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A previously found definition of complexity for spherically symmetric fluid distributions [L. Herrera,
Phys. Rev. D 97, 044010 (2018).] is extended to axially symmetric static sources. In this case, there are
three different complexity factors, defined in terms of three structure scalars obtained from the orthogonal
splitting of the Riemann tensor. All these three factors vanish for what we consider the simplest fluid
distribution, i.e., a fluid spheroid with isotropic pressure and homogeneous energy density. However, as in
the spherically symmetric case, they can also vanish for a variety of configurations, provided the energy
density inhomogeneity terms cancel the pressure anisotropic ones in the expressions for the complexity
factors. Some exact analytical solutions of this type are found and analyzed. In light of the obtained
results, some conclusions about the correlation (the lack of it) between symmetry and complexity are put
forward.
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I. INTRODUCTION

In recent papers, a new definition of complexity, in the
context of general relativity, has been proposed for spheri-
cally symmetric fluid distributions, in the static case [1] and
the dynamical case [2]. Applications of this concept to
other theories of gravity have been proposed in [3,4], while
the charged case has been considered in [2] and [5]. Also,
applications for some particular cases of cylindrically sym-
metric fluid distributions,maybe found in [6]. It is our goal in
this work to extend this definition of complexity to the most
general axially symmetric static fluid distributions.
The motivation for such an endeavor is based on the fact

that while it is true that observational evidence seems to
suggest that deviations from spherical symmetry in com-
pact self-gravitating objects (white dwarfs, neutron stars),
are likely to be incidental rather than basic features of these
systems (putting aside the evident fact that astrophysical
objects are generally endowed with angular momentum), it
also true that there is a bifurcation between any finite
perturbation of Schwarzschild spacetime and any Weyl

solution, even when the latter is characterized by param-
eters arbitrarily close to those corresponding to spherical
symmetry (see [7–12] and references therein for a dis-
cussion on this point). This fact in turn is related to the well
known result that the only regular static and asymptotically
flat vacuum spacetime possessing a regular horizon is
the Schwarzchild solution [13], while all the others
Weyl exterior solutions [14–16] exhibit singularities in
the curvature invariants (as the boundary of the source
approaches the horizon).
Sources of different Weyl spacetimes have already been

considered by several authors in the past (see for example
[17–27] and references therein).
More recently, a renewed interest on this kind of solutions

have aroused, particularly in relation to the deviations of
spherical symmetry produced by different physical phenom-
ena such as magnetic fields (see for example [28–33] and
references therein).
In the spherically symmetric case, the complexity factor

is a scalar variable intended to measure the degree of
complexity of the fluid distribution. For reasons explained
in detail in [1,2], such scalar function may be identified as
one of the scalar functions (structure scalars) which appears
in the orthogonal splitting of the Riemann tensor [34].
More specifically, it is related to one of the scalar functions
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appearing in the splitting of the electric part of the Riemann
tensor (see also [35–45] and references therein for further
discusion on the structure scalar).
In the axially symmetric case, the situation is much more

complicated, and the number of structure scalars much
larger than in the spherically symmetric case. Nevertheless
the general criterium to define the variable(s) measuring the
complexity of the fluid distribution will be the same,
namely: we start by asking ourselves which is the simplest
fluid configuration. As in the spherically symmetric case
we shall assume that such a configuration corresponds to
the incompressible (constant energy density), isotropic (in
the pressure) spheroid. From this simple assumption, we
shall see that as the obvious candidates to measure the
degree of complexity of the fluid distribution, appear three
of the eight structure scalars corresponding to the axially
symmetric static fluid distribution. Explicit forms of these
structure scalars as well as some useful differential equa-
tions relating the inhomogeneities of the energy density to
some of the structure scalars were already found in [46].
As in the spherically symmetric case, the vanishing of

the three complexity factors corresponds not only to the
incompressible, isotropic spheroid, but also to a large
family of solutions where the density inhomogeneity terms
cancel the pressure anisotropic terms in the equations
relating these to the complexity factors. Some of these
solutions will be exhibited.
Our paper is organized as follows: In the next section, we

shall review the general framework developped in [46] to
describe the most general nonvacuum, axially symmetric
static spacetime. This include relevant variables and equa-
tions. Next we define the complexity factors for our system
and discuss about their general properties. The two families
of solutions found are described in Sec. IV. A summary of
the obtained results as well as a list of some unsolved issues
are presented in Sec. V. Finally, three Appendixes with
some useful equations are included.

II. THE GENERAL FRAMEWORK

As we mentioned in the Introduction, a general frame-
work for describing axially symmetric static sources was
deployed in [46]. Here we shall resort (with slight changes
in the notation) to such a formalism. However in order to
render this manuscript self–consistent we shall provide in
this section a brief resume of the approach to be used. The
reader may find all the details in [46].

A. The metric and the source

We shall consider static and axially symmetric sources.
For such a system the line element may be written in “Weyl
spherical coordinates” as:

ds2 ¼ −A2dt2 þ B2ðdr2 þ r2dθ2Þ þD2dϕ2; ð1Þ

where the coordinates t and ϕ are adapted to the two Killing
vectors admitted by our line element, and therefore the
metric functions depend only on r and θ.
For the sake of generality we shall not assume here the

Weyl gauge. In the vacuum case, this gauge can be used
without loss of generality, and it allows for the reduction
of the line element so that only two independent metric
functions appear. However, in the interior this is not
possible in general, though obviously one may assume it
as an additional restriction, which amounts to satisfy
R3
3 þ R0

0 ¼ 0, where Rα
β denotes the Ricci tensor.

Let us now provide a full description of the source. In
order to give physical significance to the components of
the energy momentum tensor, we shall apply the Bondi
approach [47], which consists in defining the physical
variables in a purely locally Minkowski frame (τ, x, y, z)
(hereafter referred to as l.M.f.) where the first derivatives of
the metric vanish (locally), or, equivalently, consider a
tetrad field attached to such l.M.f.
For the system under consideration, the most general

energy–momentum tensor in such locally defined coordi-
nate system is given by:

T̂αβ ¼

0
BBB@

μ 0 0 0

0 Pxx Pxy 0

0 Pyx Pyy 0

0 0 0 Pzz

1
CCCA; ð2Þ

where μ; Pxy; Pxx; Pyy; Pzz denote the energy density and
different stresses, respectively, as measured by our locally
defined Minkowskian observer.
Also observe that Pxy ¼ Pyx and, in general Pxx ≠

Pyy ≠ Pzz.
Then transforming back to our coordinates, we obtain the

components of the energy momentum tensor in terms of
the physical variables as defined in the l.M.f.

Tαβ ¼ ðμþ PzzÞVαVβ þ Pzzgαβ þ ðPxx − PzzÞKαKβ

þ ðPyy − PzzÞLαLβ þ 2PxyKðαLβÞ; ð3Þ

where

Vα ¼ ð−A; 0; 0; 0Þ; Kα ¼ ð0; B; 0; 0Þ;
Lα ¼ ð0; 0; Br; 0Þ; Sα ¼ ð0; 0; 0; DÞ; ð4Þ

where we are considering observers at rest with respect to
the fluid distribution.
Alternatively, we may write the energy-momentum

tensor in the “canonical” form,

Tαβ ¼ ðμþ PÞVαVβ þ Pgαβ þ Παβ; ð5Þ

with
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Παβ ¼ ðPxx − PzzÞ
�
KαKβ −

hαβ
3

�

þ ðPyy − PzzÞ
�
LαLβ −

hαβ
3

�
þ 2PxyKðαLβÞ; ð6Þ

and

P ¼ Pxx þ Pyy þ Pzz

3
; hμν ¼ gμν þ VνVμ: ð7Þ

and

Παβ ¼
1

3
ð2ΠI þ ΠIIÞ

�
KαKβ −

hαβ
3

�

þ 1

3
ð2ΠII þ ΠIÞ

�
LαLβ −

hαβ
3

�

þ ΠKLðKαLβ þ KβLαÞ; ð8Þ

with

ΠKL ¼ KαLβTαβ; ð9Þ

ΠI ¼ ð2KαKβ − LαLβ − SαSβÞTαβ; ð10Þ

ΠII ¼ ð2LαLβ − KαKβ − SαSβÞTαβ: ð11Þ

The relationships between the above scalars and the
variables Pxy; Pxx; Pyy; Pzz are, (besides (7)), as follows:

Π2 ≡ 1

3
ð2ΠI þ ΠIIÞ ¼ Pxx − Pzz; ð12Þ

Π3 ≡ 1

3
ð2ΠII þ ΠIÞ ¼ Pyy − Pzz; ð13Þ

ΠKL ¼ Pxy: ð14Þ

or, inversely:

Pzz ¼ P −
1

3
ðΠ2 þ Π3Þ; ð15Þ

Pxx ¼ Pþ 1

3
ð2Π2 − Π3Þ; ð16Þ

Pyy ¼ Pþ 1

3
ð2Π3 − Π2Þ: ð17Þ

The explicit form of the Einstein equations as well as the
conservation equations, for the line element (1) and the
energy–momentum tensor (3), are given in the Appendix A
and B respectively.

B. The structure scalars

The structure scalars for our problem were calculated in
[46]. For their definition we need first to obtain the electric
part of the Weyl tensor (the magnetic part vanishes
identically), whose components can be obtained directly
from its definition,

Eμν ¼ CμανβVαVβ; ð18Þ

whereCμανβ denotes the Weyl tensor. These are exhibited in
the Appendix B.
Equivalently, the electric part of the Weyl tensor may

also be written as:

Eαβ ¼ E1ðKαLβ þ LαKβÞ þ E2

�
KαKβ −

1

3
hαβ

�

þ E3

�
LαLβ −

1

3
hαβ

�
; ð19Þ

where explicit expressions for the three scalars E1, E2, E3

are given in the Appendix.
Next, let us calculate the electric part of the Riemann

tensor (the magnetic part vanishes identically), which is
defined by

Yρ
β ¼ VαVμRρ

αβμ: ð20Þ

After some lengthy calculations we find;

Yαβ ¼ YTF1
ðKαLβ þ KβLαÞ þ YTF2

�
KαKβ −

1

3
hαβ

�

þ YTF3

�
LαLβ −

1

3
hαβ

�
þ 1

3
YThαβ; ð21Þ

where

YT ¼ 4πðμþ 3PÞ; ð22Þ

YTF1
¼ E1 − 4πΠKL; ð23Þ

YTF2
¼ E2 − 4πΠ2; ð24Þ

YTF3
¼ E3 − 4πΠ3: ð25Þ

Finally, we shall find the tensor associated with the double
dual of Riemann tensor, defined as:

Xαβ ¼� R�
αγβδV

γVδ ¼ 1

2
ηαγ

ϵρR�
ϵρβδV

γVδ; ð26Þ

with R�
αβγδ ¼ 1

2
ηϵργδRαβ

ϵρ, where ηϵργδ denotes the permu-
tation symbol.
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Thus, we find

Xαβ ¼ XTF1
ðKαLβ þ KβLαÞ þ XTF2

�
KαKβ −

1

3
hαβ

�

þ XTF3

�
LαLβ −

1

3
hαβ

�
þ 1

3
XThαβ; ð27Þ

where

XT ¼ 8πμ; ð28Þ

XTF1
¼ −ðE1 þ 4πΠKLÞ; ð29Þ

XTF2
¼ −ðE2 þ 4πΠ2Þ; ð30Þ

XTF3
¼ −ðE3 þ 4πΠ3Þ: ð31Þ

The scalars YT , YTF1, YTF2,YTF3, XT , XTF1, XTF2, XTF3,
are the structure scalars for our problem.

C. Some differential equations for the structure scalars

Two differential equations which relate the spatial
derivatives of the physical variables and the Weyl tensor
may be obtained using Bianchi identities, they have been
found before for the spherically symmetric and the cylin-
drically symmetric cases (see [34,39] and references
therein). For our case, they have been calculated in [46]:

E1θ

r
þ 1

3
ð2E2 − E3Þ0 þ

E1

r

�
2Bθ

B
þDθ

D

�
þ E2

�
B0

B
þD0

D
þ 1

r

�
− E3

�
B0

B
þ 1

r

�
¼ 4π

3
ð2μþ 3PÞ0

þ 4π

�
μþ Pþ 1

3
ð2Π2 − Π3Þ

�
A0

A
þ 4πΠKL

Aθ

Ar
; ð32Þ

E0
1 þ

1

3r
ð2E3 − E2Þθ þ E1

�
2B0

B
þD0

D
þ 2

r

�
−
E2Bθ

Br
þ E3

r

�
Bθ

B
þDθ

D

�
¼ 4π

3r
ð2μþ 3PÞθ

þ 4π

�
μþ Pþ 1

3
ð2Π3 − Π2Þ

Aθ

Ar

�
þ 4πΠKL

A0

A
; ð33Þ

which, using (22)–(25) and (28)–(31), may be written in terms of structure scalars:

8πμ0

3
¼ 1

r
½YTF1θ þ 8πΠKLθ þ ðYTF1 þ 8πΠKLÞðlnB2DÞθ� þ

�
2

3
ðY 0

TF2 þ 8πΠ0
2Þ þ ðYTF2 þ 8πΠ2ÞðlnBDrÞ0

�

−
�
1

3
ðY 0

TF3 þ 8πΠ0
3Þ þ ðYTF3 þ 8πΠ3Þðln BrÞ0

�
; ð34Þ

8πμθ
3r

¼ −
1

r

�
1

3
ðYTF2θ þ 8πΠ2θÞ þ ðYTF2 þ 8πΠ2ÞðlnBÞθ

�
þ 1

r

�
2

3
ðYTF3θ þ 8πΠ3θÞ þ ðYTF3 þ 8πΠ3ÞðlnBDÞθ

�

þ ½Y 0
TF1 þ 8πΠ0

KL þ ðYTF1 þ 8πΠKLÞðlnB2Dr2Þ0�; ð35Þ

where prime and subscript θ denote derivatives with respect to r and θ respectively.

III. THE COMPLEXITY FACTORS

We have now available all the elements necessary to
define the complexity factors for the fluid distribution
under consideration. For doing so we have first to establish
what we consider is the simplest possible fluid (or at least
one of them). From elementary considerations, as we did in
[1,2], we assume that the incompressible (constant energy
density) fluid with isotropic pressure is one of the simplest
fluid distributions. Now, in [46] it has been shown that
the necessary and sufficient conditions for the vanishing of
the (invariantly defined) spatial derivatives of the energy
density are XTF1 ¼ XTF2 ¼ XTF3 ¼ 0. In other words,

XTF1 ¼ XTF2 ¼ XTF3 ¼ 0 ⇔ μ0 ¼ μθ ¼ 0: ð36Þ

Therefore the homogeneous energy–density condition
implies XTF1 ¼ XTF2 ¼ XTF3 ¼ 0, which in turn produces

YTF1¼−8πΠKL; YTF2¼−8πΠ2; YTF3¼−8πΠ3: ð37Þ

Obviously, the isotropic pressure condition would
imply YTF1 ¼ YTF2 ¼ YTF3 ¼ 0.
Thus from the above considerations, and following the

rationale exposed in the spherically symmetric case,
we shall identify the three structure scalars YTF (more
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precisely, their absolute values) as the complexity factors.
They vanish for the incompressible (constant energy
density) fluid with isotropic pressure, but may also vanish
for inhomogeneous, anisotropic fluids, provided these two
factors combine in such a way that they cancel the three
complexity factors.
We shall next find some explicit analytical solutions.

IV. SOLUTIONS SATISFYING THE VANISHING
COMPLEXITY FACTORS CONDITION

As was mentioned above, the fluid distribution with
homogeneous energy density and isotropic pressure sat-
isfies the vanishing complexity factors condition, but it is
not the only one. These conditions may also be satisfied if
the terms describing the energy density inhomogeneity
cancel the anisotropic terms in (34), (35).
In this section, we shall present some solutions of this

kind. It should be kept in mind that our purpose here is not
to present solutions representing specific physically mean-
ingful compact object, but just to illustrate the way by
means of which such models might be obtained.

A. The incompressible, isotropic spheroid

As we have already seen, the incompressible isotropic
spheroid represents a fluid distribution for which the three
complexity factors vanish. This solution was obtained and
analyzed in [46]. Here we just reproduce it without details.
Thus from (36), (29)–(31) and Pxx ¼ Pyy ¼ Pzz ¼ P,
Pxy ¼ 0, μ ¼ μ0 ¼ constant, it is evident that such a
solution is also conformally flat.

For simplicity, we shall assume the boundary surface Σ
to be defined by the equation:

r ¼ r1 ¼ constant: ð38Þ

From the above and (A2) and (A5), it follows that

P¼Σ 0; ð39Þ

where¼Σ means that both sides of the equation are evaluated
on Σ
Under the conditions above, (A7) and (A8) can be

integrated to obtain

Pþ μ0 ¼
ζ

A
; ð40Þ

and

Pþ μ0 ¼
ξðrÞ
A

; ð41Þ

where ξ is an arbitrary function of its argument. Using
boundary conditions (39) in (40) and (41), it follows that

Aðr1; θÞ ¼ const ¼ α

μ0
; ζ ¼ constant: ð42Þ

Finally, the metric of incompressible conformally flat
isotropic fluids can be written as follows.

ds2 ¼ 1

ðγr2 þ δþ br cos θÞ2 ½−ðαr
2 þ β þ ar cos θÞ2dt2 þ dr2 þ r2dθ2 þ r2 sin2 θdϕ2�: ð43Þ

Next, the physical variables can be easily calculated.
Thus, using (43) into (A1), the energy density reads

8πμ ¼ 12γδ − 3b2: ð44Þ

To obtain the pressure, we shall use (40) and (42), which
produce

8πP¼ð3b2−12γδÞ
�
1−

αr21þβ

γr21þδ

γr2þδþbrcosθ
αr2þβþarcosθ

�
; ð45Þ

where b, γ, δ are constants, and

ζ ¼ μ0
αr21 þ β

γr21 þ δ
; a ¼ αr21 þ β

γr21 þ δ
b; ð46Þ

in order to satisfy the junction condition (39).

It is important to stress the fact that this solution cannot
be matched to any Weyl exterior, except in the spherically
symmetric case, even though it has a surface of vanishing
pressure (see [2] for details). This result is in agreement
with theorems indicating that static, perfect fluid (isotropic
in pressure) sources are spherical (see [48] and references
therein).

B. Anisotropic inhomogeneous spheroids

Although the inhomogeneous anisotropic spheroids
exhibited in [46] do not satisfy the vanishing complexity
factors conditions, solutions with vanishing complexity
factors but inhomogeneous energy density and anisotropic
pressure do exist, as we shall show in this subsection.
The metric variables for the solution are

Aðr; θÞ ¼ a1r sin θ
b1r2 þ b2

; ð47Þ
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Bðr; θÞ ¼ 1

b1r2 þ b2
ð48Þ

Dðr; θÞ ¼ b1r2 − b2
b1r2 þ b2

F

�
r cos θ

b1r2 − b2

�
: ð49Þ

It is a simple matter to check that conditions (C1)–(C3) are
satisfied for (47)–(49).
Next, using the Einstein equations (A1)–(A5), the metric

above produces the following expressions for the physical
variables,

8πμ ¼ 12b1b2 −
ðb1r2 þ b2Þ2
ðb1r2 − b2Þ2

�
4b1b2r2 cos2 θ
ðb1r2 − b2Þ2

þ 1

�
Fzz

F
;

ð50Þ

8πP¼−12b1b2þ
ðb1r2þb2Þ2
3ðb1r2−b2Þ2

�
4b1b2r2 cos2 θ
ðb1r2−b2Þ2

þ1

�
Fzz

F
;

ð51Þ

8πΠ2 ≡ 8πðPxx − PzzÞ ¼
Fzz

4F
ðb1r2 þ b2Þ2
ðb1r2 − b2Þ2

sin2θ; ð52Þ

8πΠ3 ≡ 8πðPyy − PzzÞ ¼
Fzz

4F
ðb1r2 þ b2Þ4cos2θ

ðb1r2 − b2Þ4
; ð53Þ

8πΠKL ≡ 8πPxy ¼ −
Fzz

2F
rðb1r2 þ b2Þ3
ðb1r2 − b2Þ3

sin 2θ; ð54Þ

with

FðzÞ≡ F

�
r cos θ

b1r2 − b2

�
; ð55Þ

and where a1, b1, b2 are constants. For a range of values of
these parameters, the physical behavior of physical variables
is acceptable and themetricmay bematched smoothly on the
boundary surface to a Weyl solution. However, our only
purpose in this section is to illustrate the existence of
solutions admitting the vanishing complexity factors con-
dition, and not to model specific astrophysical objects.

V. CONCLUSIONS

We have extended a previously proposed definition of
complexity for spherically symmetric fluid distributions to
the axially symmetric static case. We have considered
the most general fluid distribution compatible with this
latter symmetry. Unlike the spherically symmetric case, the
complexity is now defined in terms of three scalar functions
(complexity factors). This fact opens the possibility to
establish a more elaborated hierarchy of models, which
runs from the simplest case (the vanishing of the three

complexity factors) through semisimple (semicomplex)
models with only one or two vanishing complexity factors,
until the more complex (the less simple) models with all
the three complexity factors different from zero. Also, it
is worth noticing that the three scalars YTF;1;2;3 may be
positive or negative (if they are nonvanishing), depending
on the interplay between energy density inhomogeneity and
pressure anisotropy. Accordingly it is evident from purely
physical considerations that we have to choose the absolute
values of these scalars as the measure of the complexity of
any fluid distribution.
As it happens in the spherically symmetric case, there are

more than one model compatible with the vanishing of all
the complexity factors. It remains as a pending task to find
out what all these models have in common (besides the fact
that the complexity factors vanish). In other words, what
are the physical consequences derived from the vanishing
of the complexity factors? In the spherically symmetric
case, the consequence derived from the vanishing of the
complexity factor is very simple: the distribution of the
Tolman (active gravitational) mass is the same for all these
configurations. We don’t know if something similar
appears in the axially symmetric case.
In relation to the comment above, we would like to stress

one point which deserves to be explored in some detail: we
refer to the study of the possible relationship between
complexity (as defined here) and the stability of the fluid
distribution. Such relationship is apparent in the spherically
symmetric case through the influence of the complexity
factor in the value of the active gravitational mass (Tolman)
within the fluid distribution.
Finally we would like to call the attention to an issue

which may be relevant in the discussion about the definition
of complexity. We have in mind here the possible link
between symmetry (expressed through the admittance of
Killing vectors), and complexity. Indeed, even though, at
purely intuitive level, one might expect these two concepts
to be closely intertwined, the fact is that our results in this
work as well as in [1,2] point in the opposite direction.
In the spherically symmetric case, both in the static and

in the dynamic case, there are three Killing vectors which
are compatible with a broad hierarchy in the degree of
complexity. The situation analyzed in this manuscript
reinforces further this picture, by admitting a wider
hierarchy of complexity, for a lesser degree of symmetry.
Furthermore, there is an example that illustrates the lack

of correlation between symmetry and complexity, in a
particularly sharp and forceful way. Such an example is
provided by the Szekeres spacetime [49,50]. These are time
dependent metrics sourced by pure dust, which in general
do not admit a single Killing vector [51]. However, in
spite of the absence of symmetry, the electric part of the
Weyl tensor is defined through a single scalar function [52].
Then, since there are no pressure terms, if we restrict
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ourselves to the class of axially symmetric Szekeres
metrics, we conclude that there is only one complexity
factor [see Eqs. (43)–(44) in [53]], as in the spherically
symmetric case, revealing thereby that its degree of com-
plexity is low, in spite of the fact that there is only one
Killing vector (in the axially symmetric case).
Thus the qualification of “quasispherical” assigned by

Szekeres himself to his solution appears to be well justified,
due to the similar degree of complexity of both spacetimes.
In other words, the concept of complexity adopted here,
seems to represent better than its symmetry, some deeper
aspects of the system.
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APPENDIX A: THE EINSTEIN AND
CONSERVATION EQUATIONS

For the line element (1) and the energy momentum (3),
the Einstein equations read

8πμ ¼ −
1

B2

�
B00

B
þD00

D
þ 1

r

�
B0

B
þD0

D

�
−
�
B0

B

�
2

þ 1

r2

�
Bθθ

B
þDθθ

D
−
�
Bθ

B

�
2
��

; ðA1Þ

8πPxx ¼
1

B2

�
A0B0

AB
þ A0D0

AD
þ B0D0

BD
þ 1

r

�
A0

A
þD0

D

�
þ 1

r2

�
Aθθ

A
þDθθ

D
−
AθBθ

AB
þ AθDθ

AD
−
BθDθ

BD

��
; ðA2Þ

8πPyy ¼
1

B2

�
A00

A
þD00

D
−
A0B0

AB
þ A0D0

AD
−
B0D0

BD
þ 1

r2

�
AθBθ

AB
þ AθDθ

AD
þ BθDθ

BD

��
; ðA3Þ

8πPzz ¼
1

B2

�
A00

A
þ B00

B
−
�
B0

B

�
2

þ 1

r

�
A0

A
þ B0

B

�
þ 1

r2

�
Aθθ

A
þ Bθθ

B
−
�
Bθ

B

�
2
��

; ðA4Þ

8πPxy ¼
1

B2

�
1

r

�
−
A0
θ

A
−
D0

θ

D
þ Bθ

B

�
A0

A
þD0

D

�
þ B0

B
Aθ

A
þ B0

B
Dθ

D

�
þ 1

r2

�
Aθ

A
þDθ

D

��
: ðA5Þ

The nonvanishing components of the conservation equations Tαβ
;β ¼ 0 yield: the trivial equation

_μ ¼ 0; ðA6Þ

where the overdot denotes derivative with respect to t, and the two hydrostatic equilibrium equations

�
Pþ 1

3
ð2Π2 − Π3Þ

�0
þ A0

A

�
μþ Pþ 1

3
ð2Π2 − Π3Þ

�
þ B0

B
ðΠ2 − Π3Þ þ

D0

D
Π2

þ 1

r

��
Aθ

A
þ 2

Bθ

B
þDθ

D

�
ΠKL þ ΠKlθ þ Π2 − Π3

�
¼ 0; ðA7Þ

�
Pþ 1

3
ð2Π3 − Π2Þ

�
θ

þ Aθ

A

�
μþ Pþ 1

3
ð2Π3 − Π2Þ

�
þ Bθ

B
ðΠ3 − Π2Þ

þDθ

D
Π3 þ r

��
A0

A
þ 2

B0

B
þD0

D

�
ΠKL þ Π0

KL

�
þ 2ΠKL ¼ 0: ðA8Þ

APPENDIX B: EXPRESSION FOR THE COMPONENTS OF THE ELECTRIC WEYL TENSOR

There are four nonvanishing components as calculated from (18); however, they are not independent since they satisfy the
relationship
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E11 þ
1

r2
E22 þ

B2

D2
E33 ¼ 0; ðB1Þ

implying that the Weyl tensor may be expressed through three independent scalar functions E1, E2, E3.
These four components are

E11 ¼
1

6

�
2A00

A
−
B00

B
−
D00

D
−
3A0B0

AB
−
A0D0

AD
þ
�
B0

B

�
2

þ 3B0D0

BD
þ 1

r

�
2
D0

D
−
B0

B
−
A0

A

��

þ 1

6r2

�
−
Aθθ

A
−
Bθθ

B
þ 2Dθθ

D
þ 3AθBθ

AB
−
AθDθ

AD
þ
�
Bθ

B

�
2

−
3BθDθ

BD

�
; ðB2Þ

E22 ¼ −
r2

6

�
A00

A
þ B00

B
−
2D00

D
−
3A0B0

AB
þ A0D0

AD
−
�
B0

B

�
2

þ 3B0D0

BD
þ 1

r

�
D0

D
þ B0

B
−
2A0

A

��

−
1

6

�
−
2Aθθ

A
þ Bθθ

B
þDθθ

D
þ 3AθBθ

AB
þ AθDθ

AD
−
�
Bθ

B

�
2

−
3BθDθ

BD

�
; ðB3Þ

E33 ¼ −
D2

6B2

�
A00

A
−
2B00

B
þD00

D
−
2A0D0

AD
þ 2

�
B0

B

�
2

þ 1

r

�
D0

D
−
2B0

B
þ A0

A

��

−
D2

6B2r2

�
Aθθ

A
−
2Bθθ

B
þDθθ

D
−
2AθDθ

AD
þ 2

�
Bθ

B

�
2
�
; ðB4Þ

E12 ¼
1

2

�
A0
θ

A
−
D0

θ

D
þ Bθ

B
D0

D
−
A0Bθ

AB
−
B0Aθ

AB
þDθ

D
B0

B
−
1

r

�
Aθ

A
−
Dθ

D

��
: ðB5Þ

For the three scalars E1, E2, E3, we obtain

E1 ¼
1

2B2

�
1

r

�
A0
θ

A
−
D0

θ

D
−
Bθ

B
A0

A
þD0

D
Bθ

B
−
B0

B
Aθ

A
þDθ

D
B0

B

�
þ 1

r2

�
Dθ

D
−
Aθ

A

��
; ðB6Þ

E2 ¼ −
1

2B2

�
−
A00

A
þ B00

B
þ A0B0

AB
þ A0D0

AD
−
�
B0

B

�
2

−
B0D0

BD
þ 1

r

�
B0

B
−
D0

D

��

−
1

2B2r2

�
Bθθ

B
−
Dθθ

D
−
AθBθ

AB
þ AθDθ

AD
−
�
Bθ

B

�
2

þ BθDθ

BD

�
; ðB7Þ

E3 ¼ −
1

2B2

�
B00

B
−
D00

D
−
A0B0

AB
þ A0D0

AD
−
�
B0

B

�
2

þ B0D0

BD
þ 1

r

�
B0

B
−
A0

A

��

−
1

2B2r2

�
Bθθ

B
−
Aθθ

A
þ AθBθ

AB
þ AθDθ

AD
−
�
Bθ

B

�
2

−
BθDθ

BD

�
: ðB8Þ

Or, using Einstein equations, we may also write

E1 ¼
E12

B2r
¼ 4πΠKL þ 1

B2r

�
A0
θ

A
−
A0Bθ

AB
−
Aθ

A

�
B0

B
þ 1

r

��
; ðB9Þ

E2 ¼ −
2E33

D2
−

E22

B2r2
¼ 4πðμþ 3Pþ Π2Þ −

A0

B2A

�
2D0

D
þ B0

B
þ 1

r

�

þ Aθ

AB2r2

�
Bθ

B
−
2Dθ

D

�
−

1

B2r2
Aθθ

A
; ðB10Þ

E3 ¼ −
E33

D2
þ E22

B2r2
¼ 4πΠ3 −

A0

B2A

�
D0

D
−
B0

B
−
1

r

�
−

Aθ

AB2r2

�
Dθ

D
þ Bθ

B

�
þ 1

B2r2
Aθθ

A
: ðB11Þ
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APPENDIX C: VANISHING COMPLEXITY CONDITIONS

YTF1
¼ 1

B2r

�
A0
θ

A
−
A0Bθ

AB
−
Aθ

A

�
B0

B
þ 1

r

��
¼ 0; ðC1Þ

YTF2
¼ A00

B2A
−

A0

B2A

�
D0

D
þ B0

B

�
þ Aθ

AB2r2

�
Bθ

B
−
Dθ

D

�
¼ 0; ðC2Þ

YTF3
¼ −

A0

B2A

�
D0

D
−
B0

B
−
1

r

�
−

Aθ

AB2r2

�
Dθ

D
þ Bθ

B

�
þ 1

B2r2
Aθθ

A
¼ 0: ðC3Þ
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