
 

Graviton-photon mixing

Damian Ejlli* and Venugopal R. Thandlam
Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia

(Received 20 November 2018; published 14 February 2019)

In the era of gravitational wave (GW) detection from astrophysical sources by LIGO/VIRGO, it is of
great importance to take the quantum gravity effect of graviton-photon (GRAPH) mixing in the cosmic
magnetic field to the next level. In this work, we study such an effect and derive for the first time
perturbative solutions of the linearized equations of motions of the GRAPH mixing in an expanding
universe. In our formalism we take into account all known standard dispersive and coherence breaking
effects of photons such as the Faraday effect, the Cotton-Mouton effect, and the plasma effects in the
cosmic magnetic field. Our formalism applies to a cosmic magnetic field either a uniform or a slowly
varying nonhomogeneous field of spacetime coordinates with an arbitrary field direction. For binary
systems of astrophysical sources of GWs at extragalactic distances with chirp masses MCH of a few solar
masses, GW present-day frequencies ν0 ≃ 50–700 Hz, and present-day cosmic magnetic field amplitudes
B̄0 ≃ 10−10 − 10−6 G, the power of electromagnetic radiation generated in the GRAPH mixing at present is
substantial and in the range Pγ ≃ 106–1015 ðerg=sÞ. On the other hand, the associated power flux Fγ is quite
faint depending on the source distance with respect to the Earth. Since in the GRAPH mixing the velocities
of photons and gravitons are preserved and are equal, this effect is the only one known to us, whose
certainty of the contemporary arrival of GWs and electromagnetic radiation at the detector is guaranteed.
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I. INTRODUCTION

The detections of several gravitational wave (GW)
events by the LIGO/VIRGO Collaborations [1] have finally
confirmed a long-standing problem that indeed spacetime
perturbations that propagate with the speed of light and that
are not an artifact prediction of the theory of general
relativity do exist. The detection of GWs followed after
several decades of intensive theoretical studies and exper-
imental efforts that took a great push forward starting from
the first detection of a GW source, namely the PSR
B1913þ 16 binary system of neutron stars [2]. The
LIGO/VIRGO detections apart from being important in
many aspects of physics shed a new light in favor of the
graviton, namely the quantized particle of spin two of the
gravitational field. The GW events detected by the LIGO/
VIRGO Collaborations, so far, have confirmed with good
accuracy that GWs propagate in the vacuum with the speed
of light and if the graviton is a massive particle, its mass
should be smaller than mg < 1.2 × 10−22 eV; see Refs. [1]
for details.
One of the key assumptions about the nature of GWs is

that they weakly interact with matter and fields while
propagating from the source to the detector, and conse-
quently their velocities and amplitudes are assumed to

remain unaltered. This assumption is justifiable in most
situations because being the interaction strength of GWs
with matter and fields very small, one usually does not
expect any loss or transformation of GWs propagating
though cosmological distances. Even though this assum-
ption is quite realistic in most cases, there might be some
exceptions in the case when GWs interact with spatially
extended electromagnetic fields comparable with astro-
physical and cosmological distances. Indeed, as the theory
of general relativity teaches us, every form of nonstationary
stress energy tensor on the right-hand side of the Einstein
field equations with a quadrupole moment produces space-
time perturbations or simply GWs. So, in principle non-
stationary interactions among electromagnetic fields would
produce GWs.
While nonstationary interactions among electromagnetic

fields with quadrupole moments produce GWs such as
the interaction of a plane electromagnetic wave with a static
magnetic field, it is also possible that the interaction of
GWs with external electromagnetic fields would produce
electromagnetic radiation out of GWs. Therefore, the
overall outcome is that GWs and electromagnetic waves
mix with each other in the presence of external electro-
magnetic fields, and this effect propagates in space
throughout the region where the external electromagnetic
field is spatially located; see Ref. [3] for an intuitive
explanation. Based on this fundamental prediction of the
theory of general relativity, the possibility to generate GWs
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in the laboratory from the interaction of electromagnetic
radiation with external prescribed static magnetic fields was
initially proposed in Ref. [4].
Through the decades the possibility of mixing GWs with

electromagnetic waves and vice versa in a constant external
magnetic field has been studied by several authors [5,6] for
some specific magnetic field configuration, which in most
cases has been taken to be perpendicular to the propagation
of the incident GW and/or electromagnetic wave. In those
cases where the field was not taken to be perpendicular with
respect to the incident field propagation, important dis-
persive and coherence breaking effects such as the Faraday
effect and the Cotton-Mouton (CM) effect have not been
taken into account. In these studies, classical, semiclassical
[5], and field theory approaches [6] have been employed to
the mixing problem, and some possibilities for applying
this effect in cosmological scenarios have been proposed in
Ref. [7]. A different way to produce electromagnetic waves
due to propagation of GWs in vacuum has been proposed
in Ref. [8].
In order for the GRAPH mixing to work, it is necessary

to have an external electromagnetic field, and in cosmo-
logical situations it can be possible in the presence of large-
scale cosmic magnetic fields (for general concepts on
cosmic magnetic fields see Ref. [9]). Indeed, as it is well
known, the presence of large-scale magnetic field in
galaxies and galaxy clusters has been experimentally
verified, while it is still unclear if such a field is present
in the intergalactic space. In galaxy clusters, the measure-
ments of the rotation angle of the received light due to the
Faraday effect confirm the presence of a large-scale
magnetic field inside them, with a magnitude of the order
of a few μG. On the other hand, in the intergalactic space
recent studies by the Planck Collaboration [10] would
suggest a weaker large-scale cosmic magnetic field with
upper limit field strength B̄0 ≲ 3–1380 nG at the correla-
tion length scale λB ¼ 1 Mpc. The limit of the order of
1380 nG is set from the Faraday effect of the CMB, while
the limit of B̄0 ≲ 3 nG is set from the CMB temperature
anisotropy. In addition, from the nonobservation of gamma
ray emission from the intergalactic medium due to the
injection of high energy particles by blazars [11], a lower
value on the strength of the intergalactic magnetic field of
the order B̄0 ≥ 10−16 − 10−15 G is inferred.
The detection of GWs from astrophysical binary

systems gives a rather unique opportunity to probe the
GRAPHmixing effect in the cosmic magnetic field. Some
important questions that we can ask at this stage are the
following: If large-scale magnetic fields do exist, what is
the probability of transformation of GWs into electro-
magnetic radiation? What is the energy per unit time and/
or the energy density received at the Earth? What is the
polarization of the electromagnetic radiation received? In
this work, we address these questions by applying the
GRAPH mixing to astrophysical binary systems located

at extragalactic distances (not located in our galaxy) with
redshifts 0.1≲ z, and we make predictions for the energy
power and energy power flux of the electromagnetic
radiation generated in the GRAPH mixing. With respect
to other works where the GRAPH mixing was studied
for a constant magnetic field [5,6] in a laboratory and in
the early universe where the density matrix equations
of motions were solved numerically [7], in this work we
find analytic solutions of the field equations of motion for
a slowly varying nonhomogeneous magnetic field. In
addition, with respect to other studies [5–7] we allow the
direction of the external magnetic field to be arbitrary
with respect to the GW direction of propagation and take
into account the Faraday and CM effects in the mag-
netic field.
This paper is organized as follows: In Sec. II we derive the

linearized field equations of motion in a spatially and
temporally nonhomogeneous magnetic field with the field
inhomogeneity scale bigger than the GW wavelength. In
Sec. III we discuss all standard dispersive and coherence
breaking electromagnetic wave effects in a magnetized
plasma by writing explicitly the elements of the photon
polarization tensor in a magnetized medium. In Sec. IV we
find analytic solutions of the linearized equations of motion
by using perturbation theory. In Sec. V we find the Stokes
parameters of the electromagnetic radiation generated in the
GRAPH mixing. In Sec. VI we find some analytic expres-
sions of the integrals that do appear in the Stokes parameters.
In Sec. VII we calculate the power and the power flux of the
electromagnetic radiation generated in the GRAPHmixing.
In Sec. VIII we discuss possible cutoffs in the GRAPH
spectrum due to plasma frequency, and in Sec. IX we
conclude. In this work we use the metric with signature
ημν ¼ diag½1;−1;−1;−1� and work with the rationalized
Lorentz-Heaviside natural units (kB¼ℏ¼c¼ ε0¼μ0¼1)
with e2 ¼ 4πα. In addition, in this work we use the values
of the cosmological parameters found by the Planck
Collaboration [12] with ΩΛ ≃ 0.68, ΩM ≃ 0.31, h0 ≃ 0.67
with zero spatial curvature Ωκ ¼ 0.

II. FIELD MIXING IN EXTERNAL
MAGNETIC FIELD

To describe the GRAPH mixing, it is necessary first to
start with the total action of the GRAPHmixing. In general,
the action for a given Lagrangian density L minimally
coupled to gravity is S ¼ R

d4x
ffiffiffiffiffiffi−gp

L where L describes
the total Lagrangian density of matter and fields and their
interactions. In our case, it is given by the sum of the
following terms:

L ¼ Lgr þ Lem; ð1Þ
where Lgr and Lem are, respectively, the Lagrangian
densities of gravitational and electromagnetic fields.
These terms are, respectively, given by
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Lgr ¼
1

κ2
R;

Lem ¼ −
1

4
FμνFμν −

1

2

Z
d4x0AμðxÞΠμνðx; x0ÞAνðx0Þ: ð2Þ

Here R is the Ricci scalar, g is the metric determinant, Fμν is
the electromagnetic field tensor, κ2 ¼ 16πGN with GN
being the Newtonian constant, and Πμν is the photon
polarization tensor in a magnetized medium.
By expanding the metric tensor around the flat

Minkowski spacetime as gμν ¼ ημν þ κhμν þ � � �, we get
the following expression for the total effective action:

Seff ¼
1

4

Z
d4x½2∂μhμν∂ρh

ρ
ν þ ∂μh∂μh − ∂μhαβ∂μhαβ

− 2∂μhμν∂νh� −
1

4

Z
d4xFμνFμν þ κ

2

Z
d4xhμνT

μν
em

−
1

2

Z
d4x

Z
d4x0AμðxÞΠμνðx; x0ÞAνðx0Þ

þOðκ∂h3Þ þOðκhΠÞ; ð3Þ

where hμν is the gravitational wave tensor with h ¼ ημνhμν

and Tμν
em is the electromagnetic field tensor.1

Let us suppose that we have GWs propagating in a
vacuum and after they enter a region where only an external
magnetic field exists. We can put GWs in the traceless-
transverse gauge before entering the magnetic field region,
namely h0i ¼ 0, ∂jhij ¼ 0, and hii ¼ 0. The Euler-
Lagrange equations of motion from (3) for the propagating
photon and graviton fields components, Aμ and hij propa-
gating in the external magnetic field, are given by

∇2A0 ¼ 0;

□Ai þ
�Z

d4x0Πijðx; x0ÞAjðx0Þ
�
þ ∂i∂μAμ

¼ κ∂μ½hμβF̄i
β − hiβF̄μ

β�;
□hij ¼ −κðBiB̄j þ B̄iBj þ B̄iB̄jÞ: ð4Þ

In obtaining the system of Eqs. (4), the electromagnetic
field tensor has been written as the sum of the incident
photon field tensor fμν and of the external field tensor F̄μν,
namely Fμν ¼ fμν þ F̄μν. However, since we are assuming
that only an external magnetic field exists, we essentially

have only that F̄ij ≠ 0. In addition, we assume that the
external magnetic field varies in space on much larger
scales than the incident GW wavelength, namely λB ≫ λgw.
The latter assumption does not necessarily mean that the
external magnetic field is only a uniform function of space
coordinates where the condition λB ≫ λgw is always
satisfied. In contrast, the magnetic field is assumed to be
a slowly varying function of space coordinates; namely the
field could be nonhomogeneous in space and in time as
well. The condition λB ≫ λgw implies that jh∂F̄j ≪ jF̄∂hj,
where for simplicity we suppressed the indices in hij and
F̄ij. By using these approximations, we can simplify the
system (4) and write it in the form

∇2A0 ¼ 0;

□Ai þ
�Z

d4x0Πijðx; x0ÞAjðx0Þ
�
þ ∂i∂μAμ

¼ −κð∂jhikÞF̄j
k;

□hij ¼ −κðBiB̄j þ B̄iBj þ B̄iB̄jÞ; ð5Þ

where we used the fact that FμνF̃μν ¼ −4E · B and
F̃0i ¼ −Bi, and we used the traceless-transverse gauge
conditions.
To solve the system of Eqs. (5), we must choose a gauge

for the photon field that would simplify the equations. In
this work we employ the Coulomb gauge condition where
∂iAi ¼ 0. In addition, from the first equation in system (5)
we can also choose A0 ¼ 0. Now by using the same method
as shown in Ref. [13], we expand the fields Aiðx; tÞ and
hijðx; tÞ in the form

Aiðx; tÞ ¼
X

λ¼x;y;z

eiλðn̂ÞAλðx;ωÞe−i
R

ωðt0Þdt0 ;

hijðx; tÞ ¼
X

λ0¼×;þ
hλðx;ωÞeλ0ijðn̂Þe−i

R
ωðt0Þdt0 ; ð6Þ

where eiλ is the photon polarization vector, eλ
0
ij is the GW

polarization tensor with λ0 indicating the polarization index
or helicity state, and n̂ ¼ x=r with r ¼ jxj. Here n̂ is the
direction of the propagation of the GW. Without any loss of
generality, let us suppose now that the GW propagates in a
given coordinate system along the z axis, namely n̂ ¼ ẑ.
Since we are working in the Coulomb gauge where there is
not a propagating longitudinal component for Ai and
because x ¼ rẑ, we have that the third term on the left-
hand side of the second equation in (5), namely ∂i∂μAμ, is
zero because of the Coulomb gauge and because A0 ¼ 0. In
the equation governing the GW evolution [the third
equation in (5)], the last term B̄iB̄j is a slowly varying
function in space and time and can be neglected with
respect to the interference terms BiB̄j and B̄iBj.

1With the metric with signature ημν ¼ diag½1;−1;−1;−1�, the
expressions for the spatial components of the electromagnetic
stress-energy tensor are Tij ¼ EiEj þ BiBj − ð1=2ÞδijðE2 þ B2Þ
where Ei ¼ Ei þ Ēi and Bi ¼ Bi þ B̄i are, respectively, the
components of the total electric and magnetic fields. The
stress-energy tensor of the incident photon field tensor, fμν, is
not a source of GWs; see Ref. [5] for details.
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Consider now the external magnetic field with compo-
nents B̄ðx; tÞ ¼ ½B̄xðx; tÞ; B̄yðx; tÞ; B̄zðx; tÞ� and the vector
potential with components Aðx; tÞ ¼ ½Axðx; tÞ; Ayðx; tÞ;
Azðx; tÞ�. With the GW and electromagnetic wave propa-
gating along the ẑ axis, hij ¼ hijðr; tÞ, Ai ¼ Aiðr; tÞ, and
with the field expansion (6), the equations of motion (5) for
the GW tensor hij in terms of the GW polarization states hþ
and h× are given by

½ω2 þ ∂2
r �hþðr;ωÞ ¼ −κ½∂rAxðr;ωÞB̄y þ ∂rAyðr;ωÞB̄x�;

½ω2 þ ∂2
r �h×ðr;ωÞ ¼ κ½∂rAxðr;ωÞB̄x − ∂rAyðr;ωÞB̄y�;

ð7Þ

where we used for the propagating electromagnetic wave
Bxðr; tÞ ¼ −∂rAyðr; tÞ, Byðr; tÞ ¼ ∂rAxðr; tÞ, Bzðr; tÞ ¼ 0

with ∂r ¼ ∂=∂r. In obtaining Eqs. (7) we used the fact that
the GW polarization tensor is symmetric and depends only
on eijλ ðẑÞ and used the property eijλ e

λ0
ij ¼ 2δλλ0.

In the case of equations of motion for the photon field A
components in (5), we obtain

½ω2þ∂2
r−Πxxðr;ωÞ�Axðr;ωÞ−Πxyðr;ωÞAyðr;ωÞ

−Πxzðr;ωÞAzðω;rÞ¼ κ½∂rhþðr;ωÞB̄y−∂rh×ðr;ωÞB̄x�;
½ω2þ∂2

r−Πyyðr;ωÞ�Ayðr;ωÞ−Πyxðr;ωÞAxðr;ωÞ
−Πyzðr;ωÞAzðω;rÞ¼ κ½∂rh×ðr;ωÞB̄yþ∂rhþðr;ωÞB̄x�;

½ω2δzj−Πzjðr;ωÞ�Ajðr;ωÞ¼0; ð8Þ

where in the Coulomb gauge there is no propagating longi-
tudinal electromagnetic wave ∂rAzðr; tÞ ¼ 0 and Πij ¼
Πij ¼ Πijðr;ωÞ are the elements of the photon polarization
tensor calculated in the adiabatic limit r0 → r. We may note
that the third equation in the system (8) is actually a
constraint on Az. It can be shown [14] that by solving this
equation, namely by expressing Az in terms of the trans-
verse photon states Ax and Ay and then substituting it in the
first two equations in (8), the components of Πij for
i; j ¼ x, y get a contribution from the longitudinal photon
state. However, for the frequency range of the GWs and
electromagnetic waves considered in this work, this extra
contribution is very small and can safely be neglected.
The next step for solving Eqs. (7) and (8) is to look for

solutions of field amplitudes of the form

hþ;×ðr;ωÞ ¼ h̃þ;×ðr;ωÞeikr;
Ax;yðr;ωÞ ¼ Ãx;yðr;ωÞeikr; ð9Þ

where k is the momentum of the fields corresponding
to the mode k. In addition, we work in the slowly
varying envelope approximation (SVEA) which is a
Wentzel-Kramers-Brillouin-like approximation, namely that

j∂rh̃þ;×j≪jkh̃þ;×j and j∂rÃx;yj≪jkÃx;yj with ðω2þ∂2
rÞð·Þ¼

ðω−i∂rÞðωþi∂rÞð·Þ¼ðωþkÞð∂tþi∂rÞð·Þ. By using the
expansion (9) in Eqs. (7) and (8), we get the following
system of first order differential equations for the field
amplitudes hþ;× and Ax;y:

ðωþ i∂rÞΨðr;ωÞI þMðr;ωÞΨðr;ωÞ ¼ 0: ð10Þ
In (10) I is the unit matrix,Ψðr;ωÞ ¼ ðh×; hþ; Ax; AyÞT is a
four component field, and Mðr;ωÞ is the mass mixing
matrix, which is given by

M ¼

0
BBBBB@

0 0 −iMx
gγ iMy

gγ

0 0 iMy
gγ iMx

gγ

iMx
gγ −iMy

gγ Mx MCF

−iMy
gγ −iMx

gγ M�
CF My

1
CCCCCA
; ð11Þ

where the elements of the mixing matrix M are given by
Mx

gγ ¼ κkB̄x=ðωþ kÞ,My
gγ ¼ κkB̄y=ðωþ kÞ,Mx ¼ −Πxx=

ðωþ kÞ, and My ¼ −Πyy=ðωþ kÞ. Here MCF ¼ −Πxy=
ðωþ kÞ is a term that includes a combination of the CM
effect and the Faraday effect and that depends on the
magnetic field direction with respect to the photon propa-
gation. Here ω is the total energy of the fields, namely
ω ¼ ωgr ¼ ωγ . In this work all the particles participating
in the mixing are assumed to be relativistic, namely
ωþ k ≃ 2k.

III. DISPERSIVE AND COHERENCE BREAKING
EFFECTS IN A MAGNETIZED PLASMA

In the previous section we have been able to reduce the
equations of motion for the GRAPH mixing to a system of
first order differential equations with variable coefficients.
Before trying to look for a solution of the system (10) it is
important to write the explicit expressions for Mx, My, and
MCF, which in turn depend on the elements of the photon
polarization tensor in a magnetized medium. Here we
present the explicit expressions for the elements Πxx,
Πyy, and Πxy of the photon polarization tensor, and for a
detailed discussion and derivation of these expressions see
Ref. [13]. The matrix elements Πxx and Πyy correspond to
the modification of the dispersion and coherence breaking
relations of the states Ax and Ay, respectively; namely the
momentum space Maxwell equations become ω2 − k2x;y ¼
ω2ð1 − n2x;yÞ ¼ Πxx;yy, where nx;y are the total indexes of
refraction. The expressions for the elements Πxx and Πyy

are given2 in Ref. [13]

2All expressions for the photon polarization tensor
elements are derived under the conditions ω ≠ ωc and ω > 0.
In addition, propagating electromagnetic waves exist only when

ω > ð�ωc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ 4ω2

pl

q
Þ=2.
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Πxx ¼
ω2ω2

pl

ω2 − ω2
c
−
ω2
plω

2
ccos2ðΘÞ

ω2 − ω2
c

;

Πyy ¼
ω2ω2

pl

ω2 − ω2
c
−
ω2
plω

2
csin2ðΘÞcos2ðΦÞ
ω2 − ω2

c
; ð12Þ

whereωpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παne=me

p
is the plasma frequency andωc ¼

eB̄=me is the cyclotron frequency. Here me is the electron
mass, e is the electron charge, ne is the number density of the
free electrons in the plasma, and B̄ðx; tÞ ¼ jB̄ðx; tÞj is the
external magnetic field strength. In addition, Θ is the polar
angle of the external magnetic field with respect to the x axis
which points to the North andΦ is the azimuthal angle of the
external magnetic field with respect to the y axis which points
outward. For this configuration, we can write B̄ðx;tÞ¼
½B̄xðx;tÞÞ;B̄yðx;tÞ;B̄zðx;tÞ�¼ B̄ðx;tÞ½cosðΘÞ;sinðΘÞcosðΦÞ;
sinðΘÞsinðΦÞ�.
The firsts terms in Πxx and Πyy in (12) correspond to

the effect of only electronic plasma to the polarization
tensor. The second terms in (12) correspond to the CM
effect in plasma since this effect is proportional
to B̄2 (see Fig. 1). On the other hand, the element Πxy is
given by

Πxy ¼ −
ω2
plω

2
c sinð2ΘÞ cosðΦÞ
2ðω2 − ω2

cÞ
− i

ω2
plωcω sinðΘÞ sinðΦÞ

ω2 − ω2
c

:

ð13Þ

The first term in (13) is due to the CM effect while the
second term corresponds to the Faraday effect in plasma.
Since the second term is imaginary, it essentially means that
the Faraday effect changes the intensity of each photon
polarization state, namely a coherence breaking effect.
Typically in the literature it is used to get rid of the first
term in Πxy by choosing Φ ¼ π=2, namely by choosing the
external magnetic field B̄ and the photon wave vector k in
the xz plane. In such a case Πxy is purely imaginary and it
includes the Faraday effect only.

Inmany situations one can simplify the expressions of the
elements of the photon polarization tensor by making some
reasonable assumptions on the magnitude of the photon
frequency with respect to the plasma and cyclotron frequen-
cies. The numerical value of the angular plasma frequency
can be written as ωpl¼5.64×104

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne=cm3

p
ðrad=sÞ or νpl ¼

ωpl=ð2πÞ ¼ 8976.33
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne=cm3

p
ðHzÞ for the frequency. On

the other hand, the numerical value of the cyclotron angular
frequency is given by ωc ¼ 1.76 × 107ðB̄=GÞ ðrad=sÞ. The
cases whenω ≫ ωpl andω ≫ ωc are of particular interest in
many situations and especially in this work. As shown in the
previous section, the quantities ωc and ωpl do not explicitly
depend on the time t but do explicitly depend on the distance
r. However, in the case of photon propagation in an
expanding universe, we can express the distance r in terms
of the cosmological time t as r ¼ rðtÞ. Consequently, each
quantity that explicitly depends on r also implicitly depends
on t because of r ¼ rðtÞ. Therefore, the conditionsω ≫ ωpl

and ω ≫ ωc, in an expanding universe, are, respectively,
satisfied when�
ν0
Hz

�
≫ 8976.33

�
0.76nBðt0ÞXeðtÞ

cm3

�
1=2

�
aðt0Þ
aðtÞ

�
1=2

and

�
ν0
Hz

�
≫ 2.8 × 106

�
B̄0

G

��
aðt0Þ
aðtÞ

�
; ð14Þ

where we expressed νðtÞ ¼ ν0½aðt0Þ=aðtÞ�with ν0 being the
frequency of the electromagnetic radiation at the present
time t ¼ t0 and with aðtÞ being the universe expansion scale
factor, and B̄0 ¼ B̄ðt0Þ is the magnetic field strength at
the present time.3 Here we expressed the number density
of free electrons as neðtÞ ≃ 0.76nBðt0ÞXeðtÞ½aðt0Þ=aðtÞ�3
where nBðt0Þ is the total baryon number density at the
present time and XeðtÞ is the ionization fraction of
the free electrons. The factor of 0.76 takes into account
the contribution of hydrogen atoms to the free electrons
at the post-decoupling time.
By taking, e.g., nBðt0Þ ≃ 2.47 × 10−7 cm−3 as given by

the Planck Collaboration [12] and expressing aðt0Þ=aðtÞ ¼
1þ z where z is the source redshift, we can write the
conditions (14) as�

ν0
Hz

�
≫ 3.88ð1þ zÞ1=2 and

�
ν0
Hz

�
≫ 2.8 × 106

�
B̄0

G

�
ð1þ zÞ; ð15Þ

where at the post-decoupling epoch we can safely assume
XeðtÞ ≃ 1. In most situations, photon frequencies that
satisfy the first condition in (15) also satisfy the second
condition in (15) for realistic values of B̄0 and for redshifts

gg

FIG. 1. Typical Feynman diagram for the GRAPH mixing in
external magnetic field. The zigzag line denotes a graviton, the
wavy lines denote photons, and the cross vertexes denote the
external magnetic field. Here we have also included the photon
self-energy or photon polarization tensor Πμν in a magnetized
medium that is represented by the grey loop.

3In what follows we assume that the magnetic field amplitude
depends only on time t and not on x.
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z≲ 20. After these considerations, we can approximate the
expressions of the elements of the photon polarization
tensor as

Πxx ≃ ω2
pl

�
1 −

ω2
ccos2ðΘÞ
ω2

�
;

Πyy ≃ ω2
pl

�
1 −

ω2
csin2ðΘÞcos2ðΦÞ

ω2

�
;

Πxy ≃ −
ω2
plω

2
c sinð2ΘÞ cosðΦÞ

2ω2
− i

ω2
plωc sinðΘÞ sinðΦÞ

ω
:

ð16Þ
There is another fact about the expressions in (16) that is
important tomention now.The second terms inΠxx;yy, which
essentially correspond to the CM effect, are indeed very
small quantitieswith respect to unity in the caseω ≫ ωc,ωpl

and can be neglected in many cases. The only case when
these quantities cannot be neglected is when we have to deal
with the difference Πxx − Πyy or vice versa. Regarding the
term Πxy, we may note that in the cases when
sinðΘÞ sinðΦÞ ≠ 0, the magnitude of the imaginary term
that essentially corresponds to the Faraday effect is much

bigger than the magnitude of the real term that corresponds
to the CM effect.

IV. PERTURBATIVE SOLUTIONS OF THE
EQUATIONS OF MOTION

In this section we focus on perturbative solutions of the
equations of motion (10). The main reason to look for such
solutions is because they do not exist for exact closed
solutions except in some particular cases which are of no
interest in this work. Herewe employ a similar formalism as
in quantummechanics, namely similar to the time dependent
perturbation theory, where usually one writes the total
Hamiltonian of the system as the sum of a “free” term plus
a time dependent small interaction term. In our specific case
the mass mixing matrix M plays the role of the total
Hamiltonian, which depends on the distance rather than
the time. Consequently, in our case we may split the mass
mixingmatrix in the followingway:Mðω; rÞ ¼ M0ðω; rÞ þ
M1ðω; rÞwhereM0ðω; rÞ is a matrix which would enter the
equations of motion (10) in the case where GWs would not
be present and M1ðω; rÞ is a perturbation matrix that takes
into account the interaction of GWs with the external
magnetic field

M0ðω; rÞ ¼

0
BBBBB@

0 0 0 0

0 0 0 0

0 0 Mx MCF

0 0 M�
CF My

1
CCCCCA
; M1ðω; rÞ ¼

0
BBBBB@

0 0 −iMx
gγ iMy

gγ

0 0 iMy
gγ iMx

gγ

iMx
gγ −iMy

gγ 0 0

−iMy
gγ −iMx

gγ 0 0

1
CCCCCA
: ð17Þ

In the case where GWs are missing, the matrix M0

would enter Eq. (10) in the form ðωþ i∂rÞΨðω; rÞIþ
M0ðω; rÞΨðω; rÞ ¼ 0 without the presence of the pertu-
rbation matrix M1. However, even in the absence of the
perturbation matrix M1, it is not possible to find a
closed analytical solution for Eq. (10) since we are dealing
with a first order system of differential equations with
variable coefficients with analytic solutions that are rare
except in some particular cases. There is a possibility to
solve analytically Eq. (10) for M ¼ M0 in the case when
Mx ¼ My. In fact, we may note from the expressions of
Πxx;yy in (16) that in the case when ω ≫ ωc, the CM
effect can be neglected with respect to the plasma
effect. In this regime we may approximate Mx ≃My in
M0. In this case the commutator ½M0ðω; rÞ;M0ðω; r0Þ� ¼ 0

and the solution of Eq. (10) for M ¼ M0 is given by
Ψðω; rÞ ¼ Uðr; riÞΨðω; riÞ where U is the usual unitary
evolution operator which is given by Uðr; riÞ ¼
exp½−i R r

ri
dr0ð−ωðr0ÞI −M0ðr0ÞÞ�.

In the case when the interaction is present, namely when
M ¼ M0 þM1, in order to solve Eq. (10), it is convenient to

move to the “interaction picture” by defining Ψintðω;rÞ¼
U†ðr;riÞΨðω;rÞ and Mintðω;rÞ¼U†ðr;riÞM1ðω;rÞUðr;riÞ.
In the interaction picture, Eq. (10) becomes i∂rΨintðω; rÞ ¼
Mintðω; rÞΨintðω; rÞ. By using an iterative procedure,
we find the following perturbative solution for Ψintðω; rÞ
to first and second orders in the perturbation matrix
Mintðω; rÞ,

Ψð1Þ
int ðω;rÞ¼−i

Z
r

ri

dr0Mintðω;r0ÞΨðri;ωiÞ;

Ψð2Þ
int ðω;rÞ¼−

Z
r

ri

Z
r0

ri

dr0dr00Mintðω;r0ÞMintðω;r00ÞΨðri;ωiÞ;

ð18Þ

whereΨð0Þ
int ðω; rÞ ¼ Ψðωi; riÞ andΨintðω; rÞ ¼ Ψð0Þ

int ðω; rÞþ
Ψð1Þ

int ðω; rÞ þ Ψð2Þ
int ðω; rÞ þ higher order terms. Since we

have that the elements j R r
ri
dr0M1;ijðr0Þj ≪ 1 for reasonable

values of the parameters, the series expansion converges
rapidly, and consequently it is not necessary to go beyond
the first order expansion. Therefore, by performing several
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operations and by dropping for the moment the dependence of the fields on ω, we get the following solutions for the field
amplitudes in the interaction picture up to the first order in perturbation theory:

h×ðrÞ ¼ h×ðriÞ − AxðriÞ
Z

r

ri

dr0ðcos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
Mx

gγðr0Þ − iCðr0Þ sin
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i

×My
gγðr0ÞÞeiM1ðr0Þ þ AyðriÞ

Z
r

ri

dr0ðcos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
My

gγðr0Þ − iC−1ðr0Þ

× sin
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
Mx

gγðr0ÞÞeiM1ðr0Þ;

hþðrÞ ¼ hþðriÞ þ AxðriÞ
Z

r

ri

dr0ðcos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
My

gγðr0Þ þ iCðr0Þ sin
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i

×Mx
gγðr0ÞÞeiM1ðr0Þ þ AyðriÞ

Z
r

ri

dr0ðcos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
Mx

gγðr0Þ þ iC−1ðr0Þ

× sin
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
My

gγðr0ÞÞeiM1ðr0Þ;

AxðrÞ ¼ AxðriÞ þ h×ðriÞ
Z

r

ri

dr0ðcos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
Mx

gγðr0Þ þ iC−1ðr0Þ sin
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i

×My
gγðr0ÞÞe−iM1ðr0Þ − hþðriÞ

Z
r

ri

dr0ðcos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
My

gγðr0Þ − iC−1ðr0Þ

× sin
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
Mx

gγðr0ÞÞe−iM1ðr0Þ;

AyðrÞ ¼ AyðriÞ − h×ðriÞ
Z

r

ri

dr0ðcos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
My

gγðr0Þ þ iCðr0Þ sin
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i

×Mx
gγðr0ÞÞe−iM1ðr0Þ − hþðriÞ

Z
r

ri

dr0ðcos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
Mx

gγðr0Þ − iCðr0Þ

× sin
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MCFðr0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�
CFðr0Þ

q i
My

gγðr0ÞÞe−iM1ðr0Þ; ð19Þ

where we have defined

Mf1;2gðrÞ≡
Z

r

ri

dr0Mfx;ygðr0Þ; MCFðrÞ≡
Z

r

ri

dr0MCFðr0Þ;

M�
CFðrÞ≡

Z
r

ri

dr0M�
CFðr0Þ; CðrÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

CFðrÞ=MCFðrÞ
q

;

with ri being the initial distance and for simplicity in (19) we dropped the subscript “int” of the interaction picture field
amplitudes. In obtaining the solutions (19), we have assumed that M�

CFðrÞ ≠ 0 and MCFðrÞ ≠ 0. In addition, since the
gravitons are assumed to be exactlymassless, we have thatM×;þ ¼ 0. As alreadymentioned above, on obtaining the solutions
(19)we have assumed thatMy ≃Mx, and thereforewe have approximatedM2 ≃M1.Wemay also note from the solutions (19)
that in the expressions ofh×;þðrÞ,hþ;×ðriÞ do not appear; namely there is nomixing between the statesh×;þ at first order in the
perturbation theory. Such a mixing appears starting from the second order of iteration. Analog conclusions apply also for the
photon states Ax;y.
As it will be clear in what follows, it is very convenient in many calculations involving the photon amplitudes to write

AxðrÞ ¼ I1ðrÞh×ðriÞ − I2ðrÞhþðriÞ þ AxðriÞ;
AyðrÞ ¼ −I3ðrÞh×ðriÞ − I4ðrÞhþðriÞ þ AyðriÞ; ð20Þ
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where we have defined

I1ðrÞ≡
Z

r

ri

dr0
�
cos

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCFðr0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

CFðr0Þ
q i

Mx
gγðr0Þ þ iC−1ðr0Þ sin

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCFðr0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

CFðr0Þ
q i

My
gγðr0Þ

�
e−iM1ðr0Þ;

I2ðrÞ≡
Z

r

ri

dr0
�
cos

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCFðr0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

CFðr0Þ
q i

My
gγðr0Þ − iC−1ðr0Þ sin

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCFðr0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

CFðr0Þ
q i

Mx
gγðr0Þ

�
e−iM1ðr0Þ;

I3ðrÞ≡
Z

r

ri

dr0
�
cos

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCFðr0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

CFðr0Þ
q i

My
gγðr0Þ þ iCðr0Þ sin

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCFðr0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

CFðr0Þ
q i

Mx
gγðr0Þ

�
e−iM1ðr0Þ;

I4ðrÞ≡
Z

r

ri

dr0
�
cos

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCFðr0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

CFðr0Þ
q i

Mx
gγðr0Þ − iCðr0Þ sin

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCFðr0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

CFðr0Þ
q i

My
gγðr0Þ

�
e−iM1ðr0Þ: ð21Þ

V. GENERATION OF ELECTROMAGNETIC
RADIATION AND STOKES PARAMETERS

In this section we focus our attention on the generation of
the electromagnetic radiation for the GRAPH mixing. In
particular, here we consider the situation of a source that
emits GWs, and we want to calculate useful quantities
regarding the electromagnetic radiation such as the inten-
sity and the power. To have a full picture of the generated
electromagnetic radiation in the GRAPH mixing, it is quite
convenient to start with the Stokes parameters that give a
complete description of the intensity and polarization state
of the electromagnetic radiation. They are usually defined
in terms of the transverse electric field amplitudes Ex
and Ey (Eðx; tÞ ¼ ½Exðx; tÞ; Eyðx; tÞ�) at a fixed point in
space x as

Iγðx; tÞ≡ jExðx; tÞj2 þ jEyðx; tÞj2;
Qðx; tÞ≡ jExðx; tÞj2 − jEyðx; tÞj2;
Uðx; tÞ≡ 2RefExðx; tÞE�

yðx; tÞg;
Vðx; tÞ≡ −2ImfExðx; tÞE�

yðx; tÞg: ð22Þ

Consider now the situation where a given source emits
GWs with polarization states h×;þ and initially photons are
not present. By reintroducing the dependence of the fields
on ω again, the amplitudes of the photon states Ax;y at the
distance r from the source, given in expression (20), can be
written as

Axðr;ωÞ ¼ I1ðrÞh×ðri;ωiÞ − I2ðrÞhþðri;ωiÞ;
Ayðr;ωÞ ¼ −I3ðrÞh×ðri;ωiÞ − I4ðrÞhþðri;ωiÞ; ð23Þ

where the dependence of the fields on ω appears through
the integrals I1;2;3;4 which do depend on ω parametrically,
I1;2;3;4ðr;ωÞ. Let us concentrate on the calculation of the
photon intensity Iγðr; tÞ and other Stokes parameters. In
this case we need the explicit expressions for the electric
field amplitudes Ex and Ey which are, respectively, given
by Exðx; tÞ ¼ −∂tAxðx; tÞ −∇ · A0ðx; tÞ and Eyðx; tÞ ¼
−∂tAyðx; tÞ −∇ · A0ðx; tÞ. If the generated electromagnetic
wave travels along the z axis, then we have at the distance r

from the source that Ax;yðr; tÞ ¼ Ax;yðr;ωÞe−i
R

ωðt0Þdt0 . On
the other hand, the expression for the scalar potential
A0ðx; tÞ ¼ 0 by choice. After these considerations, we can
write the expressions for the components of the electric field
in the SVEA approximation, for an electromagnetic wave
propagating along the z axis at a distance r from the source

Ex;yðr; tÞ ≃ −iωðtÞAx;yðr;ωÞe−i
R

ωðt0Þdt0 ¼ −iωðtÞAx;yðr; tÞ:
ð24Þ

With the expression for the electric field components
given in (24), we can easily calculate the expression for the
Stokes parameters for the generated electromagnetic field
radiation, which are given by

Iγðr; tÞ ¼ ω2ðtÞ½jAxðr; tÞj2 þ jAyðr; tÞj2�;
Qðr; tÞ ¼ ω2ðtÞ½jAxðr; tÞj2 − jAyðr; tÞj2�;
Uðr; tÞ ¼ 2ω2ðtÞRefAxðr; tÞA�

yðr; tÞg;
Vðr; tÞ ¼ −2ω2ðtÞImfAxðr; tÞA�

yðr; tÞg: ð25Þ
Now by using the expressions (23) in (25), we get

Iγðr; tÞ ¼ ω2½ðjI1ðrÞj2 þ jI3ðrÞj2Þjh×ðriÞj2 þ ðjI2ðrÞj2 þ jI4ðrÞj2ÞjhþðriÞj2 þ 2Ref½I3ðrÞI�4ðrÞ− I1ðrÞI�2ðrÞ�h×ðriÞh�þðriÞg�;
Qðr; tÞ ¼ ω2½ðjI1ðrÞj2 − jI3ðrÞj2Þjh×ðriÞj2 þ ðjI2ðrÞj2 − jI4ðrÞj2ÞjhþðriÞj2 − 2Ref½I1ðrÞI�2ðrÞ þ I3ðrÞI�4ðrÞ�h×ðriÞh�þðriÞg�;
Uðr; tÞ ¼ 2ω2Ref−I1ðrÞI�3ðrÞjh×ðriÞj2 þ I2ðrÞI�4ðrÞjhþðriÞj2 − I1ðrÞI�4ðrÞh×ðriÞh�þðriÞ þ I2ðrÞI�3ðrÞhþðriÞh�×ðriÞg;
Vðr; tÞ ¼ 2ω2ImfI1ðrÞI�3ðrÞjh×ðriÞj2 − I2ðrÞI�4ðrÞjhþðriÞj2 þ I1ðrÞI�4ðrÞh×ðriÞh�þðriÞ− I2ðrÞI�3ðrÞhþðriÞh�×ðriÞg: ð26Þ
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The expressions for the Stokes parameters given in (26)
are one of the most important results in this work and
will be the basis of our study of the generation of the
electromagnetic radiation in the GRAPH mixing. One
should keep in mind that Eq. (26) have been obtained by
using Eq. (19) for the field amplitudes in the inter-
action picture. By carefully going back to the ordinary
picture Ψðω; rÞ ¼ Uðr; riÞΨintðω; rÞ, one can easily
check that the intensity Stokes parameter in Eq. (26)
is invariant under the field transformation Ψðω; rÞ ¼
Uðr; riÞΨintðω; rÞ while expressions for other Stokes
parameters Q;U and V change due to a contribution
of the Faraday and CM effects.

VI. EVALUATION OF THE INTEGRALS,
I1, I2, I3, AND I4

As we see from the expressions of the Stokes parameters
given in (26), in order to calculate them, first we must
calculate the integrals I1, I2, I3, and I4, which do appear in
each of the parameters. The explicit expressions for the
integrals I1, I2, I3, and I4 are given in (21). We may note
that each of them contains, to first order in perturbation
theory, the integration over the distance of either Mx

gγ or
My

gγ times trigonometric functions containing the CM and
Faraday effects and also the exponential of plasma effects.
Before evaluating the integrals, we must explicitly write all
quantities that enter in each of them.
The explicit expressions forM1,M2, andMCF, for ω ≃ k,

are given by

M1ðrÞ ¼
Z

r

ri

dr0Mxðr0Þ ¼ −
Z

r

ri

dr0
�
Πxx

2ω

�
≃ −

Z
r

ri

dr0
ω2
pl

2ω

�
1 −

ω2
ccos2ðΘÞ
ω2

�
;

M2ðrÞ ¼
Z

r

ri

dr0Myðr0Þ ¼ −
Z

r

ri

dr0
�
Πyy

2ω

�
≃ −

Z
r

ri

dr0
ω2
pl

2ω

�
1 −

ω2
csin2ðΘÞcos2ðΦÞ

ω2

�
;

MCFðrÞ ¼ MCðrÞ þ iMFðrÞ ¼ −
Πxy

2ω
≃
ω2
plω

2
c sinð2ΘÞ cosðΦÞ

4ω3
þ i

ω2
plωc sinðΘÞ sinðΦÞ

2ω2
; ð27Þ

where we used the expressions for the elements of the
photon polarization tensor given in (12). On the other
hand, the explicit expressions forMx

gγ andM
y
gγ are, respecti-

vely, given by Mx
gγðrÞ ¼ κB̄ cosðΘÞ=2 and My

gγðrÞ ¼
κB̄ sinðΘÞ cosðΦÞ=2. The quantities ωpl, ωc, ω, and B̄ in
(27) depend on the distance r and implicitly depend on the
time in an expanding universe; see below. Also the anglesΘ
and Φ may depend on the time, but in this work we assume
that the external magnetic field direction at a given point x
does not change in time; therefore Θ and Φ are assumed to
be constant in time. In (27) we have expanded MCF ¼
MC þ iMF with MC being the term corresponding to the
CM effect and MF being the term corresponding to the
Faraday effect.

After the considerations made above, let us now focus on
the calculations of the integrals I1;2 and I3;4. As we may
note, the integrals I1 and I2 have the same structure, and
therefore it will be sufficient to calculate only one of them.
At this stage it is more useful to express each space
dependent quantity as a function of the redshift z since
we are going to deal with electromagnetic radiation and
GWs propagating in an expanding universe. For relativistic
particles propagating in null geodesics we have that the line
element ds2 ¼ 0 which implies that dt ¼ dr where r is the
light traveled distance and t is the cosmological time. In this
case the integration over the distance in each integral is
replaced with the integration over the redshift z by using the
following prescription:

Z
r

ri

dr0ð� � �Þ ¼
Z

t

ti

dt0ð� � �Þ ¼
Z

zi

z

dz0

H0ð1þ z0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩMð1þ z0Þ3 þ ΩRð1þ z0Þ4

p ð� � �Þ; ð28Þ

where ΩΛ ≃ 0.68 is the present epoch density parameter of the vacuum energy, ΩM ≃ 0.31 is the present epoch density
parameter of the nonrelativistic matter, and ΩR ≪ 1 is the present epoch density parameter of the relativistic matter that
essentially includes relativistic photons and neutrinos. Here we are assuming a universe with zero spatial curvature, namely
Ωκ ¼ 0. In addition, ri < r and z < zi where zi is the redshift of the GWs emitting source. In general for astrophysical
sources of GWs that are located at relatively low redshifts, one can safely neglect the contribution of the relativistic matter to
the total energy density. Moreover, in many cases it is quite accurate to approximate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ΩMð1þ zÞ3

p
≃

ffiffiffiffiffiffiffi
ΩΛ

p
for

z ≪ ½ðΩΛ=ΩMÞ1=3 − 1� ≃ 0.29 or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩMð1þ zÞ3

p
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3

p
for z ≫ 0.29.

In a case when ω ≫ ωc, we may neglect the second terms proportional to the plasma frequency in M1;2 in (27) and
approximate
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M1ðzÞ ≃M2ðzÞ ¼ −
Z

zi

z

dz0

H0ð1þ z0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩMð1þ z0Þ3

p
�
ω2
plðz0Þ

2ωðz0Þ
�

≃
	−2A1Ω

−1=2
M H−1

0 ð ffiffiffiffiffiffiffiffiffiffiffiffi
1þ zi

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p Þ; for z ≫ ½ðΩΛ=ΩMÞ1=3 − 1�;
−ðA1=2ÞΩ−1=2

Λ H−1
0 ½ðz2i − z2Þ þ 2ðzi − zÞ�; for z ≪ ½ðΩΛ=ΩMÞ1=3 − 1�;

ð29Þ

where we expressed the plasma and incident photon frequencies as a function of the redshift as shown in Sec. III, namely
ω2
pl=ð2ωÞ ¼ A1ð1þ zÞ2 where A1 ≡ 3.12 × 10−14 ðHz=ν0Þ ðeVÞ. Since in this work we focus on the post-decoupling

epoch, we assume that XeðzÞ ≃ 1. Now in order to calculate the integrals in (21), let us write the amplitude of the external
magnetic field as B̄ðzÞ ¼ B̄0ð1þ zÞ2, which is derived from the assumption that the magnetic flux in the cosmological
plasma is a conserved quantity. The other quantities that will be useful in what follows areMC andMF. The expression for
MF can be calculated exactly4 and is given by

MFðzÞ≡
Z

r

ri

dr0MFðr0Þ ¼
2

3ΩM
A1A2H−1

0 sinðΘÞ sinðΦÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩΛ þΩMð1þ ziÞ3
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ΩMð1þ zÞ3

q �
; ð30Þ

whereA2 ≡ 2.8 × 106ðB̄0=GÞ ðHz=ν0Þ. In the case ofMC exact expressions for any z do not exist but only in some limiting
cases

MCðzÞ≡
Z

r

ri

dr0MCðr0Þ≃

8>>>><
>>>>:

sinð2ΘÞcosðΦÞðA1=5ÞA2
2Ω

−1=2
M H−1

0 ½ ffiffiffiffiffiffiffiffiffiffiffi
1þ zi

p ð1þ zið2þ ziÞÞ−
ffiffiffiffiffiffiffiffiffiffi
1þ z

p ð1þ zð2þ zÞÞ�
for z≫ ½ðΩΛ=ΩMÞ1=3−1�;
sinð2ΘÞcosðΦÞðA1=8ÞA2

2Ω
−1=2
Λ H−1

0 ½ðzi− zÞð2þ ziþ zÞð2þ zið2þ ziÞþ zð2þ zÞÞ�
for z≪ ½ðΩΛ=ΩMÞ1=3−1�:

ð31Þ

A. The case when Φ = π=2

In this section we study the particular case when Φ ¼ π=2, which essentially corresponds to MCðzÞ ¼ 0. In this case in
MCF, only the Faraday effect termMFðzÞ is present, which we assume to be different from zero, namely when sinðΘÞ ≠ 0.
Indeed, if sinðΘÞ ≠ 0, the Faraday effect term is several orders of magnitude bigger than the CM effect without necessarily
having the condition Φ ¼ π=2. Therefore the latter condition is a formal one as far as the Faraday effect term is different
from zero. For Φ ¼ π=2, we have that CðrÞ ¼ i and MCMðrÞ ¼ MFðrÞ.
With the above considerations, let us now concentrate on the calculation of the integral I1 in (21), which for Φ ¼ π=2

becomes

I1ðzÞ¼
Z

zi

z

dz0

H0ð1þz0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛþΩMð1þz0Þ3

p cos½MFðz0Þ�Mx
gγðz0Þe−iM1ðz0Þ

¼
Z

zi

z

dz0

H0ð1þz0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛþΩMð1þz0Þ3

p ðcos ½MFðz0Þ�cos½M1ðz0Þ�Mx
gγðz0Þ− icos ½MFðz0Þ�sin½M1ðz0Þ�Mx

gγðz0ÞÞ: ð32Þ

Even though the integral I1 has been significantly simplified for Φ ¼ π=2, it is still not possible to find an analytic
expression because of the complexity of the integrands. Let us in addition assume that Θ → 0, which means thatMF ≪ 1;
namely the external magnetic field is almost transverse with respect to the GW/electromagnetic wave propagation. In this
regime, we can approximate cos½MFðzÞ� ≃ 1 in (33) and get

I1ðzÞ ≃
Z

zi

z

dz0

H0ð1þ z0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩMð1þ z0Þ3

p ðcos½M1ðz0Þ�Mx
gγðz0Þ − i sin½M1ðz0Þ�Mx

gγðz0ÞÞ: ð33Þ

The integrals of the first and second terms in (33) can be calculated exactly and are given by

κ

2

Z
zi

z

dz0

H0ð1þ z0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ΩMð1þ z0Þ3

p B̄ðz0Þ cos½M1ðz0Þ� ¼ C sin½M1ðzÞ�;

i
κ

2

Z
zi

z

dz0

H0ð1þ z0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩMð1þ z0Þ3

p B̄ðz0Þ sin½M1ðz0Þ� ¼ iCð1 − cos½M1ðzÞ�Þ: ð34Þ

4The expression for MF is exact for fixed values of ΩΛ;M that are found experimentally by Planck Collaboration. However, the
general expression for arbitrary values in 0 ≤ ΩΛ;M ≤ 1 is more complicated since it depends on several conditions on the roots of a
cubic equation which arises while performing the integration and it is not guaranteed to be the same as that in Eq. (30).
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where C≡ 9.75 × 10−3A−1
1 κðB̄0=GÞ ðeV2Þ. Now we can

use the expressions in (34) in the integral in (33) and obtain
the final expression

I1ðzÞ ¼ −Cði − i cos½M1ðzÞ� − sin½M1ðzÞ�Þ: ð35Þ
We may also note that in the limits where we found I1ðzÞ,
we have that I1ðzÞ ¼ I4ðzÞ. Again in this limit we have
from (21) that I2ðzÞ ≃ I3ðzÞ. In addition, in the limits
considered in this section, we have that jI1ðzÞj ≫
jI2ðzÞj since the integrand in I2 is proportional to
sin½MF�Mx

gγ ≃MFMx
gγ ≪ 1.

VII. ELECTROMAGNETIC RADIATION FROM
ASTROPHYSICAL BINARY SYSTEMS

In the previous section we have been able to find analytic
expressions for the integrals in (21) in the case when
MF ≪ 1 and Φ ¼ π=2. In more general cases it is not
possible to find analytic solutions due to the complexity of
the integrands in (21), and in these cases numerical results
may be in order. In this section, we want to calculate some
quantities related to the electromagnetic radiation in the
GRAPH mixing such as the energy power Pγ and/or the
energy power fluxFγ. The latter quantity is simply given by
Iγ in (26) where by definition Iγ represent the energy
density of photons at a given point in space, while the
former quantity can easily be calculated once we know the
distance of the GW source.
The intensity of the generated electromagnetic radiation

in the GRAPH mixing, in the case when MF ≪ 1 and
Φ ¼ π=2 and by using the results of the previous section, is
given by

Iγðr; tÞ ≃ ω2ðtÞjI1ðrÞj2½jh×ðri; tiÞj2 þ jhþðri; tiÞj2�; ð36Þ

where we have neglected the term proportional to Ref� � �g
in Iγ in (26) because it is a small quantity with respect to the
other terms and we used the fact that I1 ¼ I4 in the limit
Θ → 0 and Φ ¼ π=2. Therefore, in order to find the
intensity of electromagnetic radiation or related quantities
at given distance r, we need the amplitudes of the GWat the
distance ri when GWs enter the region of magnetic field.
The amplitudes of GWs of binary systems of astro-

physical sources are usually calculated starting from the
multipole expansion of the stress energy-momentum tensor
of the source. For binary systems, typically the quadrupole
approximation of a quasicircular orbit is a rather good
approximation up to a maximum frequency νmax (see
discussion section below), where beyond this frequency
the strong gravity effects become dominant and the binary
system coalesces. Therefore, let us assume that we have a
binary system which emits GWs and which is undergoing
an inspiral phase of quasicircular motion. The amplitudes
of GWs at a distance r from the source in the quadrupole
approximation and in the local wave zone are given by [15]

κhþðr; tsÞ ¼ hcðtrets Þ
�
1þ cos2ðιÞ

2

�
cos½Ψðtrets Þ�;

κh×ðr; tsÞ ¼ hcðtrets Þ cosðιÞ sin½Ψðtrets Þ�;

hcðtrets Þ≡ 4

r
ðGNMCHÞ5=3½πνsðtrets Þ�2=3;

Ψðtrets Þ≡
Z

trets

dt0sωsðt0sÞ; ð37Þ

where ts is the time measured in the reference system of
the GW source, trets ¼ ts − r is the retarded time,
MCH ¼ ðm1m2Þ3=5ðm1 þm2Þ−1=5 is the chirp mass of the
source with m1;2 being the mass components of the binary
system, and ι is the angle of the normal of the binary system
orbit with respect to the direction of observation. We may
note the factor κ in (37) that we have introduced in order
to conform with the notation used in Ref. [15], which uses
the metric expansion gμν ¼ ημν þ hμν, while in our nota-
tions we use gμν ¼ ημν þ κhμν.
The GWs amplitudes in (37) are expressed in terms of

the source variables that are measured in the source
reference system. Moreover, they do not take into account
the universe expansion yet and have been calculated in the
local wave zone, namely at distances r ≫ d where d is the
typical size of the binary system orbit. To make our
treatment as simple as possible, let us assume that at the
initial distance ri, in the local wave zone, is present at a
large-scale magnetic field. Let r0 be the light traveled
distance from the source until the present epoch. Thus the
effective distance traveled by GWs once they enter the
region of the large-scale magnetic field is r0 − ri ≃ r0
where r0 ≫ ri. It is more convenient for our purposes to
express the amplitudes in (37) in terms of laboratory
variables at the present epoch. Consequently, we can write
νsðtrets Þ ¼ ν0ðtret0 Þð1þ zÞ where tret0 ¼ ð1þ zÞtrets is the
observed retarded time in the laboratory reference system.
One can also easily check that Ψðtrets Þ ¼ Ψðtret0 Þ. Therefore,
the initial GW amplitudes that enter the region of large-
scale magnetic field at the initial distance ri from the
source, expressed in terms of present epoch variables, are
given by

κhþðri; t0Þ ¼ hcðtret0 Þ
�
1þ cos2ðιÞ

2

�
cos½Ψðtret0 Þ�;

κh×ðri; t0Þ ¼ hcðtret0 Þ cosðιÞ sin½Ψðtret0 Þ�;

hcðtret0 Þ≡ 4

ri
ðGNMCHÞ5=3½πν0ðtret0 Þ�2=3ð1þ ziÞ2=3: ð38Þ

At this stage there are two important things to point out,
which are of great importance in what follows. So far, we
have considered the propagation of the GWs in a magnet-
ized plasma, and the equation of motion that we have
derived in (10) takes into account the change of the initial
GW amplitude in the GRAPH mixing only. However, for
point sources of GWs, the amplitudes have an intrinsic
decay with the distance of the form ∝ 1=r. Intentionally we
did not look for solutions of the form h×;þðr; tÞ ∝ 1=r and
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Ax;yðr; tÞ ∝ 1=r in Eqs. (7) and (8) in order to simplify our
formalism as much as possible. So, to include the intrinsic
decay of the amplitudes with the distance in the expression
of the intensity given in (36), we introduce the scaling
Iγ → Iγðri=rÞ2. Another important thing to note is that
Eqs. (7) and (8) have been derived in Minksowski space-
time. However, our problem of GRAPH mixing essentially
needs to be applied to the Friedemann-Robertson-Walker
metric in the case when GWs propagate in an expanding
universe. As shown in Ref. [16], the universe expansion is
represented by the Hubble friction term −3H∂t, and if one
includes this term in the equations of motion, the ampli-
tude square of GWs (h×;þ) and of electromagnetic radi-
ation ðAx;yÞ scale with the redshift as ∝ ð1þ zÞ2.
Since Iγ ∝ ω2jAj2 represents the energy density of photons
and because ω2ðzÞ ∝ ð1þ zÞ2, we have that Iγðr0; t0Þ ∝
ð1þ zÞ4. Consequently, we have that the intensity of the
electromagnetic radiation at present, t ¼ t0 or z ¼ 0, is
given by

Iγðr0; t0Þ ≃ ω2
0jI1ð0Þj2½jh×ðri; t0Þj2

þ jhþðri; t0Þj2�ð1þ ziÞ4ðri=r0Þ2; ð39Þ

where we remind the reader that zi is the redshift of the GW
source at the present epoch, which is not related to ri. Here
we are assuming that the redshift of the source zi is
approximately the same as the redshift when GWs enter
the region of the large-scale magnetic field.

The expression for the intensity in (39) still is not in the
final form because of the presence of sin½Ψ� and cos½Ψ� in
the initial GW amplitudes and also because of the depend-
ence on the angle ι. At this point it is more convenient to
average the intensity Iγ over the phase 0 ≤ Ψ ≤ 2π and
0 ≤ ι ≤ π. By putting all together, we get

Īγðr0;t0Þ≃
35

64

�
2πν0
κr0

�
2

½rihcðtobs0 Þ�2jI1ð0Þj2ð1þziÞ4

¼35

16

�
2πν0
κr0

�
2

½rihcðtobs0 Þ�2C2sin2½M1ð0Þ=2�ð1þziÞ4;

ð40Þ
where Īγ is the average value of the intensity onΨ and ι and
not on Φ and Θ. The energy per unit time (or the power Pγ)
of the electromagnetic radiation, generated in the GRAPH
mixing, is given by

P̄γðt0Þ¼ 4πr20Īγðr0; t0Þ

¼ 35π

4

�
2πν0
κ

�
2

½rihcðtobs0 Þ�2C2sin2½M1ð0Þ=2�ð1þ ziÞ4

≃3.89×1013
�
MCH

M⊙

�
10=3

�
ν0
Hz

�
16=3

�
B̄0

G

�
2

×sin2½M1ð0Þ=2�ð1þ ziÞ16=3ðerg=sÞ; ð41Þ
where M⊙ is the solar mass.
In Fig. 2 plots of the average power of electromagnetic

radiation, given in (41), generated in the GRAPH mixing
are shown. In Fig. 2(a) the plots of the power as a function
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FIG. 2. (a) Logarithmic scale plots of the power of the electromagnetic radiation P̄γ (erg/s) at present time as a function of the present
day value of cosmic magnetic field B̄0 (G), generated in the GRAPH mixing, for a typical binary system of neutron stars with equal
masses m1 ¼ m2 ¼ 1.4 M⊙ and chirp mass MCH ≃ 1.21 M⊙, for z ¼ 0.1 and frequencies ν0 ¼ f150; 500; 700g Hz are shown.
(b) Logarithmic scale plots of the power of the electromagnetic radiation P̄γ (erg/s) at present time as a function of the binary system
chirp mass MCH (in units of the solar mass) for a binary system of equal masses, for B̄0 ¼ 1 nG, z ¼ 0.1, and frequencies
ν0 ¼ f50; 100; 200g Hz, are shown.
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of the present day value of the cosmological magnetic field
are shown. We may note that the power emitted is propor-
tional to ν16=30 and also proportional to sin2½M1ð0Þ=2�.
Thus, even though for higher values of the frequencies ν16=30

increases, it is also true that sin2½M1ð0Þ=2� is an extremely
oscillating function of the frequency, and consequently

higher values of the frequency do not necessarily imply
higher values of the power. The fast oscillatory behavior of
the average power as a function of the frequency and
redshift, due to the term sin2½M1ð0Þ=2�, is shown in Fig. 3.
In Figs. 4 and 5 the average power fluxes of the electro-

magnetic radiation generated in the GRAPH mixing
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FIG. 3. (a) The power of the electromagnetic radiation P̄γ (erg/s) at present time as a function of the GW source redshift
z ∈ ½10−3; 0.5�, generated in the GRAPHmixing, for a typical binary system of neutron stars with equal massesm1 ¼ m2 ¼ 1.4 M⊙ and
chirp mass MCH ≃ 1.21 M⊙, for B̄0 ¼ 1 nG and frequency ν0 ¼ 500 Hz, is shown. (b) The power of the electromagnetic radiation P̄γ

(erg/s) at present time as a function of the GW frequency ν0 ∈ ½50; 700� Hz for a binary system with equal masses m1 ¼ m2 ¼ 1.4 M⊙
and chirp mass MCH ¼ 1.21 M⊙, for B̄0 ¼ 1 nG and z ¼ 0.1, is shown.
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FIG. 4. (a) Logarithmic scale plots of the power fluxes of the electromagnetic radiation F̄γ (erg cm−2 s−1) at present time as a function
of the present day value of the magnetic field B̄0 ∈ ½10−10; 10−6� ðGÞ, generated in the GRAPH mixing, for a typical binary system of
neutron stars with equal masses m1 ¼ m2 ¼ 1.4 M⊙ and chirp mass MCH ≃ 1.21 M⊙, for a source located at redshift z ¼ 0.1 and
frequencies ν0 ¼ f300; 500; 700g Hz, are shown. (b) Logarithmic scale plots of the power fluxes of the electromagnetic radiation F̄γ

(erg cm−2 s−1) at present time as a function of the source chirp mass MCH ∈ ½1.21; 4�M⊙ for B̄0 ¼ 1 nG, source redshift z ¼ 0.1, and
frequencies ν0 ¼ f50; 100; 150g Hz are shown.
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received at Earth, given by expression (40), for a source of
GWs located at redshift zi are shown. As we can see, the
average power fluxes received today are quite faint, and
they rapidly oscillate with the frequency ν0 and the redshift
z. The rapid oscillation of the received energy power flux is
evident in Fig. 5, where plots of the energy power flux
as a function of the frequency are shown. As already
discussed above in the case of the energy power, higher
values of the frequencies do not necessarily mean higher
values of the power flux. Again, this behavior is due to the
sin2½M1ð0Þ=2� term in (40), which is an extremely fast
oscillating function of the frequency. In addition, as we can
see in Fig. 5(b), there are cases where the average energy
power flux received from closer to the Earth binary systems
or low redshift z GW sources, is smaller than the average
energy power flux received from far away binary systems
of higher redshift. This behavior is still due to the factor
sin2½M1ð0Þ=2�, which explicitly depends on the redshift
and consequently is an extremely fast oscillating function
of z as well.
As already discussed above and shown in Figs. 2–5, the

energy power and energy power flux given, respectively, in
expressions (41) and (40) are proportional to the term
sin2½M1ð0Þ=2�, which is an extremely fast oscillating
function of the parameters. It may be convenient for several

reasons to average the energy power and energy power
fluxes over a given observation frequency range. This
might be, e.g., the case of a detector that measures the
energy power flux in a specific frequency range due to the
detector characteristics. In this case, we have to average
ν16=30 sin2½M1ð0Þ=2� on a frequency interval. However,

since the integral of ν16=30 sin2½M1ð0Þ=2� is not an elemen-
tary one, for simplicity here we make the following
observation: given a frequency interval with 0 < ν0;1 ≤
ν0 ≤ ν0;2 (where the frequency is expressed in units of Hz),
we have that






Z

ν0;2

ν0;1

dν0ν016=30 sin2½M1ð0Þ=2�






≤
Z

ν0;2

ν0;1

dν0jν016=30 sin2½M1ð0Þ=2�j

≤
Z

ν0;2

ν0;1

dν0jν016=30 j ¼ 3

19
ðν19=30;2 − ν19=30;1 Þ:

Consequently, we have, e.g., that the average value on the
frequency of the energy power is at maximum

hP̄γðt0Þi ≃ 3.89 × 1013
�
MCH

M⊙

�
10=3

�
B̄0

G

�
2

hν16=30 sin2½M1ð0Þ=2�ið1þ ziÞ16=3ðerg=sÞ

≤ 1.3 × 1013
�
MCH

M⊙

�
10=3

�
B̄0

G

�
2

ð1þ ziÞ16=3
�
ν19=30;2 − ν19=30;1

ν0;2 − ν0;1

�
ðerg=sÞ: ð42Þ

For example, if we consider a GW source with MCH ¼ 1.21 M⊙, B̄0 ¼ 1 nG and ν0;1 ¼ 50 Hz, ν0;2 ¼ 600 Hz, we get
from (42)
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FIG. 5. (a) The power fluxes of the electromagnetic radiation F̄γ (erg cm−2 s−1) at present time as a function of the present day value of
GW frequency ν0 ∈ ½100; 500� ðHzÞ, generated in the GRAPH mixing, for a typical binary system of neutron stars with equal masses
m1 ¼ m2 ¼ 1.4 M⊙ and chirp massMCH ≃ 1.21 M⊙, for B̄0 ¼ 1 ðnGÞ and source redshifts z ¼ 0.1 and z ¼ 0.5, are shown. (b) Similar
plots as in (a) for source redshifts z ¼ 1 and z ¼ 1.5 and frequency interval ν0 ∈ ½100; 300� ðHzÞ are shown.
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hP̄γðt0Þi≤ 1.75×1010ð1þ ziÞ16=3ðerg=sÞ for z≪ 1: ð43Þ
It is very important to stress that we are considering values
of redshifts in order that the GWs frequencies, which we
consider in our calculations and plots, must be below
or at maximum equal to the inner-stable-circular-
orbit frequency, ðν0ÞISCO, for given values of MT; see
Sec. IX.
At this point we can calculate from (42) and (43) the

upper limit of the frequency averaged power flux that is

given by hFγðr0; t0Þi ¼ hP̄γðt0Þi=ð4πr20Þ. We can calculate
the light traveled distance r0 from the expression (28).
However, since an analytic expression for the integral in
(28) does not exist for arbitrary z, let us consider
for simplicity the case of low redshift GW sources, such
as z ≪ ½ðΩΛ=ΩMÞ1=3 − 1� ≃ 0.29. In this case we find
r0 − ri ≃ r0 ≃ 3.25 × 1028 lnð1þ ziÞ (cm). Therefore, the
upper limit of the frequency averaged value of the power
flux at r0 and t0 is given by

hF̄γðr0;t0Þi≤9.8×10−46
�
MCH

M⊙

�
10=3

�
B̄0

G

�
2
�ð1þziÞ16=3
ln2ð1þziÞ

��
ν19=30;2 −ν19=30;1

ν0;2−ν0;1

�
ðergs−1cm−2Þ: ð44Þ

If we take again, e.g., the same parameters as above, namely MCH ¼ 1.21 M⊙, B̄0 ¼ 1 nG and ν0;1 ¼ 50 Hz,
ν0;2 ¼ 600 Hz, we get from (44)

hF̄γðr0; t0Þi ≤ 1.32 × 10−48
�ð1þ ziÞ16=3
ln2ð1þ ziÞ

�
ðergs−1cm−2Þ for z ≪ 0.29: ð45Þ

VIII. FREQUENCY CUTOFFS AND
DETECTABILITY

So far, in our analysis we considered the propagation of
GWs in intergalactic magnetic fields for extragalactic
binary systems of GWs, namely for a given binary system
outside our galaxy. As shown in our plots, we considered
binary systems with redshifts of 0.1 ≤ z that could be
located in any direction with respect to the observer and
that might have formed after formation of first starts and
also applicable to black hole binary systems with primor-
dial origin. Therefore, the distances of these objects are
usually a fraction of the present day Hubble distance H−1

0

with distances equal to or larger than a few Gpc. The
propagation of GWs from the source to the detector usually
can be divided into three parts: GWs propagate from the
source into the galactic medium that hosts the source, then
they propagate into the intergalactic medium, and at the end
they propagate inside our galaxy, the Milky Way.
In general the propagation of GWs from the source to the

detector through galaxies and intergalactic space is rather
complicated to model. Within the host galaxy where the
source is located and in the local zone approximation
r ≫ d, where r could even be outside the host galaxy
depending where the source is located within the host
galaxy, the generation of electromagnetic radiation is
negligible (see below) with respect to the case when
GWs enter the intergalactic space region. This happens
because the number density of free electrons in galaxies is
much larger (also the plasma frequency) than in interga-
lactic space and because the propagation distance in
galaxies is smaller than in intergalactic space. When

GWs propagate through the intergalactic space where a
large-scale cosmic magnetic field might exist, the GRAPH
mixing starts taking place efficiently since the number
density of free electrons in void regions is expected to be
neðTÞ ≃ 0.76nBðTÞXeðTÞ, namely a fraction of the total
baryon density as discussed in Sec. III, and the distance
traveled is bigger than in galaxies.
When the formed electromagnetic radiation in the

GRAPH mixing enters our galaxy, the number density
of free electrons is much larger than in the intergalactic
space, and it has been observed to be in the range
10−4 cm−3 ≤ neðT0Þ ≤ 0.1 cm−3 in the interstellar medium
depending on the line of sight. In the interstellar medium of
our galaxy and in the case when ne ≃ 10−4 cm−3, the
plasma frequency along the line of sight would be (see
Sec. III) νpl ¼ 8976.33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne=cm3

p
Hz ¼ 89.76 Hz. On the

other hand, if ne ¼ 0.1 cm−3 along the light of sight,
then the corresponding plasma frequency would be
νpl ≃ 2.84 kHz. These calculations suggest that in the case
when the formed electromagnetic radiation in the GRAPH
mixing enters the interstellar medium in our galaxy in a
region where ne ≃ 10−4 cm−3 along the line of sight, only
the electromagnetic radiation with ν0 > νpl ¼ 89.76 Hz
will propagate and the electromagnetic radiation with ν0 ≤
89.76 Hz will be absorbed by the plasma. In the other
extremum, if ne ≃ 0.1 cm−3 along the line of sight, only the
electromagnetic radiation with ν0 > νpl ¼ 2.84 kHz will
propagate.
The electromagnetic radiation generated in the GRAPH

mixing once has traveled through the interstellar space,
escapes plasma absorption, and reaches our Solar System
that has a variable free electron density as well. In the
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interplanetary space the plasma frequency is about
νpl ≃ 20–40 kHz while on Earth ionosphere is about
νpl ≃ 10 MHz. In the context of this work, based on the
considerations above, one should treat with care the results
obtained because some part of the electromagnetic radia-
tion generated in the GRAPH mixing for sources at
cosmological distances might not propagate when it enters
our galaxy, depending on the galactic free electron number
density along the line of sight. The best way to detect this
electromagnetic radiation would be in the space close to the
boundary of the Solar System where the number density in
the interstellar medium is lower with respect to interplan-
etary and Earth electron number densities. In this case,
when ne ≃ 10−4 − 10−3 cm−3, only the corresponding
electromagnetic radiation above 89 Hz and 300 Hz would
propagate. If ne ≃ 0.01–0.1 cm−3 along the line of sight,
only the corresponding electromagnetic radiation above
897 Hz and 2.84 kHz would propagate.

IX. CONCLUSIONS

In this work, we have studied the GRAPH mixing effect
in a large-scale cosmic magnetic field and have applied it to
the case of astrophysical GW sources. This effect, which
has never been observed so far, might have an important
contribution to the electromagnetic radiation received from
a binary system of a GW source. In this work, we
considered all standard effects that generate dispersion
and coherence breaking of the electromagnetic radiation
generated in the GRAPH mixing. To obtain the energy
power and energy power fluxes, we had to solve a system of
linear differential equations with variable coefficients. To
solve the equations of motion, we used the perturbation
theory where the terms related to the interaction of GWs
with electromagnetic waves in the mixing matrix M have
been considered as small perturbations with respect to
dispersive and coherence breaking terms of the electro-
magnetic radiation.
From the technical point of view, even by using a

perturbative approach to solve the equations of motion,
the resulting final expressions for the Stokes parameters
contain integrations on the redshift of complicated func-
tions, and in most cases it is not possible to obtain analytic
expressions of the integrals. Indeed, we have already seen
this happen in Secs. VI and VII where we obtained analytic
expressions for the integrals I1;2;3;4 only in the case where
Φ ¼ π=2 and MF ≪ 1. In more general cases where the
angles Θ and Φ are different from zero, the integrals
appearing in the Stokes parameters do not have analytic
expressions, and to calculate the Stokes parameters, one
must use numerical integration. In this work, we focused
our attention on the Iγ Stokes parameter and did not study
the evolution of the polarization parameters Q, U, and V.
However, it is quite evident from the expressions (26) that
the generated electromagnetic radiation in the GRAPH

mixing is elliptically polarized; namely it has both linear
and circular polarizations.
Our main goal in this work has been to obtain useful

quantities such as the energy power and energy power
fluxes of the electromagnetic radiation, which can be used
in many contexts especially to confront with experimen-
tally measurable quantities. In this regard, in Secs. VI and
VII, we calculated the energy power Pγðt0Þ and the energy
power flux Fγðr0; t0Þ in the case of a quasiperpendicular
external magnetic field with respect to the GW direction of
propagation, namely the case whenΦ ¼ π=2 andMF ≪ 1.
In this regime, where analytic expressions do exist for
Pγðt0Þ and Fγðr0; t0Þ, we have shown in Figs. 2–5 the
power and power fluxes as a function of different quantities
such as B̄0, ν0, MCH, and the redshift z. The energy power
Pγ generated in the GRAPH mixing effect is usually quite
substantial, and in the interval Pγ ≃ 106–1015 ðerg=sÞ for
magnetic field amplitudes B̄0 ∈ ½10−10; 10−6� G. On the
other hand, the energy power flux received on Earth is
usually quite faint, and it depends on the distance of the
source if other parameters are fixed. One common feature
of Pγ and Fγ is that they are extremely fast oscillating
functions of the frequency ν0 and redshift z. These features
are, respectively, shown in Figs. 3 and 5. The high
oscillatory feature of Pγ and Fγ often makes it quite
difficult to numerically average them over ν0. Indeed, since
the function sin2½M1ð0Þ=2� that does appear in (40) and
(41) is a highly oscillating one, it is necessary in many cases
to keep several digits of accuracy in the argument in order
to minimize calculation errors. Different levels of accuracy
in the argument of sin2½M1ð0Þ=2� may give slightly differ-
ent values of Pγ and Fγ as functions of the parameters.
In the case when the direction of the cosmic magnetic

field is arbitrary, it is not possible to find analytical
expressions for Pγ and Fγ because of the complexity of
the integrands in I1;2;3;4, which appear in the Stokes
parameters. However, even though we did not calculate
Pγ and Fγ in the general case, we can make some general
discussions about their magnitudes. Indeed, by observing
the integrands in the integrals in (21), we may notice that in
the general case when MCF ≠ 0, the integrals I1;2;3;4
contain as integrands sin½MCF� and cos½MCF� multiplied
with Mx;y

gγ sin½M1� or Mx;y
gγ cos½M1�. Because of the fact that

the absolute value of trigonometric functions is between
zero and one, we expect that in the general case where
MCF ≠ 0, the magnitudes of Pγ and Fγ will be either
smaller or at maximum, the same as those found in the case
when MCF → 0 as explicitly calculated in Sec. VII. Of
course, this fact should not be a surprise since the Faraday
and CM effects, appearing in MCF, are coherence braking
and dispersive phenomena, which tend to limit the GRAPH
mixing with respect to the case when these effects are
almost absent.
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There are several important points that deserve special
discussions. First, in this work, we considered GWs with
observed frequencies roughly speaking above 50 Hz and
below 700 Hz. The reasons for this choice are strictly
related to the approximations used in this work. In the
lower frequency range, we considered GWs and electro-
magnetic waves with frequencies above the plasma fre-
quency as discussed in Sec. III. If the GW frequency is
below the plasma frequency, the electromagnetic wave
generated in the GRAPH mixing would most likely not
propagate in the plasma and be absorbed by it. This
essential fact makes the GRAPH mixing less appealing
for GWs with ν0 ≲ few Hz. However, the common state-
ment that the electromagnetic radiation does not propagate
when the frequencies are below the plasma frequency is
based on the assumption that external currents that couple
to photons, such as GWs in the macroscopic Maxwell
equations, do not exist. But given the fact that such
coupling is very small in general, we expect that the
common statement that electromagnetic radiation with
frequencies below that plasma frequency does not propa-
gate, to remain still valid to the first order of approximation.
On the other hand, we have chosen GWs emitted from
binary systems in quasicircular motion in the quadrupole
approximation. This approximation, as discussed in detail
in Ref. [15], is valid up to a maximum separation distance
of the binary system that corresponds with a maximum
frequency equal to the present day ISCO frequency
νmax
0 ¼ ðν0ÞISCO ≃ 2.2× 103ð1þ ziÞ−1ðM⊙=MTÞ Hz, where
MT is the total mass of the binary system.
The second point is that the detection of the electro-

magnetic radiation in the GRAPH mixing on Earth and/or
interplanetary space is very unlikely because of the large
plasma frequency cutoffs as discussed above in Sec. VIII,
and the best possibility would be to probe this signal
beyond the Solar System. However, our analysis in this
work has been done for binary systems undergoing
quasicircular motion up to the maximum frequency νmax

0 ¼
ðν0ÞISCO where the quasicircular motion approximation is
valid. Obviously, the spectrum of GWs from these sources
extends further even for ν0 ≥ ðν0ÞISCO but the quasicircular
motion approximation in this case is not valid. The GWs
frequency spectrum for ðν0ÞISCO ≤ ν0 ≤ νcoal0 until the
source coalescence is less likely to be absorbed in the
interstellar medium because it is of high frequency and it

may be possible to detect it even in the interplanetary space
depending on the final coalescence frequency νcoal0 . The
study of such a possibility is beyond the scope of this work.
The third point is that we calculated the energy power

and energy power flux only for a single binary system of
GWs. While the energy power flux Pγ is substantial, the
energy power flux Fγ is quite faint. However, since in the
universe there are many sources of the stochastic back-
ground of GWs in every direction, we expect the energy
power and energy power flux to be quite substantial in the
interested frequency band. We plan to carry such a study in
a forthcoming work and extend it to many sources of the
stochastic background of GWs.
The fourth point is related to the fact that on deriving our

results, we used only the three point GRAPH mixing,
which is the lowest order of expansion in quantum field
theory. One might wonder what are the consequences on
the derived results in this work, if the one loop GRAPH
mixing in the magnetic field is taken into account. As
shown in Ref. [6], the one loop contribution to the GRAPH
mixing in the magnetic field gives some correction to the
usually studied three point GRAPH mixing transition
amplitude, which depends nontrivially on the graviton/
photon energy ω and magnetic field strength Be. However,
such a correction for weak magnetic fields, Be ≪ Bc, and
for low energy gravitons/photons such as those considered
in this work, is very small, and it can be safely neglected.
The fifth point is that in this work, we considered GWs

generated in the quadrupole approximation which is valid
for distances r ≫ d where d is the typical size of the binary
system. However, if r < d and a magnetic field generated
by internal process in the source in the binary system
already exists, the GRAPHmixing effect can take place and
generation of electromagnetic radiation might be substan-
tial, given the fact that for binary systems of pulsars the
magnetic field strength is very large and of the order of
B ≃ 1012 G. In any case, for r < d the quadrupole approxi-
mation is not valid anymore, and if a magnetic field exists at
such distances, the effective GRAPH mixing strength is
unknown because at such distances inside the GW source,
usually there are five GW modes and not two as in the case
of vacuum at distances r ≫ d. The calculations of the
GRAPH mixing strength for r < d is beyond the purposes
of this work.
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