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We obtain a full characterization of Einstein-Maxwell p-form solutions ðg;FÞ in D dimensions for which
all higher-order corrections vanish identically. These thus simultaneously solve a large class of Lagrangian
theories including both modified gravities and (possibly non-minimally coupled) modified electrodynamics.
Specifically, both g and F are fields with vanishing scalar invariants and further satisfy two simple tensorial
conditions. They describe a family of gravitational and electromagnetic plane-fronted waves of the Kundt
class and of Weyl type III (or more special). The local form of ðg;FÞ and a few examples are also provided.
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I. INTRODUCTION AND SUMMARY

While the Einstein-Maxwell Lagrangian is generally
considered to describe the prototype theory of gravity
coupled to electromagnetism, there is also a long history
of so-called “alternative theories.” The long-standing
problem of the electron’s self-energy led to a modified
electrodynamics already in 1912 [1] and subsequently to
the well-known nonlinear theory of Born and Infeld [2,3]
[see, e.g., [4] for more general nonlinear electrodynamics
(NLE)]. Soon after the birth of general relativity, the quest
for a unified description of gravity and electromagnetism
also inspired several modifications of Einstein’s theory—
see, e.g., the early works [5,6] and the reviews [7,8] for
more references. In subsequent years, further motivation to
take into account deviations from the Einstein-Maxwell
theory came from considering effective Lagrangians which
include various type of quantum corrections (cf., e.g.,
[9,10] and the original references quoted there) or low-
energy limits of string theory [11–14].
Not surprisingly, adding higher-order corrections to the

Einstein and Maxwell equations makes those generically
more difficult to solve. However, it is remarkable that there
exist theory-independent solutions, i.e., solutions “immune”
to (virtually) any type of corrections. One can thus employ
known solutions of the Einstein-Maxwell equations to
explore more complicated theories, at least in certain
regimes. This was first pointed out in the context of NLE
by Schrödinger, who showed that all null fields which solve
Maxwell’s theory also automatically solve any NLE in
vacuum [15,16]. The inclusion of backreaction on the
spacetime geometry in the full Einstein-Maxwell theory
was later discussed in [17]. Subsequently, it was noticed that

electromagnetic plane waves solve not only NLE but also
higher-order theories [9] (in flat spacetime; see also [18]),
and that a similar property is shared by Yang-Mills and
gravitational plane waves [9]. Backreaction was taken into
account in [19], whereas extensions of these results to more
general (electro)vacuum pp- and AdS-waves were obtained
in [20–22] and [23], respectively. This was used, in particu-
lar, to discuss spacetime singularities in string theory [21,22].
Recently, a more systematic analysis of D-dimensional

Einstein spacetimes immune to purely gravitational correc-
tions (“universal spacetimes”) was initiated in [24] and
further developed in [25–27] (see also [28–30] for related
results in the case of Kundt (AdS-)Kerr-Schild metrics).
From a complementary viewpoint, a study of test Maxwell
fields which simultaneously solve also generalized theories
of (p-form) electrodynamics (“universal electromagnetic
fields”) has been performed in [31–33]. In spite of consid-
erable progress, a full characterization of (i.e., a necessary
and sufficient condition for) universal spacetimes and uni-
versal electromagnetic fields is, in general, still lacking (but
see the above references for various results in special cases).
In the present contribution we investigate solutions of the

coupled (possibly also nonminimally) Einstein-Maxwell
equations for which all higher-order corrections vanish
identically in arbitrary dimension D and for any rank p of
the Maxwell form. We show that a full characterization is
possible, which we formulate as theorems 3.1 and 3.4.
Essentially (up to technicalities to be explained in the
following), we prove that for a solution ðg;FÞ of the
Einstein-Maxwell theory, all higher-order corrections van-
ish if, and only if, both ðg;FÞ are fields with vanishing scalar
invariants (VSI) and additionally satisfy the two tensorial
conditions CacdeCb

cde ¼ 0 and ∇cFad…e∇cFb
d…e ¼ 0.

This implies, in particular, that the spacetime is Kundt and
possesses a recurrent null vector field (but is not necessarily
a pp-wave) and that the cosmological constant vanishes.
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This characterization of a large class of exact solutions make
those relevant in contexts more general than the Einstein-
Maxwell theory, with possible applications, e.g., in string
theory along the lines of [19–22]. Moreover, the methods
used in thiswork are suitable also for further extensions of the
results obtained here, for example to Yang-Mills solutions.
The structure of the paper is as follows. In Sec. II we

define the theories under considerations and in what sense
those can be considered as corrections to the Einstein-
Maxwell theory. Section III contains the main results of this
paper, namely theorems 3.1 and 3.4 (in the case ofminimally
and non-minimally coupled theories, respectively) and their
proofs. A simpler result for the special case of Einstein
gravity coupled to algebraically corrected electrodynamics
(relevant for theories similar to NLE) is also obtained
(theorem 3.3). In Sec. IV, we present the explicit form of
the solutions ðg;FÞ in adapted coordinates, which is more
suitable for practical applications, along with a few exam-
ples. The relation of the solutions to universal spacetimes
[24–27] and universal electromagnetic fields [31–33] is also
discussed, along with the overlap with Kerr-Schild space-
times. Some additional comments are provided in the special
case of four spacetime dimensions. The four appendices
contain various technical results used throughout the paper
(in particular, in the proofs of the main theorems). Most of
those are new and of some interest in their own, and we
believe they will be useful also in future investigations (we
have quoted the relevant references in the few cases inwhich
we simply summarize previously known results).

A. Notation

Throughout the paper, we employ the boost-weight
classification of tensors [34] (cf. also the review [35])—
this relies on setting up a frame of D real vectors mðaÞ
which consists of two null vectors ℓ ≡mð0Þ, n≡mð1Þ and
D − 2 orthonormal spacelike vectors mðiÞ (with a; b… ¼
0;…; D − 1 and i; j;… ¼ 2;…; D − 1), such that the
metric reads

g ¼ ℓ ⊗ nþ n ⊗ ℓ þmðiÞ ⊗ mðiÞ: ð1:1Þ
The range of lowercase Latin indices when indicating an
order of differentiation (e.g., in ∇ðkÞR) will be specified
as needed. Furthermore, R, C, S denote the Riemann and
Weyl tensors and the tracefree part of the Ricci tensor
[cf. (B1)], respectively. A p-form is denoted by F. A
“Maxwell p-form” is a p-form which obeys the sourcefree
Maxwell equations, i.e., dF ¼ 0 ¼ d ⋆ F.

II. HIGHER ORDER THEORIES OF GRAVITY
AND ELECTROMAGNETISM

A. Form of the Lagrangian

In the paper, we take into account virtually all classical
Lagrangian theories of gravity coupled to electromagnetism,

described by the electrovacuum Einstein-Maxwell equa-
tions with higher-order corrections. More precisely, we
consider a theory of gravity and p-form electromagnetism,
in spacetime dimensions D ≥ 3 and with 1 ≤ p ≤ D − 1,1

characterized by the action

S½g;A� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
L; ð2:1Þ

with a Lagrangian L of the form

L≡ LgravðR;∇R;…Þ þ LelmagðF;∇F;…Þ
þ LintðR;∇R;…;F;∇F;…Þ: ð2:2Þ

Here, the individual parts of L are scalars constructed from
the corresponding tensors: R denotes the Riemann tensor of
the metric g, and F denotes the field strength of the electro-
magnetic potential (p − 1)-formA, i.e.,F ¼ dA.We assume
that the individual parts of L satisfy:

(i) Lgrav is a function of scalar polynomial curvature
invariants fIig constructed from R and its covariant
derivatives ∇ðkÞR of arbitrary order (suitably con-
tracted with the the metric and, possibly, the volume
element). Moreover, LgravðI1; I2;…Þ is analytic at
zero with a Taylor expansion of the form

Lgrav ¼ LEH þ LGC; ð2:3Þ

where

16πLEH ¼ R − 2Λ ð2:4Þ
defines the Einstein-Hilbert Lagrangian (we have set
G ¼ 1 ¼ c), and LGC (“gravity corrections”) con-
sists strictly of higher order (i.e., greater than two)
curvature monomials.2 This means that the possible
monomials are at least quadratic in R or contain
derivatives ∇ðkÞR.

(ii) Lelmag is a function of scalar polynomial electromag-
netic invariants fJjg constructed fromF and∇ðkÞF of

1As is well known, a Maxwell D-form reduces to the
spacetime volume element (up to a multiplicative constant)
and simply gives rise to an effective positive cosmological
constant, so that a spacetime with vanishing higher-order cor-
rections must be Einstein (forD ¼ 2 this simply fixes the value of
Λ in terms of F). The cases p ¼ D and, by duality, p ¼ 0, are
thus of little interest in our work. We also exclude the case D ¼ 2
with p ¼ 1, since Einstein’s equations imply the trivial condition
F ¼ 0. This is why we restrict ourselves to D ≥ 3.

2Following the terminology of [36], throughout the paper by
“order” we indicate the number of differentiations of the metric/
vector potential (so, for example, in terms containing the
curvature, each factor R contributes a term 2 and each explicit
covariant derivative a term 1 [36]). Two quantities of the same
order have thus the same physical dimensions. Most importantly,
the field variation of an invariant of order n (in our case, with
respect to g or A) yields a tensor again of the same order n.
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arbitrary order. Moreover, LelmagðJ1; J2;…Þ is ana-
lytic at zero with a Taylor expansion of the form

Lelmag ¼ LM þ LEC; ð2:5Þ

where

16πLM ¼ −
κ0
p
F2 ðF2 ¼ Fab…cFab…cÞ; ð2:6Þ

defines the source-free Maxwell Lagrangian, and
LEC (“electromagnetic corrections”) consists strictly
of higher order (i.e., greater than two) monomials.

(iii) Lint is a function of mixed invariants fKkg (i.e.,
scalar monomials each containing both R;∇R;…
and F;∇F;…) and satisfies Lintð0Þ ¼ 0.

The above assumptions ensure that when the invariants
entering L are small, L approaches the standard Einstein-
Maxwell p-form Lagrangian, i.e., 16πL ≈ R − 2Λ − κ0

p F
2.

However, L is not assumed to be analytic everywhere—
as is the case for some of the theories mentioned in
remark 2.1 below.
Remark 2.1: (Theories contained in our definition) The

class of theories encompassed by (2.1), (2.2) [with (2.3)–
(2.6)] is rather broad. It naturally includes Einstein’s gravity
coupled to NLE [17] for arbitrary D and p (see Sec. III A 1
below). Obviously, it also contains theories with arbitrary
polynomial higher-order corrections, such as generic
Lovelock [37] or any quadratic gravity [6,38–40] in the
gravitational sector, or Bopp-Podolsky electrodynamics
[41,42] in the electromagnetic sector. Nonlinear theories
such as fðRÞ [43] and, more generally, fðRiemannÞ [44], or
Born-Infeld inspired modifications of gravities [45]
coupled to generalized electrodynamics (such as NLE
and their various generalizations) are also encompassed.
Another special class of theories covered by (2.1) are then
non-minimally extended Einstein-Maxwell theories (see,
e.g., [46] for an early discussion).
Also some theories not encompassed by our assumptions

are worth mentioning. These are typically theories without
the Einstein term in the gravity sector, such as conformal
gravity [47] or any Lovelock gravity containing only
quadratic or higher powers of R (e.g., pure Gauss-
Bonnet gravity). We observe that also theories containing
an electromagnetic Chern-Simons (CS) term (possible for
D ¼ pðkþ 1Þ − 1, where k ≥ 1–cf., e.g., [48,49]) are not
comprised in our definition. However, since any null F
satisfies identically F ∧ F ¼ 0, CS corrections to the
Maxwell equations with k ≥ 2 vanishes identically for null
fields [31,50]. The energy-momentum tensor is also unaf-
fected, therefore the solution of theorems 3.1 and 3.4 are
also immune to CS corrections. In the special case k ¼ 1,
CS corrections to the Maxwell equations are instead linear
and therefore a non-zero solution of standard Maxwell’s
theory cannot solve those.

B. Field equations

Variation of action (2.1) with respect to the fields g and A
yields the following equations of motion

Ggrav
ab þGint

ab ¼ 8πTelmag
ab ; ð2:7Þ

∇aHelmag
ab…c þ∇aHint

ab…c ¼ 0: ð2:8Þ

From the Taylor expansion (2.3) and (2.5) of Lgrav and
Lelmag, respectively, the following expressions for the
individual tensors in (2.7), (2.8) follow (within the radii
of convergence of the Taylor series):

Ggrav
ab ¼ Gab þΛgab þGGC

ab ; GGC
ab ≡ 16πffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LGCÞ
δgab

;

ð2:9Þ

Telmag
ab ¼TM

abþTEC
ab ; T

EC
ab ≡ −2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LECÞ
δgab

; ð2:10Þ

∇aHelmag
ab…c¼∇aFab…cþ∇aHEC

ab…c; ∇aHEC
ab…c≡8π

κ0

δLEC

δAb…c ;

ð2:11Þ
where

Gab ≡ 16πffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LEHÞ

δgab
¼ Rab −

1

2
Rgab; ð2:12Þ

TM
ab ≡ −2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LMÞ
δgab

¼ κ0
8π

�
Fac…dFb

c…d −
1

2p
gabF2

�
;

ð2:13Þ

are the Einstein tensor and the part of the energy-
momentum tensor coming from the standard Maxwell
term. The interaction tensors Gint, divHint are then a
symmetric and skew-symmetric tensor obtained by the
field variation of Lint with respect to g and A, respectively.
The explicit form of variations of LGC;LEC and Lint
evaluated on VSI fields (which suffices for our purposes)
is given in Appendix A [expressions (A3)–(A7)].
Remark 2.2: (Simplifications of CSI and VSI fields)

When evaluated on fields ðg;FÞ with constant scalar
invariants (CSI), variations of Lagrangians Lgrav;Lelmag

and Lint being functions of the corresponding scalar
polynomial invariants fIig; fJjg and fKkg, respectively,
reduce to a linear combination (with constant coefficients)
of variations of these scalar invariants (see Appendix A).
This means that the fields equations reduce considerably
for such fields—in particular, it enables one to study (in
general complicated) higher-order theories in the context of
CSI fields just by studying field variations of the individual
scalar polynomial invariants, independently of the specific
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functional dependence of the Lagrangian. Further simpli-
fication occurs in the case of VSI fields (clearly a subset of
CSI fields). In the next section, this strategy will be
employed in the proofs of the main results.

III. SOLUTIONS WITH VANISHING
HIGHER-ORDER CORRECTIONS

We will show that under certain assumptions on a
solution ðg;FÞ of the Einstein-Maxwell equations, the
tensors GGC;Gint;TEC; divHEC and divHint, representing
higher-order corrections to the Einstein-Maxwell theory,
vanish identically. Minimally coupled (Lint ¼ 0) and non-
minimally coupled (Lint ≠ 0) theories will be treated
separately.

A. Minimally coupled theories

In the minimally coupled case one has

Lint ¼ 0; ð3:1Þ

so that the interaction tensors Gint and Hint are not present
in the field equations (2.7) and (2.8). Consequently, we
shall deal with simpler higher-order corrections to the
Einstein-Maxwell system.
Theorem 3.1: (Solutions with vanishing corrections)

Let ðg;FÞ be a solution of the Einstein-Maxwell theory
with a nonvanishing F and (2.1), (2.2) be a minimally
coupled theory (i.e., with Lint ¼ 0) satisfying the assump-
tions outlined in Sec. II A. Then, the following statements
are equivalent:

(i) All higher-order corrections of (2.1) to the Einstein-
Maxwell theory vanish for ðg;FÞ.

(ii) ðg;FÞ are VSI fields and satisfy CacdeCb
cde ¼ 0

and ∇cFad…e∇cFb
d…e ¼ 0.

Remark 3.2: First of all, let us note that the VSI
property in condition (ii) of theorem 3.1 requires the
cosmological constant Λ to be zero. Condition (ii) also
implies that the spacetime is of Weyl type III [51] and
admits a recurrent multiple Weyl aligned null direction
(mWAND) ℓ aligned with F (see remark D.10), thus being
Kundt. Note also that the condition CacdeCb

cde ¼ 0 can be
traced back to the vanishing of the Gauss-Bonnet term in
the gravitational field equations (as such, it has been
discussed in related contexts, e.g., in [25,52–54]). We
further emphasize that it is satisfied identically by VSI
spacetimes in D ¼ 4 dimensions, thanks to the well-known
four-dimensional identity CacdeCbcde ¼ 1

4
ðCcdefCcdefÞδba.

For D ¼ 3 it is also trivial since Cabcd ¼ 0 identically.
Proof.—Let us first show that (i) implies (ii). Consider

the 2N-th order Lagrangian LEC ≡ JN1 (N > 1), where
J1 ¼ Fa…bFa…b. The condition TEC ¼ 0 implies that the
trace TrTEC ¼ −2ðNp −D=2ÞJN1 has to vanish and hence
necessarily J1 ¼ 0, since N can be chosen arbitrarily. Now,
one can take LEC ≡ J1I, where I is an arbitrary scalar

polynomial invariant of F and its covariant derivatives.
Thanks to J1 ¼ 0, the corresponding correction reduces to
TEC ∝ ITM for our field F, where TM is the standard
Maxwell energy-momentum tensor (2.13) (which is nec-
essarily non-zero since F ≠ 0). Hence, also I has to vanish
and, since it was an arbitrary invariant, F is VSI. In
particular, it is null and the metric g is (degenerate)
Kundt of traceless Ricci type N with constant Ricci scalar
[31]. The condition GGC ¼ 0 then implies that also g has to
be VSI. Indeed, considering LGC ¼ R2, we get R ¼ 0.3

This suffices to conclude that g is CSI, as immediately
follows from (the proof of) theorem 3.2 of [25] (using
TrGGC ¼ 0). Then, varying LGC ¼ RI with I being an
arbitrary scalar polynomial curvature invariant (also using
R ¼ 0 and the CSI property of g), one obtains that I has to
vanish as well, i.e., g is truly VSI. In particular, g is of
aligned Weyl type III and Ricci type N [51] (in addition to
being degenerateKundt). Inviewof the results obtained so far,
varying the higher-order invariants RabRab and RabcdRabcd

and demanding that such corrections also vanish, we obtain
that □Sab, and consequently also CacdeCb

cde, vanishes.
Under the given conditions on ðg;FÞ, the Weitzenböck
identity implies □F ¼ 0 (cf. Eq. (12) of [33]). Since here
Sab ¼ κ0Fac…dFb

c…d (by Einstein’s equations with null F),
we have that □Sab ¼ 0 iff ∇cFad…e∇cFb

d…e ¼ 0, which
completes the first part of the proof.
Now we will prove that (ii) implies (i). First, both fields

are VSI, thus, as pointed out in remark 2.2, all higher-order
corrections of (2.1) reduce to a linear combination of
variations of the individual polynomial invariants Ik, Jk,
Ki [see expressions (A3)–(A7) and the discussion below
those]. Hence, the discussion can be without loss of
generality restricted to polynomial higher-order corrections
GGC;TEC and HEC. Now, according to theorem 1 of [51], g
is of aligned Weyl type III and Ricci type N, and thus also
aligned with the VSI form F (thanks to Einstein’s equa-
tions). Theorem 2.5 of [33] then implies divHEC ¼ 0. In
view of theorem D.9 (with remark D.10),∇F is 1-balanced,
all conditions of lemma B.7 are satisfied and consequently
TEC ¼ 0 (recall that TEC has order greater than two). It
remains to show thatGGC vanishes as well. Since F is a null
Maxwell field aligned with a Kundt null direction ℓℓ , from
remark D.10 we get τi ¼ 0, i.e., ℓℓ is recurrent.
Theorem C.1 thus guarantees that GGC takes the form

GGC
ab ¼

XN
n¼0

an□nSab: ð3:2Þ

3We do not reproduce here the tensors produced by variation of
such kinds of Lagrangians with respect to the metric since they
have been well-known for some time [40,55]. The same comment
applies also to the other quadratic terms mentioned in the
following.
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As noticed above, here Sab ¼ κ0Fac…dFb
c…d. Hence,

1-balancedness of ∇F implies □S ¼ 0 and we are left
with GGC

ab ¼ a0Sab. But since LGC is a higher-order scalar,
a0 must be a nontrivial curvature invariant and hence
vanishes due to the VSI property of g. ▪

1. Algebraic corrections to the Maxwell Lagrangian

A subclass of theories of particular interest consists of
standard general relativity coupled to generalized electro-
dynamics, for which the higher-order corrections are
assumed to be only algebraic. This includes, in particular,
the well-known case of NLE in four dimensions [17]. Let
us thus consider Einstein-generalized Maxwell theories
with algebraic corrections, i.e., a subclass of theories (2.1),
(2.2) for which the expansion (2.3), (2.5) reduces to

L ¼ LEH þ LM þ LEC; ð3:3Þ

where LEC is a (higher-order) function of the algebraic
invariants fJjg only (i.e., those constructed solely from F
and its dual, and not their covariant derivatives).
Theorem 3.3: (Einstein gravity with algebraically cor-

rected electrodynamics) Let ðg;FÞ be a solution of the
Einstein-Maxwell equations with nonvanishing F. Then,
ðg;FÞ solves Einstein gravity coupled to any generalized
Maxwell theory with higher-order algebraic corrections if
and only if F is null.
Proof.—To prove that F is necessarily null, we can

proceed similarly as in the proof of theorem 3.1. By
considering LEC ≡ JN1 , where J1 ≡ Fa…bFa…b, one
obtains J1 ¼ 0 for a suitable choice of N. Now, the
Lagrangian LEC ≡ J1I, where I is an arbitrary algebraic
polynomial invariant of F, is clearly an admissible correc-
tion. Since J1 vanishes for F, we have TEC ∝ ITM, which
implies that also I ¼ 0. Therefore, all algebraic invariants
of F must vanish, i.e., F is null [31,56].
On the other hand, since all algebraic invariants fJjg of

any null field F vanish, the tensors HEC and TEC again
effectively reduce to polynomial higher-order corrections
(cf. Appendix A). Therefore, we have divHEC ¼ 0 thanks
to Proposition 2.4 of [33]. In addition, since any higher-
order algebraic polynomial TEC has to be at least cubic in
F, one also immediately obtains TEC ¼ 0, i.e., all algebraic
higher-order corrections vanish trivially. ▪
Hence, we observe that null Einstein-Maxwell fields are

indeed of particular importance in the context of higher-
order theories. It is worth emphasizing that, in this case, the
metric is restricted neither to be of Weyl type III nor Kundt,
and Λ can be nonzero, thus allowing for more general
spacetimes. Many such solutions are known in the case
D ¼ 4 ¼ 2p (cf. [57] and references therein). In higher
dimensions, some non-Kundt solutions have been pre-
sented, e.g., in [58] (when D ¼ 2p). A simple Weyl type
D example with D ¼ 6 ¼ 2p is given by [58]

ds2 ¼ r2δijdxidxj þ 2dudrþ
�
Λ
10

r2 þ μðuÞ
r3

�
du2

ði; j;… ¼ 2;…; 5Þ ð3:4Þ

F ¼ 1

2
fijðuÞdu ∧ dxi ∧ dxj;

μðuÞ ¼ μ0 þ
κ0
2

Z
ðfijfijÞdu; ð3:5Þ

where μ0 is a constant, which describes (for Λ < 0) the
formation of asymptotically locally AdS black holes
by collapse of electromagnetic radiation with nonzero
expansion.
Note also that, for the case D ¼ 4 ¼ 2p, it was already

known to Schrödinger that all null Maxwell fields auto-
matically solve any NLE [15,16], while the fact that all null
solutions of the Einstein-Maxwell theory solve also
General Relativity coupled to any NLE was pointed out
in the early 1960s [17] (see also [59,60]).

B. Nonminimally coupled theories

In this section, we show that the Einstein-Maxwell
solutions studied in Sect. III A are free from higher order
corrections also in the context of a wider class of non-
minimally coupled theories—that is, also the interaction
part of the field equations (2.7), (2.8) amounting to Lint
vanishes identically for these Einstein-Maxwell fields.
Theorem 3.4: The Einstein-Maxwell fields with vani-

shing higher-order corrections of Sec. III A solve also all
nonminimally coupled theories (2.1), (2.2).
Proof.—It is sufficient to show that the tensors Gint,

divHint arising from Lint vanish—since the vanishing of the
other terms in (2.7), (2.8) clearly follows by the same
arguments as in the proof of ðiiÞ ⇒ ðiÞ in theorem 3.1.
Again, we can without loss of generality restrict ourselves
to polynomial higher-order corrections. Clearly, when both
Gint and Hint consist of monomials containing ∇ðkÞR �
∇ðlÞF with k ≥ 0; l > 0, then a trivial boost weight (b.w.)
counting shows that they have to vanish (recall lemmas B.2
and B.3 and the fact that ∇F is 1-balanced). This argument
does not apply to Gint in the case l ¼ 0—which however is
covered by lemma B.6.
However, different forms of Gint and Hint are also

possible. Namely, if Lint ∝ ∇ðkÞR �∇ðlÞF, variations with
respect to g and A may yield terms of type ∇ðkþ2Þ �∇ðlÞF
and ∇ðlþ1Þ �∇ðkÞR, respectively. Fortunately, even these
two types of terms are safe—the first one is zero by
lemma B.7 and the second one vanishes thanks to
lemma B.5. Hence, we conclude that also interaction terms
necessarily vanish for ðg;FÞ. ▪
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IV. EXPLICIT FORM OF THE SOLUTIONS
AND DISCUSSION

The local form of general VSI fields ðg;FÞ solving the
Einstein-Maxwell equations is known in standard Kundt
coordinates (see [61] and [31]4). For solutions with
vanishing higher-order corrections (theorem 3.1) the multi-
ple null direction (of both R and F) must be recurrent
(remark 3.2), which gives [in the metric (1.1)]

ℓℓ ¼ du;

n ¼ drþ ½Hð1Þðu; xÞrþHð0Þðu; xÞ�duþWkðu; xÞdxk;
mðiÞ ¼ dxi; ð4:1Þ

F ¼ 1

ðp − 1Þ! fi…jðuÞdu ∧ dxi ∧ … ∧ dxj

ði; j; k;… ¼ 2;…; D − 1Þ; ð4:2Þ

wherewe have also used the condition∇cFad…e∇cFb
d…e ¼

0 in (ii) of theorem 3.1 to constraint the form of F
(cf. remarks D.10, D.11). The functions Hð0Þ, Hð1Þ, Wi
and fi…j are then subject to the following equations

W½i;j�kW½i;j�k ¼ 2W½k;m�mW½k;n�
n; ð4:3Þ

Hð1Þ
;j ¼ W½j;k�k; ð4:4Þ

ΔHð0Þ ¼ 2Hð1Þ
;kWk þHð1ÞWk

;k þW½m;n�W½m;n�

þWm;u
m − κ0F 2; ð4:5Þ

where Δ is the Laplace operator in the (flat) transverse
space and F 2 ≡ fi…jfi…j was defined. Equation (4.3) is
equivalent to the condition CacdeCb

cde ¼ 0 [(ii) of theo-
rem 3.1], while Eqs. (4.4) and (4.5) correspond to the
Einstein equations of negative boost weight (cf. [31,61]).
The rest of projections of the Einstein-Maxwell equations is
already satisfied [31,61]. For the sake of definiteness, an
explicit example with D ≥ 6 and p ¼ 3 (building on an
example given in [54]) is given by (4.1) with

F ¼ du ∧ ðf23dx2 ∧ dx3 þ f45dx4 ∧ dx5Þ; ð4:6Þ

W2 ¼ ax23; Hð1Þ ¼ ax2; ð4:7Þ

Hð0Þ ¼ a2

3
x43 þ bx23 þ cx24; bþ c ¼ −κ0ðf223 þ f245Þ;

ð4:8Þ

where f23, f45, a, b and c are arbitrary functions of u and
the remaining Wi (i > 2) are understood to be zero.

The above spacetimes are generically of Weyl type III
[61]. The Weyl type N subclass of solutions takes the form
(4.1), (4.2) with the constraints (after using some coor-
dinate freedom) [62]5

Hð1Þ ¼ 0; Wi ¼ 0: ð4:9Þ

Equations (4.3) and (4.4) are thus automatically satisfied,
while (4.5) reduces to

ΔHð0Þ ¼ −κ0F 2; ð4:10Þ

where the RHS (the “source” term) depends only on u. An
example is given by (4.6)–(4.8) with a ¼ 0.
Finally, conformally flat solutions (i.e., Weyl type O) can

be cast in the form

Wi ¼ 0; Hð1Þ ¼ 0; Hð0Þ ¼ −
κ0F 2

2ðD − 2Þ
X
i

ðxiÞ2;

ð4:11Þ

where a permitted term linear in (or independent of) the xi

in Hð0Þ has been removed by a transformation of the form
xi ↦ xi þ hiðuÞ, r ↦ r − _hixi þ gðuÞ (cf. Section 24.5
of [57]).
The solution (4.1), (4.2) can be understood as a

gravitational and electromagnetic plane-fronted wave
propagating in a flat spacetime (recovered for Hð1Þ ¼
Hð0Þ ¼ Wi ¼ 0). Since fi…j in (4.2) depends only on u,
every admissible electromagnetic field F is constant over
its wave surfaces and hence gives rise to a pure radiation
with (transversely) homogeneous energy density κ0F 2=8π.
Solutions of type N and O belong to the class of pp- waves
[63], already discussed in a similar context (for particular
values of D and p) in [19,21,22].
Remark 4.1: (Relation to universal spacetimes and

electromagnetic fields) According to theorem 3.1,
Einstein-Maxwell solutions with vanishing higher-order
corrections are defined by VSI fields ðg;FÞ that satisfy

τi ¼ 0; CacdeCb
cde ¼ 0: ð4:12Þ

This ensures that, in the limit of a test electromagnetic field
(i.e., a “small” F with negligible backreaction), the solution
(4.1), (4.2) gives rise to a universal electromagnetic field
(theorem 1.5 of [33]) propagating in a Ricci-flat universal
spacetime (theorem 1.4 of [25]). However, let us emphasize

4There is a typo in (6, [31]): the factorial p! should be
simply p.

5The first of (4.9) was obtained in [61] and means that these
solutions belong to the class of pp-waves (i.e., ℓ is covariantly
constant). Then, for pp- waves, the “ebenfrontiger Symmetrie”
condition (2.1) of [62] is equivalent to imposing the Riemann
type N, which allows one to use theorem 2.1 of [62] to arrive at
the second of (4.9) (cf. also [22]).
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that the vacuum solutions of [25] (and [26,27]) are more
general than the backgrounds allowed by our theorem 3.1.
One reason for this is that we required all higher-order
curvature corrections to the Einstein tensor to vanish (and
not just be proportional to the metric, as in [25–27]—
cf. [24] for related comments), which implied that g (as
well as F) is VSI. The second reason is that we needed to
ensure that also corrections constructed out of F vanish,
which led to the first of (4.12) (cf. again the proof of
ðiÞ ⇒ ðiiÞ in theorem 3.1 for more details). Similarly, also
the test electromagnetic fields on a fixed background
obtained in [32,33] are more general than those allowed
by our theorem 3.1, and examples are known in which
g and/or F are not VSI [32,33].
In addition, it is worth observing that the metric g

defined in (4.1) can be related to (a subset of the) Ricci-flat
universal spacetimes of [25] also by a generalized Kerr-
Schild transformation with a suitable function Hðu; xÞ,
under which both (4.12) are automatically preserved—in
the Kundt coordinates (4.1), this amounts to a change
Hð0Þ ↦ Hð0Þ þH with ΔH ¼ κ0F 2 (Hð0Þ does not appear
in la;b nor in Riemann components of b.w. 0;−1, which
explains why (4.12) are preserved).
Remark 4.2: (Kerr-Schild form) Note that Weyl type N

solutions are Kerr-Schild metrics with ℓℓ (of (4.1) being the
Kerr-Schild vector, while genuine type III solutions are not
(not even if the Kerr-Schild vector is allowed to be a
geodetic null vector different from ℓ ). The type N part of
this statement is manifest using (4.9). The type III part
follows from Section 4.2.1 of [64] (which implies that a
spacetime with a Kerr-Schild, Kundt vector is necessarily
of Weyl type N, provided the Ricci tensor is N (aligned) or
zero) and from Proposition 2 of [64] (which implies that a
spacetime of Weyl type III cannot posses a geodesic Kerr-
Schild vector distinct from the (unique) mWAND).
Remark 4.3: (D ¼ 4 solutions) As noticed in

Remark 3.2, when D ¼ 4 the condition CacdeCb
cde ¼ 0

can be dropped from theorems 3.1 and 3.4, and there are no
additional constraints on the spacetime apart from being
VSI (and thus Kundt) with a recurrent PND (and satisfying
Einstein’s equations). Thanks to known results [57], all
solutions admitted by theorem 3.1 can thus be reduced to
the compact form

ds2 ¼ 2dζdζ̄ − 2duðdrþWdζ þ W̄dζ̄ þHduÞ;
F ¼ du ∧ ½fðuÞdζ þ f̄ðuÞdζ̄�; ð4:13Þ

where

W ¼ Wðu; ζ̄Þ; H ¼ 1

2
ðW;ζ̄ þ W̄;ζÞrþHð0Þðu; ζ; ζ̄Þ;

ð4:14Þ

Hð0Þ
;ζζ̄

−
1

2
ðW2

;ζ̄
þW̄2

;ζþWW;ζ̄ ζ̄þW̄W̄;ζζþW;ζ̄uþW̄;ζuÞ¼κ0ff̄:

ð4:15Þ
These spacetimes are in general of Petrov type III. They are
of type N iff W;ζ̄ ζ̄ ¼ 0, in which case W can be gauged
away [57] and one is left with the standard form of
electrovac pp- waves ds2 ¼ 2dζdζ̄ − 2dudr − 2Hð0Þdu2,
with Hð0Þ ¼ κ0fðuÞf̄ðuÞζζ̄ þ hðu; ζÞ þ h̄ðu; ζ̄Þ. These sol-
utions were mentioned in a related context in [65].
Above we discussed the standard case p ¼ 2. When

p ¼ 1 (or p ¼ 3 up to duality), the only difference is that
the electromagnetic field is given by F ¼ fðuÞdu, where f
is now real, and the RHS of (4.15) should be replaced
by 1

2
κ0f2.

Remark 4.4: (D ¼ 4 example of Petrov type III) In the
special case of Einstein gravity coupled to generalized
higher-derivative electrodynamics (i.e., LGC ¼ 0 ¼ Lint),
the fact that (ii) implies (i) was already pointed out in [31]
(but without presenting a proof of this statement). Thanks
to theorem 3.1, a simple four dimensional example of
Petrov type III constructed there is also free of corrections
in the more general theory (2.2). This reads

ds2 ¼ 2du

�
drþ 1

2
ðxr − xex − 2κ0exc2ðuÞÞdu

�

þ exðdx2 þ e2udy2Þ; ð4:16Þ

F¼ex=2cðuÞdu∧
�
−cos

yeu

2
dxþeu sin

yeu

2
dy

�
: ð4:17Þ

It is contained in the more general family (4.13), although
here it is expressed in slightly different coordinates.
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APPENDIX A: VARIATIONS OF L EVALUATED
ON VSI FIELDS

Varying the action (2.1) with LðIi; Jj; KkÞ≡ LgravðIiÞþ
LelmagðJjÞ þ LintðKkÞ, one has

δS ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
L
2
gabδgab þ

X
i

∂Lgrav

∂Ii δIi

þ
X
j

∂Lelmag

∂Jj δJj þ
X
k

∂Lint

∂Kk
δKk

�
: ðA1Þ

Let us take a closer look at variation of the individual
invariants. Taking e.g., the nth term of the first sum and
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assuming the boundary terms vanish, integration by parts
yields

Z
dDx

ffiffiffiffiffiffi
−g

p ∂Lgrav

∂In δIn ¼
Z

dDx
ffiffiffiffiffiffi
−g

p ∂Lgrav

∂In
δIn
δgab

δgab

þ
�
terms involving∇ðkÞ ∂Lgrav

∂In
�
:

ðA2Þ

For a CSI metric g, the derivatives ∂Lgrav=∂In are just some
constants. Hence, when evaluated on a CSI metric g, the
bracketed term in (A2) does not contribute to the resulting
variation. A similar argument holds also for the rest of the
terms in (A1).
Hence, we conclude that, when evaluated on CSI fields

ðg;FÞ, variations of LGC;LEC (recall (2.3) and (2.5)6) and
Lint reduce to a linear combination of variations with
respect to δgab or δFab…c of the individual polynomial
invariants. If, moreover, ðg;FÞ are VSI, their polynomials
invariants Ik, Jk, Ki vanish and so do LGC;LEC and Lint.
Hence, we arrive at the following expressions (evaluated on
VSI fields)

GGC
ab ½g� ¼ 16π

X
i

∂LGC

∂Ii ð0Þ δIi
δgab

½g�; ðA3Þ

TEC
ab ½F� ¼ −2

X
j

∂LEC

∂Jj ð0Þ δJj
δgab

½F�; ðA4Þ

Gint
ab½g;F� ¼ 16π

X
k

∂Lint

∂Kk
ð0Þ δKk

δgab
½g;F�; ðA5Þ

∇aHEC
ab…c½F� ¼ −

8πp
κ0

X
j

∂LEC

∂Jj ð0Þ∇a δJj
δFab…c ½F�; ðA6Þ

∇aHint
ab…c½F� ¼ −

8πp
κ0

X
k

∂Lint

∂Kk
ð0Þ∇a δKk

δFab…c ½F�: ðA7Þ

The above results are used in the proof of theorem 3.1 (see
also remark 2.2). Similar conclusions (for the metric
variations) were obtained in Sec. IV of [66].
For other applications, it may also be useful to note that,

since the Lagrangian corrections are of higher-order (>2),
then necessarily each individual term in the sums in (A3)–
(A7) is of (the same) higher order. Therefore, if one of the

scalar invariants fIi; Jj; Kkg is of order 2 (such as I ¼ R,
J ¼ Fa…bFa…b;…), then necessarily the partial deriva-
tive of LGC;LEC and Lint with respect to that invariant
vanishes at zero and hence the corresponding term does
not contribute to the variation, when evaluated on VSI
field. Thus, for example, Einstein’s equations for VSI
spacetimes are unaffected by higher-order corrections of
the form R2 or RRabcdRabcd, but may contain corrections
coming, e.g., from RabRab (cf. [66] in the special case of
4D pp-waves).

APPENDIX B: CURVATURE/
ELECTROMAGNETIC RANK-2 TENSORS

AND p-FORMS

1. Preliminaries and previous results

Let us start with some preliminary comments. For the
definition of degenerate Kundt spacetimes (needed in the
following) we refer the reader to [67,68] (see also
Appendix A of [31]), while the definition of balanced
and 1-balanced tensors can be found in [51,69] and [25],
respectively. The GHP (Geroch-Held-Penrose) notation in
arbitrary dimension is defined in [70].
A null p-form is defined by (D1). The traceless part of

the Ricci tensor is given by

Sab ≡ Rab −
R
D
gab: ðB1Þ

In the following, we will mostly consider spacetimes with
constant Ricci scalar. It is thus useful to recall
Lemma B.1: (Bianchi identity when R ¼ const [29]) In

a D-dimensional spacetime (D ≥ 3) with R ¼ const, the
following identities hold

∇bRabcd ¼ ∇dSac −∇cSad; ðB2Þ

∇bCabcd ¼
D − 3

D − 2
ð∇dSac −∇cSadÞ: ðB3Þ

Proof.—Just use the contracted Bianchi identity, the
definition of the Weyl tensor and (B1). (For D ¼ 2 this
lemma would be trivial since all the involved quantities
vanish identically.) ▪
Furthermore, we will restrict ourselves to Kundt space-

times. A Kundt spacetime with constant R is necessarily
degenerate Kundt (cf. Proposition A.2 of [31]), for which
we have the useful result
Lemma B.2: (Derivatives of 1-balanced tensors in

degenerate Kundt spacetimes [33]) In a degenerate
Kundt spacetime, the covariant derivative of a 1-balanced
tensor is a balanced 1-tensor.
In particular, VSI spacetimes coincide with the Kundt

spacetimes of Riemann type III (or more special) [51,69],
and are therefore a subset of the degenerate Kundt metrics.
Recall that

6To avoid possible confusion, let us emphasize that the
argument does not really need to assume that (2.3) and (2.5)
come from a Taylor expansions—one could alternatively simply
define LGC ≡ Lgrav − LEH and LEC ≡ Lelmag − LM (under the
assumption that the Taylor expansions of LGC and LEC consist
only of terms of higher order, but with no need to take such an
expansion).
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Lemma B.3: (∇ðkÞR in VSI spacetimes [51]) In a VSI
spacetime, the covariant derivatives ∇ðkÞR are balanced for
any k ≥ 0.
In the rest of this Appendix, we will only consider Kundt

spacetimes of traceless Ricci type N, i.e.,

Sab ¼ ω0lalb ðlala ¼ 0Þ; ðB4Þ

where ω0 is a function.

2. New results useful in the proof
of theorems 3.1 and 3.4

With a mild assumption on R (i.e., not necessarily
constant) one can prove
Lemma B.4: Let g be a traceless Ricci type N Kundt

metric with þ0R ¼ 0 in a frame adapted to ℓ . Then ∇ðkÞS is
1-balanced for any k ≥ 0.
Proof.—Under the assumptions, the contracted Bianchi

identity implies þω0 ¼ 0 [cf. the primed version of (2.50,
[70]), or (2.35, [71])]. Therefore, the definition of
1-balanced tensors, together with lemma B.2, implies that
the traceless part of the Ricci tensor and its covariant
derivatives of arbitrary order are 1-balanced. ▪
Lemma B.5: Let g be a Weyl type III, Ricci type N

Kundt metric. There is no nonvanishing p-form constructed
from R and its covariant derivatives for p ≥ 0.
Proof.—Before starting, let us note that, under the

assumptions, ∇ðkÞR is balanced for any k ≥ 0 (lemma B.3),
while ∇ðlÞS is 1-balanced for any l ≥ 0 (lemma B.4). This
will be implicitly used in the following.
First, in the case of p ¼ 0, such form would be a

curvature scalar, which here vanishes since g is VSI.
The dual case p ¼ D is treated analogously. Let us thus
discuss the 0 < p < D case. If there was a nonvanishing
p-form H½R;∇R;…� [with boost order at least ð−1Þ], it
would be necessarily at most linear in ∇ðkÞC, k ≥ 0, and
from the Ricci identity, it follows that covariant derivatives
in ∇ðkÞC effectively commute (i.e., up to terms of b.w. -2).
Consider the p ≤ 2 case. Since C is traceless, there

are necessarily at least two contractions of a derivative
index with a Weyl tensor index within ∇ðkÞC. After
commuting derivatives and employing (B3), we observe
that such a contraction is of boost order ð−2Þ and H
vanishes.
Now, let us discuss the p > 2 case. Assume that we are

able to obtain some nonvanishing rank-p contraction of
∇ðkÞC. In order to produce a p-form, it has to be
antisymmetrized over all remaining p ≥ 3 indices. But
now the Bianchi identities come into play

Ra½bcd� ¼ 0; Rab½cd;e� ¼ 0: ðB5Þ

Since covariant derivatives in ∇ðkÞC effectively commute,
the antisymmetrization has to be performed over at most

one derivative index and at least two Weyl tensor indices.
But from (B5), it follows that (after shuffling the derivatives
if needed) the result is zero anyway. ▪
Lemma B.6: Let g be a Weyl type III, Ricci type N

Kundt metric and F be an aligned null p-form. There is no
nonvanishing symmetric rank-2 contraction of ∇ðkÞC ⊗ F
and ∇ðkÞR ⊗ F for k ≥ 0.
Proof.—Both F and ∇ðkÞC are of boost order ð−1Þ. Due

to skew-symmetry of F, at most one of its indices can be
left uncontracted, while each of the rest of the indices of F
has to be contracted with some index of ∇ðkÞC. Moreover,
covariant derivatives of C again effectively commute.
If p > 3, this necessarily yields antisymmetrization of

∇ðkÞC over at least 3 indices, which is zero due to Bianchi
identities and effective commutativity of covariant deriv-
atives of C, as we saw in the proof of lemma B.5.
For p ≤ 3, there is either one index of F left uncontracted

(and hence there is necessarily a contraction of indices
within ∇ðkÞC) or each of the indices of F is contracted with
some index of ∇ðkÞC. However, any contraction within
∇ðkÞC will eventually (after commuting the derivatives)
vanish, since ∇aCabcd, and consequently also □Cabcd, are
[recall (B3)] of boost order ð−2Þ. The first case thus cannot
produce any nonvanishing result. In the second case, one
can easily verify that the corresponding contraction van-
ishes again due to skew-symmetry of F and Bianchi
identities (B5).
That the same result holds also for ∇ðkÞR ⊗ F follows

from the Ricci tensor being of type N (and a trivial b.w.
counting). ▪
Lemma B.7: Let g be a Weyl type III, Ricci type N

Kundt spacetime and F an aligned null Maxwell p-form. If
∇F is 1-balanced, then all nonvanishing symmetric rank-2
tensors constructed from F and its covariant derivatives are
of second order.
Proof.—By simple b.w. counting, terms cubic in F and

quadratic in ∇ðkÞF (k > 0) cannot contribute (and similarly
for higher powers), while terms quadratic in F are obvi-
ously of second order. Terms linear in F cannot contribute
because of its total antisymmetry. It remains to be shown
that also terms linear in∇ðkÞF do not contribute. Let us first
discuss the case 1 < p < D − 1. By the symmetry of the
indices there must be at least one contraction of an index of
F with one derivative index. The idea is thus to use
commutators of covariant derivatives and the Maxwell
equations to show that all such terms vanish. By the
Ricci identity and 1-balancedness of ∇ðkÞF, commutators
½∇;∇�∇ðkÞF with k > 0 are (recalling also lemmas B.2 and
B.3) of b.w. −3 and therefore do not contribute. The only
nontrivial commutator is thus ½∇;∇�F (and its derivatives).
This gives terms which are contractions of ∇ðlÞC ⊗ F for
l ≥ 0 (up to terms of b.w. −3), which indeed do not
contribute thanks to lemma B.6. This completes the proof
for 1 < p < D − 1. When p ¼ 1 (or, by duality,
p ¼ D − 1), symmetric 2-tensors can be constructed out
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of ∇ðkÞF even without contracting an index of F with one
derivative index. For k ¼ 1 this gives the term ∇ðaFbÞ,
which is of order 2. For k > 1 (which requires k ≥ 3) there
is at least a contraction between two derivative indices.
Similarly as above, derivatives in such terms can thus be
shuffled to obtain ∇k−2□F, which vanishes thanks to
Maxwell’s equations and the Weitzenböck identity
(cf. Eq. (12) of [33]).7 ▪
Remark B.8: (Terms of second order) For complete-

ness, let us observe that, under the assumptions of
lemma B.7, terms quadratic in F generically reduce to
(constant multiples of) Fac…dFb

c…d ¼ F 2ℓℓ . In the spe-
cial case n ¼ 2p with p odd, another possible term is
Fac…d ⋆ Fb

c…d, which is in general non-zero and different
from Fac…dFb

c…d (but still ∝ ℓℓ ). For n ¼ 2p with p
even, instead, such a term vanishes identically thanks to the
identity Fac…d⋆Fb

c…d½1þð−1Þp2 �¼ 1
pðFcd…e⋆Fcd…eÞgab

(since F is VSI and thus Fcd…e ⋆ Fcd…e ¼ 0). We further
note that, for p ¼ 1, the term ∇ðaFbÞ is also proportional to
lalb (just by b.w. counting), but in general different
from FaFb.

APPENDIX C: RANK-2 CURVATURE TENSORS
IN RECURRENT SPACETIMES OF WEYL
TYPE III AND TRACELESS RICCI TYPE N

WITH CacdeCb
cde = 0

In [28] (cf. also [25]), it was shown that if g is a Weyl
type N and traceless Ricci type N Kundt metric with a
constant Ricci scalar (in which case g is necessarily CSI,
see Corollary A.5 of [72] and Remark A.9 of [33]), then
any symmetric rank-2 tensor constructed from the Riemann
tensor and its covariant derivatives takes the form
Tab ¼ λgab þ

P
N
n¼0 an□

nSab, where λ and an are some
constants and N ∈ N. It has been recently shown that the
assertion can be extended also to Weyl type III, provided
the Weyl tensor satisfies certain conditions [73]. A special
subcase of Proposition 6 of [73] [cf. also (14) therein],
useful for our purposes, can be formulated as
Theorem C.1: (On symmetric rank-2 tensors [73]) Let

g be a Weyl type III and traceless Ricci type N metric such
that: (i) the mWAND is recurrent; (ii) CacdeCb

cde ¼ 0.
Then any symmetric rank-2 tensor constructed from the
Riemann tensor and its covariants derivatives of arbitrary
order takes the form

Tab ¼
XN
n¼0

an□nSab: ðC1Þ

For self-containedness, let us present a proof tailored to
this special case.
Proof.—Before starting we observe that the Weyl and

Ricci tensors are necessarily aligned thanks to proposi-
tion 3.1 of [71]. Then, the line of the proof will be similar to
that of [28]. However, in contrast with the Weyl type N
case, also various contractions of the Weyl tensor and its
covariant derivatives can in principle contribute to T [25].
But under the additional conditions, we will show that any
of these actually vanishes, so that one is left with T of the
form (C1).
First, τi ¼ 0 implies that the Ricci scalar vanishes (cf.,

e.g., Remark A.9 of [33]). Also, C is balanced and S is
1-balanced (lemma B.4), and hence the only possible
contributions to T come from contractions of ∇ðkÞR and
of ∇ðkÞC ⊗ ∇ðlÞC with k; l ≥ 0. In particular, T is traceless.
Now, let us focus on contractions of∇ðkÞR (clearly, k has

to be even). From the Ricci identity, it is obvious that any
change in the order of covariant derivatives in ∇ðkÞR
produces only terms of type ∇ðmÞC ⊗ ∇ðlÞC. Following
the procedure sketched in [28] with use of (B2) and
∇bSab ¼ 0 (since S is 1-balanced), any contraction of
∇ðkÞR can be cast in the form linear in □k=2S plus terms
quadratic in the Weyl tensor and its covariant derivatives.
At this moment, to finish the proof of the assertion, it is

sufficient to show that all rank-2 contractions of ∇ðkÞC ⊗
∇ðlÞC vanish. This can be done employing (B3) and
following step by step the procedure of Sec. 5.1 in [25].
In this manner, one obtains an extension of proposition 5.6
of [25] to the Ricci type N case, which completes the
proof. ▪

APPENDIX D: ON COVARIANT DERIVATIVES
OF NULL p-FORMS IN KUNDT SPACETIMES

In this section, we will provide some useful results on
null p-forms and their covariant derivatives. A p-form F is
null iff it can be written as [31]

F ¼ ℓ ∧ f ; lala ¼ 0 ¼ fa…bla; ðD1Þ

where f is a (p − 1)-form. In other words, F possesses only
components of b.w. −1 [70]. Obviously this is possible only
for 1 ≤ p ≤ D − 1.
Remark D.1: (Maxwell’s equations) If one assumes

that ℓ in (D1) is Kundt, in a null frame adapted to ℓ the
GHP Maxwell equations reduce to [70] (cf. also
Eqs. (2.16)–(2.18) of [72]—fij…k is denoted φ0

ij…k in
[70,72])

ðifij…k ¼ τifij…k; ðD2Þ

ð½ifj…k� ¼ τ½ifj…k�; ðD3Þ

7Throughout the proof we did not discuss explicitly terms
constructed using the dual (D − p)-form ⋆ F. However, all the
steps still apply, since ⋆ F is automatically aligned with F and
inherits from it all the essential properties.
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þfi…j ¼ 0: ðD4Þ

If ℓ in (D1) is Kundt, ∇F possesses generically nonzero
components of b.w. 0;−1;−2. More precisely, defining the
standard directional derivatives D≡ la∇a, △≡ na∇a,
δi ≡mðiÞa∇a,
Lemma D.2: Let F ¼ ℓ ∧ f be a null p-form and ℓ a

Kundt vector field. Then, in a null frame adapted to ℓ (i.e.,
with mð0Þ ¼ ℓℓ but otherwise arbitrary)

(i) DF is null with frame components ðDFÞ1i…j ¼
þfi…j;

(ii) δiF is null with frame components ðδiFÞ1j…k ¼
ðifj…k;

(iii) △F is of type II with frame components
ð△FÞ01j…k ¼ τifij…k, ð△FÞij…k ¼ pτ½ifj…k� and
ð△FÞ1i…j ¼ þ0fi…j.

Proof.—The result follows by a direct calculation of the
various frame components of ∇F. ▪
Lemma D.3: Let F ¼ ℓ ∧ f be a null p-form and ℓ a

Kundt vector field. If þfi…j ¼ 0, then

∇cFad…e∇cFb
d…e ¼ ððifj…kÞððifj…kÞlalb: ðD5Þ

Proof.—Thanks to lemma D.2, we know that ∇F has
only components of negative b.w.. The contraction over c in
(D5) further ensures that only the components (ii) of
lemma D.2 contribute, and the result thus follows. ▪
Remark D.4: The assumption þfi…j ¼ 0 in lemma D.3

is satisfied identically if F is a Maxwell field [Eq. (D4)].
The special case when ∇F has only components of b.w.

−2 can be characterized as follows.
Lemma D.5: Let F be a nonvanishing null p-form.

Then, ∇F is of type N (necessarily aligned) iff ℓ is Kundt
and the scalars þfi…j, ðifj…k, τi vanish.
Proof.—The type N condition means that ∇F possesses

only components of b.w. −2 (which is possible only if ∇F
is aligned with F, since F is null). Proposition C.1 of [31]
implies that ℓ is Kundt and þfi…j ¼ 0. Using lemma D.2
further gives ðifj…k ¼ 0 and τifij…k ¼ 0 ¼ τ½ifj…k�. Since
fi…k ≠ 0 for some i; j; :::; k, the last two equations imply
τi ¼ 0. (For p ¼ 1 the equation τifij…k ¼ 0 does not
appear, but the conclusion is unchanged.) The other
direction of the lemma can be proven by just reversing
the above steps. ▪
Remark D.6: The fact that ℓ is Kundt and τi ¼ 0 is

equivalent to saying that ℓ is recurrent. In addition, note
that, in particular, a null F with ∇F of type N satisfies
Maxwell’s equations identically [cf. Eqs. (D2)–(D4)].

Lemma D.7: Let g be a spacetime of Weyl type III and
F an aligned null p-form F such that ∇F is of type N. If
ðg;FÞ is a solution of the Einstein-Maxwell equations,
necessarily Λ ¼ 0 and both ðg;FÞ are VSI.
Proof.—From lemma D.5 we have that ℓ is recurrent

(and thus Kundt). The Einstein equations imply that the
traceless Ricci type is N (and that R is proportional to Λ),
therefore the spacetime is Kundt degenerate. A nonvanish-
ing Ricci scalar would require τi ≠ 0 (cf., e.g., Remark A.9
of [33]), therefore Λ ¼ 0. The Ricci type is thus N and the
VSI property of g then follows immediately from theorem 1
of [51]. Finally, the VSI property of F follows from
theorem 1.5 of [31] (since þfi…j ¼ 0 by lemma D.5). ▪
Lemma D.8: Let F be a nonvanishing null Maxwell

field. Then ∇F is of type N iff ðifj…k ¼ 0 and ℓ is Kundt.
Proof.—Maxwell’s equations (D2), (D3) guarantee that,

if a nonvanishing null solution F in a Kundt spacetime
satisfies ðifj…k ¼ 0, then automatically also τi ¼ 0. By
lemma D.5, the “if” assertion follows. The same lemma
ensures that also the “only if” direction holds. ▪
Lemma D.9: Let F be a nonvanishing null Maxwell

field in an aligned Weyl and traceless Ricci type III
spacetime. Then ∇F is 1-balanced iff ðifj…k ¼ 0 and ℓ

is Kundt.
Proof.—Thanks to lemma D.8, we know that ðifj…k ¼

0 and ℓ Kundt are necessary conditions for 1-balancedness
of ∇F. To show that these conditions are also sufficient, it
remains to verify (lemma D.2) that Dþ0fi…j ¼ 0 in an
affinely parametrized, parallely propagated frame. Since
Dfi…j ¼ DL11 ¼ DMi

j1 ¼ 0 and ½△; D� ¼ L11D (thanks
to the Kundt and curvature assumptions, cf., e.g.,
Appendix A.1 of [31]), the assertion follows. ▪
Remark D.10: Thanks to lemma D.3 and remark D.4,

the condition ðifj…k ¼ 0 in theorem D.9 can equivalently
be written in a covariant form as

∇cFad…e∇cFb
d…e ¼ 0: ðD6Þ

Let us emphasize that for a null Maxwell field aligned with
a Kundt direction, this condition implies that ℓ is recurrent
(as observed in the proof of lemma D.8).
Remark D.11: In the special case of a null Maxwell

field in a VSI spacetime, in the canonical coordinates and
frame of [61], Maxwell’s equations imply fj…k;r ¼ 0, while
the condition ðifj…k ¼ 0 of theorem D.9 simplify reads
fj…k;l ¼ 0. Therefore, fj…k is only a function of u. All
Maxwell’s equations (D2)–(D4) are then satisfied identi-
cally (cf. also [31]).

EINSTEIN-MAXWELL FIELDS WITH VANISHING … PHYS. REV. D 99, 044048 (2019)

044048-11



[1] G. Mie, Grundlagen einer Theorie der Materie, Ann. Phys.
(N.Y.) 342, 511 (1912).

[2] M. Born, Modified field equations with a finite radius of the
electron, Nature (London) 132, 282 (1933).

[3] M. Born and L. Infeld, Foundations of the new field theory,
Proc. R. Soc. A 144, 425 (1934).

[4] J. Plebański, Lectures on Non-Linear Electrodynamics
(Nordita, Copenhagen, 1970).

[5] H. Weyl, Gravitation and Elektrizität, Sitzungsber. Preuss.
Akad. Wiss. (1918), p. 465.

[6] H. Weyl, Eine neue Erweiterung der Relativitätstheorie,
Ann. Phys. (Berlin) 59, 101 (1919).

[7] H. F. M. Goenner, On the history of unified field theories,
Living Rev. Relativity 7, (2004).

[8] H. F.M. Goenner, On the history of unified field theories. Part
II. (ca. 1930–ca. 1965), Living Rev. Relativity 17, (2014).

[9] S. Deser, Plane waves do not polarize the vacuum, J. Phys.
A 8, 1972 (1975).

[10] G. V. Dunne, Heisenberg-Euler effective lagrangians: Basics
and extensions, inFromFields to Strings: Circumnavigating
Theoretical Physics, edited by M. Shifman, A. Vainshtein,
and J. Wheater (World Scientific, Singapore, 2005), Vol. 1,
pp. 445–522.

[11] J. Scherk and J. H. Schwarz, Dual models for non-hadrons,
Nucl. Phys. B81, 118 (1974).

[12] G. C. Callan, D. Friedan, E. J. Martinec, and M. J. Perry,
Strings in background fields, Nucl. Phys. B262, 593
(1985).

[13] E. S. Fradkin and A. A. Tseytlin, Non-linear electrodynam-
ics from quantized strings, Phys. Lett. 163B, 123 (1985).

[14] O. D. Andreev and A. A. Tseytlin, Partition function
representation for the open superstring effective action:
Cancellation of Möbius infinities and derivative corrections
to Born-Infeld lagrangian, Nucl. Phys. B311, 205
(1988).

[15] E. Schrödinger, Contributions to Born’s new theory of the
electromagnetic field, Proc. R. Soc. A 150, 465 (1935).

[16] E. Schrödinger, A new exact solution in non-linear optics
(two-wave-system), Proc. R. Irish Acad. A 49, 59 (1943).

[17] A. Peres, Nonlinear electrodynamics in general relativity,
Phys. Rev. 122, 273 (1961).

[18] J. S. Schwinger, On gauge invariance and vacuum polari-
zation, Phys. Rev. 82, 664 (1951).

[19] R. Güven, Plane waves in effective theories of superstrings,
Phys. Lett. B 191, 275 (1987).

[20] D. Amati and C. Klimčík, Nonperturbative computation of
the Weyl anomaly for a class of nontrivial backgrounds,
Phys. Lett. B 219, 443 (1989).

[21] G. T. Horowitz and A. R. Steif, Spacetime Singularities in
String Theory, Phys. Rev. Lett. 64, 260 (1990).

[22] G. T. Horowitz, in Singularities in String Theory, edited by
R. Arnowitt, R. Bryan, M. J. Duff, D. Nanopoulos, C. N.
Pope, and E. Sezgin, Strings ’90 (World Scientific,
Singapore, 1990), pp. 163–175.

[23] G. T. Horowitz and N. Itzhaki, Black holes, shock waves,
and causality in the AdS=CFT correspondence, J. High
Energy Phys. 02 (1999) 010.

[24] A. A. Coley, G.W. Gibbons, S. Hervik, and C. N. Pope,
Metrics with vanishing quantum corrections, Classical
Quantum Gravity 25, 145017 (2008).

[25] S. Hervik, V. Pravda, and A. Pravdová, Type III and N
universal spacetimes, Classical Quantum Gravity 31,
215005 (2014).

[26] S. Hervik, T. Málek, V. Pravda, and A. Pravdová, Type II
universal spacetimes, Classical Quantum Gravity 32,
245012 (2015).

[27] S. Hervik, V. Pravda, and A. Pravdová, Universal space-
times in four dimensions, J. High Energy Phys. 10 (2017)
028.

[28] M. Gürses, S. Hervik, T. C. Şişman, and B. Tekin, Anti-de
Sitter-Wave Solutions of Higher Derivative Theories, Phys.
Rev. Lett. 111, 101101 (2013).

[29] M. Gürses, T. C. Şişman, and B. Tekin, AdS-plane wave and
pp-wave solutions of generic gravity theories, Phys. Rev. D
90, 124005 (2014).

[30] M. Gürses, T. C. Şişman, and B. Tekin, Kerr-Schild–Kundt
metrics are universal, Classical Quantum Gravity 34,
075003 (2017).

[31] M. Ortaggio and V. Pravda, Electromagnetic fields with
vanishing scalar invariants, Classical Quantum Gravity 33,
115010 (2016).

[32] M. Ortaggio and V. Pravda, Electromagnetic fields with
vanishing quantum corrections, Phys. Lett. B 779, 393
(2018).

[33] S. Hervik, M. Ortaggio, and V. Pravda, Universal electro-
magnetic fields, Classical Quantum Gravity 35, 175017
(2018).

[34] R. Milson, A. Coley, V. Pravda, and A. Pravdová,
Alignment and algebraically special tensors in Lorentzian
geometry, Int. J. Geom. Methods Mod. Phys. 2, 41
(2005).

[35] M. Ortaggio, V. Pravda, and A, Pravdová, Algebraic
classification of higher dimensional spacetimes based on
null alignment, Classical Quantum Gravity 30, 013001
(2013).

[36] S. A. Fulling, R. C. King, B. G. Wybourne, and C. J.
Cummins, Normal forms for tensor polynomials. I. The
Riemann tensor, Classical Quantum Gravity 9, 1151 (1992).

[37] D. Lovelock, The Einstein tensor and its generalizations,
J. Math. Phys. (N.Y.) 12, 498 (1971).

[38] A. S. Eddington, The Mathematical Theory of Relativity,
2nd ed. (Cambridge University Press, Cambridge, England,
1930).

[39] C. Lanczos, A remarkable property of the Riemann-
Christoffel tensor in four dimensions, Ann. Math. 39,
842 (1938).

[40] H. A. Buchdahl, The Hamiltonian derivatives of a class of
fundamental invariants, Quart. J. Math. Oxford 19, 150
(1948).

[41] F. Bopp, Eine lineare Theorie des Elektrons, Ann. Phys.
(Berlin) 430, 345 (1940).

[42] B. Podolsky, A generalized electrodynamics. Part I—
Non-quantum, Phys. Rev. 62, 68 (1942).

[43] H. A. Buchdahl, Non-linear Lagrangians and cosmological
theory, Mon. Not. R. Astron. Soc. 150, 1 (1970).

[44] N. Deruelle, M. Sasaki, Y. Sendouda, and D. Yamauchi,
Hamiltonian formulation of f(Riemann) theories of gravity,
Prog. Theor. Phys. 123, 169 (2010).

[45] S. Deser and G.W. Gibbons, Born-Infeld-Einstein actions?,
Classical Quantum Gravity 15, L35 (1998).

MARTIN KUCHYNKA and MARCELLO ORTAGGIO PHYS. REV. D 99, 044048 (2019)

044048-12

https://doi.org/10.1002/andp.19123441102
https://doi.org/10.1002/andp.19123441102
https://doi.org/10.1038/132282a0
https://doi.org/10.1098/rspa.1934.0059
https://doi.org/10.1002/andp.19193641002
https://doi.org/10.12942/lrr-2004-2
https://doi.org/10.12942/lrr-2014-5
https://doi.org/10.1088/0305-4470/8/12/012
https://doi.org/10.1088/0305-4470/8/12/012
https://doi.org/10.1016/0550-3213(74)90010-8
https://doi.org/10.1016/0550-3213(85)90506-1
https://doi.org/10.1016/0550-3213(85)90506-1
https://doi.org/10.1016/0370-2693(85)90205-9
https://doi.org/10.1016/0550-3213(88)90148-4
https://doi.org/10.1016/0550-3213(88)90148-4
https://doi.org/10.1098/rspa.1935.0116
https://doi.org/10.1103/PhysRev.122.273
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1016/0370-2693(87)90254-1
https://doi.org/10.1016/0370-2693(89)91092-7
https://doi.org/10.1103/PhysRevLett.64.260
https://doi.org/10.1088/1126-6708/1999/02/010
https://doi.org/10.1088/1126-6708/1999/02/010
https://doi.org/10.1088/0264-9381/25/14/145017
https://doi.org/10.1088/0264-9381/25/14/145017
https://doi.org/10.1088/0264-9381/31/21/215005
https://doi.org/10.1088/0264-9381/31/21/215005
https://doi.org/10.1088/0264-9381/32/24/245012
https://doi.org/10.1088/0264-9381/32/24/245012
https://doi.org/10.1007/JHEP10(2017)028
https://doi.org/10.1007/JHEP10(2017)028
https://doi.org/10.1103/PhysRevLett.111.101101
https://doi.org/10.1103/PhysRevLett.111.101101
https://doi.org/10.1103/PhysRevD.90.124005
https://doi.org/10.1103/PhysRevD.90.124005
https://doi.org/10.1088/1361-6382/aa60f1
https://doi.org/10.1088/1361-6382/aa60f1
https://doi.org/10.1088/0264-9381/33/11/115010
https://doi.org/10.1088/0264-9381/33/11/115010
https://doi.org/10.1016/j.physletb.2018.01.024
https://doi.org/10.1016/j.physletb.2018.01.024
https://doi.org/10.1088/1361-6382/aad13d
https://doi.org/10.1088/1361-6382/aad13d
https://doi.org/10.1142/S0219887805000491
https://doi.org/10.1142/S0219887805000491
https://doi.org/10.1088/0264-9381/30/1/013001
https://doi.org/10.1088/0264-9381/30/1/013001
https://doi.org/10.1088/0264-9381/9/5/003
https://doi.org/10.1063/1.1665613
https://doi.org/10.2307/1968467
https://doi.org/10.2307/1968467
https://doi.org/10.1093/qmath/os-19.1.150
https://doi.org/10.1093/qmath/os-19.1.150
https://doi.org/10.1002/andp.19404300504
https://doi.org/10.1002/andp.19404300504
https://doi.org/10.1103/PhysRev.62.68
https://doi.org/10.1093/mnras/150.1.1
https://doi.org/10.1143/PTP.123.169
https://doi.org/10.1088/0264-9381/15/5/001


[46] A. R. Prasanna, A new invariant for electromagnetic fields
in curved space-time, Phys. Lett. 37A, 331 (1971).

[47] R. Bach, Zur Weylschen Relativitätstheorie und der
Weylschen Erweiterung des Krümmungsbegriffs, Math.
Z. 9, 110 (1921).

[48] E. Cremmer, B. Julia, and J. Scherk, Supergravity theory in
eleven-dimensions, Phys. Lett. 76B, 409 (1978).

[49] M. Bañados, M. Henneaux, C. Iannuzzo, and C. M. Viallet,
Gauge symmetries of pure Chern-Simons theories with
p-form gauge fields, Classical Quantum Gravity 14, 2455
(1997).

[50] J. M. Figueroa-O’Farrill and G. Papadopoulos, Homo-
geneous fluxes, branes and a maximally supersymmetric
solution of M-theory, J. High Energy Phys. 08 (2001) 036.

[51] A. Coley, R. Milson, V. Pravda, and A. Pravdová, Vanishing
scalar invariant spacetimes in higher dimensions, Classical
Quantum Gravity 21, 5519 (2004).

[52] A. Pravdová and V. Pravda, The Newman-Penrose formal-
ism in higher dimensions: Vacuum spacetimes with a non-
twisting geodetic multiple Weyl aligned null direction,
Classical Quantum Gravity 25, 235008 (2008).

[53] T. Málek and V. Pravda, Type III and N solutions to
quadratic gravity, Phys. Rev. D 84, 024047 (2011).

[54] M. Ortaggio, Lovelock vacua with a recurrent null vector
field, Phys. Rev. D 97, 044051 (2018).

[55] B. S. DeWitt, Dynamical Theory of Groups and Fields
(Gordon and Breach, New York, 1965).

[56] S. Hervik, A spacetime not characterized by its invariants is
of aligned type II, Classical Quantum Gravity 28, 215009
(2011).

[57] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers,
and E. Herlt, Exact Solutions of Einstein’s Field Equations,
2nd ed. (Cambridge University Press, Cambridge, England,
2003).

[58] M. Ortaggio, J. Podolský, and M. Žofka, Static and radia-
ting p-form black holes in the higher dimensional
Robinson-Trautman class, J. High Energy Phys. 02
(2015) 045.

[59] S. Kichenassamy, Sur le champ électromagnétique singulier
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Born—Infeld, C.R. Hebd. Seances Acad. Sci. 250, 1192
(1960).

[61] A. Coley, A. Fuster, S. Hervik, and N. Pelavas, Higher
dimensional VSI spacetimes, Classical Quantum Gravity
23, 7431 (2006).

[62] R. Schimming, RIEMANNsche Räume mit ebenfrontiger
und mit ebener Symmetrie, Mathematische Nachrichten 59,
129 (1974).

[63] H.W. Brinkmann, Einstein spaces which are mapped
conformally on each other, Math. Ann. 94, 119 (1925).

[64] M. Ortaggio, V. Pravda, and A. Pravdová, Higher dimen-
sional Kerr-Schild spacetimes, Classical Quantum Gravity
26, 025008 (2009).

[65] A. A. Coley, A Class of Exact Classical Solutions to String
Theory, Phys. Rev. Lett. 89, 281601 (2002).

[66] H. A. Buchdahl, Nonlinear Lagrangians and pp waves,
J. Phys. A 16, 1441 (1983).

[67] A. Coley, S. Hervik, and N. Pelavas, Spacetimes charac-
terized by their scalar curvature invariants, Classical
Quantum Gravity 26, 025013 (2009).

[68] A. Coley, S. Hervik, G. O. Papadopoulos, and N. Pelavas,
Kundt spacetimes, Classical Quantum Gravity 26, 105016
(2009).

[69] V. Pravda, A. Pravdová, A. Coley, and R. Milson, All
spacetimes with vanishing curvature invariants, Classical
Quantum Gravity 19, 6213 (2002).

[70] M. Durkee, V. Pravda, A. Pravdová, and H. S. Reall,
Generalization of the Geroch-Held-Penrose formalism to
higher dimensions, Classical Quantum Gravity 27, 215010
(2010).

[71] M. Kuchynka and A. Pravdová, Spacetimes of Weyl and
Ricci type N in higher dimensions, Classical Quantum
Gravity 33, 115006 (2016).

[72] M. Kuchynka and A. Pravdová, Weyl type N solutions with
null electromagnetic fields in the Einstein-Maxwell p-form
theory, Gen. Relativ. Gravit. 49, 71 (2017).

[73] M. Kuchynka, T. Málek, V. Pravda, and A. Pravdová,
Almost universal spacetimes in higher-order gravity
theories, Phys. Rev. D 99, 024043 (2019).

EINSTEIN-MAXWELL FIELDS WITH VANISHING … PHYS. REV. D 99, 044048 (2019)

044048-13

https://doi.org/10.1016/0375-9601(71)90694-3
https://doi.org/10.1007/BF01378338
https://doi.org/10.1007/BF01378338
https://doi.org/10.1016/0370-2693(78)90894-8
https://doi.org/10.1088/0264-9381/14/9/006
https://doi.org/10.1088/0264-9381/14/9/006
https://doi.org/10.1088/1126-6708/2001/08/036
https://doi.org/10.1088/0264-9381/21/23/014
https://doi.org/10.1088/0264-9381/21/23/014
https://doi.org/10.1088/0264-9381/25/23/235008
https://doi.org/10.1103/PhysRevD.84.024047
https://doi.org/10.1103/PhysRevD.97.044051
https://doi.org/10.1088/0264-9381/28/21/215009
https://doi.org/10.1088/0264-9381/28/21/215009
https://doi.org/10.1007/JHEP02(2015)045
https://doi.org/10.1007/JHEP02(2015)045
https://doi.org/10.1088/0264-9381/23/24/014
https://doi.org/10.1088/0264-9381/23/24/014
https://doi.org/10.1002/mana.19740590111
https://doi.org/10.1002/mana.19740590111
https://doi.org/10.1007/BF01208647
https://doi.org/10.1088/0264-9381/26/2/025008
https://doi.org/10.1088/0264-9381/26/2/025008
https://doi.org/10.1103/PhysRevLett.89.281601
https://doi.org/10.1088/0305-4470/16/7/020
https://doi.org/10.1088/0264-9381/26/2/025013
https://doi.org/10.1088/0264-9381/26/2/025013
https://doi.org/10.1088/0264-9381/26/10/105016
https://doi.org/10.1088/0264-9381/26/10/105016
https://doi.org/10.1088/0264-9381/19/23/318
https://doi.org/10.1088/0264-9381/19/23/318
https://doi.org/10.1088/0264-9381/27/21/215010
https://doi.org/10.1088/0264-9381/27/21/215010
https://doi.org/10.1088/0264-9381/33/11/115006
https://doi.org/10.1088/0264-9381/33/11/115006
https://doi.org/10.1007/s10714-017-2234-7
https://doi.org/10.1103/PhysRevD.99.024043

