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We numerically investigate the gravitational waves generated by the head-on collision of equal-mass,
self-gravitating, real scalar field solitons (oscillatons) as a function of their compactness C. We start with
solitons that are initially at rest with respect to each other and show that there exist three different possible
outcomes resulting from their collisions: (1) an excited stable oscillaton for low C, (2) a merger and
formation of a black hole for intermediate C, and (3) a premerger collapse of both oscillatons into individual
black holes for large C. For (1), the excited, aspherical oscillaton continues to emit gravitational waves. For
(2), the total energy in gravitational waves emitted increases with compactness and possesses a maximum
which is greater than that from the merger of a pair of equivalent mass black holes. The initial amplitudes of
the quasinormal modes in the postmerger ringdown in this case are larger than that of collisions of
corresponding mass black holes—potentially a key observable to distinguish black-hole mergers from their
scalar mimics. For (3), the gravitational wave output is indistinguishable from a similar mass, black hole–
black hole merger. Based on our results, LIGO may be sensitive to oscillaton collisions from light scalars of
mass 10−12 eV≲m ≲ 10−10 eV.
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I. INTRODUCTION AND RESULTS

The spectacular recent detections of gravitational waves
from binary black-hole mergers has heralded a new golden
age in gravitational wave physics [1–3]. Gravitational
waves from the merger of compact objects are one of
our best resources for probing the strong-field regime of
gravity. They also provide us with a probe of the nature of
the compact objects themselves.
In addition to black holes (BH) and neutron stars (NS),

the expected quality of the gravitational wave data
could allow for the search of exotic compact objects as
progenitors in such collisions [4]. In particular, coherent,
self-gravitating, nontopological solitons made of scalar
fields are known to have highly compact cores [5–7].
Their collisions may generate observable amounts of
gravitational waves and whose waveforms can deviate
from those of BH-BH or NS-NS mergers (see in particular
[8–11]).
In this paper, we study the head-on collisions of a class

of real scalar-field solitons called “oscillatons” [12] using
GRChombo [13] in full general relativity. Unlike boson
stars made of complex scalar fields, oscillatons do not have
a conserved Uð1Þ charge, but can nevertheless be stable on

cosmological time scales [14]. For example, such objects
can consist of a spatially localized condensate of an axion
field oscillating near the minimum of the potential [15].

FIG. 1. Fraction of initial rest mass energy of the two oscillatons
(Etot) radiated into gravitational waves (Egw) as a function of the
initial compactness (C) of each oscillaton. In the subcritical case,
oscillatons collide to form a new stable but aspherical, excited
oscillaton. In the critical regime, oscillatons collide to yield a black
hole after/during the collision. In the degenerate case, individual
oscillatons collapse to black holes before the collision. Note that in
the critical regime (and possibly in the subcritical regime also), the
emitted fraction in gravitational waves can exceed that of
corresponding mass black holes (0.06% dashed line).
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Such axion fields are ubiquitous in many high-energy
physics theories and are considered to be plausible dark
matter candidates (see [16] for a review).1

Our main result for the gravitational wave output from
equal-mass oscillaton collisions as a function of the
compactness of the solitons is shown in Fig. 1. In particular,
the new results are (1) a jump in the fractional gravitational
wave output near a critical compactness value C ≈ 0.14, and
(2) the fractional gravitational wave output near this C value
exceeds that of corresponding mass black holes. In order to
achieve these results, we constructed unexcited oscillaton
binaries which possess no spurious additional modes. Such
“clean” initial conditions allow us to accurately extract the
GW production efficiency Egw=Etot. Furthermore, we also
compute the gravitational waveforms for such collisions to
show that the quasinormal modes are significantly different
from equivalent BH-BH collisions during merger and in
their ringdown phase, which suggests that they can be
distinguished.

II. INITIAL SETUP OF SOLITONS

We consider a free, massive, real scalar field, which is
minimally coupled to gravity with the action2

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
∂μϕ∂μϕ −

1

2
m2ϕ2

�
; ð1Þ

where g is the determinant of the metric, R is the Ricci
scalar, and m is the mass of the real scalar field3 ϕ.
We briefly discuss self-interactions in the Appendix B.
Conservatively, the results of our paper are expected to
apply for solitons made of a subdominant axionic dark
matter component with the axion decay constant f ≳mPl.
Assuming we have a scenario similar to [17], for f ≳mPl,
the total dark matter abundance bound requires the axion to
be unacceptably light (m≲ 10−30 eV), in conflict with
observations [16]. We further discuss this issue and
possible solutions in the Appendix.
This theory contains a single parameter family of

localized, solitonic solutions called oscillatons (once
the mass m is scaled out). We choose to parametrize
our solutions in terms of their compactness, which we
define as

C≡GM
R

; ð2Þ

where M is the Arnowitt-Deser-Misner (ADM) mass,
and R is the effective radius of the oscillaton which
encompasses 95% of its mass. The maximum mass of
the oscillaton Mmax ≈ 0.605m2

Pl=m occurs when C ≈ 0.14.
When C < 0.14, the oscillatons are stable against pertur-
bations. For C > 0.14, they are unstable with respect to
perturbations [18] (Fig. 2).
To ensure that these results are qualitatively and quanti-

tatively robust, we implemented several steps such that the
initial conditions for these oscillatons are in their unexcited
“ground” state. We refer the reader to the Appendix for
details of this construction, and other numerical conver-
gence tests.
We set up two equal C (and hence equal mass) oscillatons

at a distance of 60 m−1, both of which are initially at rest,
and explore the end-state of the collision and gravitational
wave signature as a function of C. These oscillatons
can also have a relative phase 0 < Δθ < π between
their respective oscillations. Oscillatons are considered
“in-phase” when Δθ ¼ 0; this is the scenario we focus
on in this paper. “Out-of-phase” Δθ ≠ 0 oscillatons exhibit
additional repulsive force that, at sufficiently large phase
differences, prevents a merger from occurring. We will
leave the results of out-of-phase initial conditions to a
future publication.

III. GRAVITATIONAL WAVES
FROM COLLISIONS

We find that there are three possible outcomes of head-on
collisions of equal mass solitons depending on the initial C
of the oscillatons.

A. Subcritical case C≲ 0.04

Collisions of these less compact oscillatons form another
more massive and quasistable, but aspherical and excited

FIG. 2. Relationship between the mass M and the compactness
C of the oscillaton. Note that for C ≳ 0.14 (M ≈ 0.605m2

Pl=m)
oscillatons become unstable under perturbations (grayed area).

1We cannot claim that such compact soliton collisions are
likely sources of gravitational waves; an estimate of their
population and distribution would be needed, which is beyond
the scope of this paper. We hope that the results from this work
will motivate such studies further.

2We use the −þþþ convention for the metric, and set
ℏ ¼ c ¼ 1. Our Planck mass mPl ¼ 1=

ffiffiffiffi
G

p
.

3We have ignored possible self-interactions of λϕ3 and higher-
order terms.
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oscillaton. The merger proceeds via multiple stages. As we
have shown in Fig. 4, the oscillatons collide and initially
form a very perturbed oscillaton, whose density oscillates
in a “þ” pattern (i.e., periodically becomes elongated
along two perpendicular axes). A significant amount of
mass is lost during the initial collision. This mass loss
can be inferred from the fact that MðC ¼ 0.03Þ ¼
0.41m2

Pl=m > 0.5Mmax–this is consistent with the results
first obtained in [19]. Without any mass loss, the final
oscillaton in this case would have been unstable, which is
not seen in our simulations. The oscillaton continues to
radiate scalar waves and, notably, a long-time-scale con-
tinued emission of gravitational waves [4,20].
From the first panel in Fig. 3 and Fig. 4, we see repeated

alternating max/min bursts of gravitational waves coincid-
ing with the maximum deformation of the perturbed
oscillaton perpendicular-to/along the axis of collision.
While the lack of computational resources prevented us
from evolving this end state further in time, we expect that
the continued emission of both scalar waves and GW will
eventually sphericalize the oscillaton. This so-called
“super-emitter” [20] will eventually emit more total GW
energy than the corresponding equal-mass BH-BH merger.
We have only found the lower bound on this GW energy
output numerically.

B. Critical case 0.04≲ C≲ 0.14

These more massive and compact oscillatons collide to
form a black hole surrounded by a thin scalar field “wig.”
There is a slight mass loss during the collision, but the

majority (≈90%) of the initial mass remains in the final
black-hole state. The total GW energy emitted by this
merger monotonically scales with C in this regime.
However, interestingly, for oscillatons with C > 0.06, the
fraction of the emitted gravitational wave energy4 to the
total initial energy, Egw=Etot, is greater than that from an
equivalent head-on merger of a pair of equal mass black
holes (Egw=Etot ¼ 0.06%). The maximum gravitational
wave energy emitted Egw=Etot ≈ 0.11% occurs at
C ≈ 0.14, the boundary where the individual oscillatons
themselves become unstable.
A typical waveform of the merger from this region is

shown in the middle panel of Fig. 3. Black-hole formation
occurs rapidly after the initial merger. For less compact
oscillatons, not surprisingly, the scalar dynamics during
merger will lead to different GW waveforms that distin-
guishes it from that of a BH-BH merger [4,11]. Crucially
however, even for very compact oscillatons where BH
formation is very rapid, the waveform differs from that of a
BH-BH collision even in the postmerger ringdown stages.
The quasinormal mode (QNM) frequency during the

FIG. 3. The panel shows the numerically evaluated gravitational wave waveforms (the dominant quadrupole mode: l ¼ 2, m ¼ 0 is
shown) for typical subcritical (C ¼ 0.03), critical (C ¼ 0.10) and degenerate (C ¼ 0.15) collisions. For comparison, the waveform for the
corresponding mass black-hole collision is also shown in black. Note that in the sub-critical case (left panel), the resulting excited
oscillaton continues to emit gravitational waves. In the critical case (middle panel), the waveform is qualitatively similar to a BH-BH
merger, but importantly, the postmerger QNM amplitude is greater for the oscillaton merger as they are less “rigid”. Since there is some
mass loss during the merger, the final mass is less than that of the equivalent BH-BH merger, leading to a slightly shorter QNM period
(as observed). Finally, the degenerate case is almost indistinguishable from a BH-BH collision (right panel). The vertical dashed line
indicates time of BH formation during the merger in the critical case, and premerger in the degenerate case. Note that rΨ4 ∼ rḧ, and
t ¼ 0 is associated with the time when the objects are ≈60 m−1 apart. Movie links for the time evolution of the gravitational wave signal
and the energy density ρ are available for the subcritical, critical and degenerate mergers [21–23].

4This energy is computed by integrating over time the total
power given by

dEgw

dt
¼ lim

r→∞

r2

16π

I ����
Z

t

−∞
Ψ4ðrÞdt0

����2dΩ; ð3Þ

where Ψ4 is the Newman-Penrose scalar. For our simulations
the extraction radius r ¼ 60 m−1. Moreover, Etot ¼ 2M, i.e., total
initial ADM mass of the oscillatons.
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ringdown is close to that of a BH-BH merger (as expected)
with a shorter period due to mass loss during merger.
Importantly, the initial amplitude of the QNM is different.
In particular, we find that for C ≳ 0.06 the initial QNM
amplitude is larger than that of an equal mass BH-BH
merger leading to the aforementioned higher output in total
GW emission (see Fig. 1).
We believe that this higher initial amplitude for the QNM

is due to the fact that oscillatons are “less rigid” than
black holes, and hence easier to excite during the initial
merger phase.
Interestingly, in [4], the authors argue instead that

collisions of more massive boson stars will lead to a more
rapid collapse into BHs and hence to a smaller deviation
from a BH-BH merger. Our results here show that the
deviation is more significant for oscillatons, allowing us to
directly test for such non-BH merger scenarios.5

C. Degenerate case C > 0.14

Oscillatons with C > 0.14 are inherently unstable to
perturbations. We find that as they fall towards one another,
mutual tidal forces generate sufficient perturbations to
cause the oscillatons to collapse into a pair of BHs before
they collide. The new BHs (with a thin wig) then collide
and merge as in the standard BH-BH case to form a larger
black hole. The waveform (see rightmost panel of Fig. 3)
and the fraction of energy in gravitational waves is
indistinguishable from the BH case and remains constant

as we continue to increase the compactness (see Fig. 1).
This expected behavior in the degenerate case makes for a
strikingly steep transition in the emitted gravitational wave
energy from the critical to the degenerate regime (near
C ≈ 0.14, see Fig. 1).

IV. DISCUSSION AND FUTURE DIRECTIONS

Our main results can be seen in Figs. 1 and 3. Through
detailed calculations using the full power of numerical GR,
we showed that oscillaton head-on mergers have distinctly
different GW signatures than that of their corresponding
equal mass BH-BH counterparts. We found three different
outcomes of collisions depending on the initial compact-
ness of the oscillatons: formation of excited oscillatons
(sub-critical), formation of a black hole after collision
(critical) and formation of black holes before collision
(degenerate) due to tidal forces.
In terms of gravitational waves, the subcritical merger

results in a potentially long lived source of gravitational
waves. The gravitational waveform is qualitatively different
from the black-hole merger case with multiple postmerger
pulses. For the degenerate case, the dynamics and gravi-
tational wave signatures are very similar to that of corre-
sponding mass black holes.
Most interestingly, for criticalmergerswhere the final state

is a BH, the postmerger QNMmode has a significantly larger
amplitude than that of an equivalent BH-BH merger (for
sufficiently compact oscillatons). We believe that this is due
to the fact that oscillatons are less rigid and easier to excite
than BHs. This raises the possibility that, without inspiral
GW information, compact oscillatons mergers may mimic
BH mergers of a larger mass, though QNM frequency
information will allow us to break this degeneracy.
Conversely with inspiral information, this may provide a
distinct GW signature for the detection of such exotic
compact objects. If these results carry through to inspiral
mergers, the ratio of the GW amplitude during the inspiral
phase and the ringdown phase will be a strong indicator of
exotic mergers. While these are plausible arguments, more
work is needed in the inspiral case to make a convincing
argument regarding observationally distinguishing BH-BH
mergers from OS-OS ones.
For the cases checked (in head-on collisions), we found

that the fraction of energy density in gravitational waves is
relatively independent of the initial separation of the
solitons (within numerical error, we confirmed this for
separations of 40 m−1, 55 m−1 and 65 m−1 in the critical
and degenerate regimes). The critical-degenerate boundary
in Fig. 1 is similarly robust, suggestive of some novel
criticality in terms of the dynamics and the gravitational
wave output near C ≈ 0.14, which is worth investigating in
detail. Further investigation of this criticality by scanning
through different initial velocities, relative phases and a
larger variance in distances is needed.

FIG. 4. Numerically evaluated gravitational wave waveform for
a typical subcritical (C ¼ 0.03) collision, demonstrating bursts of
repeating gravitational waveforms. Inset shows the “þ” pattern of
oscillations of the density of the perturbed final state.

5Furthermore we note that while boson star mergers can be
qualitatively similar to our oscillaton mergers, there are
differences. For example, a collision between a boson star and
anti-boson star can lead to annihilation, with a dispersal of most
of the field to infinity [24]. Analogs of boson star/anti-boson star
pairs are not present in the oscillaton merger case. Note that an
initial phase difference between premerger oscillatons cannot
mimic these configurations.
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Assuming that our oscillatons are stellar mass so that their
QNM frequencies fall within LIGO range, this allows us to
probe light oscillaton masses of 10−12 eV≲m≲ 10−10 eV.
On the other hand, interactions of free scalar fields with
rotating black holes can cause a superradiance instability,
robbing the black holes of their spin–LIGO (LISA) obser-
vations of stellar mass (supermassive) spinning black
holes can potentially rule out 10−13 ≲m≲ 10−12 eV
(10−19 ≲m≲ 10−17 eV) [25].
In conclusion, we have found that in head-on collisions,

compact scalar field solitons can be louder in gravitational
waves than their black-hole counterparts. Moreover, a new
critical transition in the GW amplitude is seen at C ≈ 0.14.
It will be interesting to see if these results are replicated
in the inspiral case (e.g., [11]), which we are currently
investigating.
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APPENDIX A: NUMERICAL METHODOLOGY

1. Constructing initial data

We solve for a single oscillaton (OS) profile for ϕ, π, γij
at some initial hyperslice t ¼ t0 as described in
Refs. [12,18,27,28] where π ¼ α−1ð∂tϕ − βi∂iϕÞ is the
initial kinetic term of the scalar, and γij is the 3-metric
defined as usual in the ADM line element

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ðA1Þ
The determinant of the spatial metric γij will be denoted by
det γ. We also set the extrinsic curvature Kij ¼ 0.

Given this single oscillaton profile, we generate static
OS-OS initial data by superposing two single OS solutions:

ϕtot ¼ ϕjx−x0 þ ϕjxþx0

πtot ¼ πjxþx0 þ πjx−x0
γij;tot ¼ γijjxþx0 þ γijjx−x0 − hij; ðA2Þ

where �x0 are the locations of the centers of the two
oscillatons, and hij is a constant metric. The choice of hij
turns out to be important in setting up the initial conditions.
Naively, one would use hij ¼ δij, which would make the
asymptotic values the same as for a single OS. However,
this choice induces large radial modes in both oscillatons.
These modes are caused by the change in the volume
element near the center of each OS due to the influence of
the companion (as compared to the case of an isolated OS).
This difference is clearly seen in Fig. 6, where the black
curve is the volume element related to an isolated OS,
whereas the orange curve is the volume element obtained
by using hij ¼ δij.
An estimate for the change in the volume element can be

obtained as follows. Consider OS1 at x0, with its companion
OS2 located at −x0. Assuming a Schwarzchild metric far
from the surface of OS1, the volume element at −x0 due to
OS1 is

ffiffiffiffiffiffiffiffiffi
detγ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−2GM=dÞ−1

p
≈Oð1.01Þ. We assumed

a distance d ¼ 2x0 ¼ 60 m−1 and M ≈ 0.5m2
Pl=m. By sub-

tracting off hij ¼ δij, we are still left with∼1% extra volume
at x ¼ −x0 compared to the case where OS2 was isolated
(and vice-versa for OS1). That is, the oscillatons are “puffed
up” initially. These radially excited OS are not the initial
conditions we seek as they add additional energy and induce
instabilities into the initial conditions for single oscillatons.
In particular, the central densities and radii of these excited

FIG. 5. The Hamiltonian constraint violation of the OS-OS
initial data before relaxation for C ¼ 0.13 along the axis of the
two OS. By choosing hij ¼ γijj2x0 the Hamiltonian constraint
violation is reduced by an order of magnitude from 2.6% to 0.3%.
An additional relaxation routine in χ is implemented after this
improvement is applied.
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OS can deviate from their unexcited counterparts by
Oð100%Þ and Oð10%Þ, respectively, as they evolve, poten-
tially rendering any results that we obtain unreliable.6

As quantitative test, we set up a single OS with
compactness C ¼ 0.10, and then imposing a 0.1% pertur-
bation in its radius achieved simply by remapping the field
values with r → 0.999r. This small change results in a large
oscillating radial mode with a ≳10% fluctuation in maxi-
mum amplitude of the central density.7 Not surprisingly, the
radiated GW energy becomes strongly dependent on the
choice of the initial separation causing varying results for
different initial distances, thus making it a bad approxi-
mation for an unexcited OS falling in from infinity.
Our solution to this problem is to choose hij ¼ γijj2x0 ,

which leaves the metric values at the center of each OS
unchanged from the isolated case and thus also its volume
element.8 From the close match between the green curve
(hij ¼ γijj2x0) and the black curve (isolated OS) in Fig. 6,
one can see how this choice is a significant improvement
over the orange curve (hij ¼ δij).
Furthermore, defining the relative Hamiltonian violation as

max

�
H

16πρ

�
;

we see a significant improvement in relative violation from
2.6% to 0.3% (see Fig. 5). Finally, we apply a relaxation

routine to reduce this Hamiltonian constraint violation further.
The result of our method is shown in Fig. 7 where it is clear
that we have eliminated the large low frequency radial modes
(orange curve) to leave only the physical high frequency
central density fluctuation present in the original single OS
solution (green curve).

2. Numerical methodology and convergence tests

All grids for extraction of gravitational waves have a side
length of 512 m−1, with the coarsest resolution being
Δx ¼ 2 m−1. We extract rΨ4 at a radius of 60 m−1 and
we set a fixed resolution over the region containing the
extraction sphere. Depending on the scenario, we use from
five to six levels of refinement, which corresponds to a
smallest resolution of 0.0625 m−1 and 0.03125 m−1,
respectively. Since for all simulations the box size is
500 m−1 and our extraction sphere is positioned at radius
60 m−1 from the center, we choose the maximum run-time
at around 380 m−1 in order to prevent spurious reflections
at the boundary from contributing to the final results.
We use the following to measure the volume-averaged

Hamiltonian constraint violation:

L2ðHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V

Z
V
jH2jdV

s
; ðA3Þ

where V is the box volume with the interior of the apparent
horizon excised. As can be seen in Fig. 8, we have good
control over the constraint violation throughout the
simulation.
We test the convergence of our simulations with

the collision of two oscillatons with ϕm;0ð0Þ ¼ 0.33

FIG. 6. The volume element det γ of the OS-OS initial data
before relaxation for ϕm;0ð0Þ ¼ 0.44, C ¼ 0.13 on a line in the
x direction which goes through the center of both OS. In this
example, we have positioned the stars at distance �15 m−1 as
opposed to �30 m−1 to illustrate our point. Note that the values
are closer to the single OS solution when the metric values are
conserved in the center of the OS.

FIG. 7. The plot shows the central density of OS with C ¼ 0.10
at a distance 60 m−1 from its counterpart. The high frequency
oscillation with wavelength λ ≈ 2π m−1 is the natural breathing
of the oscillaton while the low frequency mode is caused by the
radial mode. Applying the choice hij ¼ γijj2x0 removes this radial
mode. Animations depicting the evolution of the central density
with and without radial modes are available [31,32].

6This is reminiscent of the old “self-crushing” problem in the
setup of binary neutron stars initial conditions [29].

7An animation showing the evolution in time of the central
density is available [30].

8A further refinement of this method is to include a factor such
that limr→∞hij → δij.
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(C ¼ 0.20). We use a box of side length 256 m−1, and
initial separation of the oscillatons of 40 m−1. As we have
turned on adaptive refinement, we use three different coarse
resolutions of 1 m−1, 2 m−1 and 4 m−1. This allows for six
levels of 2∶1 refinement each with corresponding finest
possible resolutions of 0.015 625 m−1, 0.03 125 m−1 and
0.0625 m−1. We extract the l ¼ 2, m ¼ 0 mode of rΨ4 at
distance 60 m−1 from the center. The results are shown in
Fig. 9, where we obtain between second- and third-order
convergence on average. While we have used a fourth-order
scheme, the large amount of regridding required to track the
collision results in some loss of accuracy which is not
surprising.9 Lastly, we note that an estimate for the error
bars in the energy extraction (Fig. 1) is obtained by
doubling the resolution of the simulations described in
the main text, and computing the energy for this higher
resolution case. The difference of the results at two
different resolutions gives us an estimate for the error.

APPENDIX B: SELF-INTERACTIONS

In our study, we have ignored possible self-interactions
of the scalar field ϕ. Here, we discuss the domain of
validity of our results.
Let us first consider the case where our compact scalar

solitons are made of axionic dark matter. In this case, the
potential VðϕÞ¼m2f2½1−cosϕ=f�¼m2ϕ2=2−λϕ4=4!þ���,
where λ ¼ m2=f2. By comparing the self-interaction and
the gravitational interaction, the gravitational interaction
dominates our solitons for ϕ=f ≲ C1=2 (where the

dimensionless compactness C ¼ GM=R is of the order
of the typical gravitational potential associated with each
soliton).10 For our merger simulations, the maximum value
of the field is typically ϕmax ≲ 0.24mPl (estimated as twice
the maximum field value at the center of individual
oscillatons). Hence, for f ≳mpl, we expect our results will
remain unchanged.
Although it is not impossible to envision a mechanism

through which such a large value of the decay constant
would be set in the effective theory [33,34], f ≳mPl
is phenomenologically problematic if ϕ constitutes the
totality of dark matter. Assuming we have a scenario
similar to [17], for f ≳mPl, the total dark matter abundance
bound requires the axion to be unacceptably light
(m < 10−30 eV), in conflict with observations [16]. An
obvious way around this abundance bound is to assume that
the field ϕ corresponds to a subdominant dark matter
component. Conservatively, the results of our paper are
therefore expected to apply for solitons made of a sub-
dominant axionic dark matter component with f ≳mPl.
As we have discussed, the upper bound of f ≲mPl is

desirable from both a model-building perspective and from
abundance constraints. In the regime f ≪ mPl, we would
expect self-interactions to be relevant.
However, for f ≲ 10−2mPl, the self-gravitating real-scalar

lumps cannot reach compactness values that would make
them approximate mimickers of BHs [15]. Hence, including
self-interactions, a typical f value of interest for gravitational
wave emissionwould bef ∼ 10−1mPl. For this value off, we

FIG. 8. The plot shows the L2 norm (A3) of the Hamiltonian
constraint violation over time, with excision of the black-hole
interior (which forms around t ¼ 700). The green region shows
the relaxation time, with data points extracted every 100th cycle.
There is a jump after the relaxation, likely caused by regridding
during transition from relaxation to evolution, but still extremely
good overall.

FIG. 9. Convergence test for the l ¼ 2, m ¼ 0 mode of rΨ4,
showing convergence between second and third order. The con-
vergence test is done with three different coarsest resolutions of
4 m−1, 2 m−2 and 1 m−1, six levels of 2∶1 refinement, with
corresponding finest resolutions of 0.0625 m−1, ð0.0625=2Þ m−1

and ð0.0625=4Þ m−1. Our evolution scheme is fourth order, and the
lowered accuracy is due to the large amount of regridding required
to track the motion of the oscillaton through to final state.

9Using fixed grids, we have demonstrated fourth-order con-
vergence of the code consistent with methods used [13,15].

10For nonaxionic cases with an attractive self-interaction,
ϕ≲ ðm=

ffiffiffi
λ

p ÞC1=2.
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have found that the compactness of our configuration ofmass
M can change by at most 20% relative to the noninteracting
case. How does this affect our results? While the compact-
ness for a given mass changes, if the fractional gravitational
wave output is a function of compactness only, our curve in
Fig. 1 should remain unchanged.

These heuristic arguments deserve a more complete
study, which will be taken up in future works. The main
difficulty lies in setting up initial conditions. The con-
struction of an unexcited ultracompact initial configuration
with significant self-interactions within full nonlinear GR is
still an open problem [15].
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