-
logical constraints can be satisfied. We do not discuss this
topic further for brevity, but it is conceivable that there is
much room for realizing interesting phenomenologies.

IV. NEWTON’S LAW IN
GHOST-FREE f(G) GRAVITY

In this section we shall consider Newton’s law in the
context of ghost-free f(G) gravity and we shall investigate

) ; (79)

|

how it is modified in the ghost-free theory. Some
alternative solutions in the context of general Gauss-
Bonnet theories can be found in Refs. [35,36]. In order to
consider the correction to Newton’s law, we assume that
the geometric background is flat, by considering the limit
of H — 0 in the last section. This is because we like to
consider Newton’s law at scales much smaller in com-
parison to the cosmological scales, which are of the order
~% in an asymptotically de Sitter spacetime during the
present era of the Universe. Then Eq. (51) or Eq. (52)
indicates that V() = 0 although /() can be an arbitrary
function in general. Therefore Eq. (50) suggests that
2 =29 =0. We also assume that the gauge condition
(15) holds true. Then by using Eqgs. (38), (34), (35), (36),
and (37), we obtain,

0= —p?0,8x — 1*69,. (81)

0 = 420,60 — h/(X(O))D(O)(ﬂwggﬂy), (82)
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1 1 1
0=- 4—K2 (_D<0)5g;w - a,uav (77/}/169/)/1) + gl(4(1)/>|:|(0) (’7’}”59,;5)) + EéTmalter;,w - §ﬂ45m5w5/1
+ M4{277MDD<0) (’7555945) + 2(_’7p15;4[6p6 - ﬂpléytéﬂﬂ + ’7;11/’1/)”76[)(_5(0)59/;{: - 8/)86(17C669C§))
- 4(_[](0)59;41/ - ayau(négégé’é)) - 2(816;4591/{ - 8%591/;4 - avau(sgtt + aualégtﬂ)}h”()((o))v (83)
2 1 (0) (1,00 1 4(r1(0) 2 (2P (0) (4,00 1"(,,00)
oh=—"a =520V (1778Gp0) + 5 6T mater = 26" (LV8g, + 0 (117*89,2) + TV (076g,0) 1" (V) ). (84)

By substituting Eq. (84) into Eq. (83), we obtain,

1 0 1
0=- 4_K2 (_D(O)(Sg/w - auau(r]plégpi) + gl(ﬂ/)D(U) (”paégpa)) + 5 aTmaner/w
1 1
+ 5lﬂ5111 { - TKQ D(O) (77/)669/)(7) + 5 5Tmalter - 2M4(D(O)6glt + 812 (77[)/169/)/1) + D(O) (77/)659,10))”/()((0)) }

+ 421,00 (1¢6g,) + 2(—n"'8,'8,% — 1°8,'8,° + 1) (=00 8g,, — 0,0, (1*8g.:))
- 4(_D(0>5gyy - auav(’/[gfagé'é)) - 2(8t8ﬂ6.gut - a%ﬁgyﬂ - 8118;45911 + ayatégty)}h”()((o))‘ (85)

We shall consider a static point gravitational source for the matter at the spatial origin, that is,
ST matter e = M3 (x),  other components of 7 aer w =0, (86)

where (x) = (x). In the following two subsections, we shall investigate how Newton’s law is modified in the context of
Lagrange-multiplier-constrained Einstein-Hilbert gravity and in the context of ghost-free f(G) gravity.

A. Newton’s law for Lagrange-multiplier-constrained Einstein-Hilbert gravity

Let us first consider the constrained Einstein-Hilbert gravity case, in which case /(y) = 0. Then Eq. (85) reduces to,
1 1
0=- R {_D(O)égﬂv - aﬂav(ﬂﬂiégp/{) + gl(l(’)/)[](o) (’7/)659/)0')} + EéTmatler/w
1 1
+ 5t;45tv { - ﬁ D(O) (’7’7659/;6) + 5 5Tmatter} . (87)

The (¢,1), (i, ), and (z,i) components of Eq. (87) yield,

1
0 = =5 {06, — 57 (*59,)T (#°°89,) }. (88)
1
0 = = 5 {=08g;; = 9:0,(#*69,) + 6,0 (°89,.)} (89)
1
0 = = {-08g,; — 0,0,0(#"59,.)}. (90)

and Eq. (84) has the following form:

2 1 1
S = _AF <_ 53 D(O)(nf’”(sgpo) + 25Tmamr> . (91)
We now assume that,
89, = A(r), 0g;j = B(r)éij + C(r)xixj’ 69:i =0, (92)

where r = />, ,3(x')%. Then Eq. (90) is trivially satisfied and since,
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n*sg,, = —A+ 3B+ r*C,

6x'x/

A(X'XC(r)) =26,;C(r) +

Sii i
0:0,(=A + 3B + 12C) = "L (—A' 4 3B' 4+ 2rC + 2C') + 5~ (A' = rA” = 3B' + 3rB" + 31°C’ + 1*C")
r r
1
A(=A+3B+r’C) == (24" = rA” + 6B' +3rB" + 6rC + 6r°C' + r*C") (93)
r

Egs. (88) and (89) have the following forms:

1
0= 50038+ 7C), (94)
1 [ 4 23
0=—— ——2(A'+rA"—B' =2rB" =2rC-5r*C'—r°C")
4k r
xix/

3

(A’—rA”—3B’—|—3rB”+9r2C’+2r3C”)}. (95)
.

In effect, we have,

0=3B+r’C, (96)
0=A"+rA" =B =2rB" = 2rC -5r°C' = *C",  (97)
0=A"—rA" =3B +3rB" +9r>C' +2r3C".  (98)

By using Eq. (96), we can eliminate B from Eqgs. (97) and
(98), so we get,

3
0=A'+ rA” — 2:2C —%c’/, (99)

0=A"—rA" +6r2C' + r’C". (100)

By also eliminating C from Egs. (99) and (100), we obtain,
0=4A"+2rA". (101)

Under the boundary condition that A — O when r — oo, the
solution of Eq. (101) is given by,

Ay
==,

A (102)

with a constant Ay. Then Eq. (97) takes the following form:

Ay 1
0 :ﬁ—ﬁ(fbc/)/, (103)
and a solution of the above equation is,
Ao
C=—-——. 104
2’,.3 ( )

|
In effect, Eq. (96) indicates that,

Ag

B=—,
6r

(105)

where we have assumed that the boundary condition
B,C — 0 when r — oo holds true. Equation (91) also
suggests that,

2 4JTAO 1
o= =2 (<2500 + o) ). (109
If we put 64 = 0, we find,
K*M
Ay =—, 107
0= (107)
which reproduces the standard Newtonian potential
¢Newton9 that iS,
A KM GM
=—=—=— 108
¢Newton D) ’r r ’ ( )

where G = g is Newton’s gravitational constant. We
should note, however, that Eq. (106) indicates that there
is an infinite number of solutions, which do not always
reproduce the standard Newton’s law if 64 # 0. In addition,
Eq. (82) indicates that 0 = 9,64 if h =0, which corre-
sponds to the FEinstein-Hilbert gravity case. Therefore, if
we put 64 =0 as an initial condition, then the term 64
always vanishes, and the model reproduces the standard
Newton’s law.

B. Newton’s law in ghost-free f(G) gravity

Let us now investigate how Newton’s law is modified in
the context of the ghost-free f(G) gravity model (28). First
we assume that Eq. (92) holds true in this case too. Then the
general solutions of Egs. (81) and (82) are given by,

Sy = —p*tA(r) + ¢ (x),

5 = ﬁhwzrw(—/&m +3B(r) + PC()) + &2().

(109)
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where ¢;(x) and c¢,(x) appear by integrating with respect
to ¢, and these can be determined by Eq. (83). However if
we assume spherical symmetry, then c(x) and c,(x)
should depend on x via the radial coordinate r, that is,
c1(x¥) =cy(r) and cy(x) = c,(r). On the other hand,
Eq. (84) has the following form:

oA = _24{ 1 (rz(—A(r)+3B(r) +r2C(r))’)’

"2
60 ) - 2 (P38 + rzC(r))’)’h”(ﬂzf)}-

(110)

By comparing 6/ from Eq. (109) with Eq. (110), for arbitrary
h(y), we find A(r) =3B(r) + r*C(r) =0 and c,(r) =
— 2 55) (x). If surely A(r) = 0, the result is in conflict with
the resulting Newton’s law of the constrained Einstein gravity
case, given in Eq. (108). This indicates that the assumption
(92) is not satisfied and the correction to Newton’s law should
be time dependent, which could constrain 2, h(y), and/or
V(y), so that the correction could be consistent with any
experiment or observation. Equation (85) indicates that the
correction to Newton’s law in the case of Einstein-Hilbert
gravity is proportional to the parameter 4* and the function
h(y), and therefore if u* or h(y) is small enough, the
constraint for Newton’s law is always satisfied. For the case
of the model (56) which mimics the ACDM model, as long as
we consider Newton’s law at scales much smaller than the
cosmological scales N% and as long as h(y) is small, the
constraint for Newton’s law is independent of the cosmo-
logical constraints. So the constraints (66) and (67) can be
imposed without restricting  and A (y).

V. GHOST-FREE F(R, G) GRAVITY

As a final task we shall demonstrate how to obtain a
ghost-free F(R, G) theory of gravity. The vacuum F(R, G)
gravity action is,
|

s— /d“x\/—_gF(R,g), (111)

where F (R, g) is a function of the scalar curvature R and G
stands for the Gauss-Bonnet invariant given in Eq. (2). It
was claimed that this model (111) has ghost instabilities
[20], so let us see how ghost d.o.f. are manifested at the
level of the equations of motion. By introducing two
auxiliary fields @ and O, the action of Eq. (111) can be
rewritten as follows:

s:/d4x\/——g{g§+®g—v«p,®)}, (112)

where we have introduced the gravitational coupling « in
order to make @ and ® dimensionless. By varying the
action (112) with respect to ® and ©, we obtain,

R 9V(®,0) _OV(®,0)
T 9= e (113)

which can be algebraically solved with respect to
® and O, that is, ® = ®(R,§G) and ® = O(R,G). Then
by substituting the obtained expressions for ® = ®(R, G)
and ® = O(R, G) into Eq. (112), we obtain the action (111)
with,

F(R,G) =®(R,G)R+O(R,G)G— V(D(R,G),0(R,G)).
(114)

In order to investigate the properties of the action (112), we
work in the Einstein frame, so under a conformal trans-
formation of the form g,, — e‘/’g,w, the curvatures are
transformed as follows [17,37]:

1
Reypy = {Ré“ﬂ/w ) 9oV Vit + 9V Ve = 9,V Ve = 90,V ,V,10)

1 1
+ Z (gC/Jay¢aﬂ¢ + g;wap¢a§'¢ - gﬂ/)ay¢aC¢ - g{ya/)¢au¢) - Z (gC/JgMy - gCugﬂp)agﬁbanfﬁ} s

1 1 1
R/u/ - R/w - 5 (2vyvu¢ + gﬂUD¢) + E aﬂ¢6u¢ - Egyyaﬂ(l)aoqj’

R — (R —30¢ — %8"4580(;5) e ™.

(115)

Therefore the Gauss-Bonnet invariant G in Eq. (2) is transformed in the following way:

G—e2 [g + Vﬂ{4 <R”” - %g’”’R) 0,0 +2(0*¢0p — (V,VEP)O ) + ayqsav(/;aﬂ(pH .

(116)

044050-13



NOIJIRI, ODINTSOV, and OIKONOMOU

PHYS. REV. D 99, 044050 (2019)

Then by writing ® = e, the action of Eq. (112) can be rewritten by taking into account the conformal transformation

G — €%g,, as follows:

5= [ axv=a{5a (R 30000

+06 - aﬂ®{4 (R”” - % g’“’R) Oy +2(04p0ep — (V,VFh) D ) + 3,,(1)8’“(]58”4)} —eXV(e?, @)}. (117)

This action (117) may have ghost d.o.f. due to the existence of ®. As in the last section, we might eliminate the ghost d.o.f.
by writing ® as ® = e’ and add a constraint to the action (117) by using the Lagrange multiplier field 4, in the following

way:

S = / d4x\/——g{2i’<2 (R - %5‘”(1586(15 — 40,0010 + ;ﬂ))

+efG — eﬂaﬂe{zt (R”” - % g"”R) Oy +2(0 0 — (V, Vi) ¥ ) + ay¢av¢aﬂ¢} — eV (e, eg)}. (118)

As in the previous section, the scalar fields € and A are not dynamical d.o.f. and the dynamical d.o.f. are actually the metric
and the scalar field ¢, as in the standard F(R) gravity, therefore no ghost d.o.f. occur in the theory.

VI. CONCLUSIONS

The focus of this work was to alleviate the ghost problem
of the modified gravity theories containing the Gauss-Bonnet
scalar G. In particular, we studied two kinds of theories,
namely f(G) gravity and F(R, G) gravity. In both cases we
investigated how the ghost d.o.f. may appear even at the level
of the equations of motion, by using perturbations of the
metric, and as we demonstrated, ghost d.o.f. haunt both of the
aforementioned modified gravity theories. In both cases, we
provided a theoretical remedy by using the Lagrange
multiplier formalism which provides constraints in terms
of the Lagrange multipliers. As we demonstrated, our
formalism leads to the elimination of the ghost d.o.f. in both
the f(G) gravity and F(R, G) gravity theories, and thus the
resulting theories can in principle produce ghost-free pri-
mordial curvature perturbations. Specifically, in the F(R, G)
gravity case, this was a serious issue due to the fact that
modes ~k* occurred in the master equation which governed
the evolution of the primordial curvature perturbations. For
the case of the ghost-free f(G) gravity theory, we investigated
how accelerating cosmologies can be realized by these

theories. The formalism which we presented can be used
as a reconstruction technique, and as we demonstrated there
is room for rich model building, since in principle any
cosmological evolution can be realized by a number of
different ghost-free f(G) theories, due to the freedom
provided by the Lagrange multiplier formalism. A future
direction for the results we presented, is to provide a concrete
formalism to study the inflationary period which can be
technically difficult, due to the presence of the Lagrange
multiplier. Work is in progress in this direction.

ACKNOWLEDGMENTS

This work is supported by MINECO (Spain), FIS2016-
76363-P, and by project SGR247 (AGAUR, Catalonia)
(S.D. O.) and by JSPS short-term fellowship S19019 visiting
project (S.D.O). This work is also supported by MEXT
KAKENHI Grant-in-Aid for Scientific Research on
Innovative Areas “Cosmic Acceleration” No. 15H05890
(S.N.) and the JSPS Grant-in-Aid for Scientific Research
(C) No. 18K03615 (S.N.).

[1] S. Nojiri, S. D. Odintsov, and M. Sasaki, Phys. Rev. D 71,
123509 (2005).

[2] S. Nojiri, S.D. Odintsov, and M. Sami, Phys. Rev. D 74,
046004 (2006).

[3] D.J. Gross and J. H. Sloan, Nucl. Phys. B291, 41 (1987).

[4] S. Nojiri and S. D. Odintsov, Phys. Lett. B 631, 1 (2005).

[5] G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, and S.
Zerbini, Phys. Rev. D 73, 084007 (2006).

[6] B. M. Leith and 1. P. Neupane, J. Cosmol. Astropart. Phys.
05 (2007) 019.

[7]1 B. Li, J.D. Barrow, and D.F. Mota, Phys. Rev. D 76,
044027 (2007).

[8] G. Kofinas and E. N. Saridakis, Phys. Rev. D 90, 084044
(2014).

[9] S.Y. Zhou, E.J. Copeland, and P. M. Saffin, J. Cosmol.
Astropart. Phys. 07 (2009) 009.

044050-14


https://doi.org/10.1103/PhysRevD.71.123509
https://doi.org/10.1103/PhysRevD.71.123509
https://doi.org/10.1103/PhysRevD.74.046004
https://doi.org/10.1103/PhysRevD.74.046004
https://doi.org/10.1016/0550-3213(87)90465-2
https://doi.org/10.1016/j.physletb.2005.10.010
https://doi.org/10.1103/PhysRevD.73.084007
https://doi.org/10.1088/1475-7516/2007/05/019
https://doi.org/10.1088/1475-7516/2007/05/019
https://doi.org/10.1103/PhysRevD.76.044027
https://doi.org/10.1103/PhysRevD.76.044027
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1088/1475-7516/2009/07/009
https://doi.org/10.1088/1475-7516/2009/07/009

GHOST-FREE GAUSS-BONNET THEORIES OF GRAVITY

PHYS. REV. D 99, 044050 (2019)

[10] S. Capozziello and M. De Laurentis, Phys. Rep. 509, 167
(2011).

[11] V. Faraoni and S. Capozziello, Beyond Einstein Gravity
(Springer, Dordrecht, 2011), Vol. 170.

[12] G.J. Olmo, Int. J. Mod. Phys. D 20, 413 (2011).

[13] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys. Rep.
692, 1 (2017).

[14] S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011).

[15] S. Nojiri and S. D. Odintsov, eConf C0602061, 06 (2006),
http://inspirehep.net/record/891788; Int. J. Geom. Methods
Mod. Phys. 04, 115 (2007).

[16] A. de la Cruz-Dombriz and D. Saez-Gomez, Entropy 14,
1717 (2012).

[17] S. Nojiri and S.D. Odintsov, Phys. Rev. D 68, 123512
(2003).

[18] S.D. Odintsov and V. K. Oikonomou, Phys. Rev. D 98,
044039 (2018).

[19] R. P. Woodard, Scholarpedia 10, 32243 (2015).

[20] A. De Felice and T. Suyama, J. Cosmol. Astropart. Phys. 06
(2009) 034.

[21] A.H. Chamseddine and V. Mukhanov, J. High Energy Phys.
11 (2013) 135.

[22] S. Nojiri and S.D. Odintsov, Mod. Phys. Lett. A 29,
1450211 (2014).

[23] J. Dutta, W. Khyllep, E. N. Saridakis, N. Tamanini, and S.
Vagnozzi, J. Cosmol. Astropart. Phys. 02 (2018) 041.

[24] A. V. Astashenok, S.D. Odintsov, and V. K. Oikonomou,
Classical Quantum Gravity 32, 185007 (2015).

[25] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys. Lett.
B 775, 44 (2017).

[26] S.Park and R. P. Woodard, Phys. Rev. D 99, 024014 (2019).

[27] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752
(1977).

[28] R. C. Myers, Phys. Rev. D 36, 392 (1987).

[29] R. G. Cai, B. Hu, and S. Koh, Phys. Lett. B 671, 181 (2009).

[30] B.H. Lee, W. Lee, and D. Ro, Phys. Lett. B 762, 535
(2016).

[31] E.J. Tipler, Ann. Phys. (N.Y.) 108, 1 (1977).

[32] N. Aghanim er al. (Planck Collaboration), arXiv:1807.
06209.

[33] R. Brandenberger and P. Peter, Found. Phys. 47, 797 (2017).

[34] J. de Haro and Y. F. Cai, Gen. Relativ. Gravit. 47, 95 (2015).

[35] G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. Lett.
120, 131102 (2018).

[36] B.H. Lee, W. Lee, and D. Ro, Phys. Rev. D 99, 024002
(2019).

[37] K.i. Maeda, Phys. Rev. D 39, 3159 (1989).

044050-15


https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2011.04.001
http://inspirehep.net/record/891788
http://inspirehep.net/record/891788
https://doi.org/10.1142/S0219887807001928
https://doi.org/10.1142/S0219887807001928
https://doi.org/10.3390/e14091717
https://doi.org/10.3390/e14091717
https://doi.org/10.1103/PhysRevD.68.123512
https://doi.org/10.1103/PhysRevD.68.123512
https://doi.org/10.1103/PhysRevD.98.044039
https://doi.org/10.1103/PhysRevD.98.044039
https://doi.org/10.4249/scholarpedia.32243
https://doi.org/10.1088/1475-7516/2009/06/034
https://doi.org/10.1088/1475-7516/2009/06/034
https://doi.org/10.1007/JHEP11(2013)135
https://doi.org/10.1007/JHEP11(2013)135
https://doi.org/10.1142/S0217732314502113
https://doi.org/10.1142/S0217732314502113
https://doi.org/10.1088/1475-7516/2018/02/041
https://doi.org/10.1088/0264-9381/32/18/185007
https://doi.org/10.1016/j.physletb.2017.10.045
https://doi.org/10.1016/j.physletb.2017.10.045
https://doi.org/10.1103/PhysRevD.99.024014
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.36.392
https://doi.org/10.1016/j.physletb.2008.11.053
https://doi.org/10.1016/j.physletb.2016.09.013
https://doi.org/10.1016/j.physletb.2016.09.013
https://doi.org/10.1016/0003-4916(77)90348-7
http://arXiv.org/abs/1807.06209
http://arXiv.org/abs/1807.06209
https://doi.org/10.1007/s10701-016-0057-0
https://doi.org/10.1007/s10714-015-1936-y
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevD.99.024002
https://doi.org/10.1103/PhysRevD.99.024002
https://doi.org/10.1103/PhysRevD.39.3159

