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Generalized Smarr relations in terms of quasilocal variables are obtained for Schwarzschild and
Reissner-Nordström black holes. The approach is based on gravitational path integrals with finite
boundaries on which, following Brown and York, thermodynamic variables are identified through a
Hamilton-Jacobi analysis of the action. The resulting expressions allow us to construct the relation between
the quasilocal energy obtained in this setting and the Komar and Misner-Sharp energies, which are regarded
as thermodynamical internal energy in other approaches. The quasilocal Smarr relation is obtained through
scaling arguments, and terms evaluated in the external boundary and the horizon are present. By
considering some properties of the metric, it is shown that this quasilocal Smarr relation can be regarded as
a thermodynamical realization of Einstein equations. The approach is suitable to be generalized to any
spherically symmetric metric.
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I. INTRODUCTION

Gravity and thermodynamics seem to be connected at a
very deep level. The study of black holes has shown that
general relativity implies relations between quantities
defined at the event horizon that are analogous to the laws
of thermodynamics [1,2]. Although classical black holes
were thought to be objects with zero temperature, from
which no signal could escape, subsequent work argued that
black holes should have an entropy proportional to the area
of their horizons with proportionality constant 1=4 [3,4],
this is the so-called Bekenstein-Hawking entropy:

SBH ¼ AH

4
; ð1Þ

where we consider natural units G ¼ c ¼ ℏ ¼ kB ¼ 1.
Additional research [5–7] found that the thermodynamical
behavior of black holes is just a particular case of a general
feature associated with the presence of horizons in the
coordinate chart under consideration. Therefore, it is
possible to have thermodynamical phenomena in any
spacetime provided that it contains a causally disconnected
region. The converse statement, that thermodynamical
relations can determine the geometry of the spacetime
has been also studied, and it was found that this is indeed
the case, provided certain assumptions. Remarkable works
in this context include Jacobson’s [8] and Padmanabhan’s
[9] approaches. In this context, the possibility that gravity is
an emergent phenomenon that arises from the dynamics of

a completely different quantum system has been explored,
and many realizations have been discussed in literature
such as Verlinde’s entropic gravity proposal [10]. All these
works have tried to obtain gravitational field equations
from thermodynamics; however, in a more limited setting,
it is possible to ask whether thermodynamical arguments
can lead to specific solutions directly without considering
Einstein equations. Some research has been devoted to such
possibility, and it was found that spherically symmetric
solutions can be obtained from thermodynamical relations
for the internal energy understood as either the Misner-
Sharp mass [11,12] or Komar energy [13]. In both
approaches, for the relation of geometry with thermody-
namics, it is clear that the identification of the thermody-
namical variables is a matter of assumption.
In order to define and study the thermodynamical proc-

esses for black holes, one popular alternative is to identify the
conserved charges of the spacetime as the relevant thermo-
dynamical variables. This approach is well motivated in the
context of usual thermodynamics since, in this framework,
the observed quantities correspond to variables preserved by
time averaging. As an example of this approach we can
remark the classical work by Bardeen, Carter, and Hawking
[1], in which the identification is based on the variation of the
mass measured at infinity for Kerr-Newman black holes.
Other examples in this context include [14–16]. Although
this approach is well motivated, it has some issues related to
the requirement of asymptotic flatness and, also, to negative
heat capacities [17]. Another possibility is to derive relations
from the Einstein equations that hold directly on the horizon
and resemble thermodynamical laws. Such an approach
has been studied in depth by Padmanabhan and coworkers*fd.villalba10@uniandes.edu.co
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(see, e.g., [9,18]). In this context, the identification of
thermodynamical variables is based on the Bekenstein-
Hawking analysis together with Einstein (or Lanczos-
Lovelock [19]) equations for a perfect fluid to identify
pressure and energy terms. Motivations based on the gravi-
tational action do exist for this approach [20], and will be
discussed later in the context of our results.
Finally, a possibility is that thermodynamical variables in

gravitational systems are defined in terms of quantities
constrained on their (finite) boundaries, this is the so-called
quasilocal approach for thermodynamical quantities [21].
Evidently, this approach is independent of the global
properties of the spacetime such as asymptotic flatness;
however, the main issue with the quasilocal approach is that
it is not evident which thermodynamical variable corre-
spond to some combination of the quantities defined on the
boundary. Examples within this approach are Hayward’s
approach [22], which considers the gradient of the Misner-
Sharp energy by using the Einstein equations and identifies
work terms according to the properties of matter and
analogies with the special relativity case; and that due to
Brown and York [23,24]. In this proposal, the identification
of thermodynamical quantities is based on a Hamilton-
Jacobi analysis of the on-shell Euclidean action for the
gravitational partition function. A remarkable feature of
this approach is that thermodynamic quantities are defined
directly in terms of the canonical variables of the system,
which is advantageous since it is evident how the
Hamiltonian properties of a system determine a fundamen-
tal thermodynamical equation, from which all thermody-
namics can be derived [25].
One thermodynamical relation of particular interest in

the case of black holes is the Smarr relation. Its classical
counterpart is the Euler equation [26], a bilinear equation in
extensive and intensive variables that illustrates the homo-
geneous character of thermodynamical variables. In the
context of black hole thermodynamics, Smarr relations
have additional numerical coefficients; for instance, for
Kerr black holes of ADM mass M, angular momentum J
and electric charge Q [27]:

M ¼ 2TAH þ 2ΩJ þΦQ; ð2Þ

where the factors of 2 signal that the scaling properties of
the Kerr spacetime are different from the usual thermody-
namical systems, which in turn is interpreted as a conse-
quence of the range and the absence of screening that
characterize gravity. In the literature, Smarr relations are
usually obtained through two ways: by using the Euler
theorem for homogeneous functions in the first law of
thermodynamics [27], and, on the other hand, by consid-
ering Komar-like integrals for the conserved charges (see
e.g., [14,15,28]).
In the context of quasilocal variables, the analysis of the

corresponding Smarr relations have been few in number.

Discussions in this framework are typically abstract
and centered in properties such as conservation, gauge-
invariance, and positivity of mass. Although these analysis
are important, practical applications of the quasilocal
variables are interesting on their own [29]. Regarding
black holes, there are approaches to obtain thermodynam-
ical relations for quasilocal variables. The dominant point
of view is based on Hayward’s work [22]. However, as we
pointed out before, the identification of thermodynamical
variables corresponding to matter is associated with anal-
ogies with the nongravitational case, which exclude the
possibility of identifying clearly quantities such as pres-
sures and chemical potentials for the gravitational field
itself. So, we are led to recognize that further exploration of
quasilocal Smarr relations must be done.
In this work, we construct and analyze quasilocal Smarr

relations for thermodynamical variables defined by using the
Brown and York approach in the context of a static, spheri-
cally symmetric spacetime, considering the specific cases of
absence of matter (Schwarzschild) and a spacetime with a
electromagnetic field (Reissner-Nordström). As discussed
before, the Hamilton-Jacobi approach provides a direct
identification of thermodynamical variables and the funda-
mental equation of the system. Although this method has
been applied to charged black holes in [30], considering the
thermodynamical stability conditions for this case and the
first law, no Smarr relations were obtained. Regarding these
relations in the context of Euclidean path integrals, an
important recent work is [31], where the Smarr relation
was obtained from the integrated action and some thermo-
dynamical identities, although this work does not consider
boundary terms and the convergence of the partition function
is not guaranteed in this approach. Therefore, our work could
be considered an improvement in this context.
Finally, we think that this work is relevant for the thermo-

dynamical derivation of gravitational solutions. Previous
research in this framework [11,12] claim to be logically
independent from Einstein field equations, but, being based
on [22], they have included these equations in an implicit way.
Our approach is suitable to specify what nonthermodynamic
information is required to obtain solutions, given that it is
expected onmore general grounds [32] that thermodynamical
relations are not enough to recover the full form of Einstein
equations without additional information.
This paper is organized as follows. In Sec. II, we

summarize the Brown-York method, to apply it to the
spherically symmetric case in Sec. III. The detailed study of
the Maxwell-Einstein system is done in IV, where the
Smarr relation is obtained. Finally, in Sec. V, we discuss the
result, and in Sec. VI we give some final remarks.

II. BROWN-YORK DEFINITION OF QUASILOCAL
THERMODYNAMICAL QUANTITIES

Usually, black hole thermodynamics and Smarr relations
are described in terms of conserved charges defined at
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infinity; however, there are problems with a thermodynam-
ical description of black holes in terms of these quantities.
Schwarzschild black holes, e.g., are understood as objects
with a temperature TBH ¼ 1

8πM, with M the mass of the
black hole. From thermodynamics we have that the heat
capacity C of a system satisfies:

C ¼ −β2
�∂2S
∂E2

�−1
; ð3Þ

where S is the entropy and E is the internal energy. Thus,
taking into account that βBH ¼ 8πE ¼ ∂S

∂E, where we
identified E ¼ M, we have that a Schwarzschild black
hole have a negative heat capacity. This result indicates that
black holes are unstable as thermodynamical systems.
There are two possible ways to circumvent this issue: to
suppose that there is a negative cosmological constant in
addition to the black hole (AdS-Schwarzschild black hole
[33]); or to consider that the black hole is contained in a
bounded region with certain thermodynamical conditions
fixed over the boundary, the so-called quasilocal approach.
In this context, the thermodynamical system under con-
sideration is defined as the spacetime inside the finite
boundary, together with matter fields under consideration.
As a summary of the theoretical basis of our study we

will review some aspects of Brown and York approach [34].
In this framework, we consider a spacetime M that can be
expressed as Σ × I, with I a real interval and Σ a spacelike
hypersurface. Σ has a boundary B, and the product B × I is
denoted 3B. t0 and t00 are the hypersurfaces associated to the
endpoints of the interval (see Fig. 1.). The gravitational
action in M in absence of matter is

S1 ¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p
Rþ 1

8π

Z
t00

t0
d3x

ffiffiffi
h

p
K

−
1

8π

Z
3B
d3x

ffiffiffiffiffiffi
−γ

p
Θ; ð4Þ

where γij and Θ correspond to the metric and extrinsic
curvature (as embedded in M) of 3B, while h and K are the
analogues for Σ. Boundary terms S0 could be added to this
action without altering the equations of motion. With an
ADM decomposition for the metric γij

γijdxidxj ¼ −N2dt2 þ σabðdxa þ VadtÞðdxb þ VbdtÞ;
ð5Þ

The quasilocal stress energy tensor is constructed for the
action S ¼ S1 þ S0 as variations between classical solu-
tions:

τij ≡ 2ffiffiffiffiffiffi−γp δScl
δγij

¼ 2ffiffiffiffiffiffi−γp ðπijcl − πij0 Þ: ð6Þ

Its projections are of special interest,

ϵ ¼ uiujτij ¼ −
1ffiffiffi
σ

p δScl
δN

; ð7Þ

ja ¼ −σaiujτij; ð8Þ

sab ¼ σai σ
b
j τ

ij; ð9Þ

since the variation of S with respect to classical solutions is
associated to the term on 3B and given in terms of these
quantities:

δSj3B ¼
Z

3B
d3x

ffiffiffi
σ

p �
−ϵδN þ jaδVa þ N

2
ssbδσab

�
; ð10Þ

where ϵ, ja, sab are the quasilocal energy density, momen-
tum density, and stress density, respectively. For static
spacetimes ja ¼ 0 and

ϵ ¼ 1

8π
k − ϵ0; ð11Þ

s ¼ 1

8π
ðkab þ ðnμaμ − kÞσab − ðs0ÞabÞ: ð12Þ

Where quantities with subindex 0 are due to S0, kab is the
extrinsic curvature of B as embedded in Σ (k is its trace), nμ
is the unit normal to 3B and aμ is the acceleration of uμ, the
unit normal to Σ.
When describing a spacetime with a horizon in terms of

these variables it is found that the variation of entropy is
(see the Appendix [24]):

FIG. 1. Spacetime considered in the construction of quasilocal
properties. Σ and 3B are spacelike and timelike 3-surfaces,
respectively, and B is a spacelike 2-surface. The notation for
the corresponding metric and extrinsic curvature for each hyper-
surface is indicated in parenthesis.
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δS½ϵ; j; σ� ≈ δ

�
AH

4

�

¼
Z
B
d2xβ

�
δð ffiffiffi

σ
p

ϵÞ þ ffiffiffi
σ

p pab

2
δσab

�
ð13Þ

Where p is defined in terms of time integrals of sab and N.
This expression resembles the first law of thermodynamics,
and it will be the starting point for the analysis in what
follows.

III. QUASILOCAL ANALYSIS OF SPHERICALLY
SYMMETRIC SPACETIMES

The specific case of spherical symmetry has been studied
before [34], however we include the details of the calcu-
lations for future use. In spherically symmetric static
spacetimes, we consider the metric

ds2 ¼ −NðrÞ2dt2 þ hðrÞ2dr2 þ r2dΩ2: ð14Þ

We must compute τij for the metric (14). In this case, the
hypersurfaces Σ are surfaces defined by t ¼ constant,
with normal vector uμ ¼ −Nδ0μ. In addition, 3B are hyper-
surfaces defined by r ¼ constant and with normal vector
nμ ¼ hδ1μ. We must note that this vector is defined outward
the surface. With these prescriptions for the required
hypersurfaces, the region B, on which the thermodynamical
quantities are defined, is a 2–sphere of radius R. Under
these assumptions, and ignoring matter terms, a straight-
forward calculation leads to a vanishing extrinsic curvature
for Σ:

Kμν ¼ −hαμ∇αuν ¼ 0; ð15Þ

where hμν ¼ gμν þ uμuν is the metric for Σ. With this, the
canonical momentum associated to the Σ hypersurfaces
vanish:

Pij ¼ 0: ð16Þ

In the case of 3B, the metric for this surface is
γμν ¼ gμν − nμnν. The corresponding extrinsic curvature is

Θμν ¼ −γαμ∇αnν ¼ −diag
�
−
NN0

h
; 0;

r
h
;
rsin2θ
h

�����
r¼R

:

ð17Þ

So

Θ ¼ −
�
N0

Nh
þ 2

rh

�����
r¼R

: ð18Þ

With these expressions, the canonical momentum associ-
ated to 3B can be calculated:

τμνcl ¼ −
1

16π

ffiffiffiffiffiffi
−γ

p ðΘγμν − ΘμνÞ ð19Þ

¼ 1

8π
diag

�
−

2

rN2h
; 0;

1

r2

�
N0

Nh
þ 1

rh

�
;

1

r2sin2θ

�
N0

Nh
þ 1

rh

������
r¼R

: ð20Þ

Finally, following the definitions and introducing the
extra terms associated with the embedding of 3B in a
reference flat space, which essentially define the zero-point
of energy [23]:

ϵ ¼ 1

4π

�
1

r
−

1

rh

�����
r¼R

; ð21Þ

p≡ 1

2
σabsab ¼

1

8π

�
N0

Nh
þ 1

rh
−
1

r

�����
r¼R

: ð22Þ

Defining the quasilocal energy as E ¼ R
B d

2x
ffiffiffi
σ

p
ϵ and

restricting (13) to this case, it is obvious that

TδS ¼ δEþ pδA: ð23Þ
With T ¼ T∞

N the blueshifted temperature of the horizon.
Now, following [28], dimensional analysis tells us that S, E,
A scale with length as ðlengthÞ2, ðlengthÞ1, and ðlengthÞ;2
respectively. Using the Euler theorem for homogeneous
functions, which states that for an homogeneous function
fðx; yÞ, satisfying fðαpx; αqyÞ ¼ αrfðx; yÞ, the function
and its derivatives satisfy:

rfðx; yÞ ¼ p
�∂f
∂x

�
xþ q

�∂f
∂y

�
y; ð24Þ

we have that (23) implies that:

2TS ¼ Eþ 2pA: ð25Þ
Additional terms are to be expected when including matter
fields, as in the Reissner-Nordström case shown below. We
can see (25) as the quasilocal Smarr relation for the vacuum
black hole case. Replacing (21) and (22) it is found that

2TS ¼ 1

NðRÞ
�
1

2
R2

ðNðRÞ2Þ0
NðRÞhðRÞ

�
ð26Þ

The factor in square brackets is precisely the Komar energy
associated to the region considered, EKðRÞ. Canceling out
the blueshift factors we have

2T∞S ¼ EKðRÞ: ð27Þ

This expression agrees with previous results in the literature
[31,35], although there are some points to remark in this
context. In [31], equation (27) is obtained through a
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functional integral approach which does not consider
boundary terms, as discussed before; in addition, the
Komar energy is to be considered as the energy of the
full spacetime. On the other hand, [35] shows that (27)
holds for a large class of static black hole spacetimes in
N þ 1 dimensions when evaluated at the horizon radius. As
we will see below, the presence of additional fields
introduces additional terms in (27) which vanish when R
is the horizon radius, in agreement with [35].
To understand this result, it is convenient to consider the

structure of the approach. The inputs of the equation are the
expressions for the entropy, temperature and (vanishing)
matter contribution. A relation with geometry is provided
by the Komar charge since it involves the derivative of the
metric, together with the expressions of temperature and
entropy since they are associated with the metric and its
derivative at the horizon.
Let us consider the Schwarzschild system of mass M,

defined by T∞ ¼ 1
8πM, S ¼ 4πM2, and no matter fields. Two

additional ingredients that we have not discussed explicitly
are the Einstein field equations, which impose that
NðrÞ ¼ hðrÞ−1, and the horizon radius. With these ele-
ments, we see easily that (27) is written as:

2
1

8πM
4πM2 ¼ M ¼ 1

2
R2ðN2Þ0: ð28Þ

This equation can be trivially integrated and gives
NðRÞ2 ¼ 1 − 2M

R , as expected. This derivation of the
Schwarzschild metric could be regarded as a thermody-
namical approach to find solutions in the same sense as
[11]; however, the restrictionNðrÞ ¼ hðrÞ−1 is not obtained
through some thermodynamical condition so we consider
this result as a realization of Einstein field equations in
thermodynamical terms.

IV. QUASILOCAL SMARR RELATION
FOR THE EINSTEIN-MAXWELL SYSTEM

Considerations for the Reissner-Nordström spacetime
proceed along the same lines as the Schwarzschild case;
however, we must take into account the contributions of the
electromagnetic Hamiltonian to the boundary terms of the
action. We start with the Maxwell Lagrangian:

LM ¼ −
1

16π
FμνFμν; ð29Þ

where

Fμν ¼ Aν;μ − Aμ;ν; ð30Þ

and Aμ ¼ ðϕ; A⃗Þ is the electromagnetic four potential. To
perform the 3þ 1 decomposition we consider a timelike
surface-forming congruence and coordinates where the
tangent vector field associated with the congruence is

tμ ¼ δμ0. We consider spacelike slices Σ such that
tμ ¼ Nnμ, thus the shift functions vanish. In addition we
consider a S2 boundary for the slices. With this construc-
tion, the time derivatives of the field configuration variables
have a simple form:

_Aμ ¼ £tAμ ¼ Aμ;νtν þ tν;μAν ¼ Aμ;0: ð31Þ

In this context we have the metric

gμν ¼
�−N2 0

0 hij

�
:

Now, the canonically conjugated momenta for this system
are:

pμ ¼ ∂
∂ _Aμ

ð ffiffiffiffiffiffi
−g

p
LMÞ ¼ −

ffiffiffiffiffiffi−gp
4π

F0μ: ð32Þ

Antisymmetry of Fμν implies that p0 ¼ 0, so we have a
constraint. Inverting (32) for the nonvanishing momenta we
find that

Ai;0 ¼ 4π
Nffiffiffi
h

p hijpj þ A0;i ð33Þ

With this relation, the Hamiltonian density is

HM ¼ pi

�
4π

Nffiffiffi
h

p hijpj þ A0;i

�
− LMN

ffiffiffi
h

p
: ð34Þ

After some algebra, it is found that

HMffiffiffi
h

p ¼ 4π
N
h
pipi −

�
N
4π

A0F0i

�
;i

þ A0

�
N
4π

F0i

�
;i
− NLM: ð35Þ

From this expression and the vanishing of p0 we have that
A0 is a Lagrange multiplier that implements the Gauss law
constraint ðNF0iÞ;i ¼ 0. For our purposes it is important
to consider the second term of the right hand side of (35),
this term is a divergence that produces a boundary term in
the action. We have that the electromagnetic term of the
action is

Sm ¼
Z

dt

�Z
Σt

d3y
ffiffiffi
h

p �
piAi;0ffiffiffi

h
p − 4π

N
h
pipi

− A0

�
N
4π

F0i

�
;i
þ NLM

�

þ
I
Bt

1

4π
NA0

�
−

1

N2
hijF0j

�
ri

ffiffiffi
σ

p
d2θ

	
ð36Þ
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This canonical expression is useful to identify the quasi-
local quantities that can be derived from its variation;
however, regarding the first law of thermodynamics, the
variation of the action based on the Lagrangian (29) could
involve the variation of noncanonical variables, in such a
way that the obtained action would not correspond to the
microcanonical ensemble, leading to an incorrect identi-
fication of the thermodynamical variables of the first law.
To remedy this, it is useful to consider the approach by

Iyer and Wald [36,37], in which black hole entropy can be
obtained by considering the Noether current associated to
diffeomorphism invariance. Regarding the Brown and York
approach, it has been shown that the two approaches are
equivalent and that the microcanonical action can be
obtained through a boundary term constructed from the
Noether charge [38]. To implement the Noether charge
approach, we need to consider the Lagrangian version of
the action and identify the fields under variation. The
Lagrangian tensor density is given by

LM ¼ ffiffiffiffiffiffi
−g

p
LM ¼ −

1

16π

ffiffiffiffiffiffi
−g

p
FμνFμν: ð37Þ

The variation of this density is:

δLM ¼ 1

16π
δð ffiffiffiffiffiffi

−g
p

gμρgνσFρσFμνÞ: ð38Þ

After some algebra

δLM ¼ −
ffiffiffiffiffiffi−gp

16π

��
2Fα

νFνβ −
1

2
gαβFμνFμν

�
δgαβ

þ ð−4Fρσ
;ρÞδAσ þ ð4FρσδAσÞ;ρ

�
: ð39Þ

The last term of the right hand side corresponds, when
considered in the action integral, to an exact differential
form dρ, with components

ρα ¼ −
1

4π
FασδAσ ð40Þ

This object will be relevant for the construction of the
Noether charge. From the previous results, the variation of
the matter action SM is

δSM ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
Tαβδgαβ þ ðEAÞσδAσ þ ρα;α

�
;

ð41Þ

where

Tαβ ¼
1

8π

�
2Fα

νFνβ −
1

2
gαβFμνFμν

�
; ð42Þ

ðEAÞσ ¼ −4Fρσ
;ρ; ð43Þ

are the factors associated with the equations of motion;
therefore, the on-shell action will involve only the ρα term,
which thus will be associated with the thermodynamics.
The Noether current associated with a diffeomorphism
generated by a vector field ξa is

j½ξ� ¼ ρξ − ξ ·LM; ð44Þ

where ρξ indicates that all variations in ρ are to be replaced
by Lie derivatives along ξa. Explicit evaluation of this
expression gives

ja½ξ� ¼ −ξbTab − ðEAÞaξbAb − ðFabξcAcÞ;b: ð45Þ

When the equations of motion hold, this current corre-
sponds to a total divergence that defines the conserved
Noether charge:

q½ξ� ¼ ΞξbAb; ð46Þ

where

Ξ ¼ 1

4π
rbEb; ð47Þ

with rb the spacelike normal to B. The Iyer and Wald
approach shows that the microcanonical action Imic can be
written as

Smic ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p
LM −

Z
3B
d3x

ffiffiffi
γ

p
q½ξ�: ð48Þ

When considering diffeomorphisms along t, we have that

q½t� ¼ NΦΞ: ð49Þ

With this, the variation of the electromagnetic part of the
microcanonical action is simply given by

δSmic ¼
Z

dt
Z
B
d2θ

ffiffiffi
σ

p
NΦδΞ; ð50Þ

thus, there is no electromagnetic contribution to quasilocal
energy, momentum, and pressure. The effect of electro-
magnetism is to include an additional work term, that can
be interpreted as a chemical potential after noting that Ξ can
be regarded as a superficial charge density because of the
Gauss law. The first law of thermodynamics for the static
Einstein-Maxwell system is, therefore:

δS ¼
Z
B
d2θ

ffiffiffi
σ

p
βðδϵþ sABδσAB þΦδΞÞ ð51Þ
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A. Derivation of the Smarr relation

In the spherically symmetric case we have that the only
nonvanishing component of the electromagnetic tensor is

Ftr ¼
Q
r2

ð52Þ

With this, the electrostatic potential can be obtained by
integration,

ΦðrÞ ¼ Q
NðrÞ

�
1

r
−

1

rH

�
; ð53Þ

where the requirement of a finite potential on the horizon
has been considered [39] to fix the integration constant. In
addition, integration of the first law on the spherical
quasilocal surface or radius r leads to

TδS ¼ δEþ sδAþΦδQ: ð54Þ

Using Euler’s theorem, the quasilocal Smarr relation for
Reissner-Nordström black holes is obtained:

2TS ¼ Eþ 2sAþΦQ: ð55Þ

The corresponding expressions for the thermodynamical
variables in this case are written as:

E ¼ −r
1

hðrÞ ; ð56Þ

s ¼ 1

8πhðrÞ
�
1

r
þ d
dr

½logNðrÞ�
�
; ð57Þ

T ¼ 1

NðrÞ
2 − 2M=rH

4πrH
; ð58Þ

A ¼ 4πr2; ð59Þ

S ¼ AH

4
¼ πr2H: ð60Þ

If we introduce the expressions for the quasilocal energy
and pressure, and electric potential in (55), and follow the
same procedure as in the vacuum case, we obtain that (27)
contains an additional term:

2T∞S ¼ EKðRÞ þQ2

�
1

R
−

1

rH

�
: ð61Þ

If we let R ¼ rH, the electrostatic potential term vanishes
and we recover the result of [35].
Inserting the full set of thermodynamical variables into

(55) we obtain, after some cancellations,

�
rH −M þQ2

rH

�
−
�
Q2

r

�
¼ NðrÞ r2

hðrÞ
�
d
dr

½logNðrÞ�
�
:

ð62Þ
By using the horizon condition that defines rH, namely
r2H − 2MrH þQ2 ¼ 0, we have

M −
�
Q2

r

�
¼ NðrÞ r2

hðrÞ
�
d
dr

½logNðrÞ�
�
: ð63Þ

Einstein equations for the electrovacuum system imply that
NðrÞhðrÞ ¼ 1, therefore:

M −
Q2

r
¼ r2NðrÞ dNðrÞ

dr
: ð64Þ

2M
r2

−
2Q2

r3
¼ d

dr
½NðrÞ2�: ð65Þ

This equation can be integrated trivially to give

N2ðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð66Þ

as expected.

V. DISCUSSION

There are some important points to discuss regarding the
results presented in previous sections. In the following, we
will comment the relations of our approach and our results
with the other frameworks mentioned before for black
hole thermodynamics. In addition, we identify and discuss
possibilities for further research.
A crucial difference between Hamilton-Jacobi methods,

used by us, and Hayward’s approach is the presence of
a pressure associated with the gravitational field in the
first one. According to the relation that we found between
the quasilocal variables of Brown and York and the Komar
energy, which is related to the Misner-Sharp energy
through a Legendre transformation [13,40], we can con-
clude that this additional pressure is included in the
thermodynamical potential that plays the role of internal
energy in Hayward’s work. Consequently, in the context of
Brown and York variables, Komar and Misner-Sharp
energies could be understood as enthalpies where the finite
Legendre transform has a numerical factor related with the
scaling properties of the variables. Usually, pressure var-
iables such as the pressure of the cosmological constant are
considered as volumetric pressures, and a conjugated
thermodynamical volume can be constructed accordingly
[41]; these quantities are related to the quasilocal areal
variables by virtue of the spherical symmetry, so they can
be compared with the results of our approach.
In addition, it is interesting to compare the features of

horizon thermodynamics and Hamilton-Jacobi methods for
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the description of gravitational thermodynamics. First of all,
it is interesting to remark that Hamilton-Jacobi approaches
rely on boundary terms for specific foliations to define the
thermodynamical quantities, whereas horizon thermody-
namics does not introduce such terms, but it considers only
the Einstein-Hilbert action [20]; this is convenient since in
this form the gravitational action is holographic in the sense
that boundary and bulk terms are related. However, from the
point of view of Brown and York, the absence of a boundary
term is still an election for the boundary term that is
equivalent to suppose a microcanonical ensemble. In this
sense, it is interesting to note that the projections of the
holographically conjugated variables fμν ¼ ffiffiffiffiffiffi−gp

gμν and
Nρ

μν, introduced by [20], on our particular foliation have a
form similar to the quantities appearing in (13). This is to be
expected since the variational principle associated with
these variables fixes the momenta on the boundary and
the quasilocal energy and momentum densities that appear
in the quasilocal first law are constructed from the same
momenta. In [20] it is noted that holographic canonical
conjugacy does not imply that the integral surface
Hamiltonian gives the entropy, we consider this result to
be related to the preceding remark, because different sets of
canonically conjugated variables are expected to be related
by an extended canonical transformation, and this is
implemented in the gravitational setting by including
boundary terms which correspond to Legendre transforma-
tions to other statistical ensembles, with different thermo-
dynamical potentials. Thus, it is reasonable to expect that a
large set of possible conjugated variables will not lead to
entropy but to other potentials. The explicit implementation
of this idea could be an interesting question for additional
research. With respect to the thermodynamical variables, it
must be noted that thermodynamical variables are identified
in horizon thermodynamics from Einstein (or Lanczos-
Lovelock) field equations for a perfect fluid; again, it is
difficult to associate energy or pressure to the gravitational
field in this context. Energy densities and pressures are local
consequently, and integrated in a volume, which has issues
when applied to black holes with a singularity. Finally, we
must remark that the corresponding expression for our
results in horizon thermodynamics is

EK ¼ 2TS: ð67Þ

As shown in [35], the validity of this result extends
beyond our setting and is independent of foliations, so it
can be interpreted as a property of horizons. This interpre-
tation leads to the equipartition principle proposed by
Padmanabhan [42], which allows a heuristic understanding
of the microscopic degrees of freedom that lead to gravi-
tation [43]. Our results can be regarded as an extension of
(67) for general radii r, and it is natural to ask whether the
additional terms imply modifications to the equipartition
proposal. This could be explored in future work.

Regarding the Smarr relation (55), the presence of terms
evaluated at the horizon agrees with other results [14].
These terms are important since they cancel out the term
asociated with horizon temperature and entropy in such a
way that a reminiscent of Einstein equations is obtained;
however, it must be noted that we do not claim that Einstein
field equations are replaced by our procedure, since the
condition NðrÞhðrÞ ¼ 1 must be introduced to recover the
metric function, In addition, the equation for the horizon
must be considered in advance. So, it is important to state
that our results are not an alternative to the field equations,
but a thermodynamical realization in which they are
implicit. The same observation could be made for other
works in this context such as [11,13]. Specifically, these
works consider metrics of the form

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2 ð68Þ

which is not the most general spherically symmetric metric
but a particular case in which the condition that we needed
to supplement (NðrÞhðrÞ ¼ 1 in our notation) is supposed
from the very beginning. As discussed in [44], a condition
must be fulfilled by the stress-energy tensor

−Tt
t þ Tr

r ¼ 0; ð69Þ

in order to express the metric in the form (68). This
condition is due to Einstein field equations, and it could
have an analogous form for other theories of gravity. The
important point is that such conditions are implicit when
metrics like (68) are considered, therefore some informa-
tion respecting the gravitational field equations is implicit
in the thermodynamical derivation, even when it is claimed
that this is not the case. Padmanabhan has argued [45] that
it is possible to recover the general relativity action, and
thus Einstein equations, from the Bekenstein-Hawking
entropy, but some nonthermodynamical information must
be supplemented such as the principle of general covari-
ance. We regard this fact as an indication that our result
on the necessity of supposing NðrÞhðrÞ ¼ 1 in addition to
thermodynamics to recover the Einstein equations is well
founded.
It must be noted that our approach could provide

thermodynamical restrictions on the possible sources of
gravity allowed by Einstein equations. Let us consider a
simple example: an AdS spacetime described by

ds2 ¼ −
�
1þ r2

l2

�
dt2 þ

�
1þ r2

l2

�−1
dr2 þ r2dΩ2: ð70Þ

This spacetime is trivial in the sense that it does not have
horizons and its Euclidean section is simply connected;
with these features, there is no gravitational entropy, and no
matter contribution to this quantity is to be expected since
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the entropy density sm ¼ pþρ
T for matter vanishes. There-

fore, we expect that the quasilocal Smarr relation have the
form:

0 ¼ Eþ 2pAþmatter contributions; ð71Þ

where the matter contributions arise from the boundary
terms of the matter Lagrangian. If the cosmological
constant is implemented as a geometric property of the
spacetime, it must correspond to a constant term −2 ffiffiffiffiffiffi−gp Λ
in the gravitational action. The variation of this term only
involves changes in the metric, thus there is no boundary
contribution in this case. Therefore, the quasilocal Smarr
relation has no matter contribution:

0 ¼ Eþ 2pA: ð72Þ

However, by using (70) in (21) and (22), it is obtained that

Eþ 2pA ¼ R3

l2

�
1þ R2

l2

�−1
2

≠ 0: ð73Þ

To get a better understanding of this result, let us briefly
discuss the results of this analysis for the AdS spacetime
with a cosmological constant implemented by a slow-
rolling scalar field ϕ. The matter Lagrangian is

LM ¼ −
1

2
gμν∇μϕ∇νϕ − VðϕÞ: ð74Þ

The cosmological constant is recovered by considering
a solution in which ∇ϕ is negligible, with which
ρ ¼ VðϕÞ ¼ −p. However, it can be shown that the
boundary contribution of the variation of the action is
proportional to ð∇μϕÞδϕ, which vanishes in the slow-roll
regime. Therefore the result (73) is recovered also in this
setting. This can be understood as a quasilocal realization
of the thermodynamical issues of dark energy fluids that
have been studied in the literature [46]. Given these caveats,
more complete analysis of the implications of these results
for the de Sitter and Anti de Sitter cases are needed.
With respect to the rotating stationary black hole case,

some comments are in order. Brown and York formalism
is quite general and it includes the possibility of rotating
stationary spacetimes; in fact, the general form of the
quasilocal first law contains an angular momentum term
(see Eq. (A13) in the Appendix). In this context, calcu-
lations have been done for specific rotating black hole
metrics and different choices of boundary two–surfaces and
reference terms; however, the research has been focused on
studying the properties of the quasilocal energy for rotating
spacetimes to establish its consequences as a measure of
energy. Some examples of these studies include [47–49].
In the recent work [49], full expressions are given for the
quasilocal stress-energy tensor assuming a null reference

term, and it is clear that rotating metrics are technically
challenging to study and the corresponding expressions
include a nontrivial angular dependence which makes
difficult the integration. However, regarding the quasilocal
Smarr relation, the main issue to extend the results shown in
this work to the rotating black hole case is related with a
more fundamental property of the Kerr-Newman metric,
namely, the impossibility to simultaneously set constant
values on a specific surface B for β and the chemical
potentials for angular momentum and other conserved
charges [50]. This issue implies that the quasilocal first
law (A13) can not be easily integrated on B to obtain a
bilinear form in conjugated extensive and intensive vari-
ables through homogeneity arguments; therefore, there is
no quasilocal Smarr relation in a simple form as in the static
cases considered above, but it has a convoluted form that
resembles, e.g., the corresponding expression in black
holes coupled with nonlinear electrodynamics [14].
Usual derivations of the Smarr relation for rotating black
holes [27] are not affected by this problem since the
surfaces of constant β and chemical potentials coincide
at infinity. It remains to be studied whether the resulting
Smarr-like expression for rotating black holes can be
simplified as shown in reference [14] for nonlinear electro-
dynamics, but this is beyond the scope of this work.
The results here presented could be interesting in the

context of emergent gravity, in the same way that the
thermodynamics of horizons motivated many theoretical
developments in this sense [9]. For example, we obtained a
fundamental difference with the entropic force approach
[10,40] regarding the temperature of the 2-boundaries of
the system, the so-called screens in this setting. In such
approach, temperature is defined as an Unruh temperature
(proportional to the radial derivative of the metric at the
point under consideration), whereas we consider the blue-
shifted temperature of the horizon, which can be more
easily understood physically and fulfills the role that
temperatures should play in the partition function as seen
from the Euclidean path integral. Additionally, as discussed
before, we see that Komar energy is not an internal energy
in a fundamental sense, therefore any approach that wants
to consider gravity as an emergent effect from another
theory and is based in a Lagrangian variational principle,
should obtain the quasilocal Brown-York energy (or other
Hamiltonian-based proposals) through statistical mechan-
ics in such a framework. The specific implementation of
this idea in a concrete situation will be considered in
future work.

VI. FINAL REMARKS

We obtained Smarr relations not only valid for horizon
quantities but that involve quantities like the quasilocal
energy, defined at the finite boundary of a spherically
symmetric region. The approach we used to obtain qua-
silocal Smarr relations is general from an operational point
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of view and can be summarized as follows: quasilocal
quantities for the considered boundary must be found,
including possible contributions from the matter Hami-
ltonian. Afterwards, the resulting expressions should be
inserted in the first law, whose form depends on the
topology of the considered manifold and the presence of
horizons [24]. Finally, Euler theorem for homogeneous
functions must be used to obtain the quasilocal Smarr
relation. The homogeneous property for gravitational
variables is expected to be valid in general [51]. Thus,
we think that this construction can be generalized to other
approaches for quasilocal variables based on Hamilton-
Jacobi analysis of the action such as [52,53].
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APPENDIX: DERIVATION OF THE
QUASILOCAL FIRST LAW

The quasilocal first law of thermodynamics, Eq. (13),
which is an important property of quasilocal variables,
underlies our approach. For the sake of completeness, in
this Appendix we summarize the procedure given in [24] to
obtain this relation.
Usual derivations of the first law of black hole thermo-

dynamics are based on geometrical relations supple-
mented by Einstein field equations and energy conditions.
However, Brown and York approach starts from the
evaluation of the partition function through Euclidean path
integrals in the same way as Gibbons and Hawking [39],
although the derivation considers a spatially finite region
and does not take the spacelike infinity limit. In this
context, quantities defined on the boundary of the region
under consideration define the statistical ensemble consid-
ered for the system. The calculation starts with the Einstein-
Hilbert action together with the Gibbons-Hawking-York
(GHY) term, Eq. (4):

S1 ¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p
Rþ 1

8π

Z
t00

t0
d3x

ffiffiffi
h

p
K

−
1

8π

Z
3B
d3x

ffiffiffiffiffiffi
−γ

p
Θ: ðA1Þ

It is widely known that the GHY term is introduced to
obtain a well defined variational principle for gravitation in
which metric components of the metric on the boundary are
fixed, which implies that the variation of the action is

δS1 ¼ ðe:o:m: termsÞ þ
Z

3B
d3x

ffiffiffi
σ

p �
−ϵδN

þ jaδVa þ N
2
sabδσab

�
; ðA2Þ

where terms on t0 and t00 have been discarded since they
coincide in the construction of the path integral for the
partition function as a trace so they cancel out.
An essential point is to note that, in the path-integral

formalism, temperature is related with the invariant length
of the integral in the imaginary time coordinate, β ¼R
dτN, therefore, to fix N is equivalent to fix a temperature

for the partition function. This implies that the partition
function based on the action (A1) corresponds to a (grand)
canonical ensemble since N is fixed in the variational
principle. Brown and York discuss [24] that it is necessary
to consider a microcanonical ensemble to construct a
density of states, which leads directly to entropy.
Formally, the density of states can be found from the
canonical partition function by performing a Laplace
transform (which requires certain conditions to be well
defined). This transform is equivalent, for the path integral,
to the addition of a boundary term to the action (A1), in the
same way that to add a total derivative to the Lagrangian
changes the variables to be fixed at the boundary when
constructing the variational principle.
The extensive variables of a system can be defined as

those constructed in terms of canonical variables, so that
the microcanonical ensemble is defined as the ensemble of
systems on which those variables are fixed on the boundary.
The microcanonical action is obtained by adding the
appropriate term,

Sm ¼ S1 þ
Z

3B
d3x

ffiffiffi
σ

p ðNϵ − VajaÞ ðA3Þ

¼
Z
M
d4xðPij _hij − NH − ViHiÞ; ðA4Þ

where the Hamiltonian form of the action with canonical
coordinates hij and momenta Pij is considered, and H and
Hi are the energy and momentum constraints. The variation
of Sm can be written as

δSm ¼ ðe: o: m: termsÞ þ
Z

3B
d3x

�
Nδð ffiffiffiffiffi

σϵ
p Þ

− Vaδð ffiffiffi
σ

p
jaÞ þ

N
ffiffiffi
σ

p
2

sabδσab

�
: ðA5Þ

Evidently, variables
ffiffiffi
σ

p
ϵ,

ffiffiffi
σ

p
ja, and σab are constructed

from the canonical variables, so they can be regarded as
extensive variables. Therefore, variation (A5), when con-
sidered on-shell, shows why Sm can be considered as the
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microcanonical action for this system, where extensive
variables are fixed on the boundary.
Formally, the density of states can be written as a path

integral where ϵ, j, and σ are held fixed on the boundary

ν½ϵ; j; σ� ¼
X
M

Z
DH exp ðiSmÞ; ðA6Þ

where the sum over manifolds M includes different
topologies that respect the requirement of a B × S1 top-
ology for the boundary. In the case of black holes, it is
necessary to consider an axisymmetric solution where the
stationary time slices contain the closed orbits of the axial
Killing vector field. In addition, let B be a topologically
spherical two–surface that contains the orbits of the axial
Killing vector field, and is contained in a constant time
hypersurface. It is important to note that the Lorentzian
black hole metric can not be an extremum of Sm since it
does not have a S2 × S1 boundary; however, the complex
metric constructed by the imaginary time prescription T →
−iT fulfills this requirement [24]. Let the Lorentzian black
hole metric be written as

ds2 ¼ −N2dT2 þ hijðdxi þ VidTÞðdxj þ VjdTÞ; ðA7Þ

where the metric functions N, hij, and Vi are time
independent. The horizon corresponds to N ¼ 0, and let
coordinates be chosen in such a way that Vi=N ¼ 0 at the
horizon. With the replacement T → −iT, the complex
black hole metric is obtained

ds2 ¼ −ð−iNÞ2dT2 þ hijðdxi − iVidTÞðdxj − iVjdTÞ;
ðA8Þ

where T is real. The N ¼ 0 two–surface is called the bolt.
In order to obey Einstein equations at the bolt, conical

singularities must be avoided at the bolt. This condition is
equivalent to

Pðni∂iNÞ ¼ 2π; ðA9Þ

where P is the period of coordinate T and ni is the spacelike
normal to the bolt. This condition defines the inverse
temperature of the black hole through P ¼ 2π=κH, where
κH is the surface gravity. The complex metric (A8) together
with (A9) extremizes Sm and can be used to construct a
steepest descent approximation to the density of states:

ν½ϵ; j; σ� ≈ expðiSm½−iN;−iV; h�Þ; ðA10Þ

with Sm½−iN;−iV; h� the microcanonical action evaluated
at the complex extremum. In addition, the density of states
is related with the entropy S as

ν½ϵ; j; σ� ¼ expðS½ϵ; j; σ�Þ; ðA11Þ

Thus,

S½ϵ; j; σ� ≈ iSm½−iN;−iV; h�: ðA12Þ

Replacing this in the on-shell version of (A5), canceling out
appropriately the imaginary factors, and considering the
expression for the inverse temperature stated before, it is
obtained that

δS½ϵ; j; σ� ¼
Z
B
d2xβ

�
δð ffiffiffi

σ
p

ϵÞ − βωδð ffiffiffi
σ

p
jaσaÞ

þ β

ffiffiffiffiffiffiffiffiffi
σsab

p

2
δσab

�
: ðA13Þ

Which is the general version of the quasilocal first law (13).

[1] J. M. Bardeen, B. Carter, and S. W. Hawking, Commun.
Math. Phys. 31, 161 (1973).

[2] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[3] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[4] S. W. Hawking, in Recent Developments in Gravitation

(Springer, Berlin, 1979), pp. 145–173.
[5] G.W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738

(1977).
[6] W. G. Unruh, Phys. Rev. D 14, 870 (1976).
[7] R. M. Wald, Phys. Rev. D 48, R3427 (1993).
[8] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).
[9] T. Padmanabhan, Rep. Prog. Phys. 73, 046901 (2010).

[10] E. Verlinde, J. High Energy Phys. 11 (2011) 29.

[11] H. Zhang, S. A. Hayward, X.-H. Zhai, and X.-Z. Li, Phys.
Rev. D 89, 064052 (2014).

[12] H. Zhang and X.-Z. Li, Phys. Lett. B 737, 395 (2014).
[13] H.-W. Tan, J.-B. Yang, T.-M. He, and J.-Y. Zhang, Com-

mun. Theor. Phys. 67, 41 (2017).
[14] L. Gulin and I. Smolić, Classical Quantum Gravity 35,

025015 (2018).
[15] M.-S. Ma and R. Zhao, Classical Quantum Gravity 31,

245014 (2014).
[16] G. Barnich andG. Compère, Phys. Rev. D 71, 044016 (2005).
[17] J. W. York, Jr., Phys. Rev. D 33, 2092 (1986).
[18] T. Padmanabhan, Classical Quantum Gravity 19, 5387

(2002).

QUASILOCAL SMARR RELATIONS FOR STATIC BLACK HOLES PHYS. REV. D 99, 044021 (2019)

044021-11

https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1088/0034-4885/73/4/046901
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1103/PhysRevD.89.064052
https://doi.org/10.1103/PhysRevD.89.064052
https://doi.org/10.1016/j.physletb.2014.09.010
https://doi.org/10.1088/0253-6102/67/1/41
https://doi.org/10.1088/0253-6102/67/1/41
https://doi.org/10.1088/1361-6382/aa9dfd
https://doi.org/10.1088/1361-6382/aa9dfd
https://doi.org/10.1088/0264-9381/31/24/245014
https://doi.org/10.1088/0264-9381/31/24/245014
https://doi.org/10.1103/PhysRevD.71.044016
https://doi.org/10.1103/PhysRevD.33.2092
https://doi.org/10.1088/0264-9381/19/21/306
https://doi.org/10.1088/0264-9381/19/21/306


[19] D. Kothawala and T. Padmanabhan, Phys. Rev. D 79,
104020 (2009).

[20] K. Parattu, B. R. Majhi, and T. Padmanabhan, Phys. Rev. D
87, 124011 (2013).

[21] L. B. Szabados, Living Rev. Relativity 12, 4 (2009).
[22] S. A. Hayward, Classical Quantum Gravity 15, 3147 (1998).
[23] J. D. Brown and J. W. York, Jr., Phys. Rev. D 47, 1407

(1993).
[24] J. D. Brown and J. W. York, Jr., Phys. Rev. D 47, 1420

(1993).
[25] E. A. Martinez, Phys. Rev. D 53, 7062 (1996).
[26] H. B. Callen, Thermodynamics and an Introduction to

Thermostatistics (John Wiley & Sons, New York, 1985).
[27] L. Smarr, Phys. Rev. Lett. 30, 71 (1973).
[28] D. Kastor, S. Ray, and J. Traschen, Classical Quantum

Gravity 26, 195011 (2009).
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