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The stability of rotating black holes in dynamical Chern-Simons gravity (dCS) is an open question. To
study this issue, we evolve the leading-order metric perturbation in order-reduced dynamical Chern-Simons
gravity. The source is the leading-order dCS scalar field coupled to the spacetime curvature of a rotating
black hole background. We use a well-posed, constraint-preserving scheme. We find that the leading-order
metric perturbation numerically exhibits linear growth, but that the level of this growth converges to zero
with numerical resolution. This analysis shows that spinning black holes in dCS gravity are numerically

stable to leading-order perturbations in the metric.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) has passed
all precision tests to date, and binary black hole observa-
tions from the Laser Interferometry Gravitational Wave
Observatory (LIGO) have given a roughly 96% agreement
with GR [1,2]. At some scale, however, GR must be
reconciled with quantum mechanics in a quantum theory of
gravity. Black hole systems can potentially illuminate
signatures of quantum gravity, as they probe the strong-
field, nonlinear, high-curvature regime of gravity.

While several null-hypothesis and parametrized tests of
GR with LIGO observations have been performed [2,3], an
open problem is the simulation of binary black holes
through full inspiral, merger, and ringdown in a beyond-
GR theory. Waveform predictions from such simulations
would allow us to perform model-dependent tests, and to
parametrize the behavior at merger in beyond-GR theories.

From the first LIGO detections, we know that deviations
from GR are presently not detectable. It is reasonable to
assume that this is because any such deviations are less
than about a 4% effect. While it is possible that the signal-
to-noise ratio from the merger itself is currently too small
to rule out larger deviations at the horizon, we will not con-
sider this possibility here. Accordingly, rather than simu-
lating black holes in a full quantum theory of gravity,
we can consider effective field theories. These modify
the classical Einstein-Hilbert action of GR through the
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inclusion of classical terms encompassing quantum gravity
effects. One such theory is dynamical Chern-Simons (dCS)
gravity, which adds a scalar field coupled to spacetime
curvature to the Einstein-Hilbert action, and has origins in
string theory, loop quantum gravity, and inflation [4-8].

The well-posedness of the initial value problem in full,
nonlinear dCS gravity is unknown [9]. However, we can
work in an order-reduction scheme, in which we perturb
the dCS scalar field and metric about a GR background. At
each order, the equations of motion are well-posed
(cf. [10]). In this study, we investigate the behavior of
the leading-order dCS metric perturbation, sourced by the
leading-order dCS scalar field coupled to the spacetime
curvature of a GR background.

The stability of rotating black holes in dCS gravity is
unknown [11-13]. In this study, we numerically test the
leading-order stability of rotating dCS black holes by
evolving the leading-order dCS metric perturbation on a
rotating black hole GR background. Since the background
(and the leading-order dCS scalar field) are stationary, the
dCS metric perturbation should remain stationary if rotat-
ing dCS black holes are stable.

This question of stability is of broader importance to our
goal of simulating the leading-order dCS metric perturba-
tion of a binary black hole spacetime, in order to produce
beyond-GR gravitational waveforms. If rotating black
holes in dCS are not stable to leading order, and the metric
perturbation grows in time, then we know that we would
not be able to simulate black hole binaries in this theory.
Specifically, the metric perturbations around each black
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hole would grow in time during inspiral, and similarly
for the final black hole after merger, thus spoiling the
evolution.

A. Roadmap and conventions

This paper is organized as follows. In Sec. II, we present
the equations of motion of dCS that we aim to evolve in this
study. In Sec. IIl, we derive and present a formalism for
stably evolving linear metric perturbations on an arbitrary
background, so that we may evolve the leading-order dCS
metric perturbation. In Sec. IV, we apply this formalism to
evolve the leading-order dCS metric perturbation on a
rotating black hole background. We discuss our findings
in Sec. V.

We set G = ¢ =1 throughout. Quantities are given in
terms of units of M, the ADM mass of the background.
Latin letters in the beginning of the alphabet {a, b, ¢, d...}
denote 4-dimensional spacetime indices, while Latin
letters in the middle of the alphabet {i, j, k,,...} denote
3-dimensional spatial indices. g,;, refers to the spacetime
metric, while y;; refers to the spatial metric from a 3 + 1
decomposition with corresponding timelike unit normal
one-form n, (cf. [14] for a review of the 3+ 1 ADM
formalism).

II. DYNAMICAL CHERN-SIMONS GRAVITY

Dynamical Chern-Simons gravity modifies the Einstein-
Hilbert action of GR through the inclusion of a scalar
field 9, coupled to spacetime curvature as

m2
S= /d4x~/_—g<2mR —%(&9)2 —";1”528*RR>. (1)

The first term in the action is the familiar Einstein-
Hilbert action of general relativity, with the Planck mass
denoted by my,. The second term in the action is a kinetic
term for the scalar field. The third term, meanwhile, couples
9 to spacetime curvature via the Pontryagin density,

*RR = *RadeRabcda (2)

where *R¢d = Leabe/R, <4 is the dual of the Riemann
tensor, and €**! = —[abcd]/ /=g is the fully antisymmet-
ric Levi-Civita tensor. This coupling is governed by a
coupling constant #, which has dimensions of length. ¢
physically represents the length scale below which quan-
tum gravity effects become important. One may also
include stress-energy terms in this action for additional
fields (such as matter terms in a neutron-star spacetime, for
example), though we do not write them here.

Varying the dCS action with respect to J gives a sourced
wave equation for the scalar field,

9 — %ﬂ*RR, (3)

where [0 = V,V4 is the d’Alembertian operator. Varying
the action with respect to the metric g,;, gives

muGap + myt*Cop = Thy, (4)
where
Cab = ecde(avdRh)L)vei9 + *Rc(ah)dvcvdlg’ (5)

and T?, is the stress energy tensor for a canonical, massless
Klein-Gordon field

Tgb = Va8Vb19 - %gabvc8vc8. (6)

It is the inclusion of C,, in Eq. (4) that modifies the
equation of motion for the metric from that of a metric in
GR sourced by a scalar field.

C,p, as given in Eq. (5), contains third derivatives of the
metric, thus modifying the principal part of the equation of
motion for y,;, from that of GR. Because of the presence of
these third-derivative terms, it is unknown whether dCS has
a well-posed initial value formulation [9].

However, one can expand the scalar field and metric
about a GR background as

= k
b = G + > ALY, (7)
k=1
9="> o, (8)
k=0

where ¢ is an order-counting parameter. At each order in ¢
one recovers an equation of motion with the same principal
part as GR. This is known as an order-reduction scheme,
and has been previously implemented in [10,15].

In this scheme, &° simply gives the Einstein field

equations of general relativity for 951(1)7)’ with no source term

for 19(0), which we can thus set to zero. At first order, we
obtain a wave equation for the leading-order scalar field,

091 — RRO), 9)

where [J©) is the d’Alembertian operator of the back-

ground, and RR” is the Pontryagin density of the back-

ground. At this order, the metric perturbation h((llb) is

unsourced, and thus we set it to zero. At order €2, the
metric perturbation h((lzb) is sourced by the leading-order

scalar field 9" coupled to spacetime curvature as

1
my Gy hy)) = =mu*C 90 + 27 (10)
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where Gg;) is the Einstein field equation operator of the

background, and

1
TSZ(')) =V, 09y,090) _ Eggvc<0>,9<1>vc<0>g<1),

(11)
where V,(©) denotes the covariant derivative associated
with ¢')). Meanwhile,

C511b> = ecde(avd(o)Rb>c(O)VB(O)QU)
+ R (4 "V OV 9. (12)

Note that though Cfllb) contains third derivatives of the

background metric g(a(;), it does not contain derivatives of

hfb), and hence does not contribute to the principal part

of Eq. (10). We can thus write the rhs of Eq. (10) in terms
of an effective stress energy tensor,

: 1
7o = -mpt?C 8 + Ty (13)

Let us write Eq. (10) in a more illuminating way, as

1
PG LT (e T R T 090

+ *Rc(ab)d<0)vc(o>vd(0),9<1)),9(1>_ (14)

As mentioned previously, it is the inclusion of the second
term on the right-hand side of Eq. (14) that differentiates
the equation of motion for the leading-order metric per-
turbation in dynamical Chern-Simons theory from that of a
simple metric perturbation sourced by a scalar field in
general relativity.

Our goal, thus, is to evolve the leading-order metric
perturbation hfb), sourced by Tzf;(l). Because this is the
leading-order metric perturbation, we only need to work
in linear theory. We will thus develop a numerical scheme
for stably evolving first-order metric perturbations on an
arbitrary GR background with arbitrary source.

From here on, we simplify the notation, writing

f4
W) =" ng,, 9w =""py, (15)
a 8 8
and thus
1
TH(¥) = —C,, (V) + gTah(lP), (16)

Cab (‘P) = ecde(avde)Cve\P + *Rc(ab)dvcvdlp7 (17)

T,(¥) = V, ¥V, ¥ — % 9 VIV, (18)

with the overall evolution equation

G [Aga] = T (P). (19)

III. EVOLVING METRIC PERTURBATIONS

Our goal now is to outline a formalism to evolve
the leading-order metric perturbation in dCS, following
Eq. (19). In this section, we derive a more general for-
malism for evolving leading-order metric perturbations on
an arbitrary GR background with arbitrary source, which
we will apply to rotating black holes in dCS in Sec. IV.

A. Generalized harmonic formalism

The formalism that we will use to evolve metric
perturbations is based on the generalized harmonic for-
malism [16]. This formulation is a generalization of the
well-known harmonic formulation of Einstein’s equations,
and has seen great success in evolving binary black hole
mergers [16-19]. This well-posed formalism involves
expressing the gauge freedom in terms of a (nearly) freely
specifiable gauge source function,

Ha = gabvcvcxb = _r‘a’ (20)

where T, = ¢”T",,. for the Christoffel symbol derived
from g,;,, and V.. is the corresponding spacetime covariant
derivative. Here, H, is known as the gauge source function,
and is a fixed function of coordinates x* and g, (but not
derivatives of g,,). In particular, setting H, = 0 corre-
sponds to a harmonic gauge. This framework has seen
success in numerical relativity, including the simulation of
black hole binaries [18-20].

In this study, we will consider the first-order formulation
of the generalized harmonic formalism given in [16]. This
involves evolving the spacetime metric g,,, along with
variables I1,, and ®;,;, corresponding to its time and spatial
derivatives defined as

q)iab = aigah’ (21)
Hab = _ncacgalw (22)

where n¢ is the timelike unit normal vector to slices of
constant time .

For simplicity, we will combine these into a single
4-dimensional variable ., defined as

Koap = Hap = —n0cGap, (23)
Kiah = Piap = aigab- (24)
Note that k. does not obey the tensor transformation law.

In addition to being first order, the formalism given
in [16] is also constraint damping. It includes terms
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proportional to 9;g,, — K;up, for example; these terms are
chosen so that small violations of constraints are driven
toward zero. Here, 0,g,, is the derivative of g, taken
numerically, while «;,, is the first-order variable corre-
sponding to the spatial derivative of the metric. Terms are
added to the evolution equations with (spatially-dependent)
multiplicative constants yq, 7, 72 to ensure symmetric-
hyperbolicity and that the relations in Egs. (20), (23) and
(24) are obeyed.

The first-order, symmetric-hyperbolic, constraint-damping
evolution equations for the metric are given by

019ap = (14 71)B*OrGap — Koap — Y18 Kiap  (25)

_ pk
OKiap = P OxKiap — A0iKoap + AY20iGap — AY2Kiap

1 .
+ zomcndK,-CdKoﬂb + ayjkncKijchabv (26)
and

Dikoar, = B Orkoar — ar Orkiap + 117285 O up

+ zang(yinicaKjdb = KocaKoab — gefracerhdf)
1 -
- 2av(aHb) - EancndKOCdKOab — an“Koci¥Kjap
+ ayo [25C(anh) - gahnc] (HL‘ + Fc)
- YIyZﬁiKiah - 2aSuh' (27)

Inthelastequation, S, is a source termrelated to trace-reverse
of the stress-energy tensor 7', as

1
Sub =38 (Tab - 5 Tgah) s (28)

where T = ¢°’T,,. In the above, V H, is defined as
0,H, —T'?, H,, as if H, were a one-form (which it is not).

B. Linearized generalized harmonic formalism

Our goal in this study is to evolve first-order metric
perturbations on a GR background. Given a background
{Gab>Kape }» We perturb it to first order as

Yab = Gab + Agalﬂ (29)
Kabe = Kabe + AKabc' (30)

From here on, AA will always refer to the linear perturba-
tion to a variable A.

The evolution equations for Ag,, and Ak,,. can be
derived by linearizing Eqgs. (25)—(27), and keeping terms to
first order. The resulting equations will be a first-order
formulation. The symmetric hyperbolicity of these equa-
tions is guaranteed because the perturbation equations

will have the same principal part as the background system.
The linearized system is also constraint damping, as the
associated constraint evolution system has the same linear
part as in the constraint-damping unperturbed system
(cf. Egs. (17)—(21) in [16]). More importantly, the equa-
tions for Ag,, and Ax,;,. will have the same principal part
as the equations for g,, and «,,., as we shall see.

Linearizing Egs. (25)—(27) involves computing terms
like Aa, AB!, the first-order perturbations to the lapse and
shift. In the following section, we thus derive expressions
for these terms in terms of the fundamental variables Ag,,,
and Ax,p,.

C. Linearized variables

To compute Ag*, we can use the identity g**g,, = 6¢
to give

Ag* = —g“lg" Agy,.. (31)

For the perturbation to the lapse, Aa, the shift, Aﬂi , the
lower-indexed shift, Af;, and the spatial metric Ay;; and

Ay', we recall that the spacetime metric is decomposed in
the 3+ 1 ADM formalism as

—a? [ .
w= (") )
ﬁj Vij
., _a—2 a—Zﬂi
"= <a‘2ﬂf i —a‘zﬂiﬁf>' )

Recall that spatial quantities are raised and lowered with
vij» the spatial metric. When we perturb all 10 independent
components of g,,, we can find what all of the linearized
quantities are in terms of g,, and Ag,,. We begin with
perturbing g, to find Ap;:

Ap; = Ago;- (34)
Similarly, we can perturb g;; to obtain

Ayij = Agij. (35)
We can now use g% to obtain

1
Aa = §a3Agoo. (36)

Next, using y"y ; = &, we find
Ay = =™y Ay . (37)
From this, we can compute A’ as

AR = AyUB; + rTAp;. (38)
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Finally, we need to compute An“ and An,, the perturbed
timelike unit normal vector and one-form. We can use the
expressions for n¢ and n, in terms of the lapse and shift to
obtain the perturbed quantities (cf. [14]). We compute

An, = (~Aa,0,0,0). (39)
and
An? = (—a_zAa, a‘zAaﬂi - a_lAﬂi)- (40)

In order to check constraint satisfaction (as will be
discussed in Sec. IITE), we will also need to obtain the
perturbation to y2. We obtain (cf. Eq. 2.30 in [14]),

Ay, = An®ny, + nAn,y,. (41)

Thus, we have obtained all of the necessary perturbed
quantities to perturb the generalized harmonic expressions
as well as the constraint expressions that we can obtain
from Ag,;,. In the next section, we describe the quantities
that we can obtain from Ax,,.

Referring back to Eq. (27), we also need to find
expressions for A, the first-order perturbation to the
connection compatible with g,,, as well as the first-order
perturbation to its trace, AI',. First, let’s compute the
perturbation to AI',,.. By definition,

1
Fabc = 5 (ahgac =+ acgah - 8agbc)' (42)

However, in order to preserve hyperbolicity in the evolution
equations, all instances of 0,g,. appearing in I',,. are
replaced with «,;,. according to Eqgs. (23) and (24) [16],
thus giving

1

1—‘abc = B

<(1 - 6(1)7)Kbac + 52(_aK0ac +/))iKiac)

( 5(0) Keap + 5 ( OKoab +ﬁikiab)
(1 - 52) Kabe — ( N +ﬂ Klbc)) (43)
where the Kronecker delta symbol &j picks out the spatial

indices {1,2,3} vs time indices {0}.
We can perturb Eq. (43) to give

1
2
+ Aﬁi’ciac +ﬂiAKiac) + (1 - 5(6))AKcab

+ 82(—Aakg,, — abkogy + APk + P Dkiqp)
- (1 - 52)AKabc
+ AfKipe + B AR ) (44)

AI_‘abc = ((1 - 52)AKbac + 52(_Aa’<0ac - aAKOaC

- 52 (_AaKObc — alAkope

Now, for I, = ¢““T";,., we compute the corresponding
perturbations (for future use) via

AT, = AG“T gpe + g*/AT gy (45)
For the trace of I', = ¢*“T',;,., We compute
Aru = Agbcrabc + ghcAFahc’ (46)

where AI',,. is as above, and Ag’ is given in Eq. (31).

The generalized harmonic gauge source term, H,, will
also have a perturbation, AH,. However, AH ,, like H,, is
freely specifiable, with the caveat that it can only depend on
gap and Ag,;, but no derivatives of g, or Ag,;,. Throughout
this study we will choose a freezing gauge condition: we set
AH, from the initial data AH, = AI',(t = 0), and keep it
at this constant value throughout the evolution.

Equation (27) has a V_H,, term. Perturbing this quantity,
we obtain

auAHb - AngFdath
— (AT yupH, 4+ TyupAH,).  (47)

A(quh) =

1. Perturbed initial data

Suppose we are given initial data in the form
{AGup, 0,AGap, 0iAg,, +. Perturbing Egs. (23) and (24),
we can relate Ak, to derivatives of Ag,:

AKOab = _Ancacgah - ncacAgab’ (48)
AKiab = aiAgabﬂ (49)

where An¢ is computed from Ag,;, using Eq. (40).

2. Source terms

In order to source the metric perturbation, we require a
perturbation to the stress energy tensor, AT ,,. This will
appear in the perturbed evolution equations through AS,,;,
the perturbation to S, defined in Eq. (28), as

1
ASub =38 <ATuh - 5 (ATgah + TAgah)) ’ (50)
AT = Ag°*T, + g*° AT . (51)
For a vacuum background, we obtain the simpler form

1
AS,, = 8n (ATab - EgabngATcd>- (52)

D. Perturbed evolution equations

We have now derived the first-order perturbations to all
of the variables in Egs. (25)-(27). We next perturb these
equations to linear order, in order to obtain evolution
equations for Ag,, and Ak,

044019-5
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We begin by perturbing Eq. (25) to obtain

OiAgay = (14 71)(ABOLGap + P OrAGar) — AdKouy — ADKowy — 71 A Kiary — 715 Akigp- (53)

Next, we perturb Eq. (26) to give

1
01 Akiap = AP Orkiap + PO MKy — DD Koy, — a0; Akoay + Aay20;94p + a720: Mg + 3 Aan®nK;cqKoap

1 1 1 1 .
cd c d c,,d c,d k,c
—l—EaAn n°KicakKoab —l—i(xn An“K;cqKoap —l—i(xn n*AK;.qKoap —l—ian n“KicaAKoap + Aay’ nk;jKiap

ik ik ik ik
+ aAy n KKy + Ay’ AnCKjjcKiap + ay N Ak Kiap + Ay nKije Akap — AyoKigy — ay2AK gp. (54)

Finally, we perturb Eq. (27) to obtain

01 Akoay = AP*Orkoup + POk AKouy — Aay  Oikiapy — aDY Ok, — ay Oy Akiap + 717288 Orgup + 11728 Ok Agup

+ 2Aang(yinicaKjdb — KocaKoab — gefracerbdf) + ZaAng(yinicaKjdb — KocaKoab — gefracerbdf)

+ 2096d(A7U KicaKjap — AKgeaKodn — Agef lr‘acerbdf> + ZGQCd(VU AKjeqk jdb — KocaAKogp — Qef Aracerbdf)

i, 1 1
+ 2ag"d(y’«’K,-caAKjdb - ge-fFaceAl"bdf) —2AaV,Hy) —2aAV H ) — 3 Aann?ko.gKoap — EaAn"ndKocdkoab

1 1 1 . .
d d d
- EancAn KocdKoap — Eancn AKocqKoap — Eancn KocaAKoap — AancK()ciV”Kjab - aAnCK()ciJ’”Kjab

- anCAKOciyinjuh - anCKOCiAyinjuh - anCKOCiyijAKjah + Aa},() [250(anb) - gabnc] (Hc + Fc)
+ayp [266(1/1Anb) - Agabnc](Hc + Fc) +ayo [_gahAnc](Hc + Fc) + aYO[Zéc(anh) - gabnc](AHc + Arc)

- 717’2Aﬂi’<iab - YIyZﬂiAKiah —2AaS,, —2aAS,,.

E. Constraint equations

In order to check the numerical performance of the
evolution equations given in the previous section, we
evaluate a set of four perturbed constraints that Ag,;, and
Ak, must satisfy. These functions are zero analytically,
and we will check their convergence to zero with increasing
numerical resolution.

The 1-index constraint (cf. [16]) is the gauge constraint,

C,=H,+T, (56)

which measures the numerical accuracy of the generalized
harmonic evolution [cf. Eq. (20)]. We perturb this to get the
constraint

AC, = AH, + AT, (57)

where AH, is the gauge source function for the metric
perturbation evolution.

The 3-index constraint evaluates the difference between
the numerical derivative of g,, and x;,,, the first-order
variable encoding the spatial derivative of the metric as

(55)
Ciab = aiguh — Kiab- (58)

Perturbing this, we obtain
Aciah = 81'Agah - AKiab' (59)

The 4-index constraint concerns the commutation of
partial derivatives as

Cijab = Za[in]ab- (60)
Perturbing this, we obtain

ACi b= Za[l‘AKj]ah. (61)

ja

Finally, the 2-index constraint is derived from the
Hamiltonian and momentum constraints, as well as the
3-index constraint. The constraint and its perturbation are
too lengthy to reproduce here, and so we have written them
in Appendix A.

Thus, when performing an evolution, we evaluate the
right-hand sides of Egs. (57), (59), (61) and (A6), and
check that they converge to zero with increasing numerical
resolution. In particular, as we use a spectral code, we
expect exponential convergence with resolution [21].
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In order to show that the constraints themselves are
convergent, rather than the absolute values of the metric
variables simply getting smaller, we can normalize the
constraints by the absolute values of the metric fields they
contain. For example, for a constraint of the form A + B,
we normalize it by dividing by VA% + B, The question
arises of whether we should normalize the constraints
pointwise, or whether we should compute the norm of
each constraint and its normalization factor over the entire
domain and then divide the norms. Since we will evolve a
localized metric perturbation, there will be regions in the
domain with Ag,, nearly zero, so we choose to first
compute norms and then divide them.

F. Characteristic variables

All of the discussion so far has centered on fundamental
variables Ag,;, and Ax,,.. However, in order to implement
boundary conditions, it is useful to instead consider
characteristic fields. These can be used to measure the
characteristic speeds and to construct boundary conditions.

The characteristic fields are the eigenvectors of the
principal part of the evolution equations (cf. [16] for an
example derivation). The characteristic speeds are the
corresponding eigenvalues. For the generalized harmonic
system, the characteristic variables on a surface with spatial
normal vector 7' take the form

Ugy = Koap £ M'Kiah = V2Gabs (63)
Uz, = (6 = A" pqp,. (64)

The principal parts of the linearized equations

(cf. Sec III D) are
D:AGay — (1 +71)B*0rAgap, >0, (65)

01 Akoapy — POk Akoay + Ay’ Oy Akiuy, — 717280k Agap ~ 0,
(66)

01 Akigp — PO AK ap + a0; Akoypy — 7200;Ag,, ~ 0. (67)

These are exactly those of the generalized harmonic
system, and hence the characteristic fields and speeds will
be the same. Thus, the characteristic fields of the linearized
system are simply

Augb = AGaps (68)
Auli = Akoup + A AKjep — 72AGap (69)
Aui,, = (8% — %) Ak (70)

The reverse transformation from characteristic variables
to fundamental variables is then

Agu, = AuY,, (71)
1

Ak = 3 (AML;;r + Au}l;) + yzAugb, (72)
1

Ak, = Eﬁi(Au;; —Auls)+ AuZ . (73)

As in the generalized harmonic system, the characteristic
speed for Au®, is —(1 +y)n B¢, the speed for Au'f is
—n ¢ + a, and the speed for AuZ,, is —nf~.

G. Boundary conditions

In the previous section, we derived the characteristic
fields for the linearized system. In order to complete the
evolution system, we must include boundary conditions for
these characteristic fields. All of our numerical evolutions
include a finite outer boundary, and we choose to use a
freezing boundary condition, which sets

P(dAu'? /dt) = 0, (74)

where Au(@ is a perturbation to a characteristic field and P
refers to the characteristic projection onto the surface.
Though more sophisticated conditions are available,
especially for computing accurate gravitational radiation
(cf. [22-24]), we find that the freezing boundary condition
is sufficient for our purposes, especially since the character-
istics are initially purely outgoing (out of the computational
domain).

When simulating metric perturbations on a spacetime
containing one or more black holes, we exclude the region
just inside the apparent horizon from the computational
domain [25]. This forms a topologically spherical inner
boundary. However, there should be no characteristics
entering the computational domain from the horizon, and
thus we do not need to specify a condition at the inner
boundary.

H. Code tests

Because of the complexity of Egs. (25)—(27), we perform
a series of code tests. These code tests contain no new
physics, but rather check that the evolution equations have
been implemented correctly. We present the results of these
tests in Appendix B.

IV. EVOLVING DCS METRIC PERTURBATIONS

We now apply the formalism given in Sec. III to
dynamical Chern-Simons gravity. Specifically, we aim to
test the stability of rotating black holes in dCS by evolving
the leading-order metric perturbation, Ag,,, governed by
Eq. (19), on a rotating black hole background. In GR, this
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background is given by the Kerr metric. Recall from
Egs. (16)—(18), that it is precisely the inclusion of
C,, (W) in the effective stress energy tensor that differ-
entiates dynamical Chern-Simons gravity, where the scalar
field is coupled to spacetime curvature via *RR, from a
simple metric perturbation sourced by a scalar field in GR.

A. Implementation details

In [15], we derived stationary initial data for Ag,, on
a Kerr background sourced by the spacetime curvature of the
Kerr background coupled to a stationary field ¥ obeying
LW = *RR. [26]. Using these data, we construct Ak, fol-
lowing Egs. (49) and (48). The source term AS,;, described
in Sec. Il C 2 is computed from P using 7 (¥) in Eq. (16).

Our computational domain is a set of eleven nested
spherical shells, with more shells centered near the horizon
and fewer shells further out. The boundary of the innermost
shell conforms to the apparent horizon of the background
black hole, and the outer boundary is at R = 200M. We
repeat simulations at three different numerical resolutions
determined by a parameter labeled “low,” “medium,” or
“high”; each shell has five radial spectral basis points and
six angular spectral basis points at the lowest resolution,
with one more radial and angular basis point added for each
increase in our resolution parameter.

We evolve {Ag,,, Ak} using the equations in
Sec. I D using a spectral code [21]. We apply filtering
to the spectral scheme in order to minimize the growth of
high-frequency modes [27]. We choose damping parame-
ters y, and y, to be larger close to the horizon, where the
metric perturbation is greatest, as shown in Fig. 1. We
choose y; = —1 as in Ref. [16].

B. Results

In Fig. 2, we present the perturbed constraint violation
for a spin y = 0.1 background using the expressions

T T T { T T
- —
——
§ 2]
-}
2
El T~ ~<
2 S~
0 Lo | Te==F
0 20 40
r/M
FIG. 1. Constraint damping functions y, and y, used to evolve

metric perturbations on a Kerr background. The functions are
largest where the metric perturbation source has the highest value,
and exponentially decay to R — co. While the functions extend to
R = 0, the computational domain terminates outside the apparent
horizon inner boundary (here shown by the black dashed line at
R = 2M in the case of Schwarzschild).

derived in Sec. IIIE. We see that the constraints remain
roughly constant in time, and are exponentially convergent.
We check the constraint convergence for every simula-
tion. Note that as we increase the spin, more spectral
coefficients are needed to achieve the same level of
constraint violation.

In Fig. 3, we present the behavior of the norm of the
metric perturbation with time for y = 0.1 for low, medium,
and high resolution. We see that as we increase resolution,
Ag,;, becomes more constant in time. Note that the specific
value of ||Ag,|| (~0.86 in Fig. 3) should be a function of y,
the spin of the back hole. However, though expressions for
this functional dependence exist in the slow and rapid
rotation limits [28,29], and as post-Newtonian expansions
[30], no closed-form, analytical expression for the func-
tional dependence is known.

Figure 4 similarly shows the behavior of the metric
perturbation for y = 0.6. This case is particularly interest-
ing, as it corresponds roughly to the final spin of the
postmerger black holes in [10]. We thus conclude that were
we to also simulate metric perturbations in that study, we
could stably evolve metric perturbations through ringdown.

For a more quantitative analysis, we show the time
derivative of the norm of Ag,, in Figs. 5-7, for y = 0.1,
x =06, and y =009, for three different resolutions.

1

107 —-= Low
=== Med

High

[ACHI/[| V]|

1 llHHM

1

10

ACS|| /[ V2]l

11 HHM
-

T

1 lllHM

I AC[1/1]Ns]|

10754a L —————————————————————————

IACH /1INl

0 500 1000
t/M

FIG. 2. Behavior of the perturbed constraints given in Sec. [II E
for a dCS perturbation on a Kerr background with y = 0.1. For
each constraint AC,, we compute the L2 norm of the constraint
over the entire computational domain (||AC,| for the 1-index
constraint, for example), and divide by the L2 norm of its
normalization factor (|[N4]|) (cf. Sec. IIIE). We see that the
constraints remain constant in time and are exponentially con-
vergent with resolution.
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0874 === Med

Agal

0 250 500 750 1000
t/M

FIG. 3. Metric perturbation Ag,, on a Kerr background with
x = 0.1. We present the behavior at low, medium, and high
resolutions, and find that we increase the numerical resolution,
the level of linear growth in time decreases.

Agal

FIG. 4. Similar to Fig. 3, but for spin of y = 0.6. For each
resolution, we use the initial data for Ag,;, we have solved for at
that resolution, and hence Ag,, has different initial values
depending on resolution. We have checked that these initial
values converge to the highest-resolution result.

Initially, there is some junk radiation (unphysical spurious
radiation) present on the domain, so the first ~150M
(corresponding to the computational domain radius) of
each figure can be ignored.

We see that after the junk radiation has left the domain,
the normalized time derivative decreases with numerical
resolution, staying at a low level of ~107° at the highest
resolution.’ Let us examine this result more carefully. The
metric perturbation, as shown for example in Fig. 3,
exhibits linear growth in time. However, the lower numeri-
cal resolutions exhibit more linear growth than higher
numerical resolutions. As shown in Fig. 5, we see that
with increasing numerical resolution, this linear growth
converges exponentially towards zero. Thus, this linear
growth is a numerical artifact, and in the limit of infinite
resolution will be zero. Thus, we must evolve the metric
perturbation at a high enough resolution such that the linear
growth is small enough for our purposes.

How long do we need to evolve Ag,;, to be confident in
the stability of the field? Practically, NR gravitational
waveforms typically contain 100-200M of ringdown signal
[31], as did the simulations we performed in [10]. Thus, we
certainly require stability on timescales of O(100)M.
Binary black hole simulation initial data is comprised of
an approximate superposition of two black hole metrics

lHigher spins require higher resolutions to achieve the same
level of numerical accuracy in Kerr-Schild coordinates, and thus
the values of the time derivatives at the same numerical resolution
increase slightly with spin.

10,3 L [ L [ L [ L L .

Low
= Med
= High

107 x=01

| Aga|

e e b b

0 200 400 600 800 1000
t/M

FIG. 5. Behavior of the derivative of the norm of the metric
perturbation with time for a background with spin y = 0.1. We
plot 9,||Ag,yl|, the time derivative of the norm of the metric
perturbation. Each line corresponds to a different resolution. We
see that after an initial period of junk radiation, the time derivative
is convergent towards zero with increasing numerical resolution.

[32]. Thus, in the early inspiral, the spacetime is similar to
that of two black holes, with a dCS metric perturbation
isolated around each black hole. While binary black hole
simulations typically start ~5000 to 10000M before
merger (cf. [31]), at some point in the inspiral, strong-
field dynamics take over and the spacetime is no longer a
superposition of two Kerr black holes. Thus, we are
interested in timescales of O(1000)M, to be able to
simulate the early inspiral. For one resolution, we have
also evolved Ag,, on a y = 0.1 background for 10 000M
(but only 1000M of evolution is shown in Fig. 5). We find
that the metric perturbation exhibits similar behavior on
these timescales (the time derivative of the perturbed
metric, d,Ag,,, remains at a constant level for at least
10000M).

Let us now discuss the origin of the linearly growing
mode (a zero-frequency mode). One possibility is that it is
present in the initial data for the metric perturbation, as it is
in the spectrum of the differential operator. For the
simulations shown in Figs. 5-7, the evolution for each

atHAgabH

=

=

H
9

11 1 1 11 1 1 11 1 1 11 | 1 ) I
0 200 400 600 800 1000
t/M

FIG. 6. Similar to Fig. 5, but for spin y = 0.6.
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FIG. 7. Similar to Fig. 5, but for spin y = 0.9.
numerical resolution has its own initial data, which is
solved for independently on a grid of that resolution. Thus,
if the presence of the mode is purely due to the initial data,
we would expect different resolutions to display various
levels of linear growth, which we indeed see. To further test
this hypothesis, we can instead solve for initial data for
Ag,, only at the highest resolution, and interpolate this
onto the lower-resolution grids to use for the evolution. In
Fig. 8, we show the results of this procedure. We see that all
three resolutions have roughly the same amount of linear
growth, suggesting that the zero-frequency mode is seeded
by the initial data, rather than spontaneously appearing
during the evolution. Note that the growth is at the level of
the highest resolution, which is still finite, and hence the
growth is nonzero. This in turn tells us that in order to
achieve the requisite level of numerical stability, we can use
higher-resolution initial data, and perform our simulations
at lower resolutions.

T T T [ T T T [ T T T [ T T LOTW
1 == Med
10*)? ==t High
E x =0.1
S 1070
4 3
< ]
1077?
B 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1
0 200 400 600 800
t/M
FIG. 8. The structure of this figure is similar to that of Fig. 5.

However, in this case, we solve for the initial data for Ag,;, purely
at the “High” resolution. We interpolate this data onto the “Low”
and “Medium” resolution grids to give initial data at these
resolutions. We see that as the simulation progresses, the linear
growth in Ag,, remains at roughly the same level for all
resolutions. This suggests that the zero-frequency mode in
Ag,;, is present in and due to the resolution of the initial data,
rather than spontaneously appearing during the evolution.

V. RESULTS AND DISCUSSION

In this paper, we have aimed to test the stability of
rotating black holes in dCS gravity to leading order. We
have worked in order-reduced dCS, in which we perturb the
dCS scalar field and metric around a GR background. We
have evolved the leading-order dCS metric perturbation,
sourced by the leading-order dCS scalar field coupled to the
spacetime curvature of the GR background (Sec. IV). We
used a fully general, first-order, constraint-damping metric
perturbation evolution scheme based on the generalized
harmonic formalism of general relativity (Sec. III). We
found that the dCS metric perturbation exhibits linear
growth in time, but that the level of linear growth converges
towards zero with increasing numerical resolution.

The linear stability analysis presented in this paper shows
that black holes in dCS gravity are numerically stable to
leading-order perturbations in the metric. The leading-order
(first nonvanishing) metric perturbation in dCS gravity
occurs at second order, and thus the linear stability presented
corresponds to stability at second order in the dCS order-
reduction scheme. Previous studies have explored the ques-
tion of black hole stability in dCS gravity [11-13], but this is
the first study to explore the behavior of metric perturbations
on a spinning background with nonzero source.

Linear theory has no scale, and thus the results presented
in this paper can be applied to any coupling parameter &>
such that, to second order, the dCS metric is g,, + £2Ag,,.
However, for the perturbative scheme to be valid, we must
choose & such that ||e2Ag, || < |9l (cf. [26,15] for a
quantitative analysis of allowed values of &?).

The stability of our simulations makes us confident that
we can evolve dCS metric perturbations in a binary black
hole spacetime without numerical instabilities. We can use
a superposition of the dCS scalar field initial data given in
[26] and the dCS metric perturbation initial data formalism
and code used in [15] to generate initial data for scalar field
Y and perturbed metric variables Ag,;, and Ak,,.. We can
then evolve the scalar field as we previously have in [10]
and use this WP(7) to source the evolution of Ag,,. While we
have used a stationary gauge as determined by AH, =
AT (1 = 0) in this work, we also have the option of rolling
into a perturbed damped harmonic gauge during the binary
evolution (cf. [33]).
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APPENDIX A: PERTURBED 2-INDEX 1
CONSTRAINT Cia = }’jkajl('ika — Ey'iagcdaj’cicd -+ nhail('o[m

In this Appendix, we derive perturbations to the gener- o 1 . o d
alized harmonic constraint C ,;,. This constraint corresponds ~ Ml dikoca + OiHq + B 9 aKjeaKier9* g
to a combination of the Hamiltonian and momentum 1 '
constraints, and includes terms proportional to the con- +§7ijdeKikengnena - ij}/mnijaKikn
straint C,,;, [cf. Eq. (58)] that are added in order to sim- | !
plify the evolution equations for the constraints [16]. The + KichOhena< chgde |~ ghepc nd)
constraint Cy, is defined in Eqs. 43 and 44 of [16], in which 2 2
the time components C, are called F,. The expressions NI
in [16] do not contain stress-energy source terms, but we = KicaKopa"" | 9 + Hyrn

include these terms here. In particular,

1
+ EyZ(nang - Zéznd)cicdv (AZ)
0a = fa - 2anba + naSbcgbc7 (Al)
where F, is the expression from [16]. and the time part is the lengthy expression

1 . . 1 - iy
Coa = —2n"Spy + nySpeg™ + Eglagbcai’%bc — ¥ 0iKoja — ¥ iinbd;x Kjpa + 5 "agbclfuainbc +n.yY0;H,
. . 1 1 1
+ iKY Kica <g”"n‘ —59n" > P OHy + 7 Kicakpag" 1 = 2 nay Y KimeKnjag ™ = 7 nay Kicakjpe g™ 9
1 . - . 1
+ ZnaKOCdKObenggde — v HKojq — nbyl KopiKoja — Zgékicd”C"dKObeg +3 > aKocaKope g “nn®
. - 1 ..
+ GiKicakopen“n® g% — 7leibaan0jene - EV'IKicd"C”dKo Y“H,; Kjban + GikicaHpg"n?
id 1 i cd 1 cd b ij cd 1 ij cd
+ 72\ 7 Cida - Egag Cicd + EnuKOCd.g an —ngy Kichdg + Enay Hincdg . (A3)

Perturbing Eq. (A2) to obtain the perturbation to the spatial part of the 2-index constraint, we find
1 . 1 .
Acla = ij 9; iKika + 7 a AKtka - EA}/jag a iKicd — 27jaAngajKicd - EyjangajAKicd + Anbaik‘Oba + nbaiAKOba

1 1 1 1 . 1 .
) AnangaiKOcd - E”aAngaiKOCd 3 nangaiAK()cd + 0;AH, + 5 Ag’achdKiefgcegdf + EgjaAchdKiefgcegdf

1 ‘ 1 ‘ 1 ) 1 )
+ EglachdAKiefgcegdf + Eg]quchiengLegdf + Egjquchiefg eAgdf + E ijkchdKikeg dnenu

1 . 1 . 1 . 1 .
+ 3 VRAK jeakigeg“nfn, + 3 7JkchdAKikengnena + ) 7]kchdKike Agntn, + ) 7JkchdKikengAnena

1 . . .
k cd e jk.,,mn k mn k,,mn ik, mn
+§yj KjcaKiked 1 Ana - ij V' KjmaKikn — }// A}/ KimaKikn — yj 4 AK]'ma’(z'krz - 7j VK maAKtkn

1
+ = (AKjeaKope g + KicaDKopeg + KicaKope A,) X < chgde 4 29176 n¢ >

| =

1
+§Kich0bena (Agcb de +gchgde+2(Agbencn +gbeAncnd+gbencAnd)>

1 1 1
- (AKiCdKObanc + KichKObanC + K,'CdK()baAnc) X <gbd + inbnd) - KiCdKObanC <Agbd + 5 Anbnd + inbAnd>

1 1
+ E)Q(Anang + naAng - 252And)cicd + 572 (nang - 2551nd)ACicd7 (A4)
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where AC;., is the perturbed 3-index constraint as defined in Eq. (59).
Finally, the perturbation to the time part of the 2-index constraint is

ACy, = —2AnbS,, —2nPAS,, + An,S,.g"¢ + n,AS,.¢" + n,S,.Ag"

1
+

5 (AgLg" Oikope + GoDG" Dikope + G297 OiD)Kope — Ay ikgjq — ¥ 0iAKyjq — AY NP0k jpy — v AP Dk

- }'ijnhaiAKjba + % (Anaghcyijaikjbc + ”aAgbCYijainbc + nagbcAJ’ijaz‘Kjbc + naghcyijaiAKjbc) + An,y'10,H;
+n, Ay H; + n,y0,AH; + (AQZKithijkcd + QZAKijh}’ijkcd + QZKiijijchd + QZKith/jkAchd)

x (gbdnc - %g"’dn” ) + garijpr" Kica (Agbdn” +g"An¢ — % Agin® — %g“’An” ) — Agun®0;H), — g, An"0;H,,
— ginP0;AH ), + AyUk; ek bag’ 0 + 7Y Akie gk jbagbcnd + 7 KicaAK jbagbcnd + 7Y Kicak jbaAgbcnd

+ 7KicaKjpag" An? — % (ARG Y™ KimeKnja g™ + RaDYTY™ KimeKnjag™ + nay™ Ay KimeKnjag™

+ 177" AkimcKnjad™ + 1y 7" Kime DK ja ™+ 1y Y KimeKnjaAg°)

1 (AngyVKicqk jbenggde + 1 AyYKicqK jbenggde + n.r" Axieqk jbeQCbgde + ngyKicaAk jbegd’gd ¢

N b N br
=+ nayleiCdKjbeAgL g ¢+ na}/leichjbegC Ag e)

1

b d b d b d b b A d
+ Z(AnaKOCdKObegC 9% + 1y Akocakope 9 9% + NaKocaDkope G g% + NaKocakope DG g% + NaKocakope g Ag™)
N N y b i br i b i b

— AyYHkpjq — v AHKojq — v HiAKgj, — An"yKopiKoja — 1° Ay KopiKoja — 177" AkopiKoja — 177" KopiAKojq

1

[ d be i c.,d be i c,d be i c d be
_Z<A92K,‘cd”6n Kope9 ¢ + GulAKical N Kopeg”¢ + GaKicaBN nKope g’ + GuKical An“Kopeg

) . 1
d b d b d, b d, b
+ GiKicat“ N Akopeg” + GuKicannkope Ag™°) + 5 (AR Kocakope g nn’ + n,Akoegkope g nn
+ NaKocaDkope g nn® + nyKocakope AGnn’ + nykocakope g Ann® + n kocakopegn* An’)
+ AgiKicakopenn” g% + g AKicakopenn” g% + gikicaDkopenn® g + gikicakope Ancn g%
+ GiKicakopen An? g% + gik;cakopen©n® Ag® — A}’”Kiba"bko,'ene - 7UAKibaan0jene - yl]KibaAanOjene
ij bA e ij b An¢ 1Aij c,d ijA cd ij Acd
=V Kipal” AKQjel" = ¥/ Kipg N Kqje AN —5( Y Kical " N Ky jq + 77 BKicqN N Ky jq + ¥V Kicq AN N Ky jq
+ 7Kican Ankojq + YV Kican nkojq + 7 Kicqnnd Ay jq)
— AYTH Kk jpn® — Y AH K jpan” — v HAK jpn® — YT H K o, An” + AgikicaHpg" n® + g AkicqH pg" n?
+ gikicaDH,g" n? + gikicaHp DG n? + gikicqH " An?
. . 1 . . .
d d d d d
+7r <A}’l Ciga +7'“AC4, — 2 (A909°“Cicq + 9uAG“Cica + 9u9°“AC;cq)

1
+ 5 (Angkocag™ Hpn® + n,Akocag* Hypn® + nokocaAgeHyn® + nykocad* AHpn® + nokocag™HyAn®)
- Anayijkichdng - naAyinichdng - nayijAKichd.ng - nayinichHdng - nayijkichdAng

+ E (Anayl]Hincdgcd + naAyuHincdng + nayl]AHincdng =+ nayl]HiAchdng + naVUHinchng)’ (AS)

where AS,, is the perturbation to the source term as given by Eq. (50). We combine Eqs. (A4) and (A5) into one overall
constraint,

AC,, = (ACh. AC,,). (A6)

044019-12



EVOLVING METRIC PERTURBATIONS IN DYNAMICAL ...

PHYS. REV. D 99, 044019 (2019)

APPENDIX B: CODE TESTS

In order to have confidence in our dCS metric perturba-
tion evolution results, we perform a suite of tests to check
the accuracy of our metric perturbation evolution code.
For each test, we check the convergence of the perturbed
constraints derived in Sec. III E. Note that the results of
these tests do not contain new physics, but rather serve as a
check of our implementation of the metric perturbation
evolution equations [Eqgs. (25)—(27)].

1. Multipolar wave evolution

We first evolve a multipolar wave in the transverse-
traceless gauge on a flat background [34,35]. This evolution
takes place on a domain with only one (outer) boundary,
where we set the boundary condition given in Eq. (74). We
wish to test the numerical evolution against the analytic
solution. However, some of the terms in the evolution
equations we are testing will vanish because the analytic
solution has symmetries. To remove these symmetries, we
perform a coordinate transformation of the form

7.3
R

where r = /x> +y? + 7> in Cartesian grid coordinates,
R and a, are constants, and a(¢) is a (time-dependent)

r—ar+ (ag—a) (B1)
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FIG. 9. Constraints for evolution of a transformed multipolar
wave perturbation on flat space, as described in Sec. B 1. For each
constraint AC,, we compute the L2 norm of the constraint over
the entire computational domain (|[AC, || for the 1-index con-
straint, for example), and divide by the L2 norm of its normali-
zation factor (||[N]|) (cf. Sec. Il E). We see that the constraints
converge exponentially with numerical resolution.
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FIG. 10. Behavior of Ag,, for the multipolar wave test
described in Sec. B 1 for low, medium, and high resolution.
We see that the value of the metric perturbation decreases as the
wave propagates toward R — oo (and leaves the computational
domain), and that with increasing resolution the behavior of the
variables converges to the highest-resolution value. We addition-
ally plot the analytical solution for the behavior of the multipolar
wave, which sits on top of the highest-resolution result.

function. We add an additional coordinate translation of
the form

¥ - x4+ C, (B2)
for some vector C'.

We evolve an outgoing [ =2, m =2 multipolar
wave. This has a Gaussian profile, with an initial width
of 1M, amplitude of 0.01, and center of 10M. For the
transformations given in Egs. (B1) and (B2), we choose
R =40M, ay=1.3, a(t) =1+0.001£2/M? and C'=
(2.0,-4.0,3.0)M. We evolve on a grid of nested spherical
shells around a filled sphere, with an outer boundary of
R = 35M. Each shell has 8 radial spectral basis functions
and 4 angular spectral basis functions at the lowest
resolution, with 4 more basis functions added in each
direction as we increase resolution. We find that the
perturbed constraints, shown in Fig. 9, converge exponen-
tially, and that the perturbed variables shown in Fig. 10
evolve toward zero (as the data leaves the domain) in a
convergent way. Additionally, we check that our results
converge to the known analytic solution.

2. Small data on Schwarzschild

We perform a test where we initially set each component
of Ag,,, to be a different number close to machine precision

AL R JS) gy sy Py
//—
= ]
2
i m— Low
9x 10717 [N o = m Med meme e —
m— High
L 1 1 1 1 1 | | |
0 500 1000
t/M
FIG. 11. Behavior of Ag,, for the small data on Schwarzschild

test described in Sec. B2. We see that with increasing time,
the field with initial magnitude of ~107!® remains close to
roundoff error.
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(1071%) at each point on the domain, thus seeding any
instabilities that might be present. We apply filtering to the
spectral scheme in order to minimize the growth of high-
frequency modes [27], and choose damping parameters y,
and y, to be larger close to the horizon. We check that as the
evolution progresses, the constraints and the values of Ag,,,

and Ak, remain close to numerical truncation error. This
in particular tests the constraint-damping capabilities of the
code. We show the behavior of the perturbed variables in
Fig. 11. We see that the solution remains at roundoff level.
There is linear growth in Ag,,,, but the level of this growth
decreases towards zero with increasing resolution.
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