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In this paper we will show an ultraviolet-infrared connection for ghost-free infinite derivative field
theories where the Lagrangians are made up of exponentials of entire functions. In particular, for N-point
amplitudes a new scale emerges in the infrared from the ultraviolet, i.e., Meff ∼Ms=Nα, where Ms is the
fundamental scale beyond the Standard Model and α > 0 depends on the specific choice of an entire
function and on whether we consider zero or nonzero external momenta. We will illustrate this by first
considering a scalar toy model with a cubic interaction and subsequently a scalar toy model inspired by
ghost-free infinite derivative theories of gravity. We will briefly discuss some phenomenological
implications, such as making the nonlocal region macroscopic in the infrared.
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I. INTRODUCTION

It has been known that infinite derivative field theories
can give rise to nonlocal physics, which has been studied
extensively in [1–10], in the context of string field theory
and p-adic string [11–15], and in the context of gravity
[16–19]. The main properties of such theories can be
captured by form factors, which are not polynomials in
the derivatives but transcendental entire functions, which
ensures the ghost-free condition at the perturbative level;
see Refs. [17,19–24]. Since an entire function is defined as
a function which has no poles in the complex plane, no new
degrees of freedom (DOF) arise other than the standard local
DOF. Typically, such theories have a smooth infrared (IR)
limit from the ultraviolet (UV) below the scale of nonlocality
given byMs ≤ Mp, whereMp ¼ 1.2 × 1019 GeV is the four-
dimensional Planck mass.
It has been earlier shown that the presence of such form

factors could improve the UV behavior of the theory, and
this has stimulated a deeper investigation of these models
from both a physical and a mathematical point of view [2].
In Refs. [3,4,6], the authors have studied nonlocality in the
context of gauge theories and ghost-free gravity in four
dimensions [16–18,24,25] around Minkowski spacetime
and in (anti–)de Sitter background [19]. Recently, the

three-dimensional version of a ghost-free, infinite deriva-
tive theory of gravity (IDG) has been constructed [26].
In the context of gravity, the propagator is suppressed

by the exponential of an entire function in order not to
introduce any new dynamical DOF other than the massless
graviton as in the Einstein general relativity. From a
classical point of view, the presence of such form factors
can improve the short-distance behavior of the theory by
resolving black hole [17,19,27–39], extended objects [40]
and cosmological singularities [16,41–44], while, from a
quantum point of view, it is believed that nonlocality can
improve the UV behavior of the theory [7,18,25].
In Ref. [9] it was shown that theAbelian Higgs potential is

free from instabilities as the β function vanishes for energies
above the nonlocal scale, p2 > M2

s , and nonlocal extensions
of finite gauge theories have been studied in Refs. [5,6].
In Refs. [7,45] the authors have shown that the 2 ↔ 2

scattering amplitude can be exponentially suppressed above
the nonlocal scale. It was also shown that at finite temper-
atures these nonlocal theories exhibit properties very similar
to the Hagedorn gas [46–48], especially for a p-adic type
action. In the cosmological context such nonlocal theories
have shown an interesting possibility for explaining cosmic
inflation [49].
The aim of this paper is to show that a new scale emerges

in ghost-free infinite derivative field theories in the IR. We
will illustrate this in simple scalar toy models by computing
N-point amplitudes and understanding their behavior for
a large number of external legs, N ≫ 1. We will consider
both nonzero and zero external momenta. In the former case,
we will be in the physical scenario of scattering amplitudes,
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while the latter case can be applied to study the interaction
among the constituents of bound systems, like condensates,
which can be seen as made up of off-shell quanta. We will
show that the larger the number of particles participating in
the interaction process, the more exponentially suppressed
will be the amplitude. Such a phenomenon can be also
interpreted as if the nonlocal scale smoothly shifts as a
function of N, Ms → Ms=Nα, where α > 0 depends on the
formof the entire function,whichwewill discuss below. This
feature highlights an intriguing connection between UVand
IR, such that the length scale of nonlocality can swell up to
larger scales, as M−1

s → NαM−1
s , for N ≫ 1.

Such a scaling behavior also happens in string theory,
i.e., in the context of a fuzzball, where the compact
gravitational system made up of branes and strings can
swell up to scales larger than the Schwarzschild radius [50].
In fact, such a swelling effect in the case of nonlocality has
already been postulated from entropic arguments in the
context of gravity—in order to maintain the area law of
gravitational entropy, where the effective scale of nonlocality
shifts toMeff ∼Ms=

ffiffiffiffi
N

p
; see Ref. [33]. Here we will obtain

such a scaling relationship via scattering amplitudes.
In Sec. II, we will introduce infinite derivative field

theories. In Sec. III, as a warm-up exercise, we will compute
N-point amplitudes for amassless scalar fieldwith a nonlocal
kinetic term and a standard cubic interaction. In Sec. IV,
we will discuss N-point amplitudes in a scalar toy model
inspired by IDG, which can mimic the graviton self-
interaction up to cubic order in the metric perturbation
around the Minkowski background. In Sec. V, we will
discuss our results and present the conclusions.

II. INFINITE DERIVATIVE FIELD THEORY

Let us consider a simple model of a self-interacting
scalar field [8,10]1

S ¼ 1

2

Z
d4xϕðxÞefð□sÞð□ −m2ÞϕðxÞ −

Z
d4xVðϕðxÞÞ;

ð1Þ

where fð□sÞ is an entire function, □s ≡□=Ms with □

being the flat d’Alembertian and Ms is the scale of
nonlocality at which new physics should manifest, m is
the mass of the field ϕðxÞ and VðϕðxÞÞ is the potential
whose functional form can be either local or nonlocal,
as we will see below. Note that the exponential form factor
in Eq. (1) can be moved from the kinetic to the inter-
actionterm by making the following field redefinition:
ϕ̃ ¼ e

1
2
fð□sÞϕ. From this last observation, it is clear that

nonlocality plays a crucial role only when the interaction
is switched on [10]. However, below the cutoff scale Ms
the theory smoothly interpolates to a local theory, recov-
ering all its predictions.2

As discussed in Refs. [6,10], in infinite derivative field
theories, amplitudes and correlators are well defined in
the Euclidean signature for momenta p2 ≥ M2

s . All the
amplitudes need to be defined in the Euclidean space from
the beginning. Also from a physical point of view, the
Minkowski signature is not a sensible choice beyond the
nonlocal scale, as for □ ≥ M2

s, causality is violated.
However, there is nothing which prohibits probing such
a system with a large number N of on-shell states with
□ ≪ M2

s . In this case we need to compare Nαp2 with the
cutoffMs, where α depends on the choice of fð□sÞ; see the
discussions below. Furthermore, once the propagator and
the vertices are dressed by including all quantum correc-
tions, no divergences emerge in s, t, u channels [10,45].
We will show this explicitly here as well.

III. SCALAR FIELD WITH CUBIC VERTEX
INTERACTION

As a warm-up exercise, let us consider a simple toy
model of an infinite derivative massless scalar field with
cubic interaction and form factor efð□sÞ ¼ eð−□=MsÞn. The
corresponding Euclidean action reads

S ¼
Z

d4x

�
1

2
ϕðxÞeð−□s=M2

sÞn□ϕðxÞ þ λ

3!
ϕ3ðxÞ

�
; ð2Þ

where λ is the coupling constant, and the Euclidean bare
propagator is given by

ΠðpÞ ¼ e−ðp2=M2
sÞn

p2
; ð3Þ

which is exponentially suppressed in the UV regime,
p2 ≫ M2

s , with p2 ¼ ðp4Þ2 þ p⃗2 > 0 being the square of
the 4-momentum in an Euclidean signature p≡ ðip4; p⃗Þ.
The bare vertex is just a constant:

Vðk1; k2; k3Þ ¼ λ: ð4Þ

Dressing the propagators.—As in local quantum field
theory, the dressed propagator takes into account of all
possible infinite quantum corrections coming from higher

1Throughout the paper we will use the mostly positive
metric convention, ð−þþþÞ, and work with natural units,
ℏ ¼ 1 ¼ c.

2Note that we work with nonlocal operators which are analytic
functions of □. However, in the literature there are also other
examples of nonlocal field theories in which the form factors
are nonanalytic functions of the d’Alembertian, like 1=□ and
lnð□=M2

sÞ; see Refs. [51–56].
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loop contributions. For the action in Eq. (2), it is given
by [7,10,25]3

ΠdressðpÞ ¼
e−ðp2=M2

sÞn

p2 þ ΣðpÞe−ðp2=M2
sÞn ; ð5Þ

where the self-energy is defined as

ΣðpÞ ¼ λ2
Z

d4k
ð2πÞ4

e−ðk2=M2
sÞne−ððk−pÞ2=M2

sÞn

k2ðk − pÞ2 : ð6Þ

Let us examine the simpler case n ¼ 1, for which we can
explicitly give analytic results for the one-loop self-energy
contribution [10]:

Σð1ÞðpÞ ¼ λ2

16π2

�
2M2

s

p2
ðe−p2=2M2

s − e−p
2=M2

s Þ

þEi

�
−

p2

2M2
s

�
− Ei

�
−
p2

M2
s

��
; ð7Þ

where

EiðxÞ ¼
Z

x

−∞
dt

et

t

is the so-called exponential integral function. The exact
expression for the self-energy at one loop in Eq. (7) is quite
complicated; however in the regime where the exponential
form factors are important, p2 ≫ M2

s , one can show that the
self-energy goes like e−p

2=M2
s and the dressed propagator

behaves like [10]

ΠdressðpÞ ¼
e−p

2=M2
s

p2 þ e−p
2=M2

s · e−p
2=M2

s
⟶
UV e−p

2=M2
s

p2
: ð8Þ

We would expect a similar scenario to hold for any powers
of□n, for n > 0. From Eq. (8), it is clear that for this model
the bare and dressed Euclidean propagators have the same
UV behavior; see Eq. (3). However, this is model depen-
dent, and this will not be guaranteed for other examples,
such as the one we would consider in Sec. IV.
Dressing the vertices.—The dressed vertex at one loop is

defined by replacing the bare vertex with a triangle made
up of three bare vertices and three internal propagators:

Vdressðk1; k2; k3Þ ¼ λ3
Z

d4k
ð2πÞ4Πðk1ÞΠðk2ÞΠðk3Þ: ð9Þ

In particular, in the UV region, k2i > M2
s , the dressed

vertex in Eq. (9) can be computed as follows:

Vdressðk1; k2; k3Þ⟶UV λ3e−
1
3
k2
1
=M2

s e−
1
3
k2
2
=M2

s e−
1
3
k2
3
=M2

s : ð10Þ

From Eq. (10), we note that the dressed vertex is not a
constant anymore, but it has acquired an exponentially
suppressed behavior in the high-energy regime.

A. N-point scattering amplitude

We now wish to compute N-point amplitudes, MN , for
the action in Eq. (2). Let us consider n ¼ 1 to start with, and
then we will generalize to generic powers of □. A generic
tree-levelN-point amplitude for the action in Eq. (2) will be
made of N external legs, N − 2 vertices and N − 3 internal
propagators; see Fig. 1. The simplest scattering amplitude
we can construct is a four-point diagram, whose behavior in
the UV regime is given by

M4⟶
UV

λ6
e−

5
3
p2=M2

s

p2
; ð11Þ

with p being the sum of the two ingoing (or, equivalently,
outgoing) momenta, p1 þ p2 ¼ p3 þ p4 ≡ p. Similarly,
by increasing the number of external legs to six, we can
consider a six-point amplitude as in Fig. 1,4 where our
convention is that all pi with i ¼ 1, 2, 3, 4 are ingoing,
while p5 and p6 are outgoing momenta. From the con-
servation law of the total 4-momentum, we have

p1 þ p2 þ p3 þ p4 ¼ p5 þ p6: ð12Þ

The six-point amplitude in the UV regime then reads

FIG. 1. Six-point amplitude for scalar cubic interaction. The
blobs correspond to dressed vertices.

3The dressed propagator in Eq. (5) has a more complicated
pole structure compared to the bare one. Indeed, the equation
p2 þ ΣðpÞe−ðp2=M2

sÞn ¼ 0 can have real solutions and an infinite
number of complex conjugate solutions. The one-loop dressed
propagator for the action in Eq. (2), besides infinite complex
conjugate poles, shows also the presence of a real ghost mode,
which may cause instabilities [10]. However, this feature is model
dependent; indeed for the gravitational toy model in Sec. IV the
dressed propagator has a massless pole, p2 ¼ 0, plus a stable
tachyon mode besides infinite complex conjugate poles, and no
ghosts [25].

4In principle, we can also consider more complicated dia-
grams, but in the large N limit all the correct features related to
the exponential form factors can be captured universally.
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M6⟶
UV

λ12
e
−5
3

ðp1þp2Þ2
M2
s e

−5
3

ðp1þp2þp3Þ2
M2
s e

−5
3

ðp1þp2þp3þp4Þ2
M2
s

ðp1þp2Þ2ðp1þp2þp3Þ2ðp1þp2þp3þp4Þ2
:

ð13Þ

For simplicity, we can make the following choice for the
incoming momenta:

jp1 þ p2j ¼ jp3 þ p4j≡ jpj; p⃗1 ¼ −p⃗2;

p⃗3 ¼ −p⃗4; ð14Þ
thus, the amplitude in Eq. (13) is roughly given by

M6 ∼
λ12

ð2!Þ2
e−

5
3
ð2ð1Þ2þ22Þp2=M2

s

p6
¼ λ12

ð2!Þ2
e−10p

2=M2
s

p6
; ð15Þ

where we have neglected the terms such as ðp4
3Þ2 and 2p4

3p
as 2p2 > ðp4

3Þ2, 2p4
3p, and this approximation becomes

even more justified for a very large number of external legs,
i.e., when N ≫ 1; see below. By adding two extra external
legs, p7 and p8, and making similar choices as in Eq. (14)
and neglecting the cross terms, one can see that the eight-
point scattering amplitude will behave as

M8 ∼
λ18

ð3!Þ2
e−

5
3
ð2ð12þ22Þþ32Þp2=M2

s

p10
¼ λ18

ð3!Þ2
e−

95
3
p2=M2

s

p10
: ð16Þ

By inspecting Eqs. (15) and (16), it is clear that by
increasing the number of external legs, the scattering
amplitude becomes even more exponentially suppressed.
We can now easily find the expression for an N-point
scattering amplitude, which will be roughly given by5

MN ¼ Vdressðp1; p2; p1 þ p2Þ
YN−2

i¼2

Πdressðp1 þ � � � þ piÞ

×
YN−3

j¼2

Vdressðp1 þ � � � þ pj; pjþ1; p1 þ � � � þ pjþ1Þ

× Vdressðp1 þ � � � þ pN−2; pN−1; pNÞ

⟶
UV λ3ðN−2Þ

½ðN − 2Þ=2�!2
e−

10
3
ð
PN−2

2
l¼1

l2−1
2
ðN−2

2
Þ2Þp2=M2

s

p2ðN−3Þ ; ð17Þ

where now the conservation law of the 4-momenta in
Eq. (12) and the choice in Eq. (14) generalize to

p1 þ p2 þ � � � þ pN−2 ¼ pN−1 þ pN ð18Þ
and

jpi þ piþ1j≡ jpj; p⃗i ¼ −p⃗iþ1; i ¼ 1;…; N − 3;

ð19Þ
and we have used the relation

2j2p2 ≫ ðp4
2jþ1Þ2; 2p4

2jþ1jp; ð20Þ

to neglect terms like ðp4
2jþ1Þ2 and 2p4

2jþ1jp, as j ≫ 1. Note
that the second set of equalities in Eq. (19) corresponds to
the choice of the center of mass frame for N − 2 incoming
particles; indeed, for two incoming particles we would only
have p⃗1 ¼ −p⃗2 and recover the usual relation between the
spatial part of the two incoming momenta in the case of a
four-point scattering amplitude.
The numeric series in Eq. (17) can be summed up and in

the limit N ≫ 1 reads

XN−2
2

l¼1

l2 ¼ NðN − 1ÞðN − 2Þ
12

⟶
N≫1

N3; ð21Þ

therefore, for a large number of interacting particles
the N-point amplitude in Eq. (17) shows the following
behavior:

MN ∼ λ0
e−N

3p2=M2
s

p2ðN−3Þ ¼ λ0
e−p

2=M2
eff

p2ðN−3Þ ; ð22Þ

where we have defined λ0 ≔ λ3ðN−2Þ=½ðN − 2Þ=2�!2 and in
the last step we have introduced the effective scale

Meff ∼
Ms

N3=2 : ð23Þ

Hence, from Eqs. (22) and (23) we have obtained that by
increasing the number of external legs, or in other words
the number of interacting particles, the scattering ampli-
tude becomes more exponentially suppressed. This feature
can be understood as follows: there is a transmutation of
scale under which the fundamental scale of nonlocality
Ms shifts towards lower energies, i.e., Meff ≪ Ms when
N ≫ 1. In this process, the nonlocal length and timescales
can be made much larger than the original scale of
nonlocality, i.e., M−1

s → N3=2M−1
s ; therefore its affect

can be felt in the IR. This phenomena of transmuting
the scale from UV to IR has been shown in the fuzzball
construction in string theory setup to resolve black hole
singularity and horizon [50].
The above calculations are performed for the form factor

e−□=M2
s , i.e., with n ¼ 1. We can generalize straightfor-

wardly the previous results to generic powers n of the
d’Alembertian, such as eð−□=M2

sÞn :

MN ∼ λ0
e
−10

3

�PN−2
2

l¼1
l2n−1

2
ðN−2

2
Þ2n
�
p2n=M2n

s

p2ðN−3Þ : ð24Þ

5The formula in Eq. (17) is valid for N even, but the analog
formula for N odd can be easily derived. However, in the large N
limit the results are the same and do not depend on the parity of
the number of legs.
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The numeric series in Eq. (24) can be expressed in terms of
the Faulhaber formula, which is given by [57]

XN−2
2

l¼1

l2n ¼ 1

2nþ 1

X2n
i¼0

ð−1Þi2nþ
�
1

i

�
Bi ·

�
N
2
− 1

�
2nþ1−i

;

ð25Þ
where Bi is the so-called Bernoulli number. The expression
in Eq. (25) seems rather complicated, but fortunately we are
only interested in the limit N ≫ 1, which gives

XN−2
2

l¼1

l2n⟶
N≫1

N2nþ1: ð26Þ

Hence, the N-point scattering amplitude for generic powers
n of the d’Alembertian will behave as

MN ∼ λ0
e−ðN2nþ1Þp2n=M2n

s

p2ðN−3Þ ¼ λ0
e−p

2n=M2n
eff

p2ðN−3Þ ; ð27Þ

where in this more general case the effective nonlocal scale
is defined as

Meff ∼
Ms

N
2nþ1
2n

¼ Ms

N1þ1=2n : ð28Þ

B. Zero external momenta

We now wish to ask a similar question but for a different
kind of amplitude, with zero ingoing and outgoing external
momenta. As done before, let us start when n ¼ 1 and
consider a tree-level diagram as the one in Fig. 1, but with a
different choice of the external momenta. For this kind of
diagram (with no loops) we cannot set all single momentum
equal to zero; otherwise, we would not get any exponential
contributions, but we will consider the following choice:

p1 þ � � � þ pN−2 ¼ pN−1 þ pN; ð29Þ

jpi þ piþ1j≡ jpj; i ¼ 1;…; N − 3; ð30Þ
and

pN ¼ −pN−1; pi þ piþ1 ¼ −ðpiþ2 þ piþ3Þ;
i ¼ 1;…; N − 5; ð31Þ

with on-shell conditions p2
i ¼ 0.

For the above choice of momentum distribution in
Eq. (31), the IR divergences from the denominators may
appear. However, they can be cured as in the standard
local field theory where nonlocality does not play any
role. Indeed they are just related to the fact that we are
working with a massless scalar field. Anyway, we are
interested in the regime where nonlocality in the propa-
gator becomes important and want to understand the role
played by the exponential form factors. In fact, in this
regime the tree-level N-point amplitude, in the limit
N ≫ 1, will be given by

MN⟶
N≫1

λ3ðN−2Þe−Np2=M2
s ¼ λ3ðN−2Þe−p2=M2

eff ; ð32Þ

where we have introduced the effective scale

Meff ∼
Msffiffiffiffi
N

p : ð33Þ

Hence, in the case of zero ingoing and outgoing external
momenta the total amplitude becomes more suppressed
for an increasing number of interacting particles, but by
comparing to the previous case [see Eq. (23)], the scaling
is different.
Furthermore, we can show that a similar transmutation

of the scale manifests also for different amplitudes, as for the
one-loop diagram of the kind in Fig. 2, known as the ring
diagram. In this case, given N external legs we have N
vertices and N internal propagators. Since we have a loop in
the diagram, we can now set all individual external momenta
to zero, and we can show that an N-point amplitude as the
one in Fig. 2, with pi ¼ 0, i ¼ 1;…; N, reads

FIG. 2. Ring diagram: one-loop six-point amplitude for scalar
cubic interaction. The blobs correspond to dressed vertices.

FIG. 3. The dashed blob represents the region in which the
nonlocal interaction takes place. The larger the number of
interacting particles, the larger will be the nonlocal region in
coordinate space and time.
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Mring;N ∼ λ3N
Z

d4k
ð2πÞ4

e−Nk2=M2
s

k2N

¼ λ3N
Z

d4k
ð2πÞ4

e−k
2=M2

eff

k2N
; ð34Þ

where the effective scale Meff coincides with the one in
Eq. (33). So far we have only considered the scaling
properties for n ¼ 1, but we can straightforwardly generalize
the above results to generic □

n. We can show that for an
N-point amplitude with zero external momenta, the scale of
nonlocality will transmute to

Meff ∼
Ms

N1=2n : ð35Þ

Therefore, for a system of N interacting particles the size
of the region, on which the nonlocal interaction happens,
increases as a function of N; see also Fig. 3.

IV. SCALAR TOY MODEL FOR INFINITE
DERIVATIVE GRAVITY

We now wish to consider a slightly more interesting
scenario of a scalar toy model, which can mimic the
graviton self-interaction in ghost-free IDG, up to cubic
orderOðh3Þ, where h is the trace h ¼ ημνhμν of the graviton
perturbation around the Minkowski background, which is
now mimicked by the scalar field ϕðxÞ.6 Such a model was

first studied in Refs. [25,45] and the corresponding
Euclidean action reads [25]7

S¼
Z

d4x

�
1

2
ϕðxÞeð−□=M2

sÞn□ϕðxÞþ λ

4
ϕðxÞ∂μϕðxÞ∂μϕðxÞ

þ λ

4
ϕðxÞ□ϕðxÞeð−□=M2

sÞnϕðxÞ

−
λ

4
ϕðxÞ∂μϕðxÞeð−□=M2

sÞn∂μϕðxÞ
�
: ð37Þ

The above action exhibits the following scaling symmetry:
ϕ → ð1þ ϵÞϕþ ϵ [25]. The Euclidean bare propagator for
this action is the same as the one in Eq. (3), while the bare
vertex is not a constant, but it is given by [25,45]

Vðk1; k2; k3Þ ¼
λ

4
ðk21 þ k22 þ k23Þðek

2n
1
=M2n

s þ ek
2n
2
=M2n

s

þ ek
2n
3
=M2n

s − 1Þ: ð38Þ
Even though the propagator is exponentially suppressed,
the vertex function is exponentially enhanced. We will
make explicit computations for the power n ¼ 1 and then
generalize to any power of □n.
Dressing the propagators.—Unlike the case of the cubic

interaction in Sec. III [see Eq. (2)], in the case of the above
action in Eq. (37), the UV behavior of the propagator is
slightly modified by loop quantum corrections, as shown in
Refs. [25,45]. First of all, the self-energy at one loop for the
action in Eq. (37) is given by

Σð1ÞðpÞ ¼
Z

d4k
ð2πÞ4

V2ðp; k; k − pÞ
k2ðk − pÞ2 e

− k2

M2
s e

−ðk−pÞ2
M2
s : ð39Þ

The above integral can be exactly computed and reads [25]

Σð1ÞðpÞ ¼ λ2

16π2

	
p4

8

�
log

�
p2

4πM2
s

�
þ γE − 2

�
þ e−p

2=M2
sM2

s

32p2

�
2M2

sp2ep
2=M2

s ðe2p2=M2
s − 1ÞEi

�
−
p2

M2
s

�

− ðep2=M2
s − 1Þ

�
M2

sp2ep
2=M2

s ðep2=M2
s − 1ÞEi

�
−

p2

2M2
s

�
þ ðe3

2
p2=M2

s − ep
2=2M2

s Þð2p4 þ 5M2
sp2 þ 4M4

sÞ

þ 2ep
2=M2

s ð7p4 þ 7M2
sp2 þ 2M2

sÞ−2ðp4 þ 3M2
sp2 þ 2M4

sÞ
��


; ð40Þ

7In Ref. [58], the authors computed N-point amplitudes for a simpler version of this action. However, the authors only considered the
powern ¼ 1 and the case of zero externalmomenta.Moreover, the choice theymade for themomentapi seems to be not physically sensible,
and it is different from ours in Eq. (31).

6In a full gravitational theory the calculations turn out to be more involved given the tensorial nature of the graviton field; indeed the
structure of the interaction vertex is less trivial than the scalar case. The simplest IDG action one can consider is given by [6,17,18,27]

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ Gμν

e−□=M2
s − 1

□
Rμν

�
; ð36Þ

where R is the Ricci scalar, Rμν is the Ricci tensor and Gμν ¼ Rμν − gμνR=2 is the Einstein tensor. In order to understand how the
nonlocal scale transmutes for anN-point amplitude with cubic graviton vertices, for instance, we need to expand the above action around
Minkowski background, gμν ¼ ημν þ hμν, at least up to order Oðh3Þ. The scalar part of the graviton, i.e., h, up to the cubic order is
exactly similar to our scalar action in Eq. (37); see for instance Appendix B in Ref. [25]. Moreover, we would need to dress both the
propagator and vertex. We believe that also in IDG the transmutation of the nonlocal scale will be very similar to what we are going to
discuss below. However, a concrete study would be required to ascertain our claim and we leave it for future investigation.
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where γE ¼ 0.57721… is the Euler-Mascheroni constant.
Although the above expression is very complicated, in the
UV regime the behavior of the one-loop self-energy turns
out to be simpler and is given by

Σð1ÞðpÞ⟶UV λ2e
3
2
p2=M2

s ; ð41Þ

where we have neglected numerical factors. With the help
of Eqs. (40) and (41), we can now compute the dressed
propagator, whose UV behavior is given by

ΠdressðpÞ⟶UV λ−2e−
3
2
p2=M2

s ; ð42Þ

which turns out to be even more exponentially suppressed
than the bare one, as we now have the factor 3=2 in the
exponent as compared to Eq. (3).
Dressing the vertices.—In Ref. [45], it was shown that

even though a bare vertex is exponentially enhanced the
dressed vertex can be exponentially suppressed, provided
higher order quantum loops, built with dressed propagators,
are taken into account. In fact, in the UV regime the dressed
vertex has the following form [45]:

VðlÞ
dressðk1; k2; k3Þ⟶

UV
λ3e

αðlÞ
k2
1

M2
s
þβðlÞ

k2
2

M2
s
þγðlÞ

k2
3

M2
s ; ð43Þ

where l is the number of loops or, in other words, the loop
order. If l ≥ 4, the dressed vertex becomes exponentially
suppressed; for instance, if l ¼ 4, we obtain [25,45]

αð4Þ ¼ βð4Þ ¼ γð4Þ ¼ −
11

27
; ð44Þ

so that the dressed vertex takes the following form in
the UV:

Vð4Þ
dressðk1; k2; k3Þ⟶

UV
λ3e

−11
27

�
k2
1

M2
s
þ k2

2

M2
s
þ k2

3

M2
s

�
: ð45Þ

A. N-point scattering amplitude

By assuming first the simple case, n ¼ 1, we will
compute the four-point scattering amplitude, with momenta
p1 þ p2 ¼ p3 þ p4 ≡ p, where we use both dressed
propagators and vertices, the latter at the loop order l ¼ 4:

M4 ¼ Vð4Þ
dressðp1; p2; pÞΠdressðpÞVð4Þ

dressðp; p3; p4Þ
⟶
UV

λ4e−ðð2Þ1127þ3
2
Þp2=M2

s ¼ λ4e−
125
54
p2=M2

s ; ð46Þ

which turns out to be exponentially suppressed in
Euclidean signature, where we have used the on-shell
condition p2

i ¼ 0. Let us now consider the dressed N-point
amplitude, with N > 4:

MN ¼Vð4Þ
dressðp1;p2;p1þp2Þ

YN−2

i¼2

Πdressðp1þ�� �þpiÞ

×
YN−3

j¼2

Vð4Þ
dressðp1þ�� �þpj;pjþ1;p1þ���þpjþpjþ1Þ

×Vð4Þ
dressðp1þ�� �þpN−2;pN−1;pNÞ; ð47Þ

when N ¼ 4 the product in the second line is just one, and
we recover the result in Eq. (46). By imposing the on-shell
conditions p2

i ¼ 0, and making the choices for momenta
as in Eqs. (19) and (20), the UV behavior of the N-point
amplitude in Eq. (47) reads

MN⟶
UV

λNe
−125

27

�PN−2
2

l¼1
l2−1

2
ðN−2

2
Þ2
�
p2=M2

s
: ð48Þ

By assuming the limit N ≫ 1, we obtain

MN⟶
N≫1

λNe−N
3p2=M2

s ¼ λNe−p
2=M2

eff ; ð49Þ
where we have introduced the effective scale

Meff ∼
Ms

N3=2 ; ð50Þ
which coincides with the scaling in Eq. (23).
So far we have only considered the n ¼ 1 case; the

calculations are complicated for generic powers of n of
the d’Alembertian. However, we can still understand the
problem by observing that the UV behaviors of dressed
propagators and vertices are proportional to e−cðp2=M2

sÞn ,
with some positive numerical factor, c > 0. Thus, we can
generalize our results to generic powers of n and show that
the scaling still coincides with the one obtained for the
action in Eq. (2) [see Eq. (28)]:

Meff ∼
Ms

N
2nþ1
2n

: ð51Þ

B. Zero external momenta

We now wish to compute the N-point amplitudes with
zero ingoing and outgoing external momenta. In the UV
when N ≫ 1, the amplitude follows the same behavior as
the one for the scalar action in Sec. III. Indeed, by dressing
both internal propagators and vertices as done in Eqs. (42)
and (45), we can show that we get a similar result as in
Eqs. (32) and (34). For instance, the ring diagram in Fig. 2
with zero external momenta reads

Mring;N ∼ λN
Z

d4k
ð2πÞ4 e

−125
54
Nk2n=M2n

s

⟶
N≫1

λN
Z

d4k
ð2πÞ4 e

−k2n=M2n
eff : ð52Þ

Thus, the scale of nonlocality now transmutes as in Eq. (35):

Meff ∼
Ms

N
1
2n

: ð53Þ
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V. DISCUSSIONS AND CONCLUSIONS

In this paper we have computed the N-point amplitudes
in the context of ghost-free infinite derivative scalar field
theories. We have worked with a massless scalar field and
studied two toy models in Eqs. (2) and (37). In particular,
we were interested in the limit in which the number of
particles,N, could be very large and we have shown that the
scale of nonlocality, Ms, transmutes to a lower value in the
IR depending on N and on the form of the entire function.
Note thatMs represents a physical cutoff beyond which it is
hard to probe the nature of physics, but with a large number
of interacting particles or quanta the nonlocal regime
becomes more accessible in the IR.
We believe that these results are new and bearing tangible

support to IDG theories, where the scale of nonlocality may
be a dynamical quantity and can be modified in the presence
of a large number of gravitons interacting nonlocally. Indeed,
this was argued from a completely different point of view in
Ref. [33], where the authors showed that, in order to preserve
the area law for the entropy of a gravitationally bound
system, the scaling in Eq. (33) has to hold. This result has

already played a key role in constructing nonsingular
compact objects [33,36].
Explicit computations of N-point amplitudes in the

context of nonlocal gravitational theories are still lacking;
at least the tensorial part of the cubic interaction would
be required, which also involves double summations. The
scalar part of the graviton, i.e., the trace h, follows exactly
the same as that of the massless scalar boson as discussed
above; see footnote 6. Further investigations will be carried
out in future works.
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