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Black holes (BHs) play a central role in physics. However, gathering observational evidence for their
existence is a notoriously difficult task. Current strategies to quantify the evidence for BHs all boil down
to looking for signs of highly compact, horizonless bodies. Here, we study particle creation by objects
which collapse to form ultracompact configurations, with the surface at an areal radius R ¼ Rf satisfying
1 − ð2M=RfÞ ¼ ϵ2 ≪ 1 with M the object mass. We assume that gravitational collapse proceeds in a

“standard” manner until R ¼ Rf þ 2Mϵ2β, where β > 0, and then slows down to form a static object of
radius Rf . In the standard collapsing phase, Hawking-like thermal radiation is emitted, which is as strong as

the Hawking radiation of a BH with the same mass but lasts only for ∼40ðM=M⊙Þ½44þ lnð10−19=ϵÞ� μs.
Thereafter, in a very large class of models, there exist two bursts of radiation separated by a very long
dormant stage. The first burst occurs at the end of the transient Hawking radiation and is followed by a
quiescent stage which lasts for ∼6 × 106ðϵ=10−19Þ−1ðM=M⊙Þ yr. Afterwards, the second burst is triggered,
after which there is no more particle production and the star is forever dark. In a model with β ¼ 1, both the
first and second bursts outpower the transient Hawking radiation by a factor ∼1038ðϵ=10−19Þ−2.
DOI: 10.1103/PhysRevD.99.044039

I. INTRODUCTION AND SUMMARY

It is generally accepted that black holes (BHs) can be and
have been found in various astrophysical systems, such as
x-ray binaries, galactic nuclei, and binary systems sourcing
gravitational waves. These systems all contain dark, com-
pact, and massive objects whose properties are all consistent
with the BH paradigm. However, BHs are defined by the
existence of an event horizon, which is the boundary of
the causal past of future null infinity. By its own definition,
finding observational proof for event horizons is impossible
[1–4]. Thus, sufficiently compact bodies can mimic BHs at
a classical level. Given the crucial role of horizons in a
number of fundamental issues, quantifying the evidence for
BHs is as important as quantifying, say, the level to which
the equivalence principle is satisfied [1–3,5–9].
A natural strategy to test the BH paradigm is to look for

smoking-gun imprints of horizonless bodies. The number of
proposals for ultracompact horizonless objects is large and
growing (e.g. Refs. [10–12] and see Ref. [2] for a review).

The exterior of such (static) objects is described by the same
Schwarzschild geometry as that of a nonspinning BH. Thus,
as we stressed already, it is challenging to find evidence of a
surface using classical electromagnetic or gravitational
waves [1–3,5–9,13–17].
Classical physics predictsmeasurable differences between

ultracompact horizonless stars andBHs, but thesemay either
be inaccessible to observers far away or simply take too long
to affect our detectors. However, there is a semiclassical
effect which is, seemingly, particular to BH geometries:
Hawking radiation. In fact, when quantum effects are
included at a semiclassical level, particles are created and
emitted by BHs, and the spectrum of the radiation is thermal,
such as that of a black body [18–20]. In Refs. [21–25],
quantum particle creation by a collapsing object and its
semiclassical effect on the formation of an apparent horizon
have been discussed, based on quantum field theory in
curved spacetime, in a very general context. Quantum
particle creation in horizonless gravitational collapse has
also been discussed in the context of naked singularity
formation [26–33].
The organization and summary of this work is the

following. In Sec. II, we review quantum particle creation
in spherically symmetric spacetimes. In Sec. III, we expand
on our toy model of a collapsing spacetime by pasting
Minkowski and Schwarzschild spacetimes with a timelike
shell. In Sec. IV, we review how the present formalism can
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be used to recover a constant particle radiation by BHs,
i.e., the Hawking radiation, with an emphasis on transient
thermal radiation in the absence of horizon formation. In
Sec. V, we introduce a collapse model with a null shell to a
horizonless compact object, yielding delta-functional diver-
gent emissions both at the end of the transient Hawking
radiation and at the end of the long dormant stage. In Sec. VI,
we construct a collapse model with a timelike shell to a
horizonless compact object, show the couple of finite bursts
of radiation as a common feature in a broad class of models,
and present the temporal change of radiation for specific
models. Section VII is devoted to discussion.We use units in
which G ¼ c ¼ ℏ ¼ 1.

II. PARTICLE CREATION IN SPHERICALLY
SYMMETRIC SPACETIMES

Consider a spherically symmetric asymptotically flat
spacetime. Let u and v be radial null coordinates, which can
be written as u ¼ t − r and v ¼ tþ r in the asymptotic
region, where ðt; r; θ;ϕÞ are the usual quasi-Minkowskian
spherical coordinates there. Consider a pair of ingoing and
outgoing null rays, v ¼ vin and u ¼ uout, respectively,
which are connected at the regular center r ¼ 0 with each
other. The null-ray pairs are depicted in the conformal
diagrams for the spacetimes of collapse to a static star and a
black hole in Figs. 1(a) and 1(b), respectively. The mapping
function G is defined as vin ¼ GðuoutÞ. Note that u can be
identified with the observer’s time at infinity. Following
Refs. [21,23], we define

κðuoutÞ ≔ −
d

duout
ln

dvin
duout

¼ −ðlnG0Þ0ðuoutÞ; ð2:1Þ

which is physically interpreted as the growth rate of redshift
of the outgoing photon with respect to the ingoing photon
as a function of the retarded time uout.
To calculate quantum radiation, for simplicity, we adopt

the same set of assumptions as in Refs. [18,19,26]. That is,
we assume Gaussian (non-self-interacting) massless scalar
fields, adopt the geometrical optics approximation, and
take a quantum state containing no particle associated
with a mode function Fωlm which takes the form Fωlm ∼
ð4πωÞ−1=2r−1e−iωvYlmðθ;ϕÞ at past null infinity as an
initial quantum state. Then, the function κðuÞ determines
radiation power regularized at future null infinity, through
[20,26,32]

Plm ¼ 1

48π
ðκ2 þ 2δκ0Þ; ð2:2Þ

with δ ¼ 1 and 0 for minimally and conformally coupled
massless scalars, respectively, for each ðl; mÞ mode. Note
that for higher l’s, the geometrical optics approximation is
not valid and the power is strongly suppressed due to
backscattering. Thus, the total power is dominated by
sufficiently low l’s. We can thus omit the ðlmÞ subscript
in Eq. (2.2) and regard its right-hand side as an order-of-
magnitude estimate of the total power of radiation. The
second term in parentheses on the right-hand side of
Eq. (2.2) does not contribute to the integrated radiated
energy because it is a total derivative; hence, we will mainly
concentrate on the first term, i.e., that for the conformally
coupled scalar field.
If the function κðuÞ satisfies the adiabatic condition

jκ0ðu�Þj ≪ κ2ðu�Þ; ð2:3Þ
then the spectrum of outgoing particles at u ¼ u� can be
regarded as Planckian with temperature T [21,23],

kTðu�Þ ¼
κðu�Þ
2π

; ð2:4Þ

where κðu�Þ > 0 is assumed.

III. SPHERICAL SHELL IN VACUUM

Our model is a spherically symmetric vacuum spacetime
with a shell. The areal radius of a timelike shell is given by
r ¼ RðτÞ, where τ is the proper time for the observer at rest
on the shell. The induced metric on the timelike world tube
Σ is given by

ds2Σ ¼ −dτ2 þ R2ðτÞdΩ2; ð3:1Þ
where dΩ2 ¼ dθ2 þ sin2 θdϕ2 is themetric on a unit sphere.
The interior is described by the Minkowski metric

ds2 ¼ −dT2 þ dr2 þ r2dΩ2: ð3:2Þ
The null coordinates in the interior are U ¼ T − r and
V ¼ T þ r. The exterior is given by the Schwarzschild
metric

(a) (b)

FIG. 1. The conformal diagrams for the spacetimes of collapse
to (a) a static star and (b) a black hole. A pair of outgoing and
ingoing null rays with u ¼ uout and v ¼ vin, respectively, is also
depicted in each diagram.
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ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2 þ r2dΩ2:

ð3:3Þ

The standard null coordinates are given by u ¼ t − r� and
v ¼ tþ r�, where r� ≔ rþ 2M ln ½ðr=2MÞ − 1�. The junc-
tion condition for the first fundamental form gives _t and _T,
where the dot denotes the derivative with respect to τ. This
gives _U and _V and _u and _v. The explicit expressions for them
are relegated to Appendix A.
Since V ¼ V in and U ¼ Uout are related through V in ¼

Uout at the center r ¼ 0, we find

G0ðuÞ ¼ dvin
duout

¼ dvin
dτin

dτin
dV in

dV in

dUout

dUout

dτout

dτout
duout

¼ Aout

Bin
;

ð3:4Þ

where

A ≔
_U
_u

and B ≔
_V
_v
; ð3:5Þ

Aout ¼ AðτoutðuÞÞ, and so on, and τoutðuÞ and τinðuÞ are the
values of τ when the outgoing and ingoing null rays cross
the shell, respectively, as shown in Figs. 1(a) and 1(b).
Further, we can obtain the expression for κðuÞ as follows:

κðuÞ ¼ Cout −
Aout

Bin
Din; ð3:6Þ

where

C ≔ −
1

_u
d lnA
dτ

and D ≔ −
1

_v
d lnB
dτ

: ð3:7Þ

The first and second terms on the right-hand side of
Eq. (3.6) can be regarded as the contributions from the
shell at τ ¼ τout and τ ¼ τin, respectively. We can obtain the
explicit expressions for A, B, C, andD in terms of R, _R, and
R̈, which are relegated to Appendix A.
For reference, if the shell is marginally bound and made

of dust, then the junction condition for the second funda-
mental form gives

_R2 ¼ −1þ
�
1þ M

2R

�
2

and R̈ ¼ −
M
2R2

�
1þ M

2R

�
:

ð3:8Þ

However, we will not assume any equation of state for the
surface energy density and pressure on the shell. Instead,
we specify the dynamics of the shell. The evolution of the
surface energy density and pressure will then be determined
by the junction condition for the second fundamental form.
This freedom has a price: our simplistic model may contain

unphysical matter content with an exotic equation of state.
We should stress that our purpose here is not to produce
alternatives to BHs; rather, we are interested in under-
standing possible consequences of failing to produce
horizons. This program, if successful, then allows us to
quantify in a better way the evidence for BHs and to
strengthen the BH paradigm.

IV. PARTICLE CREATION IN
STANDARD-COLLAPSE PHASE

Conventionally, to derive the Hawking radiation, the
expandability of RðτÞ with respect to τ at the entry into the
horizon τ ¼ τH has often been assumed [20]. However,
such an assumption seems to prescribe the behavior of
the shell at an event which is not in the causal past of the
observer. Here we show that the expandability at τ ¼ τH is
unnecessary and, hence, that the (temporarily) thermal
radiation does not need any horizon.
Instead, observing the dust-shell collapse described by

Eq. (3.8), we assume that the standard collapse is divided
into the following two phases:

(i) Phase 0, an early-collapse phase: τ < τ0 or R > 4M.
We assume

1 −
2M
R

>
1

2
; j _Rj≲ 1; and jR̈j ≲ 1

2M
:

ð4:1Þ

We can additionally assume that the shell is initially
static at some radius Ri.

(ii) Phase 1, a late-collapse phase: τ > τ0 or 2M <
R < 4M. We assume

1 −
2M
R

<
1

2
; 1 −

2M
R

< _R2; _R ¼ Oð1Þ;
and R̈ ¼ Oðð2MÞ−1Þ: ð4:2Þ

The functions A, B, C, and D take expressions Aj, Bj, Cj,
and Dj for phase j. The explicit expressions are relegated
to Appendix B. The transition between the above two
regimes occurs at τ ¼ τ0 when R ¼ 4M. This scenario
of standard collapse is then consistent with the dust-shell
collapse.
Denoting the outgoing null ray in the Schwarzschild

region which leaves the shell at τ ¼ τ0 with u ¼ u0, we
can obtain the expression forG0ðuÞ and κðuÞ separately for
u < u0 and u > u0. To do this, it is a key to determine
when the outgoing null ray crosses the shell outwardly and
when the ingoing null ray, which is a counterpart of the
outgoing null ray in the pair, crosses the shell inwardly. If
the outgoing null ray crosses the shell outwardly in phase i
at τ ¼ τout and the ingoing null ray crosses the shell
inwardly in phase j at τ ¼ τin, we classify the null-ray pair
as ði; jÞ. For the null-ray pair of class ði; jÞ, G0 and κ are
given by
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G0ðuÞ ¼ Ai;outðuÞ
Bj;inðuÞ

and

κðuÞ ¼ Ci;outðuÞ −
Ai;outðuÞ
Bj;inðuÞ

Dj;inðuÞ; ð4:3Þ

respectively, where we use the notation Ai;outðuÞ ¼
AiðτoutðuÞÞ and so on. Then, we can find that there are
two radiation stages.

(i) u < u0: Since τin < τout < τ0, the null-ray pairs
are classified as (0,0). Using Eqs. (4.3) and (B1),
we have

κðuÞ ≃ −
�
M
R

�
R̈ −

j _Rj
R

��
out

−
�
M
R

�
R̈þ j _Rj

R

��
in
:

ð4:4Þ

Therefore, we can conclude that jκj≲ 1=ð4MÞ.
Thus, the radiation for u < u0, which may be called
pre-Hawking radiation, is weaker than the standard
Hawking radiation.

(ii) u > u0: For τin < τ0, the null-ray pairs are classified
as (1,0), while, for τin > τ0, the null-ray pairs are
classified as (1,1). For both cases, from Eqs. (4.3),
(B1), and (B8) we have the same expression for κðuÞ:

κðuÞ ≃ Cout ≃
1

4M
: ð4:5Þ

Here, we discuss the radiation for u > u0. Using Eq. (2.2),
we obtain

P ≃ PH ¼ 1

48π

1

16M2
: ð4:6Þ

This is the reproduction of the Hawking radiation. Since
the first term is dominant in the expression for κðuÞ in
Eq. (4.3), the Hawking radiation (whether transient or
eternal) originates from the behavior of the shell in the
late-collapse phase at τ ¼ τout.
Equations (2.1) and (2.4) give temporarily thermal

radiation with temperature

kTðu�Þ ≃ kTH ¼ 1

8πM
; ð4:7Þ

where we can easily see that the adiabatic condition (2.3)
is also satisfied. Since no horizon has formed yet, this
means that transient Hawking radiation does not need
any horizon. If the late-collapse phase continues up until
R ≃ 2Mð1þ ϵ2Þ, then the transient Hawking radiation
arises and lasts for Δu ≃ 4M ln ϵ−2, which can be seen
from Eq. (B7). Therefore, the radiated energy through this
transient Hawking radiation is given by

E ≃
1

48π

ln ϵ−2

4M
: ð4:8Þ

In the limit ϵ → 0, which may correspond to the formation
of an event horizon depicted in Fig. 1(b), the Hawking
radiation continues eternally and the energy radiated goes
to infinity.

V. COLLAPSE TO AN ULTRACOMPACT
OBJECT WITH A NULL SHELL

We now review and reanalyze an exact collapse model
with a null shell, which can result in a static compact star
with radius slightly larger than 2M. The schematic diagram
of this model—introduced in Ref. [34]—is shown in Fig. 2
and consists of three phases. Note that these phases are
different from those in the timelike-shell model.

(i) u < u0: Initially, the shell is static with R ¼ Ri.
(ii) u0 < u < u1: At u ¼ u0, the shell suddenly turns

ingoing null with V ¼ 0. Since the shell is also given
by v ¼ const, we find

u − u0 ¼ U − 4M ln

�
−U
4M

− 1

�
þ 2Ri

þ 4M ln

�
Ri

2M
− 1

�
; ð5:1Þ

FIG. 2. The collapse model with an ingoing null shell. The
static shell at R ¼ Ri changes to an ingoing null shell at u ¼ u0
and again becomes static with R ¼ Rf at u ¼ u1. The ingoing
null shell is extended to the Minkowski region with an ingoing
null ray, which is denoted by a blue dashed line, and reflected to
an outgoing null ray that passes the shell outwardly to the
Schwarzschild region, which is denoted with a red line labeled
u ¼ ũ1. This model was introduced in Ref. [34].
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where U ¼ −2Rout is a monotonically increasing
function of u from −2Ri to −2Rf.

(iii) u > u1: When the shell reaches the radius Rf ≔
2M=ð1 − ϵ2Þ at u ¼ u1, it stops and becomes static
again, where u1 is determined by

u1 − u0 ¼ −2
�

2M
1 − ϵ2

þ 2M ln
ϵ2

1 − ϵ2

�

þ 2

�
Ri þ 2M ln

�
Ri

2M
− 1

��
: ð5:2Þ

We treat ϵ as a constant free parameter satisfying
0 < ϵ < 1.

We also define ũ1 such that the ingoing null shell V ¼ 0 is
extended with an ingoing null ray to the center r ¼ 0 in the
Minkowski region, being reflected to the outgoing null ray
and going through the shell to an outgoing null ray u ¼ ũ1
in the Schwarzschild region. We can find

ũ1 ¼ u1 þ
4M

ϵð1 − ϵ2Þ : ð5:3Þ

The functions G0ðuÞ and κðuÞ are calculated as follows:
(i) u < u0: All null-ray pairs are classified as (0,0), for

which we have G0ðuÞ ¼ 1 and κðuÞ ¼ 0.
(ii) u0 < u < u1: All null-ray pairs are classified as

(1,0), for which

G0ðuÞ ¼
�
1 −

2M
Ri

�
−1=2

�
1þ 4M

U

�
;

κðuÞ ¼ −
G00

G0 ¼
4M
U2

; ð5:4Þ

where UðuÞ is implicitly given by Eq. (5.1).
(iii) u1 < u < ũ1: All null-ray pairs are classified as

(2,0), for which

G0ðuÞ ¼ ϵ

�
1 −

2M
Ri

�
−1=2

; κðuÞ ¼ 0: ð5:5Þ

(iv) u > ũ1: All null-ray pairs are classified as (2,2), for
which we have G0ðuÞ ¼ 1 and κðuÞ ¼ 0.

Therefore, particles are emitted for u0 < u < u1, but not for
u < u0, u1 < u < ũ1, and ũ1 < u. For ϵ ≪ 1, the radiation
for u0 < u < u1 can be regarded as temporarily thermal with
temperature kT ¼ κðuÞ=ð2πÞ ¼ M=ð2πR2

outÞ. Therefore,
kT ≃ 1=ð8πMÞ for 1 − 2M=Rout ≪ 1. This is transient
Hawking radiation.
In this model, we have bursts of radiation at u ¼ u0, u1,

and ũ1 because G0 changes discontinuously then and κ is
given by Eq. (2.1). The discontinuities in ð− lnG0Þ, which
we denote with Δð− lnG0Þ, are given as follows:

Δð− lnG0Þu¼u0 ¼ ln

�
1 −

2M
Ri

�
−1=2

; ð5:6Þ

Δð− lnG0Þu¼u1 ¼ − ln ϵ−1; ð5:7Þ

Δð− lnG0Þu¼ũ1 ¼ − ln ϵ−1 þ ln

�
1 −

2M
Ri

�
1=2

: ð5:8Þ

More precisely, the bursts are described by the square of
a delta function at u ¼ u0; u1, and ũ1, which suggests
infinite radiated energy in an infinitesimal span of time. We
schematically plot the evolution of the power of radiation in
Fig. 3. The discontinuity in ð− lnG0Þ is positive andOð1Þ at
u ¼ u0, while it is negative and Oðln ϵ−1Þ at both u ¼ u1
and u ¼ ũ1 for ϵ ≪ 1. [This divergent behavior was over-
looked in Ref. [34]. For example, in Fig. 2 of Ref. [34],
there should be threevertical lines indicating delta-functional
divergences at u=ð2MÞ ¼ u0=ð2MÞ ¼ 0, u1=ð2MÞ ≃ 19.49,
and ũ1=ð2MÞ ≃ 29.91 for the choice u0 ¼ 0, Ri ¼ 12M,
and ϵ ¼ 0.2.] The delta-functional burst at u ¼ u0 can be
removed if the onset of the collapse process is adiabatic. On
the other hand, the bursts at u ¼ u1 and ũ1 are of more
physical interest.

VI. COLLAPSE TO AN ULTRACOMPACT
OBJECT WITH A TIMELIKE SHELL

A. Phases of the shell dynamics

The features discussed in the null-shell model (in
particular the bursts of radiation both at the end of transient
Hawking radiation and at the end of the long dormant
stage) are of physical interest. However, the delta-
functional divergence is clearly unphysical and arises from
the instantaneous transitions from the static shell to null at
u ¼ u0 and the null shell to timelike at u ¼ u1. We also see
that the power emitted is finite, as long as R̈ and _R are finite
[cf. Eq. (3.6) and Appendix A].
To have a smooth process and extract meaningful

physics, we propose a collapse model of a timelike shell

FIG. 3. The schematic figure of the evolution of the power in
the collapse to a highly compact object in the null-shell model
introduced in Ref. [34]. The three vertical lines denote delta-
functional divergences at u ¼ u0, u1, and ũ1, while there appears
transient Hawking radiation for u0 < u < u1.
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with finite R̈ and _R. This model consists of five phases: an
early-collapse phase, late-collapse phase, early-braking
phase, late-braking phase, and final static phase.

(i) Phase 0, an early-collapse phase: τ < τ0 or R > 4M.
This phase is identical to that in standard collapse
discussed in Sec. IV; in particular we assume that
1 − 2M=R > 1=2, j _Rj≲ 1, and jR̈j≲ 1=ð2MÞ.

(ii) Phase 1, a late-collapse phase: τ0 < τ < τ1 or
Rb < R < 4M. This phase is also identical to that
in standard collapse discussed in Sec. IV, i.e.,
1 − 2M=R < 1=2, 1 − 2M=R < _R2, _R ¼ Oð1Þ, and
R̈ ¼ Oðð2MÞ−1Þ.

(iii) Phase 2, an early-braking phase: τ1 < τ < τ2 or
R2 < R < Rb. We assume that at τ ¼ τ1 or
R ¼ Rb, the shell begins to brake. For τ1 < τ < τ2,
we assume the following inequality:

1 −
2M
R

< _R2: ð6:1Þ

(iv) Phase 3, a late-braking phase: τ2 < τ < τ3 or
Rf < R < R2. We assume that at τ ¼ τ2, when
R ¼ R2, the following equality holds:

1 −
2M
R

¼ _R2: ð6:2Þ

For τ2 < τ < τ3, the following inequality holds:

1 −
2M
R

> _R2: ð6:3Þ

The radius of the shell approaches the final value Rf.
(v) Phase 4, a final static phase: τ > τ3 or R ¼ Rf.

We assume that the shell smoothly stops at τ ¼ τ3,
when R ¼ Rf ¼ 2M=ð1 − ϵ2Þ. Later on, the shell is
completely static.

For later convenience, as is seen in Fig. 4, we label as
u ¼ u0, u1, u2, and u3 those outgoing null rays in the
Schwarzschild region which leave the shell outwardly at
τ ¼ τ0, τ1, τ2, and τ3, respectively. We use u ¼ ũ1, ũ2, ũ3
for those outgoing null rays which are traced back through
the center to ingoing null rays and reach the shell at τ ¼ τ1,
τ2, τ3, respectively. We denote that the proper times when
the outgoing null rays u ¼ ũ1, ũ2, ũ3 cross the shell
outwardly as τ ¼ τ̃1, τ̃2, τ̃3, respectively.

B. Post-Hawking burst

We find that the emission of bursts of radiation both at
the end of the transient Hawking radiation and at the end of
a long dormant stage is a general feature of quantum
particle creation in setups leading to a compact horizonless
object. Here, we briefly describe this phenomenon.
For u1 < u < u3, the observer receives the outgoing null

ray which left the shell outwardly in the braking phase, and
which can be traced back to the ingoing null ray which

crosses the shell inwardly in the standard-collapse phase.
From Appendix B, κðuÞ is estimated as

κðuÞ ¼ C2;out þOðϵð2MÞ−1Þ

≃ −
�
R̈

2 _R2

�
1 −

2M
R

��
1 −

j _Rjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p ��
out

þ 1

4M
;

ð6:4Þ

κðuÞ ¼ C3;out þOðϵð2MÞ−1Þ≃−R̈out þ

2
64 j _Rj
4M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

R

q
3
75
out

;

ð6:5Þ
for u1 < u < u2 and u2 < u < u3, respectively. Note that
the factor ð1 − 2M

R Þ= _R2 is generally an increasing function

FIG. 4. The collapse model with a timelike shell. The shell
enters R ¼ 4M at τ ¼ τ0, begins to brake at τ ¼ τ1, and stops at
τ ¼ τ3. Between τ1 and τ3, there is a moment τ2, when the
equality 1 − 2M=R ¼ _R2 is satisfied. The outgoing null rays
which pass the shell outwardly to the Schwarzschild region at
τ ¼ τ0, τ1, τ2, and τ3 are denoted by red lines labeled u ¼ u0, u1,
u2, and u3, respectively. The ingoing null rays denoted by blue
dashed lines leave the shell at τ ¼ τ1, τ2, and τ3, and are reflected
to outgoing null rays passing the shell outwardly to the Schwarzs-
child region denoted by red lines labeled u ¼ ũ1, ũ2, and ũ3,
respectively.
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for u1 < u < u3, which is much smaller than unity at
u ¼ u1, unity at u ¼ u2, and diverging at u ¼ u3. In the
above expressions, the second term can be regarded as the
transient Hawking radiation, which keeps constant for u1 <
u < u2 and decays for u2 < u < u3. This implies that u2
(or τ2) plays a clear physical role: it triggers the decay of
the transient Hawking radiation. On the other hand, the first
term is negative and dominates the second term if R̈≳
1=ð2MÞ for u2 ≲ u < u3. The emission due to the first term
completely ends at u ¼ u3. This gives a burst of radiation at
the end of the transient Hawking radiation around u ¼ u2,
which we call a post-Hawking burst. This particle creation
occurs due to the braking of the shell at τ ¼ τout. The details
of the burst depend on the specific behavior of the shell in
the braking phase.

C. Late-time burst from a static star

Next, we consider the interval ũ1 < u < ũ3, when the
ingoing null ray crosses the shell inwardly in the braking
phase and the outgoing null ray crosses the shell outwardly
in the final static phase. In this case, from Appendix B, κ is
negative and estimated as

κðuÞ ¼ −ϵ
D2;in

B2;in
≃ −ϵ

"
R̈

j _Rj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
#
in

− ϵ

"
1

2j _Rjð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
− j _RjÞ

#
in

1

4M
; ð6:6Þ

κðuÞ ¼ −ϵ
D3;in

B3;in
≃ −ϵ

"
R̈ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
#
in

− ϵ

� j _Rj
1 − 2M

R

�
in

1

4M
;

ð6:7Þ

for ũ1 < u < ũ2 and ũ2 < u < ũ3, respectively. Therefore,
if R̈≳ 1=ð2MÞ at τ ¼ τ2 in the braking phase, the first term
in the above expressions dominates κðuÞ at u ¼ ũ2, and,
hence, particle creation occurs due to the braking at τ ¼ τin.
This may be regarded as the ingoing part of the post-
Hawking burst propagating through the center and becom-
ing an outgoing flux. Even if R̈ is totally negligible in the
braking phase, the second term in the above expressions
describe a burst of radiation with a peak κ ≃ −1=ð4MÞ at
u ¼ ũ2. This may be regarded as the ingoing part of the
transient Hawking radiation propagating through the center
and becoming an outgoing flux.
Whether the deceleration is effective in particle creation

or not, the observation of the burst is delayed from the
direct observation of the deceleration at u ¼ u2 by ũ2−
u2 ≃ 4M=ϵ.

D. Time dependence of particle creation

We will discuss the whole temporal change of radiation
for specific models below.

1. Model A: Exponentially slowed-down model

First, we assume that R − Rf ∝ e−στ for τ1 < τ < τ03
except for the short interval τ03 < τ < τ3, when R smoothly
settles down to the final fixed radius Rf at τ ¼ τ3, by
introducing the deceleration parameter σ such that R̈ ¼
σj _Rj ¼ σ2ðR − RfÞ with

σ ¼ j _Rbj
Rb − Rf

; ð6:8Þ

where j _Rbj ¼ Oð1Þ. We parametrize Rb through Rb − Rf ¼
2Mϵ2β. For β ¼ 1=2, we have

1 −
2M
R

≃
�
ϵe−σðτ−τ1Þ ðτ1 < τ < τ2Þ

ϵ2 ðτ2 < τ < τ3Þ
; ð6:9Þ

while for β ≥ 1, we have

1 −
2M
R

≃ ϵ2 ð6:10Þ

for τ1 < τ < τ3. We assume that τ3 − τ2 ≃ σ−1 for simplic-
ity. See Appendix C for the estimate of τ2.
Assuming β ≥ 1=2 for simplicity, for the post-Hawking

burst, κðuÞ peaks at u ¼ u2 with

κ ≃ −ϵσ ≃ −
1

2Mϵ2β−1
: ð6:11Þ

The peak power and energy radiated in the post-Hawking
burst are roughly estimated to

P ≃ ϵ−2ð2β−1ÞPH and E ≃ ϵσ ∼
1

2Mϵ2β−1
: ð6:12Þ

So, if β > 1=2, the power and the energy radiated in
the post-Hawking burst dominate those of the transient
Hawking radiation.
It is interesting to look into the late-time burst. We can

find κðuÞ is nearly constant with

κðuÞ ≃ −ϵσ ≃ −
1

2Mϵ2β−1
ð6:13Þ

for ũ1 < ũ < ũ2 and decays to zero for ũ2 < u < ũ3. The
peak power is as strong as theHawking radiation for β ¼ 1=2
and is stronger for β > 1=2. For ũ1 < u < ũ2, we can see

jκ0j ∼ ϵσ

σ−1ϵ−1ðln ϵ−1Þ ∼
κ2

ln ϵ−1
≪ κ2; ð6:14Þ

where we have used Eq. (C8). Therefore, the late-time burst
can be regarded as adiabatic. However, this cannot be
interpreted as a Planckian distribution with negative temper-
ature: the stationary phase approximation or saddle point
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approximation to derive the Planck distribution [21,23] is
simply not applicable.1 The radiated energy during the burst
is calculated to

E ≃
1

48π
σϵ ln ϵ−1 ≃

1

48π

ln ϵ−1

2Mϵ2β−1
: ð6:15Þ

For β ¼ 1=2, this is approximately equal to energy radiated
through the transient Hawking radiation, while for β > 1=2,
this dominates the latter. The temporal dependences of particle
emission are summarized for β ¼ 1=2 and β ¼ 1 in Fig. 5.

2. Model B: Constant-deceleration model

Next we consider a technically simpler model, where the
deceleration a of the shell is constant for τ1 < τ < τ3 with

a ¼
_R2
b

2ðRb − RfÞ
; ð6:16Þ

where j _Rbj ¼ Oð1Þ. We can naturally assume a ≫ 1=ð4MÞ.
Therefore, ũ3 − ũ1 ∼ ϵ−1a−1 and ũ3 − ũ2 ∼ a−1 as derived in
Appendix C. We parametrize Rb − Rf ¼ 2Mϵ2β (β > 0) as
in the previous model.

For the post-Hawking burst, κ decreases fromOðð2MÞ−1Þ
to −1=ð4MÞϵ−2β for u1 < u < u2 and keeps constant with
κ ≃ −1=ð4MÞϵ−2β for u2 < u < u3. For the late-time burst, κ
decreases from −1=ð4MÞϵ−ð2β−1Þ to −1=ð4MÞϵ−2β for ũ1 <
u < ũ2 and keeps constant with κ ≃ −1=ð4MÞϵ−2β for
ũ2 < u < ũ3. The power and energy radiated during the
post-Hawking burst for u2 < u < u3 and the late-time burst
for ũ2 < u < ũ3 are approximately the same in order of
magnitude as

P ≃ ϵ−4βPH and E ≃
1

48π

1

8M
ϵ−2β ð6:17Þ

for the duration u3 − u2 ≃ ũ3 − ũ2 ≃ 2Mϵ2β as discussed in
Appendix C. Both of the bursts dominate the transient
Hawking radiation in both power and energy. The evolution
of radiation is summarized for β ¼ 1=2 and β ¼ 1 in
Fig. 6.

3. Instant deceleration limit

It is interesting to see the limit β → ∞ or Rb − Rf → 0

while 1 − ð2M=RfÞ ¼ ϵ2 is fixed in both models A and B.
In this limit, the power becomes stronger and stronger, the
time width becomes shorter and shorter, and the energy
radiated becomes more and more in both the post-Hawking

(a) (b)

FIG. 5. The schematic time dependence of radiation emitted in the timelike collapse to a highly compact object in model A, in which
the shell is exponentially slowed down in the braking phase. The shell begins braking at R ¼ Rb ¼ Rf þ 2Mϵ2β for (a) β ¼ 1=2 and
(b) β ¼ 1. We here neglect the power of the order of ϵ2PH.

(a) (b)

FIG. 6. Same as Fig. 5 but in model B, in which the deceleration is constant in the braking phase.

1The authors are grateful to S. Kinoshita for highlighting this
issue.
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and late-time bursts, while the duration of the dormant stage
in between is unchanged. Thus, we can reproduce the last
two delta-functional bursts in the null-shell model in Sec. V.

VII. DISCUSSION

It is important to compare our result with previous results
in similar setups. In Refs. [34,35], a timelike-shell model
was also used, the end state of which is a static shell
with radius slightly larger than 2M. However, instead of
prescribing the shell dynamics, the function GðuÞ was
assumed directly to satisfy the expected qualitative asymp-
totic properties and change in a timescale of the order ofM.
Figures 7 and 9 in Refs. [34,35] indicate that the width of
the late-time burst is several tens of M and the power is
bounded by that of the Hawking radiation PH. It was also
observed that the width of the burst increases for smaller ϵ.
As seen in Sec. VI D, these features correspond to our
model A with β ¼ 1=2. On the other hand, we can argue
that the physically natural scenario corresponds to model A
with β ¼ 1 from the argument that the shell begins to brake
when R ¼ Rb ¼ Rf þ 2Mϵ2 and settles down to R ¼ Rf ¼
2M=ð1 − ϵ2Þ, if there is a unique characteristic scale which
controls both the braking and the freeze-in of the shell and
that the force onto the shell is vanishingly small near
R ¼ Rf, if R ¼ Rf is the radius of equilibrium.
It is interesting to estimate thequantitieswhich appear here

using astrophysical values. The transient Hawking radiation
lasts for u1 − u0 ∼ 40ðM=M⊙Þ½44þ lnð10−19=ϵÞ� μs. The
radiation itself carries a power, temperature, and energy:

P ≃ PH ∼ 10−21
�

M
M⊙

�
−2

erg=s;

TH ∼ 6 × 10−8
�

M
M⊙

�
−1

K; ð7:1Þ

E ≃ 4 × 10−26
�

M
M⊙

�
−1
�
44þ ln

�
10−19

ϵ

��
erg: ð7:2Þ

The subsequent “dormant” stage lasts for ũ1 − u3 ∼ 6 ×
106ðM=M⊙Þðϵ=10−19Þ−1 yr and is followed by a late-time
burst whose details depend on the model.
For model A with β ¼ 1=2, the late-time burst lasts for

ũ2−ũ1∼2Mðlnϵ−1Þ∼10ðM=M⊙Þ½44þlnð10−19=ϵÞ�μs and
is characterized by P ∼ PH, T ¼ TH, and E ∼ EH. For
model Awith β ¼ 1, the late-time burst lasts for ũ2 − ũ1 ∼
10−24ðM=M⊙Þðϵ=10−19Þ½44þ lnð10−19=ϵÞ� s and carries
power, equivalent temperature Teq, effective temperature
Teff , and energy,

P ∼ 1017
�

ϵ

10−19

�
−2
�

M
M⊙

�
−2

erg=s; ð7:3Þ

kTeq ∼ −100
�

ϵ

10−19

�
−1
�

M
M⊙

�
−1

MeV; ð7:4Þ

kTeff ∼ 0.1

�
ϵ

10−19

�
−1=2

�
M
M⊙

�
−1

eV; ð7:5Þ

E ∼ 10−7
�

ϵ

10−19

�
−1
�

M
M⊙

�
−1
½44þ ln ð10−19=ϵÞ� erg;

ð7:6Þ

where kTeq ≔ κ=ð2πÞ and kTeff ≔ ðP=ð4πR2σSB=2ÞÞ1=4
with σSB ¼ π2k4=60 the Stefan-Boltzmann constant, while
the post-Hawking burst carries approximately the same
power and same equivalent and effective temperatures. For
model B with β ¼ 1, these observables for both the first and
the second bursts are given by

P ∼ 1055
�

ϵ

10−19

�
−4
�

M
M⊙

�
−2

erg=s; ð7:7Þ

kTeq ∼ −1018
�

ϵ

10−19

�
−2
�

M
M⊙

�
−1

GeV; ð7:8Þ

kTeff ∼ 10

�
ϵ

10−19

�
−1
�

M
M⊙

�
−1

MeV; ð7:9Þ

E ∼ 1012
�

ϵ

10−19

�
−2
�

M
M⊙

�
−1

erg; ð7:10Þ

with time widths u3 − u2 ≃ ũ3 − ũ2 ≃ 10−43ðϵ=10−19Þ2 s.
Here, wewould like to discuss some remaining issues. The

first concerns arguments for the “expected” values of our ϵ
parameter. Although ϵ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lPl=ð2MÞp

≃ 10−19ðM=M⊙Þ−1=2
is suggested by some semiclassical arguments [10], other
scenarios where ϵ can be much larger or smaller than this
value are possible. For example, one might identify the
proper length from the surface with the Planck length2

(instead of the areal radius). In such a case, ϵ can be as
small as ϵ ≃ lP=ð4MÞ ≃ 10−38ðM=M⊙Þ−1 and our results
become even more extreme. On the other hand, if we
consider a neutron star, we may estimate ϵ ∼ 0.5, for which
the present formulation is only marginally valid.
We have shown that the duration of the dormant stage is

∼4M=ϵ. Physically, the 4M factor is simply the proper time
of the shell for a null ray to cross its diameter, when the
shell is sufficiently close to 2M. The factor 1=ϵ comes from
the redshift factor between the proper time of the almost
static shell and the observer time.
The particle production process is characterized by

different stages, after what we termed the “standard”
collapse phase. This large number of particle production
stages is due to the different classes of null-ray pairs that
govern quantum particle creation. We can summarize the

2The authors are grateful to T. Tanaka for pointing out this
possibility.
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correspondence as follows: braking at τ ¼ τout and standard
collapse at τ ¼ τin contribute to the post-Hawking burst, the
final static phase at τ ¼ τout and standard collapse at τ ¼ τin
produce the dormant stage, whereas the final static phase at
τ ¼ τout and braking at τ ¼ τin give the late-time burst.
We have applied the geometrical optics approximation in

the entire treatment. This is valid for s-waves and for
sufficiently high frequencies. On the other hand, the
reflection of waves by the shell and the geometry is
completely neglected. This implies that if we relax this
approximation, we will obtain not only the post-Hawking
and late-time bursts but also echoes in particle creation due
to the reflections of waves (cf. Refs. [2,3,5]). The details of
this process require further calculations.
Aswe pointed out, we adopted the same set of assumptions

for calculating quantum particle creation from a collapsing
body as previous works in the literature [18,19,26]. It is
clearly important to go beyond such restrictions. If one goes
beyond the geometrical optics approximation, Hawking
radiation appears as a stationary process at the final stage
of the collapse to a black hole with various intermediate
decaying stages [36]. Quantum loop corrections to the flux of
non-Gaussian (self-interacting) theories are not suppressed in
comparison with the tree-level contribution in the case of λϕ4

theory [36]. This may also modify the properties of the
Hawking radiation and perhaps those of the bursts discussed
in the current paper. Furthermore, the properties of radiation
in the intermediate stage of the collapse may strongly depend
on the choice of the initial quantum state.
Finally, we have prescribed the shell dynamics in this

paper, but postpone a discussion about the matter content
of the shell which enables such an unusual time evolution.
We expect that some energy conditions must be violated.
The physical significance of such violations is not com-
pletely clear. However, we take this opportunity to once
more stress that one of the main goals of this work is to look
for distinctive features of horizonless objects as a way to
strengthen the black hole paradigm.
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APPENDIX A: EXPRESSIONS FOR
A TIMELIKE-SHELL MODEL

The junction condition for the first fundamental form
gives

_T2 ¼ 1þ _R2; _t2 ¼ 1

1 − 2M
R

�
1þ

_R2

1 − 2M
R

�
: ðA1Þ

The relation between the null coordinates and the proper
time of the shell is given by

_U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
− _R; _V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
þ _R; ðA2Þ

and

_u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ _R2
q

− _R

1 − 2M
R

; _v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ _R2
q

þ _R

1 − 2M
R

:

ðA3Þ

From Eqs. (A2) and (A3), we can write down the explicit
expression for A and B in terms of R as follows:

A ¼
ð1 − 2M

R Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _R2
p

− _R
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ _R2
q

− _R
;

B ¼
ð1 − 2M

R Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _R2
p

þ _R
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ _R2
q

þ _R
: ðA4Þ

From Eqs. (A3) and (A4), we can write down the
expression for C and D in terms of R as follows:

C ¼ −
R̈ð1 − 2M

R Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ _R2
q

− _R

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
R þ _R2

q −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _R2
p

3
75

−
M _R

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ _R2
q ; ðA5Þ
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D ¼ R̈ð1 − 2M
R Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
R þ _R2

q
þ _R

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
R þ _R2

q −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _R2
p

3
75

−
M _R

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ _R2
q : ðA6Þ

APPENDIX B: EXPRESSIONS FOR
A TIMELIKE-SHELL MODEL IN

DIFFERENT REGIMES

To estimate the functionsA,B,C, andD, we are interested
in the following phases: 0. (R ≫ 2M and j _Rj ≪ 1), 1., 2.
(1 − 2M

R ≪ 1 and 1 − 2M
R ≪ _R2), 3. (1 − 2M

R ≪ 1 and
1 − 2M

R ≪ _R2), and 4. (R ¼ const). Let us consider these
cases separately. We assume _R < 0 in the following.
0. R ≫ 2M and j _Rj ≪ 1
We find

A ≃ 1; B ≃ 1; C ≃ −
M
R

�
R̈ −

j _Rj
R

�
;

D ≃
M
R

�
R̈þ j _Rj

R

�
: ðB1Þ

From Eqs. (A2) and (A3), we obtain

U ≃ τ þ const; V ≃ τ þ const;

u ≃ τ þ const; v ≃ τ þ const: ðB2Þ
1. and 2. 1 − 2M

R ≪ 1 and 1 − 2M
R ≪ _R2

In this regime, we have

A ≃
�
1 −

2M
R

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
þ j _Rj

2j _Rj ; ðB3Þ

B ≃ 2j _Rjð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
− j _RjÞ; ðB4Þ

C ≃ −
R̈

2 _R2

�
1 −

2M
R

��
1 −

j _Rjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p �
þ 1

4M
; ðB5Þ

D ≃ 2R̈

�
1 −

j _Rjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p �
þ 1

4M
: ðB6Þ

In this case, from Eqs. (A3), u and v are given by

u ≃ −4M ln

�
R
2M

− 1

�
þ const; v ≃ −

1

2

Z
dR
_R2

: ðB7Þ

If we further assume _R ¼ Oð1Þ and R̈ ¼ Oðð2MÞ−1Þ
corresponding to phase 1, we obtain

A ¼ O

��
1 −

2M
R

��
; B ¼ Oð1Þ;

C ≃
1

4M
; D ¼ Oðð2MÞ−1Þ: ðB8Þ

In this case, Eqs. (A2) imply

U ∼ τ þ const; V ∼ τ þ const: ðB9Þ

3. 1 − 2M
R ≪ 1 and 1 − 2M

R ≫ _R2

In this regime, we have

A≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2M
R

r
; B≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2M
R

r
; C≃−R̈þ j _Rj

4M
ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

R

q ;

D≃ R̈þ j _Rj
4M

ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

R

q : ðB10Þ

In this case, from Eqs. (A2) and (A3), we obtain

U ≃ τ þ const; V ≃ τ þ const; u ≃
Z

dτffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q ;

v ≃
Z

dτffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q : ðB11Þ

4. R ¼ const
In this regime, we have

A ¼ B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

r
; C ¼ D ¼ 0; ðB12Þ

and

U¼ τþ const; V¼ τþ const; u¼ τffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

R

q þ const;

v¼ τffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

R

q þ const: ðB13Þ

APPENDIX C: TIME INTERVALS

Since R ¼ 4M at u ¼ u0 and R ¼ Rb ¼ Rf þ 2Mϵ2β at
u ¼ u1, Eq. (B7) implies

u1 − u0 ≃
�
4Mβ ln ϵ−2 ð0 < β < 1Þ
4M ln ϵ−2 ðβ ≥ 1Þ : ðC1Þ

Equations (A2) and (A3) imply that the intervals in terms of
u are given as follows:

ũ2 − u2 ≃ ϵ−1ðτ̃2 − τ2Þ ≃
4M
ϵ

; ðC2Þ

ũ3 − u3 ≃ ϵ−1ðτ̃3 − τ3Þ ≃
4M
ϵ

; ðC3Þ

where we have used τ̃2 − τ2 ≃ τ̃3 − τ3 ≃ 4M. The above
relations do not depend on the details of the model.
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1. Model A: Exponentially slowed-down model

First, we estimate τ2. Assuming R − Rf ∝ e−στ for
τ1 < τ < τ03 with σ given by Eq. (6.8), we find

1 −
2M
R

≃
�
1 −

2M
Rf

�
þ
�
2M
Rf

−
2M
R

�
≃ ϵ2 þ ϵ2βe−σðτ−τ1Þ

ðC4Þ

for Rb − Rf ¼ 2Mϵ2β with β ≥ 1=2. Noting j _Rj ¼
j _Rbje−σðτ−τ1Þ and j _Rbj ¼ Oð1Þ, Eq. (6.2) at τ ¼ τ2 implies

τ2 − τ1 ≃ σ−1ðln ϵ−1Þ and 1 −
2M
R2

≃ ϵ2: ðC5Þ

Then, we can derive

u2 − u1 ≃

8>><
>>:

4Mð1 − βÞ ln ϵ−2 ð1=2 ≤ β < 1Þ
4M ðβ ¼ 1Þ

4Mϵ2ðβ−1Þ ðβ > 1Þ
; ðC6Þ

u2 − u0 ≃ 4M ln ϵ−2: ðC7Þ

Equations (A2) and (A3) imply that the intervals in terms of
u are given as follows:

ũ2 − ũ1 ≃ ϵ−1ðτ̃2 − τ̃1Þ ∼ ϵ−1ðτ2 − τ1Þ ∼ ϵ−1ðln ϵ−1Þσ−1
∼ 2Mϵ2β−1ðln ϵ−1Þ; ðC8Þ

where we have used σ ≃ 1=ðRb − RfÞ. Additionally assum-
ing τ3 − τ2 ≃ σ−1, we can find

u3 − u2 ≃ ũ3 − ũ2 ≃ ϵ−1σ−1 ≃ 2Mϵ2β−1: ðC9Þ

2. Model B: Constant-deceleration model

In this model, we find

1 −
2M
R

≃ ϵ2 þ a
4M

ðτ3 − τÞ2 ðC10Þ

for τ1 < τ < τ3 with a given by Eq. (6.16). Noting j _Rj ¼
aðτ3 − τÞ and j _Rbj ¼ Oð1Þ, τ2 is estimated as

τ3 − τ2 ¼
ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aða − 1
4MÞ

q ; ðC11Þ

while τ3 is estimated as τ3 − τ1 ¼ j _Rbja−1. Then, we can
derive

u2 − u1 ≃

8>><
>>:

4Mð1 − βÞ ln ϵ−2 ð0 < β < 1Þ
4M ðβ ¼ 1Þ

4Mϵ2ðβ−1Þ ðβ > 1Þ
; ðC12Þ

u2 − u0 ≃ 4M ln ϵ−2: ðC13Þ

The expressions for u3 − u2, ũ3 − ũ1, and ũ3 − ũ2 are
given by

u3 − u2 ≃ ϵ−1ðτ3 − τ2Þ ≃ a−1 ≃ 4Mϵ2β; ðC14Þ

ũ3 − ũ1 ≃ ϵ−1ðτ3 − τ1Þ ≃ j _Rbjϵ−1a−1 ≃ 4Mϵ2β−1; ðC15Þ

ũ3 − ũ2 ≃ ϵ−1ðτ3 − τ2Þ ≃ a−1 ≃ 4Mϵ2β; ðC16Þ

where we have assumed a ≫ 1=ð4MÞ and a ≃ 1=
½2ðRb − RfÞ� ¼ 1=ð4Mϵ2βÞ.

APPENDIX D: DETAILED ANALYSIS OF THE
TEMPORAL CHANGE OF RADIATION

We divide the observer’s time to eight intervals: u < u0,
u0 < u < u1, u1 < u < u2, u2 < u < u3, u3 < u < ũ1,
ũ1 < u < ũ2, ũ2 < ũ3, and ũ3 < u. Since the first two
are identical to those in the standard-collapse phase,
discussed in Sec. IV, we concentrate on the last six. For
each interval, the classes of null-ray pairs are fixed and we
can obtain the expressions for the functions G0ðuÞ and κðuÞ
by combining the expressions for A, B, C, and D given in
Appendix B through the formula (4.3).

(i) u1 < u < u2: We discuss this stage in Sec. VI B.
There are null-ray pairs of classes (2,1) and (2,0).
There is no pair of class (2,2) because the duration of
phase 2, τ2 − τ1, is much shorter than the time for
return travel, which is approximately 4M.

(ii) u2 < u < u3: We also discuss this stage in Sec. VI
B. We have null-ray pairs of classes (3,0) and (3,1).
There is no pair of class (3,2) or (3,3) because we
assume that τ3 − τ2 is much shorter than 4M.

(iii) u3 < u < ũ1: All null-ray pairs are of class (4,0) or
(4,1). We can find κ ¼ Oðϵð2MÞ−1Þ, which is the
contribution from τ ¼ τin in phases 0 and 1, irre-
spectively of the model details. This corresponds to
the long dormant stage.

(iv) ũ1 < u < ũ2: We discuss this stage in Sec. VI C.
The null-ray pairs are of class (4,2).

(v) ũ2 < u < ũ3: We also discuss this stage in
Sec. VI C. We have null-ray pairs of class (4,3).

(vi) ũ3 < u: We have null-ray pairs of class (4,4). For
this class, we have justG0ðuÞ ¼ 1 and κðuÞ ¼ 0. The
radiation completely vanishes at u ¼ ũ3 and there-
after no radiation is emitted forever.
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