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The dynamics of the most general Bianchi IX cosmology with three time dependent scale factors for the
Einstein-Skyrme system are analyzed. For the Skyrmion, a generalized hedgehog ansatz with unit baryon
charge is introduced. The most remarkable feature of this ansatz is that, in the above topologically
nontrivial sector with a unit topological charge, the Skyrme field equations are identically satisfied on any
Bianchi IX metric. We will show that due to this feature the complete set of coupled Einstein-Skyrme field
equations can be deduced from a suitable minisuperspace Lagrangian. The latter allows us to perform a
systematic study of the integrability properties of the Einstein-Skyrme system for the Bianchi IX
cosmology. Moreover, some analytic and algebraic solutions for the Einstein-Skyrme model are derived.
Another remarkable consequence of the present formalism is that it is possible to derive the Wheeler de-
Witt equation for the Bianchi IX metric in the Einstein-Skyrme cosmology in which all the effects of the
Skyrmion are encoded in an effective potential of the minisuperspace Lagrangian.
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I. INTRODUCTION

It has been proposed that today’s isotropic Universe may
have evolved from an initial anisotropic phase. This has led
to the study of a wide range of cosmological scenarios
based on a spatially homogeneous, but anisotropic mani-
fold. There exist nine types of space-times whose spacelike
surface admits a three-dimensional group of motions acting
simply transitively on it [1]. That is one for each three-
dimensional algebra spanned by the generators of the
corresponding group, the nine well-known Bianchi types
[2]. Of all these models, the types I, V, and IX gather the
majority of the interest in cosmology due to containing the
flat, open, and closed Friedmann-Lemaitre-Robertson-
Walker universe, respectively. Those models are used in
the study of anisotropies of the primordial Universe and its
evolution towards the observed isotropy of the present
epoch [3,4].
Among them, the Bianchi type IX model is the most

complicated and at the same time the most interesting
in many aspects. The space-time has a topology R × S3

with the isometry group of the three metric being the
rotation SOð3Þ group. It contains as special cases, the

Friedmann-Lemaitre-Robertson-Walker metric with a pos-
itive spatial curvature and the Taub-NUT space-time [5,6].
The study of the cosmological properties of the type IX
model was initiated with the pioneering work of Misner
with his mixmaster universe [7] and, of course, the studies
of Belinskii et al. on the nature of the approximate behavior
of solutions to Einstein’s equations near the initial singu-
larity [8,9].
Analytic solutions in the case where the space-time

exhibits a locally rotational symmetry (LRS) have been
derived and studied both in vacuum and in the presence of
matter [5,6,10–14]. In the vacuum case, and when the
dynamics are described by two scale factors, the system is
integrable since it possess two additional independent
integrals of motion [15]. The situation however is not so
simple when anisotropy is introduced in all directions. The
most general Bianchi type IX with three different scale
factors in the metric, apart from its complexity, has also
been the source of great controversy and debate in the
literature (about both its integrability and its chaotic
behavior). The reason of controversy however lies most
of the time on the different existing notions of integrability,
as well as on the application of noncovariant criteria—that
are constructed for regular mechanical systems—over a
configuration that is gauge invariant. As far as the notion of
Liouville integrability is concerned, it was found in [16,17]
that the Bianchi type IX is locally integrable, while in [18],
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it is proven that the system is not completely integrable
in terms of analytic first integrals. A vast amount of papers
(see [19–25] and references therein) is also dedicated to the
study of integrability in terms of whether the corresponding
dynamical system passes the Painlevé test: the available
results in the literature are not conclusive yet.
One may wonder whether the above nice results on the

Bianchi IX cosmology are preserved if physical matter
fields are included. A natural guess is that a Bianchi IX
metric in general relativity can be coupled self-consistently
only to very idealized matter sources. The reason is that, at
a first glance, one may think that only very simple matter
fields are able to produce an energy-momentum tensor
compatible with the Bianchi IX geometries. On the other
hand, strongly interacting matter fields (such as hadronic
matter and, more generically, the low energy limit of QCD)
are likely to break the properties of the Bianchi IX
cosmologies.
In this work, we will show that this is not the case, at

least in the Einstein-Skyrme model (which is the low
energy limit of QCD minimally coupled to general rela-
tivity in the large N limit [26,27]). Thus, Bianchi IX
cosmologies have a much wider range of applicability than
one would think at a first glance. Moreover, we will also
consider in some detail the Bianchi IX cosmologies in the
Einstein-non-linear sigma model. As it is well known,
Skyrme noticed [27] that the nonlinear sigma model does
not possess solitonic solutions in flat, topologically trivial
(3þ 1)-dimensional space-times: that is why Skyrme
introduced his famous Skyrme term [27]. However, it is
worth emphasizing that the beautiful current-algebraic
arguments by Witten [26] (see also [28,29] and references
therein) to show that the solitons of this theory should be
quantized at a semiclassical level as Fermions and that such
a theory describes the low-energy limit of QCD do not
make explicit use of the Skyrme term itself but only of the
fact that stable solitons with nontrivial third homotopy class
exist. Last but not least, when the nonlinear sigma model is
minimally coupled to general relativity, the argument on the
absence of regular topological solitons does not apply
anymore. It is thus of great theoretical interest to analyze
Bianchi IX cosmologies also in the Einstein nonlinear
sigma model system.
The Skyrme model is a bosonic action for a SUðNÞ-

valued scalar field [wewill consider here theSUð2Þ case]. Its
solitons—Skyrmions—represent Fermionic states whose
topological charge is the baryon number [26,28,29] (see,
e.g., [30–32]). These results have been generalized to curved
space-times [33]. The Einstein-Skyrmemodel has beenvery
deeply analyzed as well, not only due to its relations with
low energy QCD but also due to its relevance in general
relativity. For instance, black holes with a nontrivial Skyrme
hair were found using numerical tools in [34,35], providing
the first counterexamples to the well-known no-hair
conjecture.

While the stability of the Skyrme black hole is already
established [36], the stability of other hairy black holes
is not fully understood yet [37] (see also [38,39]).
Cosmological applications of the Skyrme model have also
been considered [40,41].
Because of the fact that the Skyrme field equations

(especially in sectors with nontrivial topological charge)
have always been considered a very hard nut to crack, one
may think that to build analytic gravitating Skyrmions,
whose geometry is of Bianchi IX type, is a quite hopeless
task. The reason is that, in order to achieve such a goal, one
should solve the Skyrme field equations using an ansatz
with a nonvanishing topological charge on such Bianchi IX
geometries and solve, at the same time, the Einstein
equations with the corresponding Skyrme energy momen-
tum tensor in a self-consistent way.
In fact, very recently, following the generalized hedgehog

ansatz developed in [42–53], the first analytic self-gravitat-
ing SUð2Þ Skyrmions have been constructed in [54–56].
Here it will be shown that the gravitating topologically

nontrivial configurations found in [54–56] can be gener-
alized to the full Bianchi IX family with three independent
scale factors. This technique allows us to construct an
ansatz for the Skyrmion which satisfies identically the
Skyrme field equations on any Bianchi IX metric in a sector
with a nonvanishing topological charge.
Because of the fact that the complete set of coupled

Einstein-Skyrme field equations in the above-mentioned
nontrivial topological sector can be reduced to three
dynamical equations1 for the three Bianchi IX scale factors,
one can derive a minisuperspace action. These results allow
us to discuss the classical integrability properties of the
Bianchi IX metric in the Einstein-Skyrme system when a
nontrivial topological soliton is present as the source of the
Einstein equations. Another remarkable consequence of the
present formalism is that it is possible to derive the Wheeler
de-Witt equation for the Bianchi IX metric in the Einstein-
Skyrme cosmology in which all the effects of the Skyrmion
are encoded in an effective potential.
The paper is organized as follows: In Sec. II, we give the

general description of the system that we study and we
introduce the ansatz for both the matter field as well as for
the base manifold. In Sec. III, we provide the equations of
motion for the general system and derive the minisuper-
space Lagrangian that produces them as its Euler-Lagrange
equations. Later, in Sec. IV, we examine the isotropic case
and provide the complete solution space for the Friedmann-
Lemaitre-Robertson-Walker universe. Section V is devoted
to the study of the LRS case with two scale factors present.
In Sec. VI, we derive the Wheeler-DeWitt equations that

1Indeed, the generalized hedgehog ansatz works very well also
in the Bianchi IX case since the Skyrme field equations are
identically satisfied in any Bianchi IX metric as it will be
explained in the following sections.
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correspond to the previous cases, and finally, in Sec. VII,
we draw our basic conclusions over this work.

II. THE EINSTEIN-SKYRME SYSTEM

We are interested in the system composed by Einstein’s
relativity minimally coupled to the Skyrme action, where
the corresponding field is an element of the SUð2Þ group.
Thus, our starting point is

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

κ

�
1

2
Rþ Λ

�

þ K
4
Tr

�
AμAμ þ

λ

8
FμνFμν

��
; ð1Þ

where κ ¼ 8πG and Λ are the gravitational and cosmo-
logical constants, respectively. Throughout the paper, we
work in units c ¼ ℏ ¼ 1. The constants K and λ are the
ones corresponding to the Skyrme coupling. The field Aμ is
given by Aμ ¼ U−1∇μU with U ∈ SUð2Þ, and the strength
of the field is Fμν ¼ ½Aμ; Aν�. The SUð2Þ base in which the
Aμ ¼ Ai

μti are expanded is given by ti ¼ iσj, where σj are
the Pauli matrices. The space-time indices are denoted by
Greek letters, and Tr is the trace over the group indices that
are expressed by Latin letters.
Variation with respect to the fields Aμ and gμν in the

action integral (1) leads the combined set of the Einstein-
Skyrme equations

∇μAμ þ
λ

4
∇μ½Aν; Fμν� ¼ Σjtj ¼ 0; ð2aÞ

Gμν þ Λgμν ¼ κTμν; ð2bÞ

where Σj ¼ 0 (j ¼ 1, 2, 3) are the Skyrme field equations,
Gμν ¼ Rμν − 1

2
gμνR is the Einstein tensor, and

Tμν ¼ −
K
2
Tr
�
AμAμ −

1

2
gμνAκAκ

þ λ

4

�
gκλFμκFνλ −

1

4
gμνFκλFκλ

��
ð3Þ

is the energy momentum tensor of the Skyrmion.

A. The generalized Hedgehog ansatz

We adopt the standard parametrization for the SUð2Þ
scalar UðxμÞ,

U�1 ¼ Y0ðxμÞI � YiðxμÞti; ðY0Þ2 þ ðYiÞ2 ¼ 1; ð4Þ

where I is the two-dimensional identity matrix and Yμ is
parametrized as

Y0 ¼ cos α; Yi ¼ ni sin α; ð5Þ

and

n1 ¼ sinΘ cosΦ; n2 ¼ sinΘ sinΦ; n3 ¼ cosΘ:

ð6Þ

In what follows, we denote the space-time coordinates
with the variables xμ ¼ ðt; θ;ϕ; γÞ, and we adopt the
following ansatz for the Skyrmion (see [54–56] and
references therein):

Φ¼ γþϕ

2
; tanΘ¼ cotðθ

2
Þ

cosðγ−ϕ
2
Þ ; tanα¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2Θ

p

tanðγ−ϕ
2
Þ ;

ð7Þ

Rμ ¼ U−1∂μU ¼ Ri
μti: ð8Þ

The explicit expression for the Rμ can be found in
Appendix A.
In Eq. (7), the range of the coordinates θ, γ, and ϕ is

0 ≤ θ ≤ π; 0 ≤ γ ≤ 4π; 0 ≤ ϕ ≤ 2π: ð9Þ

The remarkable properties of the above ansatz will be
fully apparent after we introduce the Bianchi IX metric and
discuss the corresponding Skyrme field equations in the
next sections.
In the Skyrme theory, the Baryon charge reads

W ¼ B ¼ 1

24π2

Z
ft¼constg

ρB; ð10Þ

ρB ¼ ϵijkTrðU−1∂iUÞðU−1∂jUÞðU−1∂kUÞ: ð11Þ

In terms of α, Θ, and Φ, the topological density ρB is
written as

ρB ¼ 12ðsin2 α sinΘÞdα∧ dΘ∧ dΦ¼ 3

2
sinθdθ ∧ dϕ∧ dγ;

ð12Þ

so that a necessary condition in order to have nontrivial
topological charge is

dα ∧ dΘ ∧ dΦ ≠ 0: ð13Þ

From the geometrical point of view, the above condition
(which simply states that α, Θ, and Φ must be three
independent functions) can be interpreted as saying that
such three functions “fill a three-dimensional spatial
volume,” at least locally. In other words, dα, dΘ, and
dΦ can be used as a 3D volume form. Hence, the condition
in Eq. (13) ensures that the configuration one is interested
in describes a genuine three-dimensional object. In the case
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of the ansatz defined in Eqs. (5)–(7), a direct computation
shows that

1

24π2

Z
ft¼constg

ρB ¼ 1: ð14Þ

Usually, this second requirement allows us to fix some of
the parameters of the ansatz.
From now on, as it is customary in the literature, the

terms gravitating Skyrmion will refer to smooth regular
solutions of Eqs. (2) with the properties that the topological
charge [defined in Eqs. (10)–(13)] is nonvanishing.

B. Metric ansatz

The general spatially homogeneous Bianchi type IX
space-time admits a three-dimensional Killing algebra with
a fully anisotropic scale factor matrix,

hαβ ¼

0
B@

aðtÞ2 0 0

0 bðtÞ2 0

0 0 cðtÞ2

1
CA: ð15Þ

It is known that the line element for the underlying
geometry can assume the general form,

ds2 ¼ −NðtÞ2dt2 þ hαβðtÞωα
i ðxÞωβ

i ðxÞdxidxj;
i; j; α; β ¼ 1; 2; 3; ð16Þ

where NðtÞ is the lapse function and the ωα’s are the
1-forms corresponding to the invariant basis of the
three-dimensional surface, characterized by the three-
dimensional group of isometries.2

A more general line element, involving possibly a
nonzero shift vector field, can always be brought to this
form (at least locally) by invoking time-dependent auto-
morphisms of the algebra of the invariant basis that
correspond to space-time diffeomorphisms [57].
In our case, the spatial coordinates are denoted by

x ¼ ðθ;ϕ; γÞ and for the one forms ω, we consider [1]

ω1 ¼ − sin γdθ þ sin θ cos γdϕ ð17aÞ

ω2 ¼ cos γdθ þ sin θ sin γdϕ ð17bÞ

ω3 ¼ cos θdϕþ dγ: ð17cÞ

Moreover, one can directly see that the ωj defined above
satisfy the relation

dωα ¼ 1

2
Cα
βγω

β ∧ ωγ; ð18Þ

with the structure constants given in terms of the Levi-
Civita symbol in three dimensions Cα

βγ ¼ ϵαβγ (we assume
ϵ123 ¼ þ1).
We observe that in the general case the three-dimensional

part of the metric depends—apart from time—on two
spatial variables γ and θ as follows:

ds2 ¼ −N2dt2 þ ða2sin2γ þ b2cos2γÞdθ2 þ c2dγ2

þ ½ða2cos2γ þ b2sin2γÞsin2θ þ c2cos2θ�dϕ2

þ 2c2 cos θdγdϕþ ðb2 − a2Þ sinð2γÞ sin θdθdϕ:
ð19Þ

On the other hand, when one considers the LRS case,
where only two of the scale factors are independent, i.e.;
aðtÞ ¼ bðtÞ, then only one spatial variable remains in the
final form for the line element since (19) reduces to

ds2 ¼ −N2dt2 þ b2dθ2 þ c2dγ2 þ ðb2sin2θþ c2cos2θÞdϕ2

þ 2c2 cosθdγdϕ: ð20Þ

An analysis involving solutions of the Einstein-Skyrme
model under this latter ansatz for the line element has been
given in [58,59].
The main property of the Skyrme ansatz in Eqs. (4)–(8)

is that the SUð2Þ left-invariant one forms constructed
from it essentially coincide with the spatial dreibeins
used to build the Bianchi IX metric in Eq. (17) (see the
Appendix A). In particular, due to this fact, whenever a
spatial dreibein is contracted with the left-invariant forms
arising from the Skyrmion Kronecker delta terms arise, and
this leads to considerable simplifications in the Skyrme
field equations.
In what follows, we adopt the Misner variables

ðΩ; βþ; β−Þ that are associated to the scale factors
ða; b; cÞ through the change of variables,

a ¼ eβþþ
ffiffi
3

p
β−−Ω; b ¼ eβþ−

ffiffi
3

p
β−−Ω; c ¼ e−2βþ−Ω:

ð21Þ

In this parametrization of the configuration space variables,
the ensuing minisuperspace metric assumes a simple
diagonal form.

2In this section, we must be careful so that there is no
confusion with respect to the indices: Greek letters do not denote
space-time indices, but they refer to the coefficients of the scale
factor matrix hαβ. Moreover, the Latin indices i, j count the three
spatial dimensions and do not denote the SUð2Þ group indices
that we saw previously.
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III. EQUATIONS OF MOTION AND
MINISUPERSPACE LAGRANGIAN

A. Einstein’s equations

By adopting the previously discussed choices for the
Skyrme field (7) and for a space-time metric (19) into the
field equations (2), it can be straightforwardly verified that
the three equations (2a) (one for each ti) are satisfied

identically. At the same time, (2b) reduce to a set of
ordinary differential equations, which we denote with

Eμν ≔ Gμν þ Λgμν − κTμν ¼ 0: ð22Þ

By using (21), we can write the following system:

K̄
8
ðe−2βþþ2

ffiffi
3

p
β−þ2Ω þ e−2βþ−2

ffiffi
3

p
β−þ2Ω − 2e4βþþ2ΩÞ − λ̄

32
ðe2βþ−2

ffiffi
3

p
β−þ4Ω þ e2βþþ2

ffiffi
3

p
β−þ4Ω − 2e4Ω−4βþÞ

þ e2Ω−8βþ −
1

2
ðe4βþ−4

ffiffi
3

p
β−þ2Ω þ e4βþþ4

ffiffi
3

p
β−þ2ΩÞ þ 3 _N _βþ

N3
þ 9_βþ _Ω

N2
−
3β̈þ
N2

¼ 0; ð23Þ

K̄
4
ðe−2βþþ2

ffiffi
3

p
β−þ2Ω − e−2βþ−2

ffiffi
3

p
β−þ2ΩÞ þ λ̄

16
ðe2βþþ2

ffiffi
3

p
β−þ4Ω − e2βþ−2

ffiffi
3

p
β−þ4ΩÞ

e4βþþ4
ffiffi
3

p
β−þ2Ω − e4βþ−4

ffiffi
3

p
β−þ2Ω −

2
ffiffiffi
3

p
_N _β−

N3
−
6

ffiffiffi
3

p
_Ω _β−

N2
þ 2

ffiffiffi
3

p
β̈−

N2
¼ 0; ð24Þ

3Λþ K̄
8
ðe−2βþ−2

ffiffi
3

p
β−þ2Ω þ e−2βþþ2

ffiffi
3

p
β−þ2Ω þ e4βþþ2ΩÞ − λ̄

32
ðe2ðβþþ

ffiffi
3

p
β−þ2ΩÞ þ e2βþ−2

ffiffi
3

p
β−þ4Ω þ e4Ω−4βþÞ

þ 1

4
ðe4βþ−4

ffiffi
3

p
β−þ2Ω þ e4βþþ4

ffiffi
3

p
β−þ2Ω þ e2Ω−8βþÞ − 9

�
_β2þ
N2

þ
_β2þ
N2

þ
_Ω2

N2

�
−
6 _N _Ω
N3

þ 6Ω̈
N2

¼ 0; ð25Þ

and

Λþ K̄
8
ðe−2βþ−2

ffiffi
3

p
β−þ2Ω þ e−2βþþ2

ffiffi
3

p
β−þ2Ω þ e2Ωþ4βþÞ þ λ̄

32
ðe2ðβþþ

ffiffi
3

p
β−þ2ΩÞ þ e2βþ−2

ffiffi
3

p
β−þ4Ω þ e4Ω−4βþÞ

þ 1

4
ðe4βþ−4

ffiffi
3

p
β−þ2Ω þ e4βþþ4

ffiffi
3

p
β−þ2Ω þ e2Ω−8βþÞ þ 3

N2
ð _β2þ þ _β2− − _Ω2Þ ¼ 0; ð26Þ

where K̄ ¼ κK − 4 and λ̄ ¼ κKλ.
Thus, as promised, the complete set of coupled Einstein-

Skyrme field equations in a sector with a nonvanishing
Baryon charge reduce to three dynamical equations for the
three Bianchi IX scale factors and a constraint. This is a
quite important technical achievement which opens the
possibility to generalize many of the known results in the
literature on Bianchi IX cosmology in situations in which a
topological soliton is consistently coupled to general
relativity.
When κK ¼ 4 (so that K̄ ¼ 0 in the above equations)

and λ vanishes (which corresponds to an Einstein nonlinear
sigma model system for a particular value of the coupling
constant), the corresponding field equations have very
special properties: this issue will be discussed in the
following sections.
Each of (23)–(26) corresponds to a combination of

Einstein’s equations so that the second derivatives are
isolated in each one of them. The relations that lead to
(23)–(26) are, respectively,

E3
3 − E2

2 −
1

2
cotð2γÞ ∂E

2
2

∂γ ¼ 0 ð27Þ

1

sinð2γÞ
∂E1

1

∂γ ¼ 0 ð28Þ

E3
3 þ 2E2

2 þ cotð2γÞ ∂E
2
2

∂γ ¼ 0 ð29Þ

E0
0 ¼ 0: ð30Þ

The fact that no other equation regarding the matter of
degrees of freedom (d.o.f.) appears, it is owed to the clever
selection of an ansatz for the Skyrme field, (7), that makes
the relevant equations satisfied identically. Therefore, we
are left with a system consisting of three second-order,
ordinary differential equations (ODEs) and a constraint
equation involving only first-order derivatives. This means
that we have just two physical d.o.f.; for a formal counting

BIANCHI IX COSMOLOGIES IN THE EINSTEIN-SKYRME … PHYS. REV. D 99, 044035 (2019)

044035-5



of the physical d.o.f. in constrained systems, we refer the
reader to [60,61]. Hence, it is expected that the system can
be reduced—upon satisfaction of the constraint—to two
second order (nonautonomous, in general) ODEs.
One way to do so is by solving the constraint equa-

tion (26) algebraically with respect to the lapse N and
substitute to the rest three equations (23)–(25). At that
point, the resulting system can be solved algebraically with
respect to just two of the three accelerations involved. The
third corresponds to a gauge d.o.f. The ensuing equations
are extremely complicated. However, in the special case,
where λ̄ ¼ Λ ¼ 0 it is interesting to note that a Lie-point

symmetry is present, which also exists for the vacuum case.
It is worth to remark here that such a case is still very
interesting since it corresponds to the Einstein nonlinear
sigma model system. The symmetry is broken by the
general Skyrme field, but under the previous choice for
the parameters, it is reinstated.
So, for the particular case λ̄ ¼ Λ ¼ 0, if we follow

this recipe: (a) solve the constraint (26) algebraically
for N, (b) substitute into (23)–(25), and (c) choose the
redundant d.o.f. to be some function of time t, i.e., fix the
gauge [in our case, we use ΩðtÞ ¼ t], then we obtain
the system

β̈þ ¼
�

−3K̄ðe4
ffiffi
3

p
β− þ 1Þe6βþþ2

ffiffi
3

p
β− − 12e4

ffiffi
3

p
β−

K̄e6βþþ6
ffiffi
3

p
β− þ K̄e6βþþ2

ffiffi
3

p
β− þ e4

ffiffi
3

p
β−ðK̄e12βþ þ 2Þ þ 2e12βþþ8

ffiffi
3

p
β− þ 2e12βþ

− 2_βþ þ 2

�
ð_β2þ þ _β2− − 1Þ ð31Þ

β̈− ¼
� ffiffiffi

3
p

e6βþðe4
ffiffi
3

p
β− − 1ÞðK̄e2

ffiffi
3

p
β− þ 4e6βþþ4

ffiffi
3

p
β− þ 4e6βþÞ

K̄e6ðβþþ
ffiffi
3

p
β−Þ þ K̄e6βþþ2

ffiffi
3

p
β− þ e4

ffiffi
3

p
β−ðK̄e12βþ þ 2Þ þ 2e12βþþ8

ffiffi
3

p
β− þ 2e12βþ

− 2_β−

�
ð _β2þ þ _β2− − 1Þ ð32Þ

which has the obvious Lie point symmetry generator ∂t
since it is autonomous. We have to note that here 1 − _β2þ −
_β2− ≠ 0 or else the lapse function becomes zero.

B. The minisuperspace Lagrangian

As far as the general system is concerned, if one
substitutes the ansatz for the line element and the
Skyrme field in the original action (1) and keep only the
dynamical d.o.f., we can obtain the minisuperspace
Lagrangian,

L ¼ 3e−3Ω

κN
ð_β2þ þ _β2− − _Ω2Þ − NVðβþ; β−;ΩÞ; ð33Þ

where

Vðβþ; β−;ΩÞ

¼ 1

κ

�
1

4
ðe4βþ−4

ffiffi
3

p
β−−Ω þ e4βþþ4

ffiffi
3

p
β−−Ω þ e−8βþ−ΩÞ

þ K̄
8
ðe−2βþ−2

ffiffi
3

p
β−−Ω þ e−2βþþ2

ffiffi
3

p
β−−Ω þ e4βþ−ΩÞ

þ λ̄

32
ðe2βþþ2

ffiffi
3

p
β−þΩ þ e2βþ−2

ffiffi
3

p
β−þΩ þ eΩ−4βþÞ

þ Λe−3Ω
�

ð34Þ

is the potential function of the system.
It can be easily verified that this Lagrangian reproduces

correctly the dynamical evolution of the corresponding
gravitational system; i.e., its Euler-Lagrange equations are

equivalent to (23)—(26). The K̄ ¼ −4, λ̄ ¼ 0 case obvi-
ously corresponds to the pure Bianchi IX model with a
cosmological constant. Cosmological Lagrangians of this
form can be associated with pseudo-Euclidean generalized
Toda systems [62–64]. Euclidean Toda systems are exten-
sively studied in the literature, but not so many results are
available in the pseudo-Euclidean case. However, there
exist certain conditions under which a system of this form
can be characterized as integrable [64]. This is not the case
for the fully anisotropic Bianchi type IX in vacuum and as
well for the more general system described by (33).
Nevertheless, for the vacuum case, it has been shown in
[17] that one can put in use nonlocal conserved charges to
show that enough independent commuting phase space
functions exist so as to characterize the system (at least
locally) as Liouville integrable. Something which is in
accordance with the result of [16].
Unfortunately, the explicit form of these functions

cannot be known (for all of them) without the solution
of the original system. Thus, making their existence of little
practical use. The same logic can be followed here to see
that the matter content that we assume does not affect this
property. The existence of the nonlocal conserved charges
(and their Poisson algebra) is associated with conformal
Killing vectors (and their Lie algebra) of the minisuper-
space metric that we can read out of the Lagrangian (33).
The latter—due to the adopted ansatz for the Skyrme
field—has the same kinetic term as the vacuum case.
Hence, the existence of the same number of nonlocal
conserved charges is guaranteed, even though their form
will be different due to the change of the potential part.
Later in our analysis, we use such a nonlocal charge in a
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special case of the system, in order to perform a convenient
reduction for our study.

IV. THE ISOTROPIC CASE β+ = β− = 0

In this case, where the scale factor matrix (15) is
isotropic and the corresponding minisuperspace
Lagrangian reads

L ¼ −
3e−3Ω _Ω2

κN
−
N
κ

�
3

8
ðK̄ þ 2Þe−Ω þ 3λ̄eΩ

32
þ Λe−3Ω

�
:

ð35Þ

The corresponding field equations just reduce to

3

8
ðK̄ þ 2Þe2Ω þ Λþ 3

32
λ̄e4Ω −

3 _Ω2

N2
¼ 0 ð36Þ

N3ð4ðK̄ þ 2Þe2Ω þ 32Λ − λ̄e4ΩÞ − 64 _N _Ω

þ Nð64Ω̈ − 96 _Ω2Þ ¼ 0: ð37Þ

This is a system of zero physical d.o.f. or a pure gauge
system. We have one scale factor and one constraint
equation; thus, the dimension of the reduced physical
space is 1 − 1 ¼ 0. This means that the solution can be
obtained without integration, but simply algebraically, by
solving (36) with respect to N, which yields

N ¼ 4 _Ω
ð2ðK̄ þ 2Þe2Ω þ 1

2
λ̄e4Ω þ 16Λ

3
Þ1=2 : ð38Þ

Substitution of (38) into the remaining spatial equation for
Ω, (37), leads to the latter being satisfied identically. The
line element that corresponds to this solution is

ds2 ¼ −
16

2ðK̄ þ 2Þe2Ω þ 1
2
λ̄e4Ω þ 16Λ

3

dΩ2

þ e−2Ωðdγ2 þ dθ2 þ dϕ2 þ 2 cos θdγdϕÞ; ð39Þ

where we see that the function Ω, which remains arbitrary
in the solution, is effectively converted into the time
variable.
Solution (39) can of course be expressed in a cosmo-

logical time, τ, NðτÞ ¼ 1 gauge if we perform the trans-
formation Ω ↦ τ for which

Z
NðtÞdt¼ τ⇒

Z
4

ð2ðK̄þ2Þe2Ωþ 1
2
λ̄e4Ωþ 16Λ

3
Þ1=2dΩ¼ τ:

ð40Þ

Under transformation (40)—and when Λ ≠ 0—the result-
ing line element reads

ds2 ¼ −dτ2 þ 1

32Λ

�
A0 cosh

�
2

ffiffiffiffi
Λ

p
τffiffiffi

3
p

�
− 6ðK̄ þ 2Þ

�

× ðdγ2 þ dθ2 þ dϕ2 þ 2 cos θdγdϕÞ; ð41Þ

where A0 ¼ �2ð9ðK̄ þ 2Þ2 − 24λ̄ΛÞ1=2. The cosmological
constant in (41) can be either positive or negative, choosing
of course appropriately the domain of definition of the
variable τ and of the parameters, so that the signature of the
metric remains ð−;þ;þ;þÞ.
In the Λ ¼ 0, K̄ ≠ −2 case, transformation (40) leads to

the simple expression

ds2 ¼ −dτ2 þ
�
1

8
ðK̄ þ 2Þτ2 − λ̄

4ðK̄ þ 2Þ
�

× ðdγ2 þ dθ2 þ dϕ2 þ 2 cos θdγdϕÞ: ð42Þ

Finally, if Λ ¼ 0 and K̄ ¼ −2, we find the line element

ds2 ¼ −dτ2 þ λ̄1=2

2
ffiffiffi
2

p τðdγ2 þ dθ2 þ dϕ2 þ 2 cos θdγdϕÞ;

ð43Þ

with the scale factor being linear in τ. Solutions (41) and
(42) were both originally found and analyzed in [59].
For line element (41), we calculate the Ricci scalar,

which reads

R ¼
4ΛðA0 coshð2

ffiffiffi
Λ

p
τffiffi

3
p Þ þ 12Þ

A0 coshð2
ffiffiffi
Λ

p
τffiffi

3
p Þ − 6ðK̄ þ 2Þ

: ð44Þ

From the latter, we observe that a curvature singularity is

avoided when Λ > 0, if K̄ < −2 and Λ ≤ 3ðK̄þ2Þ2
8λ̄

. Also
requiring of course that the space-time metric has a
Lorentzian signature. On the contrary, when Λ < 0 and
the dependence on τ is periodic, there is no appropriate
range of values for the parameters so that a singularity
can be avoided (given of course that due to the
Skyrme coupling we need to have λ̄ > 0). However when
Λ < 0, then we have a cyclic solution of the form

aðτÞ ¼ a0 þ a1 cosð2
ffiffiffiffiffi
jΛj

p
τffiffi

3
p Þ, around the Einstein static sol-

ution a0. Solutions of that form have been derived and
studied in the case of closed Friedmann–Lemaître–
Robertson–Walker metric and in the presence of ghost
fields, for more details, see [65,66].
The scalar curvatures for the space-times characterized

by (42) and (43) are

RΛ¼0 ¼
6ðK̄ þ 2ÞðK̄ þ 4Þ
ðK̄ þ 2Þ2τ2 − 2λ̄

ð45Þ

and
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RΛ¼0;K̄¼−2 ¼
3

ffiffiffi
2

p

λ̄1=2τ
; ð46Þ

respectively. From the above expressions, we can observe
the existence of a curvature singularity at a finite time in the
first case and at the origin τ ¼ 0 at the second.

V. THE LRS CASE

Here we study configurations where at least some
isometry is present in the model.

A. A static solution when β+ = � 1ffiffi
3

p β−
In the general case where we have all the parameters

present, we can derive a simple static solution by assuming
that βþ, β− and Ω are all constants. Under this condition, it
is easy to derive

Λ ¼ 1

4
ðe4

ffiffi
3

p
β− þ 2Þ2e4β−ffiffi

3
p þ2Ω ð47aÞ

λ ¼ 8ðe4
ffiffi
3

p
β− þ 2Þe8β−ffiffi

3
p −2Ω ð47bÞ

K̄ ¼ −2ð4e4
ffiffi
3

p
β− þ e8

ffiffi
3

p
β− þ 2Þ ð47cÞ

βþ ¼ 1ffiffiffi
3

p β− ð47dÞ

and

Λ ¼ 1

4
ð2e4

ffiffi
3

p
β− þ 1Þ2e2Ω−28β−ffiffi

3
p ð48aÞ

λ ¼ 8ð2e4
ffiffi
3

p
β− þ 1Þe−20β−ffiffi

3
p −2Ω ð48bÞ

K̄ ¼ −2e−8
ffiffi
3

p
β−ð4e4

ffiffi
3

p
β− þ 2e8

ffiffi
3

p
β− þ 1Þ ð48cÞ

βþ ¼ −
1ffiffiffi
3

p β−; ð48dÞ

that solve the field equations (23)–(26). They are both cases
where there exists a local rotational symmetry. The first set
corresponds to b ¼ c in the scale factor matrix (15), while
the second to a ¼ c. The constants β− and Ω, with respect
to which all of the rest are parametrized, remain arbitrary in
the solution. What is more, it can be seen that they are both
essential for the geometry; i.e., they cannot be absorbed by
a space-time diffeomorphism. The latter becomes evident
by studying the curvature scalars. For example, for the first
set (47), it is easy to derive that the Ricci and Kretschmann
K ¼ RκλμνRκλμν scalars are

R ¼ −
1

2
ðe4

ffiffi
3

p
β− − 4Þe4β−ffiffi

3
p þ2Ω and

K ¼ 1

4
ð−24e4

ffiffi
3

p
β− þ 11e8

ffiffi
3

p
β− þ 16Þe8β−ffiffi

3
p þ4Ω; ð49Þ

respectively. Obviously, the last two relations are solvable
with respect to β− and Ω; hence, the two constants are
essential for the geometry and cannot be absorbed inside
the metric. The corresponding line elements are given by

(19) with a ¼ e
4β−ffiffi

3
p −Ω, b ¼ c ¼ e−

2β−ffiffi
3

p −Ω for the first case and

b ¼ e−
4β−ffiffi

3
p −Ω, a ¼ c ¼ e

2β−ffiffi
3

p −Ω for the second.

B. The equivalent minisuperspace system for β− = 0

When we set β− ¼ 0, we deal with a system where the
scale factors a and b in (21) are equal. The minisuperspace
Lagrangian that reproduces the field equation assumes the
form

L ¼ 3e−3Ω

κN
ð _β2þ − _Ω2Þ − N

κ

�
e−8βþ−Ω

4
þ e4βþ−Ω

2

þ K̄
4

�
e−2βþ−Ω þ 1

8
e4βþ−Ω

�

þ λ̄

16

�
1

2
eΩ−4βþ þ e2βþþΩ

�
þ Λe−3Ω

�
: ð50Þ

In the case where β− ¼ 0, we can reduce the system to a
single equation of motion for βþ. To this end, we can solve
the constraint equation algebraically with respect to NðtÞ
and obtain (for λ̄ ¼ Λ ¼ 0)

N2 ¼ 24e8βþ−2Ωð _Ω2 − _β2þÞ
2K̄e6βþ þ ðK̄ þ 4Þe12βþ þ 2

: ð51Þ

By having satisfied the constraint, the freedom of fixing the
gauge passes to one of the two remaining d.o.f., namely βþ
andΩ. If we chooseΩðtÞ ¼ t, and as we commented earlier
for the more general case, we are led to an autonomous
equation for βþ that reads

β̈þ ¼
�

6ðK̄e6βþ þ 2Þ
2K̄e6βþ þ ðK̄þ 4Þe12βþ þ 2

þ 2ð_βþ − 1Þ
�
ð1− _β2þÞ:

ð52Þ

The above equation has two obvious solutions βþ ¼ 0 and
βþ ¼ t. The first is the one corresponding to the isotropic
case and leads to the corresponding special case expressed
by (39); the latter is rejected because it leads to a zero lapse
through (51). We remind here that the gauge is fixed by
setting ΩðtÞ ¼ t.
Since the equation is autonomous, it has an obvious Lie-

point symmetry with a generator ∂t and, as a result, it can
be transformed into a first order nonautonomous Abel
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equation by taking βþðtÞ ¼ s, t ¼ R
zðsÞds. The resulting

relation is

dz
ds

¼
�
2ðz − 1Þ − 6ðK̄e6s þ 2Þz

2K̄e6s þ ðK̄ þ 4Þe12s þ 2

�
ðz2 − 1Þ:

ð53Þ

a. Evolution of the anisotropic parameter βþðtÞ Let us
now study the evolution of the anisotropic parameter βþðtÞ
which satisfies Eq. (52). In order to do that, we study (52)
by numerical integration and its phase space.
The phase space fβþ; pβþg of Eq. (52) is presented in

Fig. 1 for three different values of a parameter K̄, that is,
K̄ ¼ −1, 0, 1, where pβþ ¼ _βþ. From the diagrams, it is
clear that the isotropic universe is an unstable solution, and
actually the critical point ðβþ; pβþÞ ¼ ð0; 0Þ it is a source
for Eq. (52).
We perform numerical simulations of Eq. (52) for initial

conditions close to the critical point ðβþ; pβþÞ ¼ ð0; 0Þ.
More specifically, we select the initial conditions
ðβþð0Þ; pβþð0ÞÞ ¼ ð10−3; 10−3Þ, and we perform the
numerical simulation for K̄ ¼ −1, 0, 1. In Fig. 2, the
evolution of βþðtÞ is presented, where we observe that
the final state of the solution is an anisotropic system.
Furthermore, from Fig. 3 where the evolution of pβþðtÞ is
presented, we conclude that the rate of anisotropy is steady.

1. The special case K̄ = 0, λ̄= 0, Λ= 0

In respect to the Skyrme coupling, this specific situation
that simplifies significantly (50), corresponds to K ¼ 4

κ and
λ ¼ 0. The resulting minisuperspace Lagrangian is

L ¼ 3e−3Ω

κN
ð _β2þ − _Ω2Þ − N

4κ
ðe−8βþ−Ω þ 2e4βþ−ΩÞ ð54Þ

FIG. 1. Phase portrait of Eq. (52) for K̄ zero, positive, and negative. We observe that the isotropic universe, i.e., βþ ¼ 0, pβþ ¼ 0, is a
source and there exists two surfaces as attractors. Moreover, we observe that the phase space is almost independent from the value of the
parameter K̄.

FIG. 2. Qualitative evolution of the anisotropic parameter βþðtÞ
given by the solution of Eq. (52) for initial conditions
ðβþð0Þ; pβþð0ÞÞ ¼ ð10−3; 10−3Þ. Solid line is K̄ ¼ 0, dashed line
for K̄ ¼ 1, and dotted line for K̄ ¼ −1.
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with N, βþ, and Ω being the d.o.f. of this problem. Since
this results into two spatial equations and one constraint, it
means that the physical space (consisting of variables that
are independent and not subjected to a gauge choice) has
one d.o.f. Hence, we expect that the system can be reduced
to a single second order ordinary differential equation.
It has been shown [67,68] for systems of this form, there

exist nonlocal conserved charges that can be constructed
out of conformal Killing vector fields of the minisuper-
space metric.
For instance, if we have a singular Lagrangian of the

form

L ¼ 1

2N
Gαβ _qα _qβ − NVðqÞ; ð55Þ

then a nonlocal conserved charge

I ¼ ξαpα þ
Z

NðωðqðtÞÞ þ fðqðtÞÞÞVðqðtÞÞdt ð56Þ

exists if ξα is a conformal Killing vector of the minisuper-
space metric Gαβ with a conformal factor ωðqÞ, i.e.,
LξGαβ ¼ ωðqÞGαβ. The function fðqÞ in (56) is the
conformal factor of the same vector field over the potential,

fðqÞ ¼ ξα∂αVðqÞ
VðqÞ and pα the momenta pα ¼ ∂L

∂ _q.
In what follows, for convenience and the simplification

of the resulting equations, we make a change in the
coordinates of the configuration space, so as to have the
minisuperspace metric in light cone form. Thus, we choose
to reparametrize ΩðtÞ, βþðtÞ with respect to new variables
uðtÞ and vðtÞ as

Ω ¼ uðtÞ
3

− vðtÞ; βþ ¼ uðtÞ
3

þ vðtÞ: ð57Þ

The corresponding minisuperspace metric and potential in
(55) are

Gμν ¼
4e3v−u

κ

�
0 1

1 0

�
ð58Þ

and

Vðu; vÞ ¼ e−3u−7v þ 2euþ5v

4κ
: ð59Þ

The equations of motion in the u, v variables read

−
4e3v−u _u _v

κN2
−
euþ5v

2κ
−
e−3u−7v

4κ
¼ 0 ð60aÞ

4e4v _N _v
N

−
1

4
N2e−2ðuþ3vÞð2e4ðuþ3vÞ − 3Þ

− 4e4vðv̈þ 3_v2Þ ¼ 0 ð60bÞ

16e2ðuþ5vÞ _N _uþN3ð7 − 10e4ðuþ3vÞÞ
þ 16Ne2ðuþ5vÞð _u2 − üÞ ¼ 0: ð60cÞ

In these variables, the configuration space vector ξ ¼
ð− 3

8
; 1
8
Þ leads to the conformal factors ω ¼ 3

4
and f ¼ 1

4
over

(58) and (59), respectively. Thus, we can write the nonlocal
conserved charge as

I ¼ e3v−u

2κN
ð _u− 3_vÞ þ 1

4κ

Z
NðtÞe−3uðtÞ−7vðtÞ þ 2euðtÞþ5vðtÞdt:

ð61Þ

It can be easily verified that dIdt ¼ 0 whenever the equations
of motion (and the constrained equation) of (55) with (58)
and (59) are satisfied. Of course the same holds for the
equations of motion of (54) when we make the inverse
transformation (57). In principle, it may be assumed that
the constant of motion (61) may not be of use due to the
existence of the indefinite integral, for the calculation of
which one would need to know the solution in terms of t.
However, we need to remind ourselves that at this point we
have not fixed the gauge. If we choose

N ¼
�
e−3u−7v þ 2euþ5v

4κ

�−1
; ð62Þ

then the originally nonlocal conserved charge assumes a
local form and becomes

FIG. 3. Qualitative evolution of the anisotropic parameter pþðtÞ
given by the solution of Eq. (52) for initial conditions
ðβþð0Þ; pβþð0ÞÞ ¼ ð10−3; 10−3Þ. Solid line is K̄ ¼ 0, dashed line
for K̄ ¼ 1, and dotted line for K̄ ¼ −1.We observer that pβþðtÞ
becomes a constant different from zero.
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I ¼ e3v−u

2κN
ð _u − 3_vÞ þ t: ð63Þ

In the gauge (62), whatever the solution is, the result of the
integral in the expression (61) is equal to the variable t. As a
result, we have a first order relation that we may use
together with the equations of motion. If we solve alge-
braically the equation I ¼ 0

3 with respect to _u and sub-
stitute into the constraint equation (60a) [always in the
gauge (62)], we can solve the latter with respect to uðtÞ,
which yields

uðtÞ ¼ −
1

4
ln

�
8κ2t
3_v

−
κ2

3_v2
− 2e8v

�
− v: ð64Þ

Substitution of (62) and (64) into the spatial equa-
tion (60b) [of course, after the satisfaction of the constraint
equation (60c) is satisfied when (60b) is also satisfied]
leads to the single second order nonautonomous equation

v̈ ¼ −
4_v2ðκ2 − 8κ2t _vþ 18e8v _v2Þ

κ2ð8t _v − 1Þ : ð65Þ

The latter can be simplified if we set v ¼ z−1=4 to

8κ2
�
2tz3 þ z4

_z

�
̈zþ 9_z3

z
¼ 0: ð66Þ

It can be seen now, with the substitution of (64) and (62)
into the constraint (60), we obtain again (65). The first
order nonlocal integral allowed us to extract from the
constraint equation the information about how u is related
to v through (64) in the gauge (62). The special solution
zspðtÞ ¼ 3

4κt leads through the inverse transformations to
βþ ¼ 0 and the pure isotropic case studied earlier.
In terms of vðtÞ, the Ricci scalar becomes

R ¼ 2e−4v −

ffiffiffi
3

p
_v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− κ2−8κ2t_vþ6e8v _v2

_v2

q

κ2 − 8κ2t _vþ 6e8v _v2
: ð67Þ

It is straightforward to calculate that Eq. (66) is invariant
under the action of one parameter point transformation with
the generator of the Lie symmetry vector

XL ¼ t∂t − z∂t: ð68Þ

The latter vector field is responsible for the invariant
solution zspðtÞ ¼ � 3

4κt. However, it can be used to reduce
by one the order of the differential equation or write

Eq. (66) as a time-independent form such that to study
the stability of the special solution zspðtÞ.
By applying the transformation zðtÞ ¼ ZðtÞ

t , t ¼ es in
(66), we remain with the time-independent second-order
differential equation,

− 8

�
k2Z4

�
2
dZ
ds

− Z

��
d2Z
ds2

¼ Z4ð9 − 16k2Z2Þ

þ dZ
ds

�
4Z3ð14k2Z2 − 9Þ þ 3

dZ
ds

�
3
dZ
ds

�
dZ
ds

− Z

�

− 2Z2ð8k2Z2 − 9Þ
��

; ð69Þ

which admits the special solution ZspðsÞ ¼ � 3
4k. Hence, by

performing the stability analysis of Eq. (69), we find that
the special solutions

ZspðsÞ ¼ � 3

4k
; Z0

spðsÞ ¼ 0 ð70Þ

are “attractors” for the solution of Eq. (69).
Consider the symmetry vector XL, from there we can

define the invariant functions v ¼ zt, u ¼ t2 _z, which we
use to reduce the differential equation in the following
rational first-order equation:

−8k2v4ðvþ uÞðvþ 2uÞ du
dv

¼ uð9u3 − 32k2v4u − 16k2v5Þ;
ð71Þ

whose solution can not be written in a closed form
expression.
Let us now use the method of singularity analysis to

write the solution of Eq. (66) in an algebraic form. That is
feasible because of the existence of the singular solution
zspðtÞ. We proceed by increasing by one order of Eq. (66)
with the change of variables

t ¼ 1

YðτÞ ; z ¼ −
1

Y2

dY
dτ

: ð72Þ

The resulting equation is a third-order, time-dependent
differential equation which admits the singular solution
YðτÞ ¼ Y0ðτ − τ0Þ−1. That is a singular solution which
means that a movable singularity exists for the third-order
differential equation. We continue by applying the
Ablowitz-Ramani-Segur algorithm [69], and we find that
the resonances are r ¼ −1, 0, 1.
Hence, we find that Eq. (66) under the change of

variables (72) passes the singularity test, and the algebraic
solution is given by the Right Painlevé series,

3Without the loss of generality, we can set I ¼ const: ¼ 0. A
nonzero value for the constant can be absorbed with a time
translation since t appears explicitly only in (61). The equations
of motion are autonomous in the gauge (62).
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YðτÞ ¼ Y0ðτ − τ0Þ−1 þ
X∞
i¼1

Yiðτ − τ0Þ−1þi; ð73Þ

with constants of integration parameters Y0;τ0, and Y1,
while first two nonzero coefficients Y2 and Y3 are derived
to be

Y2 ¼
Y2
1

3k2Y0

ð9Y2
0Y

2
1 þ k2Þ;

Y3 ¼
3Y5

1

2k4
ð7k2 þ 18ðY0Y1Þ2Þ: ð74Þ

We conclude that the field equations in the LRS case are
integrable; for the application of the Ablowitz-Ramani-
Segur algorithm in the Mixmaster universe, we refer the
reader in [19,20].

VI. QUANTUM DESCRIPTION

A. Hamiltonian formalism and quantum description

By having as a starting point Lagrangian (33), we can
proceed to write the Hamiltonian for the system with the
use of the Dirac Bergmann algorithm [70,71]. Without
getting into details, the well-known result in this case is that
you obtain a Hamiltonian H, which is a linear combination
of the constraints pN ≈ 0 and H ≈ 0,4

H ¼ NHþ uNpN: ð75Þ
The function uN is arbitrary and is not essential for the
theory. In our case, the Hamiltonian constraint H reads

H ¼ κe3Ω

12
ðp2

βþ þ p2
β− − p2

ΩÞ þ Vðβþ; β−;ΩÞ; ð76Þ

where pβþ=−
¼ ∂L

∂ _βþ=−
and pΩ ¼ ∂L

∂ _Ω
are the momenta of the

system.
By making the typical identification,

X ↦ X̂ ¼ X; pX ↦ p̂X ¼ −ii
∂
∂X ; ð77Þ

where X may be Ω, βþ, β−, or N, we can proceed with the
canonical quantization for the system. Dirac’s prescription
for a constrained system dictates to demand that the wave
function, Ψ, is invariant under the action of the constraints,
i.e., p̂NΨ ¼ 0 and ĤΨ ¼ 0. The first signifies that Ψ does
not depend on the variable N, while the second is the well-
known Wheeler-DeWitt equation. In order to address the
factor ordering problem raised by the kinetic term ofH, we
choose to use the conformal Laplacian operator,

L̂ ¼ ∇μ∇μ þ d − 2

4ðd − 1ÞR;

where R is the Ricci scalar of the minisuperspace
metric that we read from (33) and d is its dimension.5

The minisuperspace metric in our case is Gμν ¼
6
κ e

−3Ωdiagð−1; 1; 1Þ. As a result, we can write

Ĥ ¼ −
1

2
L̂þ Vðβþ; β−;ΩÞ

¼ −
1

2
∇μ∇μ −

1

16
Rþ Vðβþ; β−;ΩÞ; ð78Þ

where R ¼ 3κ
4
e3Ω.

In this way Ĥ is a linear, Hermitian (under appropriate
boundary conditions) operator. Additionally, due to the fact
of using the conformal Laplacian, the classical symmetry of
arbitrary reparametrizing the lapse function can be seen at
the quantum level as a conformal transformation of the
minisuperspace metric. What is more, the probability
amplitude

ρ ∼
ffiffiffiffiffiffiffi
−G

p
Ψ�ΨdΩdβþdβ−;

where G is the determinant of the minisuperspace metric,
transforms as a scalar under coordinate changes in the
configuration space variables. With the help of (78), the
Wheeler-DeWitt equation can be written as

−
κe3Ω

12

�∂2Ψ
∂β2þ þ ∂2Ψ

∂β2− −
∂2Ψ
∂Ω2

þ 3

2

∂Ψ
∂Ω

�
−
3κe3Ω

64
Ψ

þ Vðβþ; β−;ΩÞΨ ¼ 0: ð79Þ

B. Quantum description in the isotropic case

In this section, we proceed with the quantum description
of this one-dimensional system. The problem can be
simplified if we perform a reparametrization of the lapse
function N ↦ n ¼ NVðΩÞ, where VðΩÞ is the potential
part of Lagrangian (35). In this way, all the information of
the system is passed into the kinetic term, and the new
equivalent Lagrangian is

L ¼ 1

2n
hðΩÞ _Ω2 − n; ð80Þ

where

hðΩÞ ¼ −
3e−6Ωð12ðK̄ þ 2Þe2Ω þ 32Λþ 3λ̄e4ΩÞ

16κ2
: ð81Þ

4The “≈” symbol denotes a weak equality, i.e., quantities
which are zero themselves, but whose gradients with respect to
phase space variables are not.

5The Greek indices appearing in this section do not dictate
space-time coordinates, but correspond to the configuration space
variables Ω; βþ, and β−. The covariant derivatives ∇μ are
calculated with respect to the minisuperspace metric.

FABRIZIO CANFORA et al. PHYS. REV. D 99, 044035 (2019)

044035-12



The canonical quantization of a pure gauge system of this
form has been performed in [72]. By following the Dirac-
Bergmann algorithm [70,71], we are led to the classical
Hamiltonian

H ¼ nHþ unpn; ð82Þ

where un is an arbitrary function, while pn ≈ 0 and H ¼
1

2hðΩÞp
2
Ω þ 1 ≈ 0 are the constraints of the system, whose

quantum analogs are to annihilate the wave function. As
previously, we introduce the mapping

Ω ↦ Ω̂ ¼ Ω; n ↦ n̂ ¼ n;

pΩ ↦ p̂Ω ¼ −i
∂
∂Ω ; pn ↦ p̂n ¼ −i

∂
∂n ;

and according to Dirac’s prescription quantizing con-
strained system, we require p̂nΨ ¼ 0 and ĤΨ ¼ 0. For
the kinetic term of the Hamiltonian, we use the one-
dimensional equivalent of the Laplacian, i.e., the
Hermitian operator

Ĥ ¼ −
1

2μðΩÞ
d
dΩ

�
μðΩÞ
hðΩÞ

d
dΩ

�
þ 1; ð83Þ

where hðΩÞ is given by (81) and μðΩÞ ¼ ð−hðΩÞÞ1=2 is the
measure function. Under operator (83), the solution to the
Wheeler-DeWitt equation ĤΨðΩÞ ¼ 0 is [72]

ΨðΩÞ ¼ C1e
ii
ffiffi
2

p R ffiffiffiffiffiffiffiffiffiffi
−hðΩÞ

p
dΩ þ C2e

−ii
ffiffi
2

p R ffiffiffiffiffiffiffiffiffiffi
−hðΩÞ

p
dΩ; ð84Þ

where C1, C2 are the constants of integration.

C. Two scale factors (β− = 0).

In the case where we take β− ¼ 0, the Dirac-Bergmann
algorithm yields the Hamiltonian constraint

H ¼ 1

12
e3Ωðp2

βþ − p2
ΩÞ þ V2d ≈ 0; ð85Þ

where

V2d ¼
1

2κ

�
e−8βþ−Ω

2
þ e4βþ−Ω

�
þ Λe−3Ω

κ

þ K̄
4κ

�
e−2βþ−Ω þ e4βþ−Ω

2

�

þ λ̄

16κ

�
e2βþþΩ þ eΩ−4βþ

2

�
ð86Þ

is the corresponding potential for the two-dimensional case.

By putting in use the Laplacian so as to express the kinetic
term of (85) in its quantum counterpart Ĥ ¼ − 1

2
∇μ∇μþ

V2d, the Wheeler-DeWitt equation ĤΨ ¼ 0 reads

κe3Ω

12

�∂2Ψ
∂Ω2

−
∂2Ψ
∂β2þ

�
þ V2dΨ ¼ 0: ð87Þ

1. The K̄ = λ̄ =Λ= 0 case

The corresponding Wheeler-DeWitt equation, under the
conditions K̄ ¼ λ̄ ¼ Λ ¼ 0, is

κe3Ω

12

�∂2Ψ
∂Ω2

−
∂2Ψ
∂β2þ

�
þ 1

2κ

�
1

2
e−8βþ−Ω þ e4βþ−Ω

�
Ψ ¼ 0:

ð88Þ

VII. CONCLUSIONS AND PERSPECTIVES

The dynamical properties of the Bianchi IX cosmology
with three independent scale factors for the Einstein-SUð2Þ
Skyrme have been studied. The generalized hedgehog
approach in a sector with a unit Baryonic charge provides
with an ansatz for the Skyrmion with the remarkable
property that the matter field equations are automatically
satisfied for any Bianchi IX metric. This allows us to find
nontrivial exact solutions in which the Bianchi IX cosmol-
ogy is sourced by a topological soliton. Because of the fact
that the complete set of coupled Einstein-Skyrme field
equations in the above mentioned nontrivial topological
sector can be reduced to three dynamical equations for the
three Bianchi IX scale factors, one can derive a minisuper-
space action. This important property allows us to analyze
in detail the classical integrability properties of the Bianchi
IX metric in the Einstein-Skyrme system. Especially, it has
been shown that the LRS case is integrable. Moreover, it is
possible to derive the Wheeler de-Witt equation for the
Bianchi IX metric in the Einstein-Skyrme cosmology in
which all the effects of the Skyrmion are encoded in an
effective potential. These results open the possibility to
study the cosmological consequences of topological sol-
itons in a model which is very relevant from the phenom-
enological point of view.
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APPENDIX A

The three four vectors that make up Rμ ¼ Ri
μti are

calculated to be
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R1
μ ¼

�
0;
1

2
sinϕ; 0;−

1

2
sin θ cosϕ

�
ðA1aÞ

R2
μ ¼

�
0;−

1

2
cosϕ; 0;−

1

2
sin θ sinϕ

�
ðA1bÞ

R3
μ ¼

�
0; 0;

1

2
;
1

2
cos θ

�
: ðA1cÞ

The ti satisfies an algebra isomorphic to the one
constructed by the 1-forms ωα in (17)

½ti; tj� ¼ −2ϵijktk; ðA2Þ
which explains the compatibility of the equations of
motion. It is well known that there is a (two to one)
correspondence between the SUð2Þ group related with the
matter content and the SOð3Þ group of the space-time
isometries. What is more, with the ansatz for the Skyrme
field that we adopt here, the three Ri

μ of (A1) are multiples
of the Cartan forms ωα (17), with an interchange in the γ, ϕ
variables. This difference in γ and ϕ is not of importance;
we could have taken our ansatz with γ ↔ ϕ and be led to
the same results but with a topological charge B ¼ −1
instead of B ¼ þ1.

APPENDIX B

Here we discuss why the Skyrme field equations are
identically satisfied [with the ansatz defined in Eqs. (4), (5),
(6), (7), and (8) on any Bianchi IX metric identically].
Let us consider the following slightly modified ansatz

the SUð2Þ scalar UðxμÞ:
U�1 ¼ Y0ðxμÞI � YiðxμÞti; ðY0Þ2 þ ðYiÞ2 ¼ 1; ðB1Þ
where I is the two-dimensional identity matrix and Yμ is
parametrized as

Y0 ¼ cos α; Yi ¼ ni sin α; ðB2Þ

where

n1 ¼ sinΘ cosΦ; n2 sinΘ sinΦ; cosΘ: ðB3Þ

In what follows, we denote the space-time coordinates with
the variables xμ ¼ ðt; θ;ϕ; γÞ and adopt the following
ansatz for the Skyrmion (see [54–56] and references
therein):

c1Φ ¼ γ þ ϕ

2
; tanðc2ΘÞ ¼

cotðθ
2
Þ

cosðγ−ϕ
2
Þ ;

tanðc3αÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2Θ

p

tanðγ−ϕ
2
Þ ; ðB4Þ

Rμ ¼ U−1∂μU ¼ Ri
μti; cj ∈ R; ðB5Þ

where the cj are real parameters to be determined solving
the Skyrme field equations on a generic Bianchi IX space-
time with three independent scale factors.
Then, one can see that the three Skyrme field equations

in Eq. (2a) with the ansatz defined in Eqs. (B1)–(B5) are
satisfied if and only if

cj ¼ 1; j ¼ 1; 2; 3;

namely

Σj ¼ 0 ∀ j ¼ 1; 2; 3 ⇔ cj ¼ 1; j ¼ 1; 2; 3:

Thus, the only possible ansatz with the properties that the
Skyrme field equations are satisfied identically in the most
general Bianchi IX metric is the one in Eqs. (B1)–(B5) with
cj ¼ 1 for j ¼ 1, 2, 3 (which, of course, is the one
considered in the main text).
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