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In this article we present a class of relativistic solutions describing spherically symmetric and static
anisotropic stars in hydrostatic equilibrium. For this purpose, we consider a particularized metric potential,
namely, Buchdahl ansatz [Phys. Rev. D 116, 1027 (1959).] which encompasses almost all the known
analytic solutions to the spherically symmetric, static Einstein equations with a perfect fluid source,
including, in particular, the Vaidya-Tikekar and Finch-Skea. We developed the model by considering an
anisotropic spherically symmetric static general relativistic configuration that has a significant effect on the
structure and properties of stellar objects. We have considered eight different cases for generalized
Buchdahl dimensionless parameter K and analyzed them in a uniform manner. As a result it turns out that
all the considered cases are valid at every point in the interior spacetime. In addition to this, we show that
the model satisfies all the energy conditions and maintains the hydrostatic equilibrium equation. In the
frame work of anisotropic hypothesis, we consider analogue objects with similar mass and radii, such as
LMC X-4, SMC X-1, EXO 1785-248 etc. to restrict the model parameter arbitrariness. Also, establishing a
relation between pressure and density in the form of P ¼ PðρÞ, we demonstrate that equation of state (EoS)
can be approximated to a linear function of density. Despite the simplicity of this model, the obtained
results are satisfactory.
DOI: 10.1103/PhysRevD.99.044029

I. INTRODUCTION

In astrophysics, studying the structural properties and
formation of compact objects, such as neutron stars (NSs)
and quark stars (QSs), has attracted much attention to the
researchers in the context of General Relativity (GR), as
well as widely developing modified theories of gravity.
Crudely, compact stars are the final stages in the evolution
of ordinary stars which become an excellent test bed for the

study of highly dense matter in extreme conditions. In
recent times, a number of compact objects with high
densities have been discovered [1], which are often
observed as pulsars, spinning stars with strong magnetic
fields. Our theoretical understanding about compact stars is
rooted in the Fermi-Dirac statistics, which are responsible
for the high degeneracy pressure that holds up the star
against gravitational collapse and was proposed by Fowler
in 1926 [2]. Shortly afterwards, using Einstein’s special
theory of relativity and the principles of quantum physics,
Chandrasekhar showed that [3,4] white dwarfs are compact
stars, which are supported solely by a degenerate gas of
electrons, to be stable if the maximum size of a stable white
dwarf is approximately 3 × 1030 kg (about 1.4 times the
mass of the Sun).
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As of today, there is no comprehensive description of
extremely dense matter in a strongly interacting regime.
A possible theoretical description of such nuclear matter
in extreme densities may consist not only of leptons and
nucleons but also several exotic components in their
different forms and phases such as hyperons, mesons,
baryon resonances, as well as strange quark matter
(SQM). Therefore, a real composition of matter distribution
in the interior of compact objects remains a question for
deeper examination. The most general spherically sym-
metric matter distribution is usually thought to be an
isotropic fluid, because astrophysical observations support
isotropy. A possible theoretical algorithm was proposed by
Fodor [5] that can generate any number of physically
realistic pressure and density profiles for isotropic distri-
butions without evaluating integrals.
On one hand, when densities of compact objects are

normally above the nuclear matter density, one can expect
the appearance of unequal principal stresses, the so-called
anisotropic fluid. This usually means that two different
kinds of pressures inside these compact objects, viz., the
radial pressure and the tangential pressure [6]. This leads to
the anisotropic condition that the radial pressure compo-
nent, pr is not equal to the components in the transverse
direction, pt. This effect was first predicted in 1922 by J. H.
Jeans [7] for self-gravitating objects in the Newtonian
regime. Shortly later, in the context of GR, Lemaître [8] had
also considered the local anisotropy effect and showed that
one can relax the upper limits imposed on the maximum
value of the surface gravitational potential. Ruderman [9]
gave an interesting picture about more realistic stellar
models and showed that a star with matter density
(ρ > 1015 gm=cm3), where the nuclear interaction becomes
relativistic in nature, is likely to be anisotropic.
The inclusion of anisotropic effects on compact objects

was first considered by Bowers and Liang [10] in 1974.
They studied static spherically symmetric configurations
and analyzed the hydrostatic equilibrium equation, modi-
fied from of its original form to include the anisotropy
effects. Moreover, they provided the results by making a
comparison with the stars filled with isotropic fluid.
Heintzmann and Hillebrandt [11] have investigated neutron
star models at high densities with an anisotropic equation of
state and found for arbitrary large anisotropy there is no
limiting mass for neutron stars, though the maximum mass
of a neutron star still lies beyond 3–4 M⨀. A lot of works
have been carried out in deriving new physical solutions
with interior anisotropic fluids. Herrera and Santos [6]
reviewed and discussed possible causes for the appearance
of local anisotropy in self gravitating systems with exam-
ples of both Newtonian and general relativistic contexts. In
[12], a class of exact solutions of Einstein’s gravitational
field equations have been put forward for the existence of
anisotropy in star models. In addition, Harko and his
collaborators [13–17] have done some significant work

on anisotropic matter distribution. For new exact interior
solutions to the Einstein field equations, Chaisi and
Maharaj [18] have studied the gravitational behavior of
compact objects under strong gravitational fields. Very
recently, an analysis based on the linear quark equation of
state (EoS) for finding the equilibrium conditions of an
anisotropically sustained charged spherical body has been
revisited by Sunzu et al. [19]. The studies developed in
[20–25] form part of a quantity of works where the
influence of the anisotropic effect on the structure of static
spherically symmetric compact objects is analyzed. In favor
of anisotropy, Kalam et al. [26] have developed a star
model and showed that central density depends on the
anisotropic factor. For recent investigations, there have
been important efforts in describing the relativistic stellar
structure in [27–30]. The algorithm for solutions of
Einstein field equations via single monotone functions
have already been discovered by the authors of [31–33].
On the other hand, spherical symmetry also allows a

more general anisotropic fluid configuration with an EoS.
In fact, if the EoS of the material composition of a compact
star is known, one can easily integrate the Tolman-
Oppenheimer-Volkoff (TOV) equations to extract the
geometrical information of a star. For example, linear
EoS was used by Ivanov [34] for charged static spherically
symmetric perfect fluid solutions. This situation has been
extended by Sharma and Maharaj [35] for finding an exact
solution to the Einstein field equations with an anisotropic
matter distribution. In Ref. [36], Herrera and Barreto had
considered polytropic stars with anisotropic pressure.
Solutions of Einstein’s equations for anisotropic fluid
distribution with different EoS have been found in
[24,37–41], but, in case the EoS of the material compo-
sition of a compact star is not yet known, except some
phenomenological assumptions, one can introduce a suit-
able metric ansatz for one of the metric functions to analyze
the physical features of the star. Such a method was initially
proposed by Vaidya-Tikekar [42], and Tikekar [43] pre-
scribed an approach of assigning different geometries with
physical 3-spaces (see [44–47] and references therein).
A similar type of metric ansatz was considered by Finch
and Skea [48] satisfying all criteria of physical acceptability
according to Delgaty and Lake [49]. As a consequence,the
problem of finding the equilibrium configuration of a stellar
structure for anisotropic fluid distribution has been found
in [50–53].
In the present paper, we consider fairly general Buchdahl

ansatz [54] for the metric potential. Such an assumption
makes Einstein’s field equations tractable and covers
almost all physically tenable known models of super dense
stars. Actually, Vaidya and Tikekar [42] particularized a
Buchdahl ansatz by giving a geometric meaning, prescrib-
ing specific 3-spheroidal geometries for a 4-dimensional
hypersurface. This spheroidal condition has been found
very useful for finding an exact solution of the Einstein
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field equations, which is not easy in many other cases. Such
a particular assumption was considered by Kumar et al.
[55,56], who comprehensively studied charged compact
objects for isotropic matter distribution. Sharma et al. [57]
have obtained the maximum possible masses and radii for
different values of surface density for Vaidya-Tikekar
spacetime.
Neutron stars, the remnants of the gravitational collapse

of ∼8 to 20 M⊙ main-sequence stars, in which fundamental
physics can be probed in extreme conditions via astro-
physical observations. The structure of such stars depends
on the EoS of nuclear matter under extreme conditions.
Thus, neutron stars are an excellent probe for the study of
dense and strongly interacting matter. More specifically, the
mass-radius of a neutron star is directly related to the EoS
of neutron-rich matter [58], and this could be achieved
through the independent measurement of its mass and
radius [59–62].
From an observational viewpoint, our understanding

about neutron stars has changed drastically in the last
decade after the discovery of pulsar PSR J1614-2230 [63]
as 1.97 M⊙. The most significant progress in determining
the properties of neutron stars, such as their masses and
radii, which is necessary for constraining the equation of
state. However, obtaining accurate measurements of both
the mass and radius of neutron stars is more difficult. To
date, only in a few cases have the mass and radius of
compact stars been estimated by exploiting a variety of
observational techniques, including, in particular, radio
observations of pulsars and X-ray spectroscopy, for exam-
ple, during thermonuclear bursts [64–66] or in the quies-
cent state of low mass X-ray binaries [67,68]. It is therefore
greatly important to understand the maximal mass value of
such objects which is still an open question, but recent
observations estimate this limit as ∼2 M⊙, while, for the
pulsar J0348þ 0432, it is 2.01 M⊙ [69]. Recent studies
have reported massive neutron stars to be PSR J1614þ
2230 (∼1.97 M⊙ [63]), Vela X-1 (∼1.8 M⊙ [70]), and 4U
1822-371 (∼2 M⊙ [71]). X-ray pulsations with a period of
13.5 s were first detected in LMC X-4 by Kelley et al. [72].
However, the maximal limit of neutron star mass can
increase considerably due to strong magnetic fields inside
the star.
Thus, neutron stars are very peculiar objects, and

observational data about their macroscopic properties
(mainly the mass-radius M-R relation) can also be used
for studying accurate derivations consistent with the
observations. In this paper, we discuss the possibility of
an extendable range of the Buchdahl dimensionless
parameter K (a measure of deviation from sphericity)
to explore a class of neutron stars in the standard
framework of General Relativity. In our model, we do
not prescribe the EoS; rather we apply the two-step
method to examine the possibility of using the anisotropy
to obtain spherically symmetric configurations with the
Buchdahl metric potential. In order to constrain the value

of model parameters, we consider analogue objects with
similar mass and radii, such as LMC X-4 [72], SMC X-1
[70], EXO 1785-248 [73], SAX J1808.4-3658 (SS2) [74],
Her X-1 [75], 4U 1538-52 [70], PSR 1937þ 21 [76], and
Cen X-3 [70] to those stars in Buchdahl anisotropic
geometry.
The paper begins with the introduction in Sec. I, then we

introduce the relevant Einstein equations for the case of
spherical symmetry static spacetime in the standard form of
Schwarzschild-like coordinates in Sec. II. In Sec. III, we
assume anisotropic pressure in the modeling of realistic
compact stellar structures. In the same section we derive the
field equations by using coordinate transformation and
found eight possible solutions for positive and negative
values of Buchdahl parameter K. In Sec. IV, we discuss the
junction conditions and determine the constant coefficient.
We also presented the mass-radius relation and surface
redshift of the stellar models in same section. Section V
includes detailed analysis of physical features and obtained
results are compared with data from observation along with
the equation of state (EoS) of the compact star. Concluding
remarks have been made in Sec. VI.

II. GENERAL RELATIVISTIC EQUATIONS

Let us consider the spacetime being static and spherically
symmetric, which describes the interior of the object, and
can be written in the following form:

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where the coordinates (t, r, θ, ϕ) are the Schwarzschild-like
coordinates, and νðrÞ and λðrÞ are arbitrary functions of the
radial coordinate r alone, which are yet to be determined.
The Einstein tensor is Gμν ¼ Rμν − 1

2
gμνR, with Rμν and gμν

being, respectively, the Ricci and the metric tensors, and R
being the Ricci scalar (with the assumption of natural
units G ¼ c ¼ 1).
Here, we consider the matter contained in the sphere

which is described by anisotropic fluid. Thus, the structure
of such an energy-momentum tensor is then expected to be
of the form:

Tμν ¼ ðρþ ptÞuμuν − ptgμν þ ðpr − ptÞχμχν; ð2Þ

where uμ is the four-velocity and χμ is the unit spacelike
vector in the radial direction. Thus, the Einstein field
equation, Gμν ¼ 8πTμν, provides the following set of
gravitational field equations:

κρðrÞ ¼ λ0

r
e−λ þ ð1 − e−λÞ

r2
; ð3Þ

κprðrÞ ¼
ν0

r
e−λ −

ð1 − e−λÞ
r2

; ð4Þ
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κptðrÞ ¼ e−λ
�
ν00

2
−
λ0ν0

4
þ ν02

4
þ ν0 − λ0

2r

�
; ð5Þ

where the prime denotes a derivative with respect to the
radial coordinate, r, and κ ¼ 8π. Here, ρ is the energy
density, while the quantity pr is the pressure in the direction
of χν (radial pressure), and pt is the pressure orthogonal to
χν (transversal pressure). Note that pressure isotropy is not
required by spherical symmetry, it is an added assumption
[12,77]. Consequently, Δ ¼ pt − pr is denoted as the
anisotropy factor according to Herrera and Leon [78],
and it measures the pressure anisotropy of the fluid. It is to
be noted that at the origin of the stellar configuration
Δ ¼ 0, i.e., pt ¼ pr ¼ p is a particular case of an isotropic
pressure. Using Eqs. (4) and (5), one can obtain the simple
form of anisotropic factor, which yields

Δ¼ κðpt −prÞ ¼ e−λ
�
ν00

2
−
λ0ν0

4
þ ν02

4
−
ν0 þ λ0

2r
−

1

r2

�
þ 1

r2
:

ð6Þ
However, a force due to the anisotropic pressure is

represented by Δ=r, which is repulsive if pt > pr, and
attractive if pt < pr of the stellar model. For the considered
matter distribution when pt > pr allows the construction of
more compact objects, compared to isotropic fluid sphere
[79]. Note that this is a system of 3 equations with 5
unknowns. Thus, the system of equations is undetermined,
and by assuming suitable conditions we have to reduce the
number of unknown functions.

III. EXACT SOLUTION OF THE MODELS FOR
ANISOTROPIC STARS

In this section we establish a procedure for generating a
new anisotropic solution of the Einstein field equations
from a known metric ansatz due to Buchdahl [54] that
covers almost all interesting solutions. We use the widely
studied metric ansatz given by

eλ ¼ Kð1þ Cr2Þ
K þ Cr2

; when K < 0 and K > 1; ð7Þ

where K and C are two parameters that characterize the
geometry of the star. Note that the ansatz for the metric
function grr in (7) was proposed by Buchdahl [54] to
develop a viable model for a relativistic compact star. The
choice of the metric potential is physically well motivated
(especially as the energy density must be nonsingular and
decreasing outward) and has been used by many in the past
to construct viable stellar models. In addition to the above
the metric function (7) is also positive and free from
singularity at r ¼ 0 and monotonic increasing outward.
Here, we will illustrate how an analytic Buchdahl model
could be extendable for positive and negative values of the
spheroidal parameter K. In the following analysis we pull

out the range of 0 < K < 1, where either the energy den-
sity or pressure will be negative depending on the two
parameters. It is interesting to note that one can recover
the Schwarzschild interior solution when K ¼ 0, and for
K ¼ 1 the hypersurfaces ft ¼ constantg are flat. In a
more generic situation, one could recover the Vaidya and
Tikekar [42] solution when C ¼ −K=R2, Durgapal and
Bannerji [80] when K ¼ −2. The solutions for charged and
uncharged perfect fluids were considered by Gupta et al.
[81,82], but none of them were well behaved within the
proposed range of parameter K. However, in the pre-
sent study we obtain the well behaved solution for some
values of K by introducing anisotropy parameter Δ, which
provides a monotonically decreasing sound speed within
the compact stellar model.
As a next step in our analysis we introduce the trans-

formation eν ¼ Y2ðrÞ [34,55,56], and substituting the value
of eλ into the Eq. (6), one arrives in the following relations:

d2Y
dr2

−
�
K þ 2KCr2 þ C2r4

rðK þ Cr2Þð1þ Cr2Þ
�
dY
dr

þ
�

Cð1 − KÞC2r4

r2ðK þ Cr2Þð1þ Cr2Þ −
ΔKð1þ Cr2Þ
ðK þ Cr2Þ

�
Y ¼ 0: ð8Þ

Eq. (8) has two unknowns, namely, YðrÞ and Δ, while in
order to solve for Y, we will follow the approach in [12].
Hence, we choose the expressions for anisotropy parameter

Δ ¼ Δ0C2r2

ð1þCr2Þ2. The constant Δ0 ≥ 0, with the assumption

thatΔ0 ¼ 0, corresponding to the isotropic limit. As argued
in [12], Δ0 is the measure of anisotropy of the pressure
distribution inside the fluid sphere, while at the center the
anisotropy vanishes, i.e., Δð0Þ ¼ 0. With hindsight, for the
chosen anisotropy parameter the interior solutions ensure
the regularity condition at the center also.
Therefore, with this choice ofΔ and using an appropriate

transformation Z ¼
ffiffiffiffiffiffiffiffiffiffiffi
KþCr2
K−1

q
, Eq. (8) becomes a hyper-

geometric differential equation of the form:

ð1 − Z2Þ d
2Y

dZ2
þ Z

dY
dZ

þ ð1 − K þ Δ0KÞY ¼ 0: ð9Þ

Our aim here is to solve the system of the above
hypergeometric Eq. (9) by using Gupta-Jasim [82] two-
step method (See Appendix A.). In this framework we
consider two cases for the spheroidal parameter K:

A. Case I: K < 0, i.e., K is negative

Now we differentiate Eq. (9) with respect to Z and use
another substitution, where Z ¼ sin x and dY

dZ ¼ ψ ; then
we have

d2ψ
dx2

þ ð2 − K þ Δ0KÞψ ¼ 0; ð10Þ
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where dψ
dx ¼ cos x d2Y

dZ2 and
d2ψ
dx2 ¼ cos2x d3Y

dZ3 − sin x d2Y
dZ2, respectively. In this approach the above equation turns out to be a

second order homogeneous differential equation with constant coefficients and depends on the two parameters K and Δ0. It
is now interesting to classify each solution of Eq. (10), briefly:

Case Ia∶ ψ ¼ A1 coshðnxÞ þ B1 sinhðnxÞ; if 2 − K þ Δ0K ¼ −n2; ð11aÞ

Case Ib∶ ψ ¼ C1 cosðnxÞ þD1 sinðnxÞ; if 2 − K þ Δ0K ¼ n2ð≠ 1Þ; ð11bÞ

Case Ic∶ ψ ¼ E1 cosðxÞ þ F1 sinðxÞ; if 2 − K þ Δ0K ¼ 1; ð11cÞ

Case Id∶ ψ ¼ G1xþH1; if 2 − K þ Δ0K ¼ 0; ð11dÞ

where A1, B1, C1, D1, E1, F1, G1, and H1 are arbitrary constants of integration, with x ¼ sin−1 Z ¼ sin−1
ffiffiffiffiffiffiffiffiffiffiffi
KþCr2
K−1

q
. Now,

using (7) into (3) from which simple manipulations of the Einstein equations lead to the expression of energy density
(K < 0) as

κρ

C
¼ ð3 − K þ Ksin2x − sin2xÞ

KðK − 1Þcos4x : ð12Þ

Subsequently, other Einstein field equations (EFEs) relating to the metric potential and substituting different values of Y
[which is determined by substituting dY=dZ ¼ ψ and d2Y=dZ2 ¼ dψ=dZ in hypergeometric equation Eq. (9)], one can
obtain
Case Ia: 2 − K þ Δ0K ¼ −n2

YðxÞ ¼ 1

ðn2 þ 1Þ ½coshðnxÞðA1 sin xþ B1n cos xÞ þ sinhðnxÞðA1n cos xþ B1 sin xÞ�; ð13Þ

κpr

C
¼ 2ðn2 þ 1Þ

ð1 − KÞKcos2x

�
A1 coshðnxÞ þ B1 sinhðnxÞ

coshðnxÞðA1 þ B1n cot xÞ þ sinhðnxÞðA1n cot xþ B1Þ
�
þ 1

Kcos2x
; ð14Þ

κpt

C
¼ 2ðn2 þ 1Þ

ð1 − KÞKcos2x

�
A1 coshðnxÞ þ B1 sinhðnxÞ

coshðnxÞðA1 þ B1n cot xÞ þ sinhðnxÞðA1n cot xþ B1Þ
�
þϒ: ð15Þ

Case Ib: 2 − K þ Δ0K ¼ n2ð≠ 1Þ

YðxÞ ¼ 1

ð1 − n2Þ ½sin x½C1 cosðnxÞ þD1 sinðnxÞ − n cos x½C1 sinðnxÞ −D1 cosðnxÞ��; ð16Þ

κpr

C
¼ 2ð1 − n2Þ

ð1 − KÞKcos2x

�
C1 cosðnxÞ þD1 sinðnxÞ

C1 cosðnxÞ þD1 sinðnxÞ − n cot x½C1 sinðnxÞ −D1 cosðnxÞ
�
þ 1

Kcos2x
; ð17Þ

κpt

C
¼ 2ð1 − n2Þ

ð1 − KÞKcos2x
�

C1 cosðnxÞ þD1 sinðnxÞ
C1 cosðnxÞ þD1 sinðnxÞ − n cot x½C1 sinðnxÞ −D1 cosðnxÞ

�
þϒ: ð18Þ

Case Ic: 2 − K þ Δ0K ¼ 1

YðxÞ ¼ 1

4
½E1ð2xþ sin 2xÞ − F1 cos 2x�; ð19Þ

κpr

C
¼ 8 sin x

ð1 − KÞKcos2x
�

E1 cosðxÞ þ F1 sinðxÞ
E1ð2xþ sin 2xÞ − F1 cos 2x

�
þ 1

Kcos2x
; ð20Þ
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κpt

C
¼ 8 sin x

ð1 − KÞKcos2x

�
E1 cosðxÞ þ F1 sinðxÞ

E1ð2xþ sin 2xÞ − F1 cos 2x

�
þϒ: ð21Þ

Case Id: 2 − K þ Δ0K ¼ 0

YðxÞ ¼ Aðcos xþ x sin xÞ þ B sin x; ð22Þ

κpr

C
¼ 2 sin x

ð1 − KÞKcos2x

�
G1xþH1

G1ðcos xþ x sin xÞ þH1 sin x

�
þ 1

Kcos2x
; ð23Þ

κpt

C
¼ 2 sin x

ð1 − KÞKcos2x
�

G1xþH1

G1ðcos xþ x sin xÞ þH1 sin x

�
þϒ; ð24Þ

where ϒ ¼ Δ0K½ðK−1Þsin2x−K�þð1−KÞ2cos2x
ð1−KÞ2Kcos4x .

B. Case II: K > 1, i.e., K is positive

Here, we extend our analysis by considering the positive values of K, and to solve Eq. (9) we adopt a similar approach to
differentiate Eq. (9) with respect to Z. For this purpose we use another substitution, where Z ¼ cosh x (hyperboloidal case)
and dY

dZ ¼ ψ ; Eq. (9) takes the form

d2ψ
dx2

− ð2 − K þ Δ0KÞψ ¼ 0; ð25Þ

where dψ
dx ¼ sinh x d2Y

dZ2, and
d2ψ
dx2 ¼ − sinh2 x d3Y

dZ3 þ cosh x d2Y
dZ2, respectively. To solve the second order homogeneous differ-

ential equation (25) we consider the following cases:

Case IIa∶ ψ ¼ A2 cosðnxÞ þ B2 sinðnxÞ if 2 − K þ Δ0K ¼ −n2; ð26aÞ

Case IIb∶ ψ ¼ C2 coshðnxÞ þD2 sinhðnxÞ; if 2 − K þ Δ0K ¼ n2ð≠ 1Þ; ð26bÞ

Case IIc∶ ψ ¼ E2 coshðxÞ þ F2 sinhðxÞ; if 2 − K þ Δ0K ¼ 1; ð26cÞ

Case IId∶ ψ ¼ G2xþH2 if 2 − K þ Δ0K ¼ 0; ð26dÞ

where A2, B2, C2, D2, E2, F2, G2, and H1 are arbitrary constants of integration, with x ¼ cosh−1 Z ¼ cosh−1
ffiffiffiffiffiffiffiffiffiffiffi
KþCr2
K−1

q
.

Recalling Eq. (7) and plugged into the relevant equation we obtain the expression of energy density (K > 1) as

κρ

C
¼ ð3 − K þ Kcosh2x − cosh2xÞ

KðK − 1Þsinh4x : ð27Þ

Now proceeding the same as for K < 0, we consider the following cases for K > 1, and pressure components can be
developed as follows:
Case IIa: 2 − K þ Δ0K ¼ −n2

YðxÞ ¼ 1

ðn2 þ 1Þ ½cosh x½A cosðnxÞ þ B sinðnxÞ� þ n sinh x½A sinðnxÞ − B cosðnxÞ��; ð28Þ

κpr

C
¼ 2ðn2 þ 1Þ

ðK − 1ÞKsinh2x

�
A2 cosðnxÞ þ B2 sinðnxÞ

½A2 cosðnxÞ þ B2 sinðnxÞ� þ n tanh x½A2 sinðnxÞ − B2 cosðnxÞ�
�
−

1

Ksinh2x
; ð29Þ
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κpt

C
¼ 2ðn2 þ 1Þ

ðK − 1ÞKsinh2x

�
A2 cosðnxÞ þ B2 sinðnxÞ

½A2 cosðnxÞ þ B2 sinðnxÞ� þ n tanh x½A2 sinðnxÞ − B2 cosðnxÞ�
�
þϒ1: ð30Þ

Case IIb: 2 − K þ Δ0K ¼ n2ð≠ 1Þ

YðxÞ ¼ 1

ð1 − n2Þ ½cosh x½C2 coshðnxÞ þD2 sinhðnxÞ� − n sinh x½C2 sinhðnxÞ −D2 coshðnxÞ��; ð31Þ

κpr

C
¼ 2ð1 − n2Þ

ðK − 1ÞKsinh2x

�
C2 coshðnxÞ þD2 sinhðnxÞ

½C2 coshðnxÞ þD2 sinhðnxÞ� − n tanh x½C2 sinhðnxÞ −D2 coshðnxÞ�
�
−

1

Ksinh2x
; ð32Þ

κpt

C
¼ 2ð1 − n2Þ

ðK − 1ÞKsinh2x

�
C2 coshðnxÞ þD2 sinhðnxÞ

½C2 coshðnxÞ þD2 sinhðnxÞ� − n tanh x½C2 sinhðnxÞ −D2 coshðnxÞ�
�
þϒ1: ð33Þ

Case IIc: 2 − K þ Δ0K ¼ 1

YðxÞ ¼ 1

4
½A cosh 2xþ B sinhð2xÞ − 2Bx�; ð34Þ

κpr

C
¼ 8 cosh x

ðK − 1ÞKsinh2x

�
E2 coshðxÞ þ F2 sinhðxÞ

E2 cosh 2xþ F2 sinhð2xÞ − 2F2x

�
−

1

Ksinh2x
; ð35Þ

κpt

C
¼ 8 cosh x

ðK − 1ÞKsinh2x
�

E2 coshðxÞ þ F2 sinhðxÞ
E2 cosh 2xþ F2 sinhð2xÞ − 2F2x

�
þϒ1: ð36Þ

Case IId: 2 − K þ Δ0K ¼ 0

YðxÞ ¼ G2ðx cosh x − sinh xÞ þH2 cosh x; ð37Þ

κpr

C
¼ 2 cosh x

ðK − 1ÞKsinh2x

�
G2xþH2

G2ðx cosh x − sinh xÞ þH2 cosh x

�
−

1

Ksinh2x
; ð38Þ

κpt

C
¼ 2 cosh x

ðK − 1ÞKsinh2x
�

G2xþH2

G2ðx cosh x − sinh xÞ þH2 cosh x

�
þϒ1; ð39Þ

where ϒ1 ¼ Δ0K½ðK−1Þ cosh2 x−K�−ð1−KÞ2 sinh2 x
ð1−KÞ2K sinh4 x , and we have

four sets of solutions corresponding to the positive and
negative values of K. Following the standard procedure for
stellar modeling one usually imposes some restrictions. In a
realistic scenario, one can expect that the following con-
ditions are satisfied throughout the stellar interior:

(i) the interior solution goes up to a certain radius R,
where the spacetime is assumed not to possess an
event horizon,

(ii) positive definiteness of the energy density and
pressure at the center,

(iii) the density should be maximum at center and decreas-
ing monotonically within 0 < r < R, i.e., the density
gradient dρ=dr is negative within 0 < r < R,

(iv) the pressure should be maximum at center and
decreasing monotonically within 0 < r < R, i.e.,
the pressure gradient dp=dr is also negative within
0 < r < R,

(v) the ratio of pressure and density should be less than
unity within 0 < r < R, i.e., p=ρ should lie between
0 to 1 within the stellar model.

These features, positive density, positive pressure, and
the absence of horizons, are the most important features
characterizing a star. The task is now to check the well-
behaved geometry and capability of describing realistic
stars; we plot this in Fig. 1 (due to complexity of
expression). For our stellar model, depending on the
different values of K, the behavior of ρ, pr, and pt has
been studied. Such analytical representations have been
performed by using recent measurements of mass and
radius of neutron stars, LMC X-4, SMC X-1, EXO 1785-
248, SAX J1808.4-3658 (SS2), Her X-1, 4U 1538-52, PSR
1937þ 21, Cen X-3, and SAX J1808.4-3658. Detailed
expressions and value of constants that have been used in
this work are given in Fig. 1, and will not be repeated here.
It is evident from these plots that the energy density is
maximum as r → 0 and decreases towards the boundary.
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Finally, we move on to describe the results obtained from
our calculations, which are illustrated in Fig. 2; that
anisotropy is zero at center and positive in the stellar
interior, which implies that the tangential pressure (pt) is
always greater than the radial pressure (pr). Finally, using
the anisotropic fluid will simplify the comparison with
isotropic solutions and is most often used for studying
massive compact objects [79].
In addition to this central density, the central and surface

pressures of compact stars are presented in Table II. It is
intriguing to note that the maximum density at the center
∼1015 gm=cm3, which is constrained with the argument by
Ruderman [9] for anisotropic stellar configurations that can
describe realistic neutron stars. For example, the millisec-
ond pulsar SAX J1808.4-3658 (SS2) [74] with 1.3237 M⊙
has the central density 4.06 × 1015 gm=cm3 (the other
results are given in Table II). Moreover, inside the star,
pr and pt > 0, and the pressure decreases monotonically as
we move away from the center, as is evident in Fig. (1).

Furthermore, it has been shown that upper bound on the
total compactness of a static spherically symmetric fluid in
the form of 2M=R ≤ 8=9 [54]. As one can see, we have
explicitly derived Buchdahl’s inequality for an anisotropic
fluid star, which matches exactly with the limit derived for
the uniform density star (see Table II).

IV. EXTERIOR SOLUTIONS

To proceed further, the interior spacetime metric (1)
should be matched with the Schwarzschild exterior solution
at the boundary of the star (r ¼ R). In principle the radius R
is a natural parameter, where the radial pressure vanishes,
i.e., prðRÞ ¼ 0. The exterior vacuum solution is then given
by the Schwarzschild metric

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ; ð40Þ

FIG. 1. From top left to right we have plotted the effective radial pressure (Pr ¼ κpr=C), effective transverse pressure (Pt ¼ κpt=C),
and effective energy density (D ¼ κρ=C) verses the radial coordinate (r=R) for Case I, in their normalized forms inside the star. In the
lower graphs we repeat the same situation for Case II, where Pr, Pt, and D are dimensionless. The radial pressure (pr), tangential
pressure (pt), and density ( ρ) can be determined in the CGS unit as: pr ¼ Pr ×C× 4.81× 1047 dyne, pt ¼ Pt × C × 4.81 × 1047 dyne,
ρ ¼ D × C × 5.35 × 1026 gm=cm. The values of the parameter which we have used for graphical presentation are: (i) K ¼ −0.27898,
C ¼ 1.33 × 10−13 cm−2, n ¼ 0.1 for EXO 1785-248 (Ia); (ii) K ¼ −0.28103, C ¼ 1.52 × 10−13 cm−2, n ¼ 0.1 for SMC X-1 (Ia);
(iii) K ¼ −1.18, C ¼ 1.37 × 10−12 cm−2, n ¼ 1.783 for SAX J1808.4-3658 (SS2) (Ib); (iv) K ¼ −1.18, C ¼ 3.07 × 10−13 cm−2 for
Her X-1 (Ic); (v) K ¼ −1.18, C ¼ 3.47 × 10−13 cm−2 for 4U 1538-52 (Ic); (vi) K ¼ −1.18, C ¼ 3.21 × 10−13 cm−2 for LMC X-4 (Ic);
(vii) K ¼ −1.18, C ¼ 3.49 × 10−13 cm−2 for SAX J1808.4-3658 (Ic); (viii) K ¼ −0.91, C ¼ 8.82 × 10−13 cm−2 for PSR 1937þ 21

(Id); (ix) K ¼ 3, C ¼ 3.03 × 10−12 cm−2, n ¼ 0.99 for Cen X-3 (IIa); (x) K ¼ 1.78, C ¼ 4.71 × 10−12 cm−2, n ¼ 0.4796 for 4U 1538-
52 (IIb); (xi) K ¼ 3.1, C ¼ 1.28 × 10−12 cm−2 for Her X-1 (IIc); (xii) K ¼ 2.1, C ¼ 2.78 × 10−12 cm−2 for SAX J1808.4-3658 (IId).
See Table I for more details.
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whereM is the total mass of the gravitational system, and it
is given by

MtotðrÞ ¼
Z

r

0

4πr2ρdr: ð41Þ

At this stage the interior solution must be matched to the
vacuum exterior Schwarzschild metric. We match two
spacetimes across the boundary surface using the
Darmois-Israel formalism [83], which are tantamount to
the following two conditions across the boundary surface
r ¼ R:

e−λ ¼ 1 −
2M
R

; and eν ¼ y2 ¼ 1 −
2M
R

; ð42Þ

prðr ¼ RÞ ¼ 0: ð43Þ

Now, using the conditions (42) and (43), we can fix the
values of arbitrary constants. Thus, the boundary condition
provides a full set of expressions for arbitrary constants A1

toH1 (whenK < 0) and A2 toH2 (whenK > 1) as follows:

Case Ia: A1

B1
¼ nð1−KÞ coshðnx1Þ cscðx1Þþð3−Kþ2n2Þ secðx1Þ sinhðnx1Þ

ð−3þK−2n2Þ coshðnx1Þ sec x1þnðK−1Þ csc x1 sinhðnx1Þ ,

Case Ib: C1

D1
¼ nðK−1Þ cosðnx1Þ csc x1þð−3þKþ2n2Þ sec x1 sinðnx1Þ

ð3−K−2n2Þ cosðnx1Þ sec x1þðK−1Þn csc x1 sinðnx1Þ ,

Case Ic: E1

F1
¼ ð1−KÞ cosð2x1Þ−8sin2x1

4 sin 2x1−ðK−1Þ½2x1þsinð2x1Þ�,

Case Id: G1

H1
¼ 2 sin x1þð1−KÞ sin x1

ðK−1Þ cos x1þx1½−2 sin x1þðK−1Þ sin x1�,

Case IIa: A2

B2
¼ nðK−1Þcosðnx2Þsechðx2Þþð3−Kþ2n2Þcschðx2Þsinðnx2Þ

ð−3þK−2n2Þcosðnx2Þcschðx2ÞþnðK−1Þsechðx2Þsinðnx2Þ,

Case IIb:C2

D2
¼nðK−1Þcoshðnx2Þsechðx2Þþð−3þKþ2n2Þcschðx2Þsinhðnx2Þ

ð3−K−2n2Þcoshðnx2Þcschðx2ÞþnðK−1Þsechðx2Þsinhðnx2Þ ,

Case IIc: E2

F2
¼ −8 sinh x2 cosh x2þðK−1Þ½−2x2þsinhð2x2Þ�

8cosh2x2−ðK−1Þ coshð2x2Þ ,

Case IId: G2

H2
¼ 2 cosh x2þð1−KÞ cosh x2

−2x2 cosh x2þðK−1Þx2 cosh x2þsinh x2−K sinh x2
,

where x1 ¼ sin−1
ffiffiffiffiffiffiffiffiffiffiffiffi
KþCR2

K−1

q
and x2 ¼ cosh−1

ffiffiffiffiffiffiffiffiffiffiffiffi
KþCR2

K−1

q
.

Here, we want to investigate the gravitational mass and
radius of neutron stars. With the condition e−λ ¼ 1 − 2M

R , it
is useful to write the total mass in the following form:

M ¼ ðK − 1ÞCR3

2Kð1þ CR2Þ : ð44Þ

We now present our results for the static neutron star
models, showing the total mass M (in solar masses M⊙)
versus the physical radius R (in km) in Fig. 3. In this figure,
all values are considered in the same succession as
mentioned in Fig. 1.
We shall now use the general relativistic effect of

gravitational redshift by the relation zS ¼ Δλ=λe ¼ λ0−λe
λe

,
where λe is the emitted wavelength at the surface of a
nonrotating star, and λ0 is the observed wavelength
received at radial coordinate r. In the weak-field limit,
gravitational redshift from the surface of the star as
measured by a distant observer ðgtt → −1Þ is given by

1þ zS ¼ jgttðRÞj−1=2 ¼
�
1 −

2M
R

�
−1=2

; ð45Þ

FIG. 2. Variation of anisotropy factor Δ (in km−2) for effective pressure-density ratio Pi=D vs. radial coordinate r/R for Case I (upper
panel) and Case II (lower panel). For plotting these graphs, we have employed the same dataset as used in Fig. 1.
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where gttðRÞ ¼ eνðRÞ ¼ ð1 − 2M
R Þ is the metric function. It

was shown earlier by Buchdahl [54] that for spherically
symmetric distribution of a prefect fluid the gravitational
redshift is zs < 2. However, different arguments have been
put forward for the existence of anisotropy star models
which turn out to be 3.84, as suggested by [84,85]. On the
other hand, in studying general restrictions for the redshift
for anisotropic stars, Bohmer and Harko [86] showed that
this value could be increased up to zs ≤ 5, which is
consistent with the bound zs ≤ 5.211 obtained by Ivanov
[34]. We perform the whole calculations for redshift of the
enlisted compact objects by taking the same values, which
we have used for graphical presentation in Fig. 4. We are
mostly interested in bounds on surface redshift for spheri-
cally symmetric stellar structures, and our results are quite
satisfactory.

V. PHYSICAL FEATURES OF
ANISOTROPIC MODELS

We now study physical properties of the stellar configu-
ration made up of anisotropic fluids by performing some

analytical calculations. We analyzed the stability problem
by considering the modified Tolman-Oppenheimer-Volkoff
(TOV) equation and checking the causality conditions
within the fluid. With these one can determinate the value
of the speed of sound across a given star. Finally, we
investigate the types of compact objects that might arise
from these solutions and how to restrict the model
arbitrariness.

A. Causality condition

In addition to the positivity of density and pressure
profiles, we shall pay special and particular attention to the
condition of bounding sound speeds (radial and tangential
directions) within the matter distribution. Essentially, we
fix c ¼ 1 and investigate the sound speed for anisotropic
fluid distribution. It is obvious that the velocity of sound is
less than the velocity of light, i.e., 0 < v2r ¼ dpr=dρ < 1

and 0 < v2r ¼ dpt=dρ < 1. The stability of the fluid sphere
with internal pressure anisotropy was also probed by
Herrera [87] and his collaborators. Here, we consider
Case I and Case II separately, and the expression for
velocity of sound is as follows:

Case Ia:

dpr

dρ
¼ N1

S1
; ð46Þ

dpt

dρ
¼ N1

S1
þ Δ0½2cos2x sin xðK − 1Þ þ 4 sin xððK − 1Þsin2x − KÞ�

ðK − 1Þ2cos5x ; ð47Þ

Case Ib:

dpr

dρ
¼ N2

S1
; ð48Þ
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FIG. 3. Variation of the total mass normalized in units of Solar mass (M=M⊙) with the total radius R for Case I (left panel) and Case II
(right panel), respectively.
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dpt

dρ
¼ N2

S1
þ Δ0½2cos2x sin xðK − 1Þ þ 4 sin xððK − 1Þsin2x − KÞ�

ðK − 1Þ2cos5x ; ð49Þ

Case Ic:

dpr

dρ
¼ N3

S1
; ð50Þ

dpt

dρ
¼ N3

S1
þ Δ0½2cos2x sin xðK − 1Þ þ 4 sin xððK − 1Þsin2x − KÞ�

ðK − 1Þ2cos5x ; ð51Þ

Case Id:

dpr

dρ
¼ N4

S1
; ð52Þ

dpt

dρ
¼ N4

S1
þ Δ0½2cos2x sin xðK − 1Þ þ 4 sin xððK − 1Þsin2x − KÞ�

ðK − 1Þ2cos5x ; ð53Þ

Case IIa:

dpr

dρ
¼ N5

S2
; ð54Þ

dpt

dρ
¼ N5

S5
þ Δ0½2 cosh xsinh2xðK − 1Þ − 4 cosh xððK − 1Þcosh2x − KÞ�

ðK − 1Þ2sinh5x ; ð55Þ

Case IIb:

dpr

dρ
¼ N6

S2
; ð56Þ

dpt

dρ
¼ N6

S2
þ Δ0½2 cosh xsinh2xðK − 1Þ − 4 cosh xððK − 1Þcosh2x − KÞ�

ðK − 1Þ2sinh5x ; ð57Þ

Case IIc:

dpr

dρ
¼ N7

S2
; ð58Þ

dpt

dρ
¼ N7

S2
þ Δ0½2 cosh x sinh2 xðK − 1Þ − 4 cosh xððK − 1Þ cosh2 x − KÞ�

ðK − 1Þ2 sinh5 x ; ð59Þ

Case IId:

dpr

dρ
¼ N8

S2
; ð60Þ

dpt

dρ
¼ N8

S2
þ Δ0½2 cosh x sinh2 xðK − 1Þ − 4 cosh xððK − 1Þ cosh2 x − KÞ�

ðK − 1Þ2 sinh5 x ; ð61Þ

where the expressions of used coefficients N1, N2, N3, N4, N5, N6, N7, N8, S1, and S2 in Eqs. (46)–(61) are given in
Appendix B.
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In this analytical approach, we use the graphical repre-
sentation to represent the velocity of sound due to the
complexity of the expression. Considering all expressions
for both Cases I and II, we have plotted Fig. 5. In Fig. 5 we
plot for radial and transverse velocity of sound when K < 0
(top figures), and K > 1 (bottom figures) for compact star
candidates LMC X-4, SMC X-1, EXO 1785-248, SAX
J1808.4-3658 (SS2), Her X-1, 4U 1538-52, PSR
1937þ 21, Cen X-3, and SAX J1808.4-3658. Our inves-
tigation shows that our equation of state for anisotropic
matter satisfies the causality condition. From Fig. 5, it is
interesting to note that the velocity of sound is decreasing
for the stars SAX J1808.4-3658 (SS2) (Case Ib), LMC X-4
(Case Ic), 4U 1538-52 (Case Ic), Her X-1 (Case Ic), SAX
J1808.4-3658 (Case Ic), Her X-1 (Case IIc), and increasing
for SMC X-1 (Case Ia), EXO 1785-248 X-1 (Case Ia), PSR
1937þ 21 (Case Id), Cen X-3 (Case IIa), 4U 1538-52
(Case IIb), SAX J1808.4-3658 (Case IId) towards the
boundary which implies that our solution is well behaved
for the above cases. The decreasing features of the
velocities are appearing in the present compact star model
due to the presence of anisotropy only because the velocity
of sound is not decreasing for the Buchdahl metric in
charged as well as uncharged perfect fluid solutions
[81,82]. Now, we focus on investigation of the adiabatic
index, energy conditions, and hydrostatic equilibrium for
compact stars in accordance to their mass and radius ratio.

B. Adiabatic index

For a specific energy density, the rigidity of the EoS can
be described by the adiabatic index. On the other hand, the
adiabatic index also characterizes the stability of relativistic
as well as nonrelativistic compact star models. Following
the work of Chandrasekhar [88], many authors [89–92]
have discussed the dynamical stability of the stellar system

against an infinitesimal adiabatic perturbation correspond-
ing to radial pressure. For any dynamically stable stellar
system, Heintzmann and Hillebrandt [11] have suggested
that the radial adiabatic index must be more than 4

3
at all

interior points of the compact star. The radial adiabatic
index γr in our system is given as

γr ¼
pr þ ρ

pr

dpr

dρ
¼ pr þ ρ

pr
v2r : ð62Þ

The graphical representation of the radial adiabatic index
is given by Fig. 6. For this figure it is clear that the value of
the adiabatic index corresponding to radial pressure is more
than 4

3
at all interior points for each different compact

star model.

C. Energy conditions

Here we analyze the energy conditions according to
relativistic classical field theories of gravitation. In the
context of GR the energy conditions are local inequalities
that process a relation between matter density and pressure
obeying certain restrictions. Many plausible physical con-
straints have been proposed, such as the positive mass
theorem [93], the censorship theorem [94,95], the singu-
larity theorems [96], and various constraints on black hole
surface gravity [97], but perhaps the most important and
far-reaching applications are the energy conditions. There
are several different ways to formulate the energy con-
ditions, but we will focus here only on (i) the null energy
condition (NEC), (ii) the weak energy condition (WEC),
and (iii) the strong energy condition (SEC). In summary:

NEC∶ ρðrÞ þ pr ≥ 0; ð63aÞ

WECr∶ ρþ pr ≥ 0; and ρðrÞ ≥ 0; ð63bÞ

FIG. 4. Behavior of redshift (left figure for Case I and right figure for Case II) vs. radial coordinate r/R which have been plotted for
different compact star candidates. For the purpose of plotting this graph, we have employed the dataset of values as same as Fig. 1.
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FIG. 5. Variation of radial and transverse speeds of sound have been plotted for respective stellar models for Case I (top figures) and
Case II (bottom figures). We use the same data as in Fig. 1.

FIG. 6. Adiabatic index (γr) (left figure for Case I and right for Case II) vs. radial coordinate r/R which have been plotted for different
compact star candidates. For the purpose of plotting this graph, we have employed the dataset of values as same as in Fig. 1.
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WECt∶ ρþ pt ≥ 0; and ρðrÞ ≥ 0; ð63cÞ

SEC∶ ρþ pr þ 2pt ≥ 0: ð63dÞ

We derive precisely all the forms of energy conditions
for both cases by plugging the values of energy density and
respective pressure equations. The resulting graph in Fig. 7
shows that all the inequalities hold simultaneously for the
sources considered here.

D. Generalized TOV equation

The Tolman-Oppenheimer-Volkoff (TOV) equation is
used to constrain the structure of a spherically symmetric
body (both isotropic and anisotropic fluid models) that is
covered regarding stars in hydrostatic equilibrium. Here,
we start by explaining the different forces, namely,

gravitational, hydrostatic, and anisotropic forces, respec-
tively. The governing generalized TOV equation for aniso-
tropic fluid distribution is given by [98,99]

−
MGðρþ prÞ

r2
e
λ−ν
2 −

dp
dr

þ 2ðpt − prÞ
r

¼ 0; ð64Þ

whereMG is the effective gravitational mass inside the fluid
sphere of radius “r”, and defined by

MGðrÞ ¼
1

2
r2ν0eðν−λÞ=2: ð65Þ

Now, plugging the value of MGðrÞ in Eq. (64), we get

−
ν0

2
ðρþ prÞ −

dpr

dr
þ 2ðpt − prÞ

r
¼ 0: ð66Þ

FIG. 7. The different energy conditions (in km−2) diagrammed in the model for Case I and Case II have been plotted with respect to
radial coordinate r/R, where the first four graphs describe energy conditions corresponding to Case I while the next four graphs
correspond to Case II.

S. K. MAURYA et al. PHYS. REV. D 99, 044029 (2019)

044029-14



The above TOV equation describes the equilibrium
condition for anisotropic fluid spheres subject to gravita-
tional, hydrostatic, and anisotropic forces due to the
anisotropic pressure. Combining all forces we have the
following form:

Fg þ Fh þ Fa ¼ 0: ð67Þ

Now, we start by explaining Eq. (67) from an equilibrium
point of view, where three different components are

gravitational ðFgÞ, hydrostatic ðFhÞ, and anisotropic ðFaÞ
forces, respectively, with the following expression:

Fg ¼ −
ν0

2
ðρþ prÞ; Fh ¼ −

dpr

dr
; and

Fa ¼
2ðpt − prÞ

r
¼ 2Δ

C
: ð68Þ

Here, the anisotropy force ðFaÞ takes the following form
for both Cases I and II, which turns out to be

Case I∶ Fa ¼
Δ0½ðK − 1Þsin2x − K�

ðK − 1Þ2cos4x and Case II∶ Fa ¼
Δ0½ðK − 1Þcosh2x − K�

ðK − 1Þ2sinh4x ; ð69Þ

and the other components are written in an explicit form:
Case Ia:

Fh ¼ N1

�
Cr

sin x cos xðK − 1Þ
�
; ð70Þ

Fg ¼ −
Crð1þ n2Þ
sin2xðK − 1Þ

�
A1 coshðnxÞ þ B1 sinhðnxÞ

coshðnxÞðA1 þ B1n cot xÞ þ sinhðnxÞðA1n cot xþ B1Þ
�
ðρþ prÞ; ð71Þ

Case Ib:

Fh ¼ N2

�
Cr

sin x cos xðK − 1Þ
�
; ð72Þ

Fg ¼ −
Crð1 − n2Þ
sin2xðK − 1Þ

�
C1 cosðnxÞ þD1 sinðnxÞ

C1 cosðnxÞ þD1 sinðnxÞ − n cot xðC1 sinðnxÞ −D1 cosðnxÞÞ
�
ðρþ prÞ; ð73Þ

Case Ic:

Fh ¼ N3

�
Cr

sin x cos xðK − 1Þ
�
; ð74Þ

Fg ¼ −
8Cr

sin xðK − 1Þ
�

E1 cosðxÞ þ F1 sinðxÞ
E1ð2xþ sin 2xÞ − F1 cos 2x

�
ðρþ prÞ; ð75Þ

Case Id:

Fh ¼ N4

�
Cr

sin x cos xðK − 1Þ
�
; ð76Þ

Fg ¼ −
Cr

sin xðK − 1Þ
�

G1ðxÞ þH1

G1ðcos xþ x sin xÞ þH1 sin x

�
ðρþ prÞ; ð77Þ

Case IIa:

Fh ¼ N5

�
Cr

sinh x cosh xðK − 1Þ
�
; ð78Þ
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Fg ¼ −
Crð1þ n2Þ

cosh2xðK − 1Þ
�

A2 cosðnxÞ þ B2 sinðnxÞ
A2 cosðnxÞ þ B2 sinðnxÞ þ n tanh xðA2 sinðnxÞ − B2 cosðnxÞÞ

�
ðρþ prÞ; ð79Þ

Case IIb:

Fh ¼ N6

�
Cr

sinh x cosh xðK − 1Þ
�
; ð80Þ

Fg ¼ −
Crð1 − n2Þ

cosh2xðK − 1Þ
�

C2 coshðnxÞ þD2 sinhðnxÞ
½C2 coshðnxÞ þD2 sinhðnxÞ� − n tanh x½C2 sinhðnxÞ þD2 coshðnxÞ�

�
ðρþ prÞ; ð81Þ

Case IIC:

Fh ¼ N7

�
Cr

sinh x cosh xðK − 1Þ
�
; ð82Þ

Fg ¼ −
8Cr

cosh xðK − 1Þ
�

E2 cosh xþ F2 sinh x
E2 cosh 2xþ F2ðsinh 2x − 2xÞ

�
ðρþ prÞ; ð83Þ

Case IId:

Fh ¼ N8

�
Cr

sinh x cosh xðK − 1Þ
�
; ð84Þ

Fg ¼ −
Cr

cosh xðK − 1Þ
�

G2ðxÞ þH2

G2ðx cosh x − sinh xÞ þH2 cosh x

�
ðρþ prÞ: ð85Þ

In order to evaluate equilibrium conditions, the hydro-
static equilibrium diagrams obtained for the eight differ-
ent compact stars are shown in Fig. 8. From a
mathematical point of view, one can see from Fig. 8
that the gravitational force (Fg) is dominating over the
hydrostatic (Fh) and anisotropic (Fa) forces, which is
counter balanced by the joint action of hydrostatic (Fh)
and anisotropic (Fa) forces. From Fig. 8, we see that the
force components Fg, Fh, and Fa of the TOV equation
are regular and finite at the origin as well as on the
surface of the star. Moreover, we also observe some
other interesting features of force components corre-
sponding to each star which are as follows: The
hydrostatic force (Fh) and gravitational force (Fg) are
increasing monotonically throughout within the stellar
models and attain their maximum values on the boun-
dary corresponding to the stars (i) EXO 1785-248,
(ii) SMC X-1, while for other stars, namely (iii) SAX
J1808.4-3658 (SS2)-1, (iv) Her X-1, (v) 4U 1538-52,
(vi) LMC X-4, (vii) SAX J1808.4-3658, (viii) PSR
1937þ 21 (for Case I), and (ix) Cen X-3, (x) 4U 1538-
52, (xi) Her X-1, (xii) SAX J1808.4-3658 (for Case II),
the forces Fh and Fg increase first and reach their
maximum value at some point r=R within the stellar
model, and thereafter start decreasing towards the

respective boundary. On the other hand, the anisotropic
force Fa is increasing monotonically towards the surface
boundary corresponding to each obtained star. From
Fig. 8, we also note that the anisotropic force Fa has
much less of an effect compared to the hydrostatic force
Fh and the gravitational force Fg for the stars, namely
(iii) SAX J1808.4-3658(SS2) (for Case I), and (ix) Cen
X-3, (x) 4U 1538-52 (for Case II).

E. The equation of state

Here we derive the relation between the most important
features of neutron stars, which is an equation of state
(EoS), i.e., a relation between pressure and density. The
EoS of neutron star matter at the inner core, where most of
the mass resides, is not well constrained. It is worthwhile to
mention that different EoS lead to different mass-radius
(M-R) relations. To explain the structural properties of
compact star models at high densities, several authors have
proposed that the EoS P ¼ PðρÞ should be well approxi-
mated by a linear function of the energy density ρ [100–
102]. Some authors have also expressed more convincing
approximated forms of the EoS P ¼ PðρÞ as a linear
function of energy density ρ (for more details see [103–
105]). In order to reach that aim, we start our calculation by
writing the EoS in a linear function form, i.e., P ¼ PðρÞ.
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1. Case I: For K < 0, i.e., K is negative

pr ¼
C

κð1þ ρ̃1ÞK
�
1 − K þ 2ð1þ n2Þ½sinhðnρ̃Þf1ðρ̃sÞ þ coshðnρ̃Þf2ðρ̃sÞ�

coshðnρ̃Þðn coshðnρ̃sÞð−f3Þ þ sinhðnρ̃sÞf4Þ þ sinhðnρ̃Þf5

�
; Case Ia ð86Þ

pr ¼
C

κð1þ ρ̃1ÞK
�
1 − K þ 2ð1 − n2Þ½− sinðnρ̃Þf6ðρ̃sÞ þ cosðnρ̃Þf7ðρ̃sÞ�

cosðnρ̃Þ½n cosðnρ̃sÞf8 − sinðnρ̃sÞf9Þ þ sinðnρ̃�f10

�
; Case Ib ð87Þ

pr ¼
C

κð1þ ρ̃1ÞK
�
1 − K þ 8 sinðρ̃Þ½4 cosðρ̃Þ þ ðK − 5Þ cosðρ̃ − 2ρ̃sÞ þ 2ρ̃sðK − 1Þ sinðρ̃Þ�

8ρ̃ − 2ρ̃sðK − 1Þ cosð2ρ̃Þ þ ðK − 5Þf11 þ 4 sinð2ρ̃Þ
�
; Case Ic ð88Þ

FIG. 8. Variation of different forces (in km−3 with G ¼ c ¼ 1) with respect to radial coordinate r/R. For plots we have drawn (i) EXO
1785-248, (ii) SMC X-1, and (iii) SAX J1808.4-3658(SS2)-1, from left to right in the first row. In the second row (iv) Her X-1, (v) 4U
1538-52, and (vi) LMC X-4, have been plotted. In the third and fourth rows (vii) SAX J1808.4-3658, (viii) PSR 1937þ 21, (ix) Cen
X-3, (x) 4U 1538-52, (xi) Her X-1, and (xii) SAX J1808.4-3658 have been plotted for Cases I and II, respectively.
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pr ¼
Cð3 − KÞ½f12 þ ð1 − KÞ cosðρ̃Þ sinðρ̃sÞ − f13 sinðρ̃sÞ�
κð1þ ρ̃1ÞK½−f12 þ ððK − 3Þ cosðρ̃Þ þ f13Þ sinðρ̃sÞ�

; Case Id ð89Þ

where, for notational convenience, we use

ρ̃ ¼ sin−1
ffiffiffiffiffiffiffiffiffi
Kþρ̃1
K−1

q
, ρ̃1 ¼ ðK−1−2ρ1KÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2K−8ρ1KþK2þ8ρ1K2

p
2ρ1K

, ρ1 ¼ κρ
C ,

ρ̃s ¼ sin−1
ffiffiffiffiffiffiffiffiffiffi
Kþρ̃1s
K−1

q
, ρ̃1s ¼ ðK−1−2ρ1sKÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2K−8ρ1KþK2þ8ρ1sK2

p
2ρ1sK

, ρ1s ¼ κρs
C ,

f1ðρ̃sÞ ¼ ð−2n2 þ K − 3Þ coshðnρ̃sÞ secðρ̃sÞ þ nðK − 1Þ cscðρ̃sÞ sinhðnρ̃sÞ,
f2ðρ̃sÞ ¼ nð1 − KÞ coshðnρ̃sÞ cscðρ̃sÞ þ ð2n2 − K þ 3Þ secðρ̃sÞ sinhðnρ̃sÞ,
f3 ¼ ðK − 1Þ cscðρ̃sÞ þ ð2n2 − K þ 3Þ cotðρ̃Þ secðρ̃sÞ, f4 ¼ n2ðK − 1Þ cotðρ̃Þ cscðρ̃sÞ þ ð2n2 − K þ 3Þ secðρ̃sÞ,
f5 ¼ ðcoshðnρ̃sÞð−f4Þ þ n sinhðnρ̃sÞf3Þ, f6ðρ̃sÞ ¼ ð2n2 þ K − 3Þ cosðnρ̃sÞ secðρ̃sÞ − nðK − 1Þ cscðρ̃sÞ sinðnρ̃sÞ,
f7ðρ̃sÞ ¼ nðK − 1Þ cosðnρ̃sÞ cscðρ̃sÞ þ ð2n2 þ K − 3Þ secðρ̃sÞ sinðnρ̃sÞ,
f8 ¼ ð1 − KÞ cscðρ̃sÞ þ ð2n2 þ K − 3Þ cotðρ̃Þ secðρ̃sÞ,
f9 ¼ n2ðK − 1Þ cotðρ̃Þ cscðρ̃sÞ þ ð2n2 þ K − 3Þ secðρ̃sÞ, f10 ¼ ðcosðnρ̃sÞf9 þ n sinðnρ̃sÞf8Þ,
f11 ¼ ½2ρ̃ cosð2ρ̃sÞ þ sinð2ðρ̃ − ρ̃sÞÞ�, f12 ¼ ðK − 1Þ cosðρ̃sÞ sinðρ̃Þ, f13 ¼ ðρ̃ − ρ̃sÞðK − 3Þ sinðρ̃Þ.

2. Case II: For K > 1, i.e., K is positive

pr ¼
C

κð1þ ρ̃1ÞK
�
1 − K þ 2ð1þ n2Þ coshðρ̄Þ½nðK − 1Þ cosðnρ̄ − nρ̄sÞ sechðρ̄sÞ þ f14�

ð3 − K þ 2n2Þ csc hðρ̄sÞf15 þ nðK − 1Þ sec hðρ̄sÞf16

�
; Case IIa ð90Þ

pr ¼
C

κð1þ ρ̃1ÞK
�
1 − K þ 2ð1 − n2Þ½coshðnρ̄Þf17ðρ̄sÞ − sinhðnρ̄Þf18ðρ̄sÞ�

sinhðnρ̄Þðn sinhðnρ̄sÞf19 þ coshðnρ̄sÞf20Þ þ coshðnρ̄Þf21

�
; Case IIb ð91Þ

pr ¼
C

κð1þ ρ̃1ÞK
�
1 − K þ 8 coshðρ̄Þ½2ρ̄sðK − 1Þ coshðρ̄Þ − 4 sinhðρ̄Þ þ ðK − 5Þ sinðρ̄ − 2ρ̄sÞ�

8ρ̄þ 2ρ̄sðK − 1Þ coshð2ρ̄Þ − ðK − 5Þf22 − 4 sinhð2ρ̄Þ
�
; Case IIc ð92Þ

pr ¼
Cð3 − KÞðf23 þ coshðρ̄Þf24Þ

κð1þ ρ̃1ÞK½ð3 − KÞ coshðρ̄sÞ sinhðρ̄Þ þ coshðρ̄Þf24�
; Case IId ð93Þ

where

ρ̄ ¼ cosh−1
ffiffiffiffiffiffiffiffiffi
Kþρ̃1
K−1

q
, ρ̄s ¼ cosh−1

ffiffiffiffiffiffiffiffiffiffi
Kþρ̃1s
K−1

q
,

f14 ¼ ð−3þ K − 2n2Þcschðρ̄sÞ sin½nðρ̄ − ρ̄sÞ�, f15 ¼ − coshðρ̄Þ sinðnðρ̄ − ρ̄sÞÞ þ n cosðnðρ̄ − ρ̄sÞÞ sinhðρ̄Þ,
f16 ¼ cos½nðρ̄ − ρ̄sÞ� coshðρ̄Þ þ n sin½nðρ̄ − ρ̄sÞ� sinhðρ̄Þ,
f17ðρ̄sÞ ¼ nðK − 1Þ coshðnρ̄sÞ sec hðρ̄sÞ þ ð−3þ K þ 2n2Þcschðρ̄sÞ sinhðnρ̄sÞ,
f18ðρ̄sÞ ¼ ð−3þ K þ 2n2Þ coshðnρ̄sÞcschðρ̄sÞ − nðK − 1Þ sec hðρ̄sÞ sinhðρ̄sÞ,
f19 ¼ ð1 − KÞ sec hðρ̄sÞ þ ð−3þ K þ 2n2Þcschðρ̄sÞ tanhðρ̄Þ,
f20 ¼ ð−3þ K þ 2n2Þcschðρ̄sÞ þ n2ðK − 1Þsechðρ̄sÞ tanhðρ̄Þ,
f21ðρ̄Þ ¼ n coshðnρ̄sÞf19 − sinhðnρ̄sÞf20, f22 ¼ 2ρ̄ coshð2ρ̄sÞ − sinhð2ðρ̄ − ρ̄sÞÞ,
f23 ¼ ðK − 1Þ coshðρ̄sÞ sinhðρ̄Þ, f24 ¼ ðρ̄ − ρ̄sÞðK − 3Þ coshðρ̄sÞ þ ðK − 1Þ sinhðρ̄sÞ.
From Eqs. (86)–(93), one can observe that the radial pressure is purely density dependent, which represents the simplest

theoretical form of EoS for those stars. In an argument, Dey et al. [100] have proposed new types of EoSs for strange matter
based on a model of interquark potential. These EoSs have later been approximated to a linear function of density by
Gondek-Rosinska et al. [102], as

p ¼ aðρ − ρsÞ; ð94Þ
where ρs denotes the energy density at zero pressure, and a is non-negative constant. Such an EoS has mainly been proposed
to describe the strange matter hypothesis built of u, d, and s quarks. This was done by Harko and Cheng [101], who showed
that by using the Eq. (94) when ρs ¼ 4B (B ¼ 56 MeV fm3), the maximum mass of a strange star is Mmax ¼ 1.83 M⊙.
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Here, we are developing our consideration the same as in
[102]. In that work, authors showed that Eq. (94) corre-
sponds to self-bound matter at the density ρs at zero
pressure and with a fixed sound velocity. We start from
a certain value of ρs where the pressure is zero, i.e., at the
boundary for our model. The dependence of pressure on the
density diagram for neutron stars with realistic EoS are
represented in Fig. 9 (see Table II for considering values).
For example, by the approximation of Eq. (93) in the linear
power of ρ − ρs, we obtain pr ≈ aðρ − ρsÞ, where

a ¼ ð3−KÞ
2þρ̃1ð1−KÞ3=2 ð1þ

ρ̃1
2KÞð1þ ρ̃1s

2KÞ. In Fig. 9, we observe

that the radial pressure pr vanishes at surface density ρs.
This implies that pr can be expressed by interpolation in
power of ρ − ρs. Such parametrization is very convenient
for stellar modeling, which is also relevant to the interior of
stable stellar configurations [102].

VI. FINAL REMARKS

In this article we have considered the Buchdahl ansatz
[54] for representing a class of neutron stars in the standard
framework of General Relativity. The main catch point is an
extendable analytic solution for positive and negative
values of spheroidal parameter K. We have focused on

characterizing several exotic astrophysical objects with
similar mass and radii, like LMC X-4, SMC X-1, EXO
1785-248, etc., which are confirmed by observations of
gamma-ray repeaters and anomalous X-ray pulsars. To
make the set of equations more tractable, we use the Gupta-
Jasim [82] two-step method to solve the system of hyper-
geometric equations. Furthermore, pressure inside relativ-
istic compact objects is most likely isotropic, but here we
investigate the anisotropic fluid model that plays a signifi-
cant role in the strong-field regime [106]. Considering the
motivation, we choose anisotropy parameter Δ, which is
increasing for small r, and decreasing after reaching the
maximum in the interior of the star [12]. Overall, we find
eight different solutions depending on the choice for the
metric potential which leads to solutions of the condition of
pressure anisotropy.
Based on physical requirements, we match the interior

solution to an exterior vacuum Schwarzschild spacetime on
the boundary surface at r ¼ R, and from the comparison of
both side metrics, all constants are determined which are
listed in Table I. By using these constants in our investigation
for several analogue objects with similar mass and radii,
namely, EXO 1785-248, SMC X-1, SAX J1808.4-3658
(SS2), Her X-1, 4U 1538-52, LMCX-4, SAX J1808.4-3658,

FIG. 9. Variation of radial pressure pr (in km−2) with respect to energy density ρ (in km−2). For Case I, we have plotted the following
stars in the first and second rows: (i) EXO 1785-248, (ii) SMC X-1, (iii) SAX J1808.4-3658(SS2)-1, and (iv) Her X-1, and (v) 4U 1538-
52, (vi) LMC X-4, (vii) SAX J1808.4-3658, and (viii) PSR 1937þ 21. For Case II, we have plotted the following stars in the third row:
(ix) Cen X-3, (x) 4U 1538-52, (xi) Her X-1, and (xii) SAX J1808.4-3658.
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PSR 1937þ 21, Cen X-3, 4U 1538-52, and SAX J1808.4-
3658, we have studied how the anisotropy affects physical
properties, such as energy density, radial, and tangential
pressure. To illustrate these behaviors, we have generated a
plot in Fig. 1 against the radial coordinate r=R in Km. The
density and pressures are positive and remain finite at the
interior of stars. Interestingly, energy density attends its
maximum value at the center of stars and central densities
close to the order of ∼1015. This bound is consistent with the
argument by Ruderman [9] for anisotropic matter in certainly
very high density ranges. Mainly, this situation admits the
theory that the core of exotic astrophysical objects is
intensely compact, particularly in the case of millisecond
pulsar SAX J1808.4-3658 (SS2). We have succeeded in
determining the central density of the massive pulsars 4.06 ×
1015 with masses 1.3237 M⊙.
To refine the model further, we have analyzed the mass-

radius (M-R) relationship, generalized TOV equations, the
surface redshift, energy conditions, and the EoS in linear

approximation form, respectively. The obtained mass-
radius ratios for anisotropic stars are consistent with
Buchdahl’s [54] bound, though he proposed that the
isotropic object for which the energy density is non-
increasing is outward from the boundary. On the other
hand, based on the work by Gondek-Rosinska et al. [102],
in which EoSs have been approximated to a linear function
of density, we have plotted the dependence of pressure on
the density diagram in Fig. 9, and the values used are
summarized in Table II. Such an EoS is very convenient for
stable stellar modeling. At the same time, we have checked
the velocity of sound (v2i ) which is less than the light’s
velocity as is evident in Fig. 5.
Aside from the influence on theM-R ratio for anisotropic

stars, we present the variation of total mass M (normalized
in solar mass M⊙) with the total radius R for different
chosen parametric values (see Fig. 3). We have also studied
the stability of the configurations with respect to general-
ized TOVequation and found the equilibrium configuration

TABLE I. Values of the model parameters of Case I and Case II for different values of K, C, n, and Δ0.

Compact star candidates MðM⊙Þ R (km) K CR2 n Δ0 2 − K þ Δ0K Cases

EXO 1785-248 (Özel et al. [73]) 1.3 8.849 −0.27898 0.1044 0.1 8.205 −0.01 Case Ia.
SMC X-1 (Rawls et al. [70]) 1.04 8.301 −0.28103 0.1044 0.1 8.152 −0.01 Case Ia.
SAX J1808.4-3658 (SS2) (Li et al. [107]) 1.3237 6.16 −1.18 0.52 1.783 0.000772 3.18 Case Ib.
Her X-1 (Abubekerov et al.) [75] 0.85 8.1 −1.18 0.2013 1.85 1 Case Ic.
4U 1538-52 (Rawls et al. [70]) 0.87 7.866 −1.18 0.2145 1.85 1 Case Ic.
LMC X-4 (Rawls et al. [70]) 1.29 8.831 −1.18 0.25006 1.85 1 Case Ic.
SAX J1808.4-3658 (Elebert et al. [74]) 0.9 7.951 −1.18 0.2206 1.85 1 Case Ic.
PSR 1937þ 21 (Kapoor et al. [108],
Xin et al.[109])

2.0833 8.04 −0.91 0.5698 3.198 0 Case Id.

Cen X-3 (Rawls et al. [70]) 1.49 9.178 3 2.55 0.99 0.00663 −0.98 Case IIa.
4U 1538-52 (Rawls et al. [70]) 0.87 7.866 1.78 2.915 0.4796 0.0056 0.23 Case IIb.
Her X-1 (Abubekerov et al.) [75] 0.85 8.1 3.1 0.8415 0.677 1 Case IIc.
SAX J1808.4-3658 (Elebert et al. [74]) 0.9 7.951 2.1 1.759 0.048 0 Case IId.

TABLE II. Energy densities, central pressure, and the Buchdahl limit for different compact star candidates for the above parameter
values of Table I.

Central density Surface density Central pressure Buchdahl condition Redshift

Compact star candidatesah (gm=cm3) (gm=cm3) (dyne=cm2) ð2M=R ≤ 8=9Þ ðzSÞ Cases

EXO 1785-248 0.98 × 1015 8.33 × 1014 0.99 × 1035 0.21669 0.328472 Case Ia.
SMC X-1 1.109 × 1015 9.41 × 1014 1.107 × 1035 0.21546 0.325584 Case Ia.
SAX J1808.4-3658 (SS2) 4.06 × 1015 20.65 × 1014 1.59 × 1035 0.3071 0.648507 Case Ib.
Her X-1 0.91 × 1015 6.73 × 1014 1.05 × 1035 0.0618 0.203489 Case Ic.
4U 1538–52 1.03 × 1015 7.47 × 1014 1.28 × 1035 0.16314 0.218326 Case Ic.
LMC X-4 0.95 × 1015 6.59 × 1014 1.45 × 1035 0.18479 0.259444 Case Ic.
SAX J1808.4-3658 1.04 × 1015 7.46 × 1014 1.34 × 1035 0.16696 0.225259 Case Ic.
PSR 1937þ 21 2.97 × 1015 14.35 × 1014 3.77 × 1035 0.2692 1.049159 Case Id.
Cen X-3 3.24 × 1015 4.76 × 1014 5.305 × 1035 0.23945 0.419898 Case IIa.
4U 1538-52 3.32 × 1015 4.27 × 1014 2.63 × 1035 0.16314 0.643074 Case IIb.
Her X-1 1.45 × 1015 5.27 × 1014 1.59 × 1035 0.15478 0.203472 Case IIc.
SAX J1808.4-3658 2.34 × 1015 4.87 × 1014 1.56 × 1035 0.16696 0.225316 Case IId.
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where the gravitational force (Fg) is dominating over the
hydrostatic (Fh) and anisotropic (Fa) forces, as seen from
Fig. 8. We conclude that our proposed model satisfies all
physical requirements as well as horizon-free and stable
configurations that help us further our understanding about
anisotropic compact objects.
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APPENDIX A: GUPRA-JASIM TWO-STEP
METHOD

This appendix is devoted in solving the hypergeometric
differential equation (HDE). Note that the HDE can be
solved directly in terms of the hypergeometric series.
However, some hypergeometric equations can be solved
in closed form. In our preset article, we use the Gupta-Jasim
[82] two-step method for solving the system of equations.
Step I: In this section, we provide the Gupta-Jasim

Method in detail to supplement the results presented in the
main text, starting with Eq. (10), which is

ð1 − Z2Þ d
2Y

dZ2
þ Z

dY
dZ

þ ð1 − K þ Δ0KÞY ¼ 0: ðA1Þ

Now, differentiate the equation with respect to Z, we get

ð1 − Z2Þ d
3Y

dZ3
− Z

d2Y
dZ2

þ ð2 − K þ Δ0KÞ dY
dZ

¼ 0: ðA2Þ

Here, substitute a new variable G ¼ dY=dZ, which yields

ð1 − Z2Þ d
2G
dZ2

− Z
dG
dZ

þ ð2 − K þ Δ0KÞG ¼ 0: ðA3Þ

In the Z < 1 case, we use the transformation Z ¼ sin x
(which corresponds the Case K < 0, as 0 < K < 1 is not a
valid solution) into the Eq. (A3), and the above turns out to
be (note that the first derivative term vanishes)

d2G
dx2

þ ð2 − K þ Δ0KÞG ¼ 0: ðA4Þ

Thus we have the solution for Eq. (A4), which takes the
following form:

dY
dZ

¼ G ¼ A1 coshðnxÞ þ B1 sinhðnxÞ;
where 2 − K þ Δ0K ¼ −n2: ðA5Þ

Step 2: In this step we find d2Y
dZ2 from Eq. (A5), and this

yields

d2Y
dZ2

¼ dG
dZ

¼ dG
dx

:
dx
dZ

¼ ½A1n sinhðnxÞ
þ B1n coshðnxÞ� sec x: ðA6Þ

Now, inserting the expressions (A5) and (A6) into the
hypergeometric Eq. (A1), and using 2 − K þ Δ0K ¼ −n2,
we finally arrive at

YðxÞ ¼ 1

ðn2 þ 1Þ ½coshðnxÞðA1 sin xþ B1n cos xÞ

þ sinhðnxÞðA1n cos xþ B1 sin xÞ�; ðA7Þ

which determines the eν ¼ Y2. Similarly, one can obtain
the other solutions of hypergeometric equation.

APPENDIX B: THE EXPRESSIONS FOR COEFFICIENTS USED IN EQS. (46)–(61)

We list here all the expressions that have been used to find the velocity of sound in Eqs. (46)–(61) as follows:
N1 ¼ 4ðn2þ1Þ tan x

Kð1−KÞcos2x
h

A1 coshðnxÞþB1 sinhðnxÞ
coshðnxÞðA1þB1n cot xÞþsinhðnxÞðA1n cot xþB1Þ

i
þ 2 tan x

Kcos2x þ
2ðn2þ1Þ

Kð1−KÞcos2x
L1

M1
,

L1 ¼ ½coshðnxÞðA1 þB1ncotxÞ þ sinhðnxÞðA1ncotxþB1Þ�½A1n sinhðnxÞ þB1n coshðnxÞ�− ½A1 coshðnxÞ þB1 sinhðnxÞ�
×½n sinhðnxÞðA1 þB1n cotxÞ−B1 coshðnxÞncsc2xþ n coshðnxÞðA1n cotxþB1Þ− n sinhðnxÞcsc2x�,
M1 ¼ ½coshðnxÞðA1 þ B1n cot xÞ þ sinhðnxÞðA1n cot xþ B1Þ�2,
N2 ¼ 4ð1−n2Þ tan x

Kð1−KÞ cos2 x
h

C1 cosðnxÞþD1 sinðnxÞ
C1 cosðnxÞþD1 sinðnxÞ−n cot xðC1 sinðnxÞ−D1 cosðnxÞÞ

i
þ 2 tan x

K cos2 x þ
2ð1−n2Þ

Kð1−KÞ cos2 x
L2

M2
,

L2 ¼ ½C1 cosðnxÞ þD1 sinðnxÞ − n cot xðC1 sinðnxÞ −D1 cosðnxÞÞ�½−nC1 sinðnxÞ þD1n cosðnxÞ� − ½C1 cosðnxÞ þ
D1 sinðnxÞ�½−nC1 sinðnxÞ þD1n cosðnxÞ þ n csc2 xðC1 sinðnxÞ −D1 cosðnxÞÞ − n cot xðC1n cosðnxÞ þD1n sinðnxÞÞ�,
M2 ¼ ½C1 cosðnxÞ þD1 sinðnxÞ − n cot xðC1 sinðnxÞ −D1 cosðnxÞÞ�2.
N3 ¼ 8ð2−cos2xÞ

Kð1−KÞcos3x
h

E1 cosðxÞþF1 sinðxÞ
E1ð2xþsin 2xÞ−F1 cos 2x

i
þ 2 tan x

Kcos2x þ 8 sin x
Kð1−KÞcos2x,

ANISOTROPIC COMPACT STARS IN THE BUCHDAHL … PHYS. REV. D 99, 044029 (2019)

044029-21



M3 ¼
h
ðE1ð2xþsin 2xÞ−F1 cos 2xÞð−E1 sin xþF1 cos xÞ−ðE1 cos xþF1 sin xÞð4E1cos2xþ2F1 sin 2xÞ

ðE1ð2xþsin 2xÞ−F1 cos 2xÞ2
i
.

N4 ¼ 2 tan x
Kcos2x þ 2 sin x

Kð1−KÞcos2x
h
ðG1ðcos xþx sin xÞþH1 sin xÞG1−ðG1xþH1ÞðG1x cos xþH1 cos xÞ

ðG1ðcos xþx sin xÞþH1 sin xÞ2
i
þ 2ð2−cos2xÞ

Kð1−KÞcos3x
h

G1ðxÞþH1

G1ðcos xþx sin xÞþH1 sin x

i
.

N5 ¼ −4ðn2þ1Þ cosh x
KðK−1Þ sinh3 x

h
A2 cosðnxÞþB2 sinðnxÞ

A2 cosðnxÞþB2 sinðnxÞþn tanh xðA2 sinðnxÞ−B2 cosðnxÞÞ
i
þ 2 cosh x

K sinh3 x þ
2ðn2þ1Þ

Kð1−KÞ sinh2 x
L5

M5
,

L5 ¼ ½A2 cosðnxÞ þ B2 sinðnxÞ þ n tanh xðA2 sinðnxÞ − B2 cosðnxÞÞ�½−A2n sinðnxÞ þ B2n cosðnxÞ� − ½A2 cosðnxÞ þ
B2 sinðnxÞ�½−nA2 sinðnxÞ þ B2n cosðnxÞ þ n sech2xðA2 sinðnxÞ − B2 cosðnxÞÞ þ n tanh xðA2n cosðnxÞ þ B2n sinðnxÞÞ�,
M5 ¼ ½A2 cosðnxÞ þ B2 sinðnxÞ þ n tanh xðA2 sinðnxÞ − B2 cosðnxÞÞ�2,
S2 ¼ 2 cosh x sinh2 xðK−1Þ−4 cosh xð3−KþðK−1Þ cosh2 xÞ

KðK−1Þ sinh5 x .

N6 ¼ −4ð1−n2Þ coth x
KðK−1Þ sinh2 x

h
C2 coshðnxÞþD2 sinhðnxÞ

½C2 coshðnxÞþD2 sinhðnxÞ�−n tanh x½C2 sinhðnxÞþD2 coshðnxÞ�
i
þ 2 cosh x

K sinh3 x þ
2ð1−n2Þ

KðK−1Þ sinh2 x
L6

M6
,

L6 ¼ ½C2 coshðnxÞ þD2 sinhðnxÞ − n tanh xðC2 sinhðnxÞ þD2 coshðnxÞÞ�½C2n sinhðnxÞ þD2n coshðnxÞ� −
½C2 coshðnxÞ þD2 sinhðnxÞ�½nC2 sinhðnxÞ þD2n coshðnxÞ − n sech2xðC2 sinhðnxÞ þD2 coshðnxÞÞ−
n tanh xðC2n coshðnxÞ þD2n sinhðnxÞÞ�,
M5 ¼ ½C2 coshðnxÞ þD2 sinhðnxÞ − n tanh xðC2 sinhðnxÞ þD2 coshðnxÞÞ�2,
N7 ¼ −8ð1þcosh2 xÞ

KðK−1Þ sinh3 x
h

E2 cosh xþF2 sinh x
E2 cosh 2xþF2ðsinh 2x−2xÞ

i
þ 2 cosh x

K sinh3 x þ 8 cosh x
KðK−1Þ sinh2 xM7;

M7 ¼
h
ðE2 cosh 2xþF2ðsinh 2x−2xÞÞðE2 sinh xþF2 cosh xÞ−ðE2 cosh xþF2 sinh xÞð2E2 sinh 2xþ2F2ðcosh 2x−1ÞÞ

ðE2 cosh 2xþF2ðsinh 2x−2xÞÞ2
i
.

N8 ¼ 2 cosh x
K sinh3 x þ 2 cosh x

KðK−1Þ sinh2 x
h
ðG2ðx cosh x−sinh xÞþH2 cosh xÞG2−ðG2xþH2ÞðG2x sinh xþH2 sinh xÞ

ðG2ðx cosh x−sinh xÞþH2 cosh xÞ2
i
þ −2ð1þcosh2 xÞ

KðK−1Þ sinh3 x
h

G2ðxÞþH2

G2ðx cosh x−sinh xÞþH2 cosh x

i
.

S1 ¼ 2 cos2 x sin xðK−1Þþ4 sin xð3−KþðK−1Þ sin2 xÞ
KðK−1Þ cos5 x ,

S2 ¼ 2 cosh x sinh2 xðK−1Þ−4 cosh xð3−KþðK−1Þ cosh2 xÞ
KðK−1Þ sinh5 x .
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