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Intermediate-richness galaxy groups are an important testing ground for modified Newtonian dynamics
(MOND). First, they constitute a distinct type of galactic systems, with their own evolution histories and
underlying physical processes; second, they probe little-chartered regions of parameter space, as they have
baryonic masses similar to massive galaxies, and similar velocity dispersions, but much larger sizes—
similar to cluster cores (or even to clusters), but much lower dispersions. Importantly in the context of
MOND, they have the lowest internal accelerations reachable inside galactic systems. Following my recent
analysis of MOND in galaxy groups, I came across a much superior sample, which I analyze here. This
extensive catalog permits strict quality cuts that still leave a large sample of 56 medium-richness groups,
better suited for dynamical analysis—e.g., in having a large number (≥15) of members with measured
velocities. I find that these groups obey the deep-MOND relation between baryonic mass,MM, and velocity
dispersion, σ: MMGa0 ¼ ð81=4Þσ4, with individual, MOND, mass-to-light ratios, MM=LK of order
1 M⊙=LK;⊙, and a sample median value of ðMM=LKÞmed ¼ 0.7 M⊙=LK;⊙. These compare well with stellar
values deduced for single galaxies, and with values deduced from population-synthesis analyses. In
contrast, the dynamical, Newtonian Md=LK values are much larger—several tens solar units, and
ðMd=LKÞmed ¼ 37 M⊙=LK;⊙. The same MOND relation describes (isolated) dwarf spheroidals—two-
three orders smaller in size, and seven-eight orders lower in mass. The groups conformation to the MOND
relation is equivalent to their lying on the deep-MOND branch of the “mass-discrepancy-acceleration
relation,” g ≈ ðgNa0Þ1=2, for g as low as a few percents of a0 (gN is the Newtonian, baryonic, gravitational
acceleration, and g the actual one). This argues against systematic departure from MOND at extremely low
accelerations (as has been suggested). This conformation also argues against the hypothesis that the
remaining MOND conundrum in cluster cores bespeaks a breakdown of MOND on large-distance scales;
our groups are as large as cluster cores, but do not show obvious disagreement with MOND. I also discuss
the possible presence of the idiosyncratic, MOND external-field effect.
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I. INTRODUCTION

Galaxy groups are important in testing modified
Newtonian dynamics (MOND) ([1], reviewed, e.g., in
Refs. [2,3])—especially vis à vis the dark-matter paradigm.
Such groups are a class of galactic objects distinct from
others, such as dwarf spheroidals, massive galaxies, and
galaxy clusters, with different histories of formation and
evolution, different physical processes that affect their
evolution, and possibly a different dynamical state. Such
differences are expected to lead to disparate relations
between baryons and dark-matter in the dark-matter para-
digm, with strongly history-dependent present states (see
e.g., Refs. [4,5]). In contradistinction, MOND predicts
strict relations between the baryons and the observed
dynamics that are oblivious to history, as long as the
system under study, be it a dwarf satellite, a galaxy, or a
galaxy group, is in virial equilibrium.
Intermediate-richness groups (as distinct from galaxy

clusters) also probe a different region of parameter space
from what can be reached with other galactic systems.

They have masses and internal velocities similar to massive
galaxies, but are tens of times larger. They are similar in
size to galaxy-cluster cores, but have much lower velocity
dispersions. They thus have much lower internal acceler-
ations than found in either galaxies or galaxy clusters. In
fact—importantly in the context of MOND—their internal
accelerations are the lowest accessible in galactic systems,
typically several times lower even than is typical in dwarf
spheroidal satellites.1 I will find no departure from the
predictions of MOND in such groups, which argues against
breakdown of MOND at extremely low accelerations—a
possibility that was raised e.g., in Ref. [8] based on analysis
of ultra-faint dwarf galaxies.
Because such groups are as large as cluster cores, or even as

clusters, they help us pinpoint the reasons for the remaining
MOND conundrum in clusters, and whether it is due to some

1Such low accelerations have been probed in MOND, far
outside galaxies, using weak gravitational lensing [6,7], but only
statistically for samples of galaxies, not individually.
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breakdown of MOND at large distances—as has been
suggestedoccasionally—or to someother attributeofclusters.
The fact that MOND works well for the present sample, as I
will find, means that it is not a question of system size.
In a recent paper ([9], hereafter Paper I) I analyzed

MOND in small-to-intermediate-richness galaxy groups
listed in the three compilations in Refs. [10–12], totaling 53
groups. While an advance over previous MOND analyses
of galaxy groups, this study still leaves much to be desired.
For example, most of the groups analyzed have only a small
number of members with measured velocities, with only
eleven groups having more than ten measured velocities. It
is greatly advantageous to analyze groups with a large
number of observed member velocities, in order to mitigate
some of the various uncertainties that beset the identifica-
tion and analysis of groups, which assumes that they are
bound, virialized, isotropic, isolated systems. Indeed, Paper
I found clear-cut agreement with the predictions of MOND
for the groups with more than 10 measured velocities, while
those with a small number of velocities show large scatter.
In the meanwhile, I came across an earlier, much more

extensive compilation Ref. [13] that identified 365 galaxy
associations as “galaxy groups.” This large pool allows the
application of “quality cuts” that still leave a large sub-
sample of groups better suited for dynamical analysis.
Here, I use the subsample of groups in Ref. [13] with at

least 15 members with measured velocities, and, further-
more, I leave out the (ten) groups at the very-rich end of the
sample, to avoid having to account for the large contribution
to the baryonic mass of hot gas these rich groups/clusters are
known to harbor. I then repeat the analysis as described in
Paper I for the remaining subsample of 56 groups.
Galaxy groups were first analyzed in MOND in the very

first MOND trilogy [14], where, however, only a small
number of groups with reasonable number of observed radial
velocities were available (only 5 would have pass our cut
here). Also, the deep-MOND virial relation we now use for
analyzing groups was not known at the time. In Ref. [15], I
analyzed four group catalogs, but given only the published
averages and median values of the luminosities and velocity
dispersions for these catalogs, with no analysis of individual
groups. In Ref. [16], I considered a small sample of 8 rela-
tively nearby groups from Ref. [17]. Most of these groups
have dynamical times comparablewith the Hubble time; so it
is questionablewhether they are invirial equilibrium, and four
of them had no more than 4 members with measured
velocities. Testing MOND in pressure-supported galactic
systems, Ref. [18] plots for the first time (in its Fig. 7) the
MOND “acceleration-discrepancy relation”—also known as
the “mass-discrepancy-acceleration relation” (MDAR)—for
such systems; it shows also some groups (with very large
scatter). All of these analyses gave results consistent
with MOND.
In Sec. II, I describe details of the analysis: themethod used

and the choice of subsample for analysis. In Sec. III, I describe

the results, including a comparison with previous similar
analysis of dwarf-spheroidal satellites of Andromeda.
Section IV discusses the results and lists some known sources
of uncertainties and scatter about the MOND relation.

II. ANALYSIS

A. Method

The MOND relation used to analyze the groups was
described in detail, including the associated caveats, in
Paper I. Here I recap the method, and comment on
additional aspects not discussed in Paper I. The caveats
and known sources of systematics—some of which are
specific to the present sample—are discussed in Sec. IVA.
The starting MOND relation is ([19] and references

therein)

hhðv − v0Þ2iit ¼
2

3
ðMGa0Þ1=2

�
1 −

X
i

ðmi=MÞ3=2
�
; ð1Þ

where v is the three-dimensional velocity, v0 is the center-
of-mass velocity, hi is the mass-weighted average over the
constituents, whose masses are mi, hit is the long-time
average, and M is the total mass. Relation (1) applies to
isolated systems (ideally of point masses), deep in the
MOND regime.
The groups I shall consider here are all very deep in the

MOND regime. Assuming long-term stationarity—which
requires boundedness (but is not ensured by it)—we replace
the long-time average with the measured present-day value.
The three-dimensional velocity dispersions is replaced byffiffiffi
3

p
σ, σ being the line-of-sight component—the only one

that is measured. This assumes global velocity isotropy—a
strong assumption that is not valid, for example, if rotation is
important. For determining masses we use literature values
of σ, which are not mass weighted ones, as appear in relation
(1), and in any event are measured only from radial velocities
of (usually small) subsample of system members.
Since individual masses of all members are not known,

one usually uses relation (1) for the case of a system made
of N ≫ 1 masses individually ≪ M, in which case we get

M ≈
81

4
σ4ðGa0Þ−1: ð2Þ

This is the approximate relation used in Paper I (and, e.g.,
in analyzing MOND in Andromeda satellites in
Refs. [20,21]; see also the application in Ref. [22] to the
MOND analysis of elliptical galaxies). Here, I shall
purposely consider only groups with at least 15 members
with measured velocities (and possibly many more mem-
bers); so the finite-N correction is not large if, indeed, all
masses are small compared with M. But, N ≫ 1 does not
ensure the validity of relation (2). For example, in the case
of one very dominant mass, M, with all the rest consisting
of “test particles,” relation (1) reads, given the above
approximation for the left-hand side,
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M ≈ 9σ4ðGa0Þ−1; ð3Þ

where σ is the mass weighted dispersion of the test particles
alone. This gives masses that are a factor of 9=4 smaller
than from Eq. (2) (or σ values ≈20% larger, for a given
mass).

In the present analysis, I use the sample of groupsdescribed
in Sec. II C, with group parameters as given in Ref. [13],
which I list in Table I. They are: the numbers of member
galaxies with observed radial velocities,NV ; the line-of-sight
velocity dispersions, σ, deduced from the measured radial
velocities; the harmonic radii, Rh; the K-band luminosities,

TABLE I. The 67 groups cataloged in Ref. [13], with number of members with measured radial velocities NV ≥ 15 (ordered by
decreasing NV). Groups marked with * are not included in the analysis, for reasons explained in the text. Observed parameters with
Newtonian, dynamical masses and mass-to-light ratios as derived in Ref. [13] (columns 1–7), and MOND-related quantities that are
derived here (columns 8–13). (1) group name; (2) number of members with measured line-of-sight velocity; (3) line-of-sight velocity
dispersion in km s−1; (4) harmonic radius in Kpc; (5) log10ðLK=LK;⊙Þ; (6) dynamical mass log10ðMd=M⊙Þ; (7) dynamical Md=LK in
solar units; (8) MOND velocity dispersion calculated from Eq. (2), assuming baryonic Mb=LK ¼ 1 M⊙=LK;⊙, in km s−1; (9) the ratio
σM=σ; (10) MOND mass from σ using Eq. (2), in units of 1012 M⊙; (11) baryonic, MONDMM=LK in solar units; (12) a measure of the
dynamical time, τd ≡ Rh=σ, in units of 1010 years; (13) A measure of the acceleration in the group, g≡ 2σ2=Rh, in units of 10−2a0.

Group NV σ Rh lgLK lgMd Md=LK σM σM=σ MM;12 MM=LK τd;10 102g=a0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC4472* 355 291 696 12.44 14.14 50 216 0.74 9.07 3.29 0.24 6.55
NGC3311* 139 426 520 12.51 14.29 60 225 0.53 41.66 12.87 0.12 18.78
NGC4696* 116 303 690 12.5 14.13 43 224 0.74 10.66 3.37 0.23 7.16
NGC1316* 111 244 454 12.3 13.94 44 200 0.82 4.48 2.25 0.19 7.06
NGC4261* 87 276 358 11.99 13.7 51 168 0.62 7.34 7.51 0.13 11.45
NGC5846* 74 228 395 11.8 13.64 69 150 0.66 3.42 5.42 0.17 7.08
NGC3992* 72 120 452 11.68 13.33 45 140 1.16 0.26 0.55 0.38 1.71
NGC5371* 55 195 455 12.07 13.69 42 175 0.9 1.83 1.56 0.23 4.5
NGC3223* 53 404 368 12.13 14.31 151 181 0.45 33.7 24.98 0.09 23.86
NGC5044* 52 245 480 11.96 13.72 58 164 0.67 4.56 5 0.2 6.73
NGC5746 39 107 269 11.66 13.2 35 138 1.29 0.17 0.36 0.25 2.29
NGC4697 37 109 546 11.66 13.27 41 138 1.27 0.18 0.39 0.5 1.17
NGC3100 34 142 738 12.08 13.57 31 176 1.24 0.51 0.43 0.52 1.47
NGC4636 32 73 337 11.08 12.58 32 99 1.36 0.04 0.3 0.46 0.85
NGC3607 31 124 247 11.13 13.08 89 102 0.82 0.3 2.22 0.2 3.35
NGC4501 31 199 717 12.06 13.79 54 174 0.87 1.98 1.73 0.36 2.97
NGC3031 30 138 102 10.86 12.59 54 87 0.63 0.46 6.33 0.07 10.04
NGC1553 29 185 62 11.79 13.56 59 149 0.8 1.48 2.4 0.03 29.7
NGC4105 29 139 382 11.61 13.23 42 134 0.97 0.47 1.16 0.27 2.72
NGC4631 28 90 243 11.12 12.98 72 101 1.12 0.08 0.63 0.27 1.79
NGC3379 27 233 179 11.47 13.23 58 124 0.53 3.73 12.63 0.08 16.32
NGC3923 26 159 357 11.62 13.33 51 135 0.85 0.81 1.94 0.22 3.81
ESO507–025 26 130 328 11.92 13.18 18 160 1.23 0.36 0.43 0.25 2.77
NGC5078 26 138 620 11.81 13.48 47 151 1.09 0.46 0.71 0.45 1.65
NGC1407 25 167 385 11.61 13.32 51 134 0.8 0.98 2.42 0.23 3.9
NGC1395 24 121 378 11.53 13.05 33 128 1.06 0.27 0.8 0.31 2.08
NGC4039 23 74 256 11.5 12.82 21 126 1.7 0.04 0.12 0.35 1.15
NGC4303 23 115 434 11.35 12.97 42 116 1 0.22 0.99 0.38 1.64
NGC4535 23 121 624 11.75 13.36 41 145 1.2 0.27 0.48 0.52 1.26
NGC4753 23 98 486 11.21 12.76 35 107 1.09 0.12 0.72 0.5 1.06
NGC0988 22 103 379 11.55 12.98 27 130 1.26 0.14 0.4 0.37 1.51
NGC1332 22 183 279 11.55 13.39 69 130 0.71 1.42 4 0.15 6.46
NGC7176 22 139 190 11.75 13.11 23 145 1.05 0.47 0.84 0.14 5.47
NGC4373 21 149 554 11.95 13.4 28 163 1.1 0.62 0.7 0.37 2.16
NGC5322 21 169 421 11.44 13.12 48 122 0.72 1.03 3.75 0.25 3.65
NGC3877 21 65 239 11.05 12.57 33 97 1.5 0.02 0.2 0.37 0.95
NGC3894 21 123 242 11.6 13.02 26 133 1.08 0.29 0.73 0.2 3.36
NGC2911 21 144 311 11.45 13.2 56 122 0.85 0.54 1.93 0.22 3.59
NGC4111 20 93 212 11.14 12.69 35 102 1.1 0.09 0.69 0.23 2.19
NGC5011 20 131 448 11.78 13.43 45 148 1.13 0.37 0.62 0.34 2.06

(Table continued)
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LK; the Newtonian, dynamical masses, Md; and the corre-
sponding Newtonian mass-to-light ratios, Md=LK . For each
group, I calculate from σ the MOND baryonic mass, MM,
using Eq. (2), and the corresponding mass-to-light ratio,
MM=LK , to be compared with reasonable baryonic values.
I also reverse the procedure and calculate the expected
MOND velocity dispersion, σM, using Eq. (2), from the given
luminosity and assuming a fiducial value of MðbaryonÞ=
LK ¼ 1 M⊙=LK;⊙. All these are also given in Table I.

B. Alternative forms

The deep-MOND M − σ virial relations of the type
discussed above are the proper MOND predictions to be
tested in “pressure-supported systems” such as the groups.
They do not require knowledge of sizes—a direct result of
the scale invariance of the deep-MOND limit [23]. Such
relations can, however, be cast in a form that resembles the
acceleration-discrepancy relation—the basic MOND pre-
diction for circular orbits in an axisymmetric field [1,24],
as relevant to rotation curves of disc galaxies2—by

introducing some characteristic system radius, R̄, which
is needed for the definition of accelerations.
As explained in Ref. [25], despite their similar appearance,

the global M − σ relations are different and independent
MOND predictions from the local, mass-asymptotic-speed
relation V4

∞ ¼ MGa0. (For example, the former is valid
only for systemswholly in the deep-MOND regime, the latter
is valid for all systems.) The latter is, in fact, a corollary of the
former for the case of a test mass on a circular orbit around a
central (baryonic) mass M. The M − V∞ relation is tanta-
mount to the “acceleration-discrepancy relation” between
the observed (MOND) acceleration g ¼ V2

∞=R, and the
Newtonian acceleration gN ¼ MG=R2: g ¼ ða0gNÞ1=2, at
all radii on the asymptotic rotation curve. MOND has
extended this relation also to the interiors of disc galaxies
at locations where g ≪ a0.
To write the M − σ relation in terms of “global” accel-

eration parameters, take, as an estimate of the global
Newtonian acceleration,

gN ¼ MMG=ðκR̄Þ2 ð4Þ
(MM is the MONDmass as defined above, because it stands
for the baryonic mass), and the global true (MOND)
acceleration as

TABLE I. (Continued)

Group NV σ Rh lgLK lgMd Md=LK σM σM=σ MM;12 MM=LK τd;10 102g=a0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC5557 20 141 381 11.69 13.3 41 141 1 0.5 1.02 0.27 2.81
NGC3610 19 119 271 11.38 13.08 50 118 0.99 0.25 1.06 0.23 2.81
NGC6868 19 182 309 11.96 13.38 26 164 0.9 1.39 1.52 0.17 5.77
NGC0891 18 60 197 11.3 12.64 22 112 1.87 0.02 0.08 0.33 0.98
NGC4527 18 85 305 11.52 12.93 26 127 1.5 0.07 0.2 0.36 1.27
NGC5473 18 94 294 11.25 12.75 32 109 1.16 0.1 0.56 0.31 1.62
NGC0488 17 85 200 11.83 13.16 21 152 1.79 0.07 0.1 0.24 1.94
ESO320–031 17 150 438 11.71 13.33 42 142 0.95 0.64 1.25 0.29 2.76
NGC5363 17 143 152 11.18 12.76 38 105 0.73 0.53 3.49 0.11 7.24
NGC4321 17 165 394 11.55 13.35 63 130 0.79 0.94 2.64 0.24 3.72
NGC0524 16 147 391 11.79 13.16 23 149 1.01 0.59 0.96 0.27 2.97
NGC3627 16 154 192 11.43 13.05 42 121 0.79 0.71 2.64 0.12 6.65
NGC3945 16 92 358 11.28 12.93 45 111 1.21 0.09 0.48 0.39 1.27
NGC4125 16 85 282 11.33 12.67 22 114 1.34 0.07 0.31 0.33 1.38
NGC4151 16 69 348 11.03 12.56 34 96 1.39 0.03 0.27 0.5 0.74
NGC4216* 16 52 23 8.6 11.24 437 24 0.46 0.01 23.23 0.04 6.33
NGC4254 16 92 457 11.71 13.28 37 142 1.55 0.09 0.18 0.5 1
NGC4666 16 98 320 11.24 12.95 51 108 1.1 0.12 0.67 0.33 1.61
NGC4936 16 194 460 11.79 13.36 37 149 0.77 1.79 2.91 0.24 4.4
NGC5090 16 218 337 12.01 13.74 54 169 0.78 2.86 2.79 0.15 7.59
NGC5982 16 159 512 11.82 13.31 31 151 0.95 0.81 1.22 0.32 2.66
NGC3801 15 82 161 11.56 12.7 14 130 1.6 0.06 0.16 0.2 2.25
NGC4224 15 118 448 11.33 12.95 42 114 0.97 0.25 1.15 0.38 1.67
NGC4258 15 80 254 10.97 12.45 30 93 1.16 0.05 0.56 0.32 1.36
NGC4993 15 74 375 11.42 12.44 10 120 1.62 0.04 0.14 0.51 0.79
NGC5128 15 94 402 11.21 12.52 20 107 1.13 0.1 0.61 0.43 1.18
NGC5198 15 101 301 11.16 12.69 34 104 1.03 0.13 0.91 0.3 1.82

2Also known as the mass-discrepancy-acceleration relation
(MDAR), also known as the “radial-acceleration relation” (RAR).
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g ¼ βσ2=R̄; ð5Þ
then, Eq. (2), for example, can be written as

g ¼ ηða0gNÞ1=2; η≡ 2βκ=9: ð6Þ

Since κ and β have values of a few, η ≈ 1, and thus
g ≈ ða0gNÞ1=2.
Alternatively, we can write the ratio of the Newtonian to

the baryonic (i.e., MOND) masses—which is also a mea-
sure of the mass-, or acceleration-discrepancy—in terms
of g, as follows: Take an estimate of the Newtonian,
dynamical mass to be such that

MdG
ðλR̄Þ2 ¼ g ¼ βσ2

R̄
; ð7Þ

for some λ of order 1. Then, with the above definitions

Md

MM
¼ 4β2λ2

81

a0
g
: ð8Þ

Again, since β and λ have values of a few, this translates to
Md=MM ≈ a0=g. I shall also compare the groups data with
this relation.

C. The sample

Putative groups with a small number of observed veloc-
ities, NV , are not suitable for dynamical analysis; e.g.,
because they are likely to be chance, projected groupings
and not bound, virialized groups (a caveat also pointed to in
Ref. [13]); and because, even if the group itself is real, the
resulting line-of-sight velocity dispersion may not be a good
representation of the true, three-dimensional dispersion. A
large number of group members (of which NV is some
measure) is also needed to justify the use of Eq. (2).
The catalog of 365 galaxy ensembles cataloged in

Ref. [13] as groups is large enough to allow quality cuts
that still leave a large sample to be analyzed. Somewhat
arbitrarily, I keep for analysis here only those groups with
NV ≥ 15, totaling 67 groups. (Seven groups of those
considered in Paper I have NV ≥ 15.) These groups are
all listed in Table I with the parameter values assigned to
them in Ref. [13] and the ones I calculated here.
I alsowant to exclude from the analysis galaxy clusters and

rich groups that contain large quantities of x-ray emitting hot
gas. The reason for this is twofold. First, if stars are not the
dominant contribution to the baryonic mass, the M=L ratios
are not good indicators of the acceleration discrepancies, and
the analysis must take into account the gas; but this is beyond
the scope of the present analysis. Second, we already know
from past analyses, for example in Ref. [26], that in such hot-
gas-rich groups, MOND does not fully account for the
discrepancies, and may require an additional baryonic con-
tribution that we have not yet detected. This added so called

“clusterbaryonicdarkmatter,”mayin factbepartandparcelof
the hot gas [27], since, to my knowledge, such remaining
MOND discrepancies are only seen in systems with sub-
stantial amounts of hot gas.
To bypass the need to check the individual groups

systematically for the quantities of gas present, I—again
somewhat arbitrarily—excluded from the final analysis the
ten groups with NV > 50.
For example, the group around NGC 4472 (M49), with

the largest NV is deep in the virgo cluster. The second
group, “NGC 3311,” is the Hydra I cluster (Abel 1060),
whose baryons are dominated by hot gas [28,29]. The
group “NGC 4696” is Centaurus. The group “NGC 3223”
is the Antlia cluster, which is known to be hot-gas
dominated [30]. The group “NGC 5044” is also known
to be gas rich, with gas dominating the baryonic mass; it is
one of the groups studied in MOND in Ref. [26]. The group
“NGC 4261” is also hot-gas dominated [31].
As seen in Table I, some of these rich groups show

reasonable MONDMM=LK values, but generally they have
values considerably larger than 1 M⊙=LK;⊙, which would
be at least partly explained by the contributions of gas to the
MOND baryonic mass.
In addition, I excluded one more group, “NGC 4216,”

which Ref. [13] explicitly disqualifies (with several others
that are not in my sample anyway) as having a very wrong
assigned distance. I discuss and exemplify this issue in
more detail in Sec. IVA.
All this leaves us with a sample of 56 groups (five groups

of those considered in Paper I would remain after the
second cut).
While the ten rich groups/clusters, and “NGC 4216,”

with their resulting MOND quantities are shown in Table I,
they are excluded from the plots in Sec. III.

III. RESULTS

Using the σ values given in Ref. [13], I calculate the
MOND masses of the groups, MM, from Eq. (2), and the
resulting K-band mass-to-light ratio using the group
K-luminosities from Ref. [13]. The distribution of these
MM=LK values is shown in Fig. 1, to be contrasted with the
distribution of Newtonian, dynamical values Md=LK (from
Ref. [13]), shown in Fig. 2. While the Newtonian values are
typically several tens solar units, and require the groups to be
heavily dark-matter dominated in Newtonian dynamics, the
MOND values are typically a factor of 40 smaller, and fall
around 1 solar unit, with a median value of 0.72 M⊙=LK;⊙
(compared with 37 M⊙=LK;⊙ for the Newtonian values).
The distribution of Md=MM is shown in Fig. 3, with its
median value of ðMd=MMÞmed ¼ 41.
Inasmuch as the baryonic masses of the groups is

dominated by stars, these MOND mass-to-light ratios
should agree with what is known and what is expected
of stellar M=LK ratios, for example with what is deduced
from population-synthesis models, or better yet, from the
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stellar M=LK values directly deduced from rotation-curve
analysis of individual galaxies.
Indeed, the distribution of the baryonic, MONDMM=LK

values deduced here for the groups, and shown in Fig. 1, is
very similar to those found for stellar values of discs and
bulges in Ref. [32] (their Fig. 3) from rotation-curve
analysis of many disc galaxies.3 The group distribution
is centered at nearly the same values, but is somewhat
wider, as expected from the sources of scatter that are
hardly present in rotation-curve analysis (such as interlop-
ers, anisotropies, etc.—see Sec. IVA). These MONDmass-
to-light ratios also agree with earlier analyses of rotation
curves (e.g., [34], their Fig. 2), and with model calculations
based on population synthesis (e.g., Ref. [35]).
It is worth reversing the procedure; namely, assume

M=LK ¼ ðM=LKÞ0 for some reasonable reference value.
Then calculate from Eq. (2) the MOND-predicted values,
σM, from LK , to be compared with the measured σ. I do this
with ðM=LKÞ0 ¼ 1 M⊙=LK;⊙, and show σM in Table I,
together with σM=σ. By the definitions,

σM=σ ≡ ½ðM=LKÞ0=ðMM=LKÞ�1=4 ð9Þ
Figure 4 shows the distribution of σM=σ, which has

the same content as Fig. 1, but allows a more direct

comparison with the measured line-of-sight dispersions
in consideration of the question marks that are known
to beset these values (sampling, anisotropies, departure
from virialization, inappropriate averaging of measured
velocities—see Sec. IVA).
The median of the σM=σ distribution, which is indicated

in various figures below, is clearly medðσM=σÞ ¼
½medðMM=LKÞ�−1=4 ¼ 1.085. It is important that it is
near 1, but its exact value is not so significant and follows
from my choice to calculate σM from LK using ðM=LKÞ0 ¼
1 M⊙=LK;⊙. From Eq. (9), the resulting value of

medðσM=σÞ scales as ðM=LKÞ1=40 .

FIG. 1. The distribution of MOND dynamical MM=LK ≡
ð81=4Ga0Þðσ4=LKÞ for our sample. The solid (blue) vertical
line marks the sample median value of 0.72 M⊙=LK;⊙. The dash-
dotted (magenta) line, near it, is the value given in Ref. [32] for
bulges (0.7), and the dashed (red) line is their value for discs
(0.5), both deduced from MOND fits to rotation curves for the
3.6 micron photometric band. (See text for the small correction in
comparing the two photometric bands involved.)

FIG. 3. The distribution of the Newtonian-to-MOND mass
ratios Md=MM, with the median value of 41 marked by the
vertical dash-dotted line. The inset is a closeup for small values.

FIG. 2. The distribution of Newtonian, dynamical Md=LK
ratios as derived in Ref. [13] for the groups in our sample.
The dash-dotted (red) vertical line marks the median value of
37 M⊙=LK;⊙.

3Reference [32] use the 3.6 micron band, not the K-band as
here. Reference [33] [their Eq. (6) and Table 2 suggest correcting
the K-band value down by about 10 percent to get the stellar value
in the 3.6 micron band. This correction is anyhow small
compared with the spread we find.
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Individual group are represented in the LK − σ plane in
Fig. 5 (with LK and σ from Ref. [13]). Also shown are the
MOND predictions of Eq. (2) for several values of the
mass-to-light ratios.

Five groups in the sample of Paper I pass our cuts here.
They are also in the present sample. They are “NGC 3607,”
“NGC 3379,” and “NGC 3627,” with parameters in Paper I
taken from Ref. [11], and “NGC 5746” and “NGC 5363”
with Paper-I parameters from Ref. [12]. Their positions in
the LK − σ plane are also shown in Fig. 5 with their
parameters from Paper I; they are connected to their
positions for the parameters from Ref. [13]. This compari-
son gives some notion of the uncertainties in the param-
eters, which will be discussed in more detail in Sec. IVA.
The dynamical range of group parameters in our sample

is relatively small—only an order of magnitude in lumi-
nosity. To better appreciate the acuteness and significance
of the result in Fig. 5, I show in Fig. 6 the same plot, but
now including the equivalent data for relevant dwarf-
spheroidal satellites of Andromeda.4 “Relevant” means

FIG. 6. LK=LK;⊙ for the groups, and αLV=LV;⊙ for dwarfs
(α ¼ 2=0.7 corrects for the band difference—see the reason
below), plotted vs σ. Groups: filled circles for measured values
from Ref. [13], open (red) squares for the five groups from
Paper I that pass our cuts, and (blue) asterisks are the corrected
positions for the four examples discussed in Sec. IVA (as in
Fig. 5). Dwarfs: open circles are for values compiled in
Refs. [20,21] with references given therein; filled (blue) squares
are for data from Ref. [36]; filled (red) triangles are for data from
Ref. [38]. The lines show the predictions of Eq. (2): L ¼
ðM=LÞ−1ð81=4Ga0Þσ4. The solid line is the prediction for
M=LK ¼ 0.7 M⊙=LK;⊙ for the groups, and for the more appro-
priate V-band M=LV ¼ 2 M⊙=LV;⊙ for the dwarfs (hence the
upshift of the dwarf LV values by the factor α). The dashed lines
are for 0.5 (upper) and 2 (lower) times theseM=L values, and the
dotted lines are for 0.25 (upper) and 4 (lower) times these values.
Error bars for the dwarfs are given in the literature, but not
shown here.

FIG. 5. LK=LK;⊙ against σ for values from Ref. [13] (filled
circles). The positions of the five groups from Paper I that pass
our cuts are shown as open (red) squares (with LK=LK;⊙ and σ
from Refs. [11] and [12]). They also appear in our sample, and
their positions in the two studies are connected with solid (red)
segments. Shown as (blue) asterisks are the distance-corrected
positions of the four groups discussed as examples in Sec. IVA;
they are connected to the uncorrected positions with (blue) dash-
dotted segments. The seven additional groups that I checked and
that do not seem to require distance correction (see Sec. IVA) are
surrounded by (blue) circles. The parallel lines across the plot
show the predictions of Eq. (2), LK ¼ ðM=LKÞ−1ð81=4Ga0Þσ4,
for the sample’s median value, M=LK ¼ 0.7 M⊙=LK;⊙ (solid),
for half and for twice this value (dashed, upper and lower,
respectively), and for a quarter and four times this value (dotted).

FIG. 4. The distribution of σM=σ (on a linear scale). The vertical
dash-dotted (red) line marks the median value of 1.085.

4From Fig. 6 one may get the impression that the slope within
the groups is shallower than the value of 4 dictated by MOND.
But this is largely an artifact due to our low- and high-luminosity
cutoffs.
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that they are not clearly dominated by an external-field
effect (although some is surely still present), and do not
show clear signs of rotation—either of which would render
the use of Eq. (2) invalid. I also took only cases with a large
number of observed velocities (when there are two
measurements I took the mean of the two), and required
that gas does not contribute much to the baryonic mass
(otherwise, comparison with stellar M=L ratios is not
meaningful). These include 25 dwarfs from the compila-
tions of Refs. [20,21]; two dwarfs with good data from
Ref. [36]: Cassiopeia III, and Lacerta I5; and two dwarfs
from Ref. [38]: Cetus and VV 124.
Dwarfs too suffer from systematics that cause artificial

scatter, some shared by groups (such as unaccounted-for
anisotropies, external-field effects, etc.), some specific to
the dwarfs (such as contribution to σ from binaries). But
I will not dwell on these here, as I am not testing MOND
in dwarfs—this has been done properly in the above
references, taking into account rotation, gas content, and
possible presence of an external-field effect. Here I only use
them as a touchstone for the application of Eq. (2).
In light of the discussion in Sec. II B, I also show the

results in different forms: Figure 7 shows the ratioMd=MM
of the Newtonian, dynamical mass to the MOND mass as a
function of a0=g. This mass ratio can be viewed as “the
mass discrepancy” in the system, and is also the ratio of the
observed acceleration, g, to the Newtonian, gravitational
acceleration, gN , produced by baryons. Figure 7 thus
plots the (very low acceleration end of the) MDAR. This
presentation has the advantage that, unlike the M − σ plot,
it shows the range of accelerations that are probed in our
study. We see that the groups satisfy Md=MM ≈ a0=g, with
some scatter, down to values of g=a0 ≈ 0.01, consistent
with the expectation from Eq. (8).
Note, however, that while our g is defined as in Eq. (5),

with β ¼ 2 and R̄ ¼ Rh, the values ofMd given in Ref. [13]
are not calculated from σ and Rh, with some constant λ, as
in our Eq. (7); they are calculated in some involved way
from the individual velocities and projected positions of the
members with measured velocities. So, Eq. (8) with these
Md values is not equivalent to the MM − σ relation. To see
to what extent Eq. (7) does approximate theMd values with
R̄ ¼ Rh, I plot in Fig. 8 the distribution of MdG=Rhσ

2. We
see that the distribution is quite narrow and peaked at ≈10
(the median is 10.6). Equation (8) is thus a good approxi-
mation with R̄ ¼ Rh and βλ2 ≈ 10, which makes the
coefficient in Eq. (8) very near 1. Equation (8) with
Md=MM ≈ a0=g is thus a reasonable approximation to
the MM − σ relation, which underlies the behavior shown
in Fig. 7.

As a more direct comparison with the MDAR in Eq. (6),
I show in Fig. 9 a presentation that is equivalent to the
M=LK distribution, i.e., that of g=ða0gNÞ1=2, where gN is
defined in Eq. (4) with the choice κ ¼ 9=4 [which makes
η ¼ 1, in Eq. (6), since β ¼ 2], and the baryonic mass
determined from LK, taking the median value of M=LK to
be 0.7 M⊙=LK;⊙ that we found for the MM=LK distribu-
tion. A median of 1 is thus enforced with a reasonable
values for κ. This figure shows that the distribution of the
ratio is narrow.
Figure 10 shows σM=σ vs Rh. We see that there is no

significant trend with Rh. If anything, the agreement with
the MOND prediction becomes even tighter at the larger

FIG. 7. The MDAR for the groups in the present sample. The
Newtonian-to-MOND mass ratio, which can be viewed as the
ratio, g=gN , of the measured acceleration to the Newtonian,
baryonic one—plotted vs a0=g. The equality line—which the
MDAR lies very near to for such low accelerations—is also
shown.

FIG. 8. The distribution of MdG=Rhσ
2 for Md and σ values

from Ref. [13].

5These two were already discussed in the context of MOND in
Refs. [21,36,37]. The third in Ref. [36], Per I, has very large
velocity errors.
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radii, up to Rh ≈ 700 Kpc. This is significant in light of the
remaining MOND discrepancy in cluster cores, which are
not larger in size than the high-Rh groups here. The cluster
conundrum is sometimes interpreted as some breakdown of
MOND at large scales. The lesson from the groups maybe
that it is not the size that matters, but some of the other
attributes that differentiate between medium-richness
groups and clusters. For example, they have very different
velocity dispersions (or depth of the potentials [39]). Or, as
I discussed in Ref. [27], the culprit might be the prevalent
hot, x-ray-emitting gas in clusters and rich groups—absent
in large quantities in medium groups—that makes the
difference. The idea is that with such gas comes also a
yet-undetected baryonic component, dubbed cluster, bar-
yonic, dark matter. This would account for the remaining

MOND discrepancy, and would also account for the
observed mass distribution in the “Bullet Cluster.”
Figure 11 shows σM=σ vs NV , where there is no apparent

correlation, in particular no apparent decrease in the scatter
with increasing NV .

IV. DISCUSSION

I found that intermediate-richness galaxy groups satisfy
the deep-MOND relation MMGa0 ¼ ð81=4Þσ4, with
MM=LK values that are characteristic of stars. The global
dynamics of these very-low-acceleration systems are thus
accounted for by MOND with no need for dark matter. This
contrastswith the very large quantities of darkmatter needed
in the framework of Newtonian dynamics—typically forty
times more dark matter than is observed in stars.
This result is accentuated by our reminder that the same

MOND relation is obeyed by dwarf spheroidal galaxies.
The groups and dwarfs are two very disparate types of
galactic objects, differing by about seven-and-a-half orders
of magnitude in baryonic mass, by about two orders in
internal velocities, and by three orders in size, and they all
lie squarely on the same M − σ relation predicted by
MOND.
The scatter we see in Fig. 5 is arguably due partly to

genuine variation in the baryonic M=LK ratios—due to
scatter in stellarM=L ratios, but also due to the presence of
a varying amount of gas (cold and hot), in the member
galaxies themselves, and in the intragroup medium, which
increases the baryonic values above the stellar values (the
mass in the MOND relation is the total baryonic mass). But
much scatter surely comes from known (and unknown)
systematics, which I discuss below, in Sec. IVA.
This scatter is, in any event, much smaller than the factor

of about 40 by which MOND corrects the Newtonian
masses.

FIG. 9. The distribution of g=ða0gNÞ1=2. The median value of
1—shown as the vertical (red) line—is built in by the choice of
normalization of gN with factors of order 1.

FIG. 10. σM=σ plotted against the harmonic radius. The median
value of σM=σ is shown.

FIG. 11. σM=σ (with its median indicated) plotted against the
number of members with measured velocities.
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A. Possible systematics

Here I discuss some of the possible systematics that enter
the analysis, and the ways they can affect the comparison of
the MOND predictions with the observationally deduced
quantities.
One important source of error discussed by Ref. [13] is the

way they assign distances to the groups. The distances used
by Ref. [13] for deducing their group sizes, luminosities, and
dynamical masses, and in turn by me to determine MM=LK ,
σM, etc., are not determined directly. They are all based on
the observed mean recession velocities with respect to the
local group, and assuming a strict Hubble flow, with
H0 ¼ 73 km s−1Mpc−1. As discussed in Ref. [13], this
can clearly lead, in some cases, to systematic errors in all
the above mentioned system parameters. To quote Ref. [13]:
“The disadvantage of our algorithm, where the distance of a
group is determined by the mean radial velocity of its
galaxies, is most pronounced in the regions with large
peculiar motions. Some groups we identified in the Virgo
cluster core are, most probably, false groups, rather than
physical subsystems in the Virgo cluster.”
This issue is particularly acute for (nearby) groupswith low

Hubble velocities—which Ref. [13] largely excluded from
their list. It is also acute when the group resides in a region
characterized by high peculiar velocities, such as in a cluster
environment, which can modify the recession velocity.
I already mentioned in Sec. II C the group “NGC 4216,”

which has a recession speed of 55 km s−1, but is “located in
the Virgo cluster core,” and fell prey to this error.
As mentioned in Sec. III, five of the groups in the present

sample appear in the samples used in Paper I, and pass out
cuts. They where assigned different parameter values in the
more recent catalogs of Refs. [11,12], used in Paper I. These
latter assigned distances based on more direct measures.
These differences are evident in Fig. 5, where they are
compared. We see that the assigned distances (hence LK)
have been updated but also the values of σ changed.
For example, “NGC 3379” has the highest MM=LK ¼
12.63 M⊙=LK;⊙ in our sample (and σM=σ ¼ 0.53), which
is based on Ref. [13] giving for it σ ¼ 233 km s−1 (with
NV ¼ 27).Themore recentRef. [11] gives itσ ¼ 193 km s−1
(withNV ¼ 36),which,with also an increase inLK, gives this
group MM=LK ¼ 5.2 M⊙=LK;⊙ (σM=σ ¼ 0.66).
Another of these five groups is the “NGC 3607” (Leo II)

group. It has a recession speed of VLG ¼ 960 km s−1, which
gives a redshift distance of 13 Mpc. Reference [11], used in
Paper I, assigned to it a distance of 25 Mpc, which gave in
Paper I, MM=LK ¼ 0.38 M⊙=LK;⊙ (σM=σ ¼ 1.28). (This
shows as the largest shift in Fig. 5.) Moreover, the distance
given in Ref. [40] for this group is ≈22.2 Mpc, which would
correct the MM=LK ¼ 2.2 M⊙=LK;⊙ (σM=σ ¼ 0.82) in
Table I to MM=LK ¼ 0.83 M⊙=LK;⊙ (σM=σ ¼ 1.05).
Since the adopted distances may pose such a problem,

I checked eleven of the groups to see to what extent
distances determined from nonredshift methods (Cepheids,

Tully-Fisher, surface-brightness fluctuations, etc.) differ
from those adopted in Ref. [13]. I checked seven outliers
and four groups whose MM=LK are near the median value
of 0.7 M⊙=LK;⊙. I found that for the latter four, nonredshift
distances are consistent with the ones adopted, so their
near-median MM=LK is unaltered. Of the seven outliers,
three do not seem to require a distance correction (“NGC
3801,” “NGC 0488,” and “NGC 891”).
Four of the outliers do require corrections if the nonred-

shift distances are correct. One is the abovementioned “NGC
3607.”Another, less severe case (not appearing in Paper I), is
“NGC 3031” (M81), with our second highestMM=LK value.
Based on the recession speed of VLG ¼ 193 km s−1, the
redshift-based distance is 2.64Mpc. But its Cepheid distance
is 3.7 Mpc, reducing MM=LK by a factor 0.51, from 6.3 in
Table I to 3.2 (and corrects to σM=σ ¼ 0.75).
Yet another is “NGC 4254” (M99), which has

MM=LK ¼ 0.18 M⊙=LK;⊙. Its recession speed in Ref. [13]
is 2296 km s−1, which gives a Hubble-flow distance of
31.45 Mpc. However, its directly measured distance
as given in NASA Extragalactic Database is D ¼
15.4� 1.7 Mpc. With this distance, we should correct to
MM=LK ¼ 0.75 (and σM=σ ¼ 1.07).
And yet another is “NGC 4527,” whose Hubble-flow

distance is D ¼ 22 Mpc, but it is in the Virgo cluster in
projection; so could have a large peculiar component.
Indeed, the Cepheid distance to NGC 4527 (the galaxy)
is 14� 1.6 Mpc [41]. This requires correcting the MOND
M=L value in Table I by a factor of 2.5, from the smallish
MM=LK ¼ 0.2 M⊙=LK;⊙ (σM=σ ¼ 1.5) to MM=LK ¼
0.5 M⊙=LK;⊙ (σM=σ ¼ 1.2).
All eleven examples are also shown in Fig. 5.
While, generally, the Hubble-flow distances are rather

reliable, we see that at least some of the scatter must be due
to this sometimes-inaccurate distance assignment.
Another source of uncertainty, as mentioned already, is

the possible presence in member galaxies or the intragroup
space, of additional baryons, such as cold, warm, or hot
gas. This may explain some of the higher-than stellar
MOND MM=LK values.
Departure from the velocity isotropy that is assumed

in all analyses, when we replace the three-dimensional
velocity dispersion by

ffiffiffi
3

p
σ, also leads to artificial scatter in

the observedMM − σ relation. Such anisotropies are surely
present, but it is difficult to quantify them without meas-
uring proper motions as well as radial velocities.
In the analyses of whole samples, such as here,

such unaccounted-for anisotropies are expected to lead
to increased scatter, not to systematic shifts. But one has to
be careful not to put too much weight on apparent
departures of this or that individual case, be it a group
or another “pressure -supported” system.
Another possible source of systematics is departure from

virialization. Artificially elevated values of σM=σ can also
be caused, e.g., by the system not yet having reached
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virialization. I show in Table I a measure of the dynamical
time in the group, τd ≡ Rh=σ. Its values are fractions of the
Hubble time, but not exceedingly smaller. It is not clear what
is the limit on τd necessary for virialization (and this may
anyway vary from system to system). We expect large
dynamical times, of the order of the Hubble time to indicate
that the system is still collapsing towards virial equilibrium,
and hence has a lower-than-virial value of σ resulting in
σM=σ > 1. We see in Fig. 12, some correlation of high σM=σ
values with high τd values. But it is not clear that this is not
an artifact of our definitions, which imply that σM=σ ∝
τdðL1=4

K =RhÞ should hold exactly. So, if, for example,
L1=4
K =Rh is not correlated with τd, any scatter in σ around

the correct value will create such a correlation artificially.

1. External-field effect?

In MOND, an additional source of deviation from
relation (2) is the possible presence of an external-field
effect (EFE) due to external accelerations to which the
groups are subject (see Refs. [1,20,21,42] for a few of many
treatments of this effect for pressure-supported systems).
The description of the effect is relatively simple only

when the (MOND) external acceleration, gex ≫ gin ≈ g, gin
is the (MOND) internal acceleration. In the opposite case
the effect is negligible, and it is rather complicated to
account for when gex ≈ gin, as might be the case for some of
our groups. Equation (2)—which assumes that the system
is isolated—underestimates the baryonic mass when an
EFE is present, i.e., when gex =≪ gin. It then leads to
artificially low MM=LK values, or high σM=σ values.6

For gex ≫ gin the effect works as follows: Suppose the σ
value given in Ref. [13] is σ ¼ σMe, where σMe is the correct

dispersion in all regards which would be exactly obtained
from a MOND prediction that includes the EFE, using LK
with a correct M=LK ¼ 1 M⊙=LK;⊙, while σMi is what I
calculate as σM assuming isolation. Then, using Eq. (6) it
can be shown that

σMi

σMe
¼ η1=2

�
gex
g

�
1=4

≈
�
gex
g

�
1=4

≈
g1=2ex

ðgNa0Þ1=4
; ð10Þ

where η ≈ 1 is defined in Eq. (6), and g is related to σ by
Eq. (5). Table I shows the values of g≡ 2σ2=Rh. For
many groups g is low enough—a few percents of a0, or even
less—that an EFE may be present due to surrounding
structures. This is because the amplitude of the varying
ambient acceleration field may be of that order. It can be
estimated, e.g., as the acceleration to typical peculiar veloc-
ities of ≈300 km s−1 during the Hubble time. For example,
Ref. [43] estimates for the local groups gex ≈ 2.2 × 10−2a0.
If all else was exact, with no measurement errors, and no

departure from any of our assumptions, except that of
isolation, then departures of σM=σ from unity would only be
due to the EFE, and be given, for gex ≫ g, by Eq. (10).
Then, if gex is not correlated with g, we would expect σM=σ
to be unity for g ≪ gex and broadly behave as g−1=4 at very
small g values, with scatter that comes from that in gex from
system to system. We can then look for such a correlation.
However, as in the case of the dynamical time, corre-

lations of σM=σ with g can also result artificially. From our
definitions in Sec. II B we have exactly

σM

σ
¼ η1=2

ða0gNÞ1=4
g1=2

: ð11Þ

In other words, in terms of the quantities from Ref. [13] that
we use, and our assumptions that go into the calculation of
σM and g (e.g., thatM=LK ¼ 1) we have, by the definitions,
σM=σ ∝ L1=4

K R−1=2
h g−1=2. So, for example, if there was no

EFE, and all measurements were correct except that the σ
values depart from their correct values, with no correlation
with gN , then Eq. (11) tells us to expect σM=σ ∝ g−1=2, with
scatter reflecting that in gN . This would produce an artificial
correlation between σM=σ and g. (Of course, if all quantities
are exact, MOND predicts that g is correlated with gN , so
that σM=σ ¼ 1 for all groups.)
Figure 13 shows σM=σ vs g for the groups. Also shown

are a line of slope −1=4 following Eq. (10), with gex ¼
3 × 10−2a0, for g ≤ gex, and a line with slope −1=2
crossing the first line at g ¼ gex.
We see clearly that indeed there is a correlation with the

unexpectedly high σM=σ values occurring for the lowest
values of g, and they decrease with increasing g. However,
this correlation follows more closely Eq. (11); so much of it
may well be an artifact. It is difficult to judge whether some
of the correlation is due to the presence of an EFE.

FIG. 12. σM=σ plotted against the dynamical time.

6MOND predicts an acceleration discrepancy ≈a0=ḡ, with ḡ
the larger of the internal and external accelerations. Assuming
isolation in effect uses ḡ ¼ gin instead of the larger gex.
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Because σ enters directly the definition of g, which may
introduce artificial correlation, it may be more informative
to look for a correlation between σM=σ and gN , as in the last
equality in Eq. (10), since gN is derived from only LK and
Rh, and does not use σ. This is shown in Fig. 14, with the
asymptotic (g ≪ gex) lines of slope −1=4 describing the last
near-equality in Eq. (10), with gex ¼ ð2; 3Þ × 10−2a0. No
clear correlation is seen.
It is possible to hide the presence of an EFE in this plot;

but unless the scatter in gex is very large it seems that most
of the scatter in σM=σ is not caused by an EFE, but by other
causes, such as discussed above. In particular, we see that
the largest values of σM=σ do not occur for the lowest gN
groups.

There is a clear potential in the group dynamics to detect
the EFE, but in the present analysis, I have not been able to
establish its presence, possibly because it is masked by other,
more dominant sources of scatter. It is worthwhile inves-
tigating this issue further because the EFE is peculiar to
MOND, and should not appear in the dark-matter paradigm
and could be a discriminating phenomenon. A more
thorough analysis may require going beyond statistical
arguments and considering individual groups in the context
of their environments.
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