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In this work, we determine that the Hawking temperature of two-dimensional black holes possesses a
purely topological nature. We find a very simple but powerful formula, based on a topological invariant
known as the Euler characteristic, which is able to provide the exact Hawking temperature of any two-
dimensional black hole—and, in fact, of any metric that can be dimensionally reduced to two dimensions—
in any given coordinate system, introducing a covariant way to determine the temperature only using
virtually trivial computations. We apply the topological temperature formula to several known black hole
systems as well as to the Hawking emission of solitons of integrable equations.
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I. INTRODUCTION

Black hole spacetimes are very special. It is known that
they can be studied using topological methods, assigning a
Euler characteristic χ, a topological invariant, to each black
hole [1–4]. By calculating the Euler characteristic of black
hole spacetimes, several important features can be studied
in a simple manner. One such feature is the black hole’s
entropy, which has been explored previously [4,5]; how-
ever, we believe the use of χ to study black hole Hawking
temperatures has been neglected in the literature—
although the topological nature of horizon temperatures
has been previously highlighted by Padmanabhan using a
formalism reminiscent of the Aharonov-Bohm effect [6].
This is due to the fact that theorists generally study black
holes in simple coordinate systems, for example the
rotating black hole in the Kerr metric and a stationary
black hole in Schwarzschild coordinates, where a temper-
ature can be found easily using different methods adapted
to each individual case [7]. However, in many practical
cases, a black hole may be hidden within a complicated
metric and highly nontrivial coordinate transformations
required to unearth it. A topological formula for the
Hawking temperature of a black hole related to χ, working
in any coordinate system, is therefore extremely useful. In
this work, we investigate this formula in depth for several
different known black holes in two dimensions, exploring
how the dependence of the metric and its curvature
invariants on spacetime coordinates affects the formula.
Another novel feature of this work is that we use our new

formula to investigate the temperature of solitons as black
hole analogues, building on our previous research into the
new field of quantum soliton thermodynamics [8]. This
field explores the analogue Hawking radiation emission of
soliton solutions of integrable equations. The reason why
the topological formula for Hawking temperature is so

important for the thermodynamics of solitonic systems
is that these are described by induced metrics, derived
from inverse scattering theory [9,10], of generally highly
nontrivial form. These metrics are for the most part
nondiagonal and have hidden symmetries, and so a
coordinate-independent route to the soliton’s temperature
is particularly apt. We believe that in the future this
topological approach will form a backbone for further
research into quantum soliton thermodynamics, motivating
the detailed treatment given here.
The plan of the paper is as follows. In Sec. II, we

introduce the main formula studied in this work, a new
expression for the Hawking temperature of black hole
systems in two dimensions. This formula we derive by
investigating the features of a known topological invariant,
the Euler characteristic χ, the relevance of which to black
hole spacetimes being described in Sec. III. The applica-
tions of our Hawking temperature formula for several
known black hole systems is then given in Sec. IV after
which the formula’s notable advantage for studying ana-
logue black holes, the central result of this paper, is
demonstrated.

II. A TOPOLOGICAL FORMULA FOR THE
HAWKING TEMPERATURE OF TWO-

DIMENSIONAL BLACK HOLES

Before introducing the formula’s origins, we present it
immediately in order to give the reader a flavour of its
simplicity. The Hawking temperature of a two-dimensional
black hole with time-independent Ricci scalar R can be
found as

TH ¼ ℏc
4πχkB

X
j≤χ

Z
rHj

ffiffiffi
g

p
Rdr; ð1Þ
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where TH is the Hawking temperature, kB is the Boltzmann
constant, ℏ is the reduced Planck constant, c is the speed
of light in vacuum, RðrÞ is the Ricci scalar which depends
only on the “spatial” variable r, g is the (Euclidean) metric
determinant, rHj

is the location of the jth Killing horizon and
χ is the Euler characteristic of the black hole’s Euclidean
“spacetime” (which counts its Killing horizons). Of par-
ticular importance is the symbol

P
j≤χ , which is intended to

be a sum over all the Killing horizons, where one must pay
attention to the sign of each term in the sum, which can be
positive or negative depending on the specific features of
each Killing horizon—the overall result is, however, always
positive. This subtle point will be explained in the dis-
cussions below. The single limit of integration signifies that
the integral is to be evaluated only at the points rHj

, the
precise meaning of which will also be explained later.
Eq. (1) is the main new covariant formula studied in this

paper and is derived from the known expression for the
Euler characteristic χ of a black hole spacetime as we show
below. This result highlights the purely topological nature
of Hawking radiation.

III. MATHEMATICAL BACKGROUND

To make this paper self-contained, we now review the
derivation of the Euler characteristic of black holes.
The Euler characteristic χ is a remarkable topological

invariant that provides important information on a mani-
fold’s structure. For a compact surface without boundary,
the Euler characteristic simply counts its holes, giving its
genus. For surfaces with boundary (such as those we shall
study below in the context of black hole spacetimes), the
interpretation of χ is more subtle [11].
The characteristic χ plays a fundamental role in the

Gauss-Bonnet theorem, a key mathematical result which
links geometry to topology. This theorem’s generalisation
to higher (even) dimensions, developed by Chern and other
authors [12,13], is the foundation upon which the appli-
cation of χ to black hole physics is built, as will be
elucidated below.
In n (even) dimensions, the value of χ of a space can be

defined as the integral over a certain density G [11]:

χ ¼ 2

areaðSnÞ
Z
Mn

G; ð2Þ

where Sn is the n-sphere and areaðSnÞ signifies its surface
area, e.g., in two dimensions, this area is 4π. The density G
can be expressed in local coordinates as [11,12]

G ¼ 1

2n=2n!g
Ri1i2j1j2Ri3i4j3j4…Rin−1injn−1jnϵ

i1…inϵj1…jn ; ð3Þ

where Rμνρτ is the Riemann tensor defining the curvature of
the space and ϵijkl is the Levi-Civita symbol in four

dimensions. In n ¼ 2 dimensions, this density reduces
to G ¼ R1212=g ¼ R=2.
Two papers written by Chern [13,14] during the Second

World War, proving intrinsically (without any embeddings
in higher dimensions) an extension of the Gauss-Bonnet
theorem to n even dimensions, is key for the application of
topology to black holes, and so a brief summary of the key
results of these papers will now be given, in the language
of forms.
The Euler characteristic of an n-dimensional compact

manifold Mn, which will later be identified with the black
hole spacetime manifold capped at an outer boundary, can
be defined as the integral of a density form Ω over the
manifold by χ ¼ R

Mn Ω. This density Ω is necessarily given
in Chern’s papers in the guise of a differential form;
however, all calculations carried out later in this work
employ the density in Riemannian coordinates, i.e., as
defined in (3), because we wish to study black hole metrics
in particular coordinate systems.
Chern proved that Ω, originally defined in Mn, can also

be defined in a larger manifold M2n−1, itself formed by the
unit vectors of Mn. The form Ω is equal to the exterior
derivative of another density form, Π, of degree n − 1

which is defined in M2n−1 via Ω ¼ −dΠ. Chern then
showed that the integral of Ω over Mn is equal to the
same integral over a submanifold Vn of M2n−1 and by
Stokes’ theorem is also equal to the integral of Π over the
boundary of Vn.
Now, a manifold with boundary requires an important

correction to the value of χ, which becomes [1]

χ ¼
Z
∂V

Π −
Z
∂M

Π: ð4Þ

The submanifold Vn of M2n−1 is crucial as its boundaries
are defined to be the fixed points (the zeros) of the unit
vector field defined in Mn. Strikingly, it is known that any
unit vector field in Mn can be chosen in order to find the
value of χ for that manifold [14,15].
A particularly elegant discussion of how fixed points of

vector fields on manifold surfaces define the Euler char-
acteristics of these surfaces, with relevance to black hole
physics, is given in a work by Gibbons and Hawking using
their concepts of “nuts” and “bolts” [2]. These authors call
isolated fixed points (that is, the zeros) of the Killing vector
field on the manifold “nuts” and fixed point 2-surfaces they
call “bolts.” The Euler characteristic of the whole manifold
can then be defined as the sum of the number of nuts and
the Euler characteristic of each bolt. Each bolt, i.e., fixed
point two-surface, must be compact in order for it to
contribute to the total Euler characteristic, by definition, as
χ is only defined for compact manifolds. Interestingly, if the
Killing vector field only has nuts then the calculation of χ is
identical to that using the Lefschetz fixed-point theorem for
isometries [3].
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Let us now see how the machinery defined above for a
compact space can be utilised for black hole spacetimes.
On first sight a spacetime would seem to be necessarily
noncompact, spatially and temporally. We already men-
tioned that the boundaries of Vn are the fixed points of the
unit vector field defined in Mn. A choice that simplifies
results substantially is to define this unit vector field to
be a Killing vector field of the black hole spacetime. For a
two-dimensional Schwarzschild black hole the Killing
vector field is associated to time symmetry and the field
vanishes only at a Killing horizon, therefore Vn has a
boundary associated to the Killing horizon (which for a
Schwarzschild black hole coincides with its well-known
unique event horizon). We have now defined one of the
boundaries of Vn to be at the Killing horizon of the black
hole, which we will denote rH. Does it have any other
boundaries? It has one other, at the boundary of the original
manifold Mn, which we call r0.
What aboutMn? This is the black hole spacetime capped

at r0, which defines its only boundary. Taking all these
results into account (4) becomes

χ ¼
Z
r0

Π −
Z
rH

Π −
Z
r0

Π ¼ −
Z
rH

Π: ð5Þ

This result means that the particular choice of the mani-
fold’s outer boundary position (although the existence of
the boundary is key for making the spacetime compact) is
irrelevant for the calculation of the Euler characteristic of
the black hole spacetime. Put briefly, the outer boundary
always cancels out in the calculation of the Euler character-
istic. The integral should, therefore, only be evaluated at the
Killing horizon, hence the integral in our main formula
Eq. (1) contains only the lower limit of integration.
Now we see that the integral formula (2) defining χ

should only be evaluated at one limit, namely at the Killing
horizon of the spacetime being studied. If a spacetime has
more than one Killing horizon, then each must be taken into
account separately, as we show in the next section.
In two dimensions for χ ¼ 1, the density formula (3)

leads to a Euler characteristic of

Z
d2x

ffiffiffi
g

p R
4π

¼ 1; ð6Þ

Two-dimensional Schwarzschild black holes are known
to have topology R2 and thus satisfy χ ¼ 1 [1]. The
temperature of these black holes emerges from the above
expression.
Applying a Wick rotation to the spacetime being studied

makes the time dimension compact and this rotation to
Euclidean space, setting the period of Euclidean time to be
inverse temperature β, provides the appropriate limits for
the Euclidean time integral [1,16]. The remaining spatial

integral has only one limit at which to be evaluated, at the
Killing horizon, as already explained.
The expression for χ thus becomes:

R β
0 dt×R

rH
dr

ffiffiffi
g

p ðR=4πÞ ¼ 1. If R is time independent (where
the meaning of the “time” variable of course depends
on the specific coordinate system adopted), then the
expression, after units have been introduced, becomes

ℏc
4πkBTH

Z
rH

ffiffiffi
g

p
Rdr ¼ 1; ð7Þ

i.e., the expression presented earlier (1) for the case of a
black hole with one Killing horizon.
With all of the reasoning above we have shown, for the

first time to our knowledge, that the Hawking temperature
is a purely topological quantity, explaining the covariant
form of the equation and its known applicability in any
coordinate system, as demonstrated in a few cases below.

IV. APPLICATIONS

A. Black holes

1. Static black holes

Let us now apply the temperature formula (1) to several
canonical cases of black hole systems, starting with that of
the two-dimensional static, uncharged black hole.
In Euclidean Schwarzschild coordinates, the static black

hole’s metric is

ds2 ¼
�
1 −

2GM
c2r

�
dτ2 þ

�
1 −

2GM
c2r

�
−1
dr2: ð8Þ

The Ricci scalar for this spacetime is R ¼ ð4GM=c2r3Þ and
clearly g ¼ 1; therefore, (1) gives

TH ¼ ℏc3

8πGMkB
; ð9Þ

the known static, uncharged black hole temperature. G and
M are Newton’s constant and the black hole’s mass
respectively, c and kB are the speed of the light in vacuum
and Boltzmann’s constant.
An arbitrary coordinate transformation will lead to a

different metric describing the static black hole; however,
crucially, due to the topological nature of the temperature
formula, the same static black hole temperature will emerge
from any coordinate system, as can be readily checked.
The appropriate method to find the horizon position of a

black hole in an arbitrary coordinate system is either to find
where the Killing vectors of the metric vanish or, usually
more simply, to use an invariant known as the Karlhede
scalar, defined as K2 ≡ Rμνρσ;τRμνρσ;τ, where the symbol “;”
indicates a covariant derivative [7,17]. This invariant
vanishes at the event horizon of most black holes [18].
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The roots of the Karlhede scalar are known to provide
a means to detect the position of the event horizon of
a spherically symmetric black hole (for instance, a
Schwarzschild or a Reissner-Nordström black hole), where
K2 vanishes and changes sign after traversing the horizon.
However, for some types of black hole, K2 is known to
possess extra roots that are associated to other liminal
regions—for example, in the four-dimensional Kerr metric,
which describes uncharged rotating black holes, K2 van-
ishes at the ergosphere [18].
In the next section, we shall look at a two-dimensional

description of rotating black holes.

2. Rotating black holes

In this and the following sections, all physical constants
are set to unity to simplify the formulas and metrics,
without any loss of generality.
A black hole with angular momentum is generally studied

in 3þ 1 dimensions (described by the so-called Kerr
metric); however, recently, an effective 1þ 1-dimensional
metric for the system was derived [19]. It has the form

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2; ð10Þ

where fðrÞ ¼ ðr2 − 2Mrþ a2Þ=ðr2þ þ a2Þ, with the black
hole’s angular momentum per unit mass denoted by
a, its mass as usual by M, and its outer horizon by
rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

A Wick rotation transforms metric (10), via τ ¼ it, to
ds2 ¼ fðrÞdτ2 þ fðrÞ−1dr2, with the same definition of
fðrÞ as above. It has been argued that a rotating black hole’s
angular momentum parameter a should be left unaltered
after a Wick rotation in order to properly define its
Euclidean metric and our calculations below support this
view [20].
We see that fðrÞ has two roots r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and, hence, two fixed points of its Killing vector field
associated to time isometry, therefore χ ¼ 2. The fact that
the Killing vector field has two zeros adds another
boundary to manifold Vn defined in Sec. III, making
two integrals necessary for defining χ and hence TH.
Therefore the form of TH becomes (note that g ¼ 1):

TH ¼ 1

2

�
1

4π

Z
rþ
Rdr −

1

4π

Z
r−

Rdr

�
: ð11Þ

For the metric (10) the formula (11) gives the known
rotating black hole temperature of [19]:

TH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

4πMðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ
; ð12Þ

demonstrating again the analytical power of our general
formula (1).

3. Charged black holes

A black hole with electrical charge Q can be described
by the Reissner-Nordström metric, which with Euclidean
signature and after a dimensional reduction to two dimen-
sions is [21]

ds2 ¼
�
1 −

rs
r
−
r2Q
r2

�
dτ2 þ

�
1 −

rs
r
−
r2Q
r2

�−1
dr2; ð13Þ

where rs ¼ 2M and r2Q ¼ Q2 are length scales of the
system associated to mass and charge. Note that (13) is
related to the Lorentzian signature metric by both a Wick-
rotated time and charge.
Metric (13) has one Killing horizon associated to time

isometry located at rþ ¼ 1
2

�
rs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s þ 4r2Q

q �
. The only

positive root of the Karlhede scalar K2 is rþ when applied
to the charged black hole metric (13), pinpointing its
horizon position.
Once this geometry is input into (1) and one Wick

rotates back, the standard Reissner-Nordström black hole
temperature is found:

TH ¼
−4r2Q þ rs

�
rs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4r2Q

q �

π
�
rs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4r2Q

q �
3

: ð14Þ

It may seem that the treatment given in this work is
somewhat limited as it covers only the properties of two-
dimensional black holes; however, this is not the case for
two reasons: (i) lower-dimensional black holes are inter-
esting in their own right as they can be studied more easily
than their four-dimensional counterparts and are used to
attack conceptual problems in quantum gravity [22], and
(ii) it is known that higher-dimensional black hole metrics
can in many cases be dimensionally reduced to two
dimensions. For example, scalar fields on the standard
four-dimensional Schwarzschild, Reissner-Nordström and
Kerr metric backgrounds can be described by field theory
on effective two-dimensional metrics. This is done by
keeping only near-horizon dominant terms in the action
describing scalar fields on these backgrounds [19]. In such
a way, higher-dimensional black holes can be described
by two-dimensional effective metrics amenable to our
Hawking temperature formula (1). It should be noted that
there are other ways to dimensionally reduce higher-
dimensional gravity theory which have associated subtle-
ties, involving the dynamics of dilatonic fields, but this is
beyond the scope of the current work. For a treatment of
these subtleties see [23].
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4. AdS black holes

Anti-de Sitter space has a geometry of constant negative
curvature and plays a key role in the AdS=CFT correspon-
dence and the field of holography, two rich areas of modern
physics [24].
A black hole in two-dimensional anti–de Sitter (AdS2)

space has a Euclidean metric description [25],

ds2 ¼
�
1þ r2

l2
−

r
rþ

�
r2þ
l2

þ 1

��
dτ2

þ
�
1þ r2

l2
−

r
rþ

�
r2þ
l2

þ 1

��−1
dr2; ð15Þ

which has two Killing horizons defined by time symmetry
positioned at r− ¼ l2=rþ and rþ. The AdS length scale is
defined by l [25]. The metric above is related to the
Lorentzian signature version only by a Wick-rotated time.
As it has two Killing horizons, the Euler characteristic is
two, as is known from topological considerations [26], and
the form of (1) with two integrals as in the rotating black
hole case must be used.
Evaluating (1) after taking both horizons into account

then gives the known AdS2 black hole Hawking temper-
ature of [25]:

TH ¼ r2þ − l2

4πrþl2
: ð16Þ

B. Solitons as analogue black holes

So far we have only used the Euler characteristic-based
Hawking temperature formula (1) to verify known astro-
physical black hole temperatures. This was to show its
effectiveness in different situations and its complete coor-
dinate independence. For example, its efficacy for black
holes with differing numbers of horizons and with differing
amounts of “hair,” i.e., externally measurable parameters
[27]. The main focus of this paper, however, is in the power
of this method for black hole analogues. Hawking radiation
from astrophysical black holes is so weak that its exper-
imental verification is, at least for the foreseeable future,
completely impractical. Therefore in recent years a large
amount of effort in the community has been invested in
measuring the analogue of Hawking radiation in other,
laboratory-based, settings including hydrodynamical, opti-
cal and cold-atom systems [28–31].
The present authors have previously studied the pos-

sibility of detecting the analogue of Hawking radiation
from solitons, stable solutions of integrable equations,
finding a thermodynamical first law for each [8]. A
prediction of a half-life of an optical soliton propagating
in an optical fiber due to this emission was made. This
study of quantum soliton thermodynamics was based upon
an induced metric, derivable for any two-dimensional
soliton of an integrable nonlinear evolution equation.

It is known that any two-dimensional metric can be put
into Schwarzschild-like form and thus there is a complete
formal equivalence between these solitons and black holes
[17]. Whether these solitons’ induced metrics have real-
valued Hawking temperatures and horizons, and therefore
emit radiation, must be investigated by studying each
metric’s properties. However, each two-dimensional soliton
can potentially Hawking radiate. Several highly nontrivial
coordinate transformations are generally required to cast a
soliton’s metric in Schwarzschild-like form and thence
to find its associated temperature. Rather than performing
the previously obligatory series of involved coordinate
transformations, we believe that the topological formula
described in the present work is much more suitable, as we
demonstrate below. For more information on the construc-
tion of soliton metrics, please see [8,9].
We focus now on the richest case of quantum soliton

thermodynamics: the soliton solution to the nonlinear
Schrödinger (NLS) equation. This equation appears in
many places in physics, from fiber optics to Bose-
Einstein condensates [32,33]. The NLS equation itself is
given by

iut þ uxx þ 2juj2u ¼ 0 ð17Þ

where t and x are time and space respectively and u is a
complex scalar field. The NLS equation has an associated
metric with line element [8]:

ds2 ¼ 4dx2 þ 8vdxdtþ ð16juj2 þ 4v2 − 16B2Þdt2; ð18Þ

where v and B are the soliton’s velocity and amplitude,
respectively. The soliton solution juj ¼ BsechðBxÞ is to be
inputted into the line element above in order to define the
NLS soliton’s induced metric.
The soliton metric as it is would have a Lorentzian

signature and so must be Wick-rotated to a Euclidean
signature as explained in Sec. III. This is done by applying
t → iτ and v → −iv after which the line element becomes
ds2 ¼ 4dx2 þ 8vdxdτ − ð16juj2 − 4v2 − 16B2Þdτ2. Now,
it is known that all two-dimensional metrics can be put
into Schwarzschild-like form, but how does one find
the horizon position in a general coordinate system?
To answer this question, we note that the Euclidean
NLS metric written above has a Karlhede scalar of K2 ¼
B4

4
sech4ðBxÞð4B2 þ v2 − 4B2sech2ðBxÞÞwhich vanishes at

the horizon position xH¼ 1
Bsech

−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2

4B2

q �
. Evaluating

(1) for the Euclidean NLS metric (and afterwards Wick
rotating the velocity back) produces the known NLS soliton
Hawking temperature [8]:

TH ¼ B2

π

�
1 −

v2

4B2

�
: ð19Þ
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A basic study of the NLS soliton’s Hamiltonian combined
with the above temperature then reveals the soliton’s
entropy to be S ¼ 2πB [8].
Another example of a solitonic black hole analogue

comes from the sine-Gordon equation uξξ þ uττ ¼ sinðuÞ,
which has an interesting solution, known as a kink, moving
with velocity v [34,35]. This solution is described by
u ¼ 4 tan−1ðeγðξ−vτÞÞ, where γ ≡ ð1þ v2Þ−1=2.
The kink has an induced Euclidean metric,

ds2 ¼ −ðv2 − r2Þdτ2 − ðv2 − r2Þ−1dr2; ð20Þ

with a horizon position that can without difficulty be read
off from the line element and is located at r ¼ v. The
topological formula (1) then gives

TH ¼ v
2π

; ð21Þ

the known sine-Gordon kink Hawking temperature [34].
Any two-dimensional integrable soliton solution can

be studied as an analogue of a black hole following the
procedure given here and in our previous work [8]. Using
these methods, the KdV equation’s soliton solution has
been shown not to Hawking radiate due to a complex-
valued event horizon; however, we hope that the quantum
thermodynamics of other solitons can be probed in the
future, uncovering other examples of quantum emission.
We have shown in this work that a topological method
based on the Euler characteristic χ is particularly well

suited for studying black hole analogues, further unveiling
the profound link between solitons and black holes.

V. CONCLUSIONS

In this work, we have presented a formula Eq. (1),
derived by studying the Euler characteristic of black hole
spacetimes, which is able to provide a simple way of
calculating the Hawking temperatures of black holes in
arbitrary coordinate systems, a topological application we
believe to have been neglected so far in the literature. We
have shown its efficacy for several important black hole
systems, with varying numbers of parameters and Killing
horizons. It is argued that the most powerful application of
this topological method is to the new field of quantum
soliton thermodynamics. This new field, describing sol-
itons of integrable equations as black hole analogues,
should benefit greatly from the topological methods pre-
sented here as, in general, the thermodynamics of these
solitons are encoded in highly nontrivial metrics which can
easily be resolved using topology.
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