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We consider the electromagnetic field occurring in the background of a static, axially symmetric vacuum
solution of Einstein’s field equations immersed in an external magnetic field. The solution, known as the γ
metric (or Zipoy-Voorhees), is related to the Schwarzschild spacetime through a real positive parameter γ
that describes its departure from spherical symmetry. We study the motion of charged and uncharged
particles in this spacetime and particle collision in the vicinity of the singular surface and compare with the
corresponding result for Schwarzschild. We show that there is a sharp contrast with the black hole case; in
particular, in the prolate case (γ < 1) particle collision can occur with an arbitrarily high center of mass
energy. This mechanism could in principle allow one to distinguish such a source from a black hole.
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I. INTRODUCTION

The electromagnetic field occurring around a rotating
Kerr black hole immersed in an external asymptotically
uniform magnetic field was first considered by Wald [1].
Since then, the electromagnetic field structure and charged
particle motion around axially symmetric black holes have
been studied by several authors [2–13].
The authors of [14] have shown that a Kerr black hole

can accelerate particles near the event horizon. The role of
the magnetic fields in the charged particle acceleration
mechanism has been considered in [9,15], acceleration of
neutral and charged particles has also been studied by
different authors [16–40], whereas energetic processes
around black holes immersed in magnetic fields have been
studied in [41–48].
In this paper we study a similar situation which does not

involve a black hole with the aim of investigating the
possible role played by deformations. Therefore, neglecting
rotation, we consider the static and axially symmetric field
outside a nonspherical compact object, as described by the
so-called γ metric (also known as Zipoy-Voorhees metric)
[49,50] and study the effects of the presence of an external
asymptotically uniform magnetic field.
The main interest for studying such scenarios is to

understand how robust are the current predictions of
observable features of black holes [51]. The main question
is: Is there some other mathematical solution that can
mimic the appearance of a black hole [52–57]? If such

black hole mimickers exist, they could hint at the existence
of some kind of exotic object in astrophysics or indicate a
regime where modifications to classical GR are not
negligible.
Typically when studying departures from the black hole

scenarios, people have considered either solutions that are
perturbations of the usual Kerr black hole (see e.g., [58]) or
exact solutions in modified theories of gravity [59]. In the
first case, one obtains a perturbed geometry that, strictly
speaking, is not a solution of Einstein’s equations in
vacuum. In the second case, one needs to justify the
rationale behind the modifications to classical GR.
On the other hand there are many exact solutions of

Einstein’s equations in vacuum that can serve the purpose
of investigating the observable behavior when departing
from the Kerr or Schwarzschild geometry. The main
advantage of considering the γ metric with respect to other
approaches is that the γ metric is an exact solution of
Einstein’s equations in vacuum that is continuously linked
to the Schwarzschild solution through the value of one
parameter. Therefore by varying the parameter γ one can
investigate how the behavior of a determined observable
feature (in our case the motion and collision of test particles
in the presence of an external magnetic field) is affected by
the change in geometry. This matter is not trivial, in light of
the fact that for all values of γ for which the solution is not
spherically symmetric the surface r ¼ 2m (which in the
Schwarzschild case corresponds to the event horizon)
becomes a singular Cauchy horizon.
One can expect that, similarly to the black hole case, the

presence of magnetic fields induces an electromagnetic*bambi@fudan.edu.cn
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field in the spacetime, which affects the motion of charged
test particles. In the following, we derive particles’ motion
in the γ spacetime immersed in an external magnetic field
with particular attention to energetic processes, such as the
particle’s acceleration and collisions in the vicinity of the
Cauchy horizon.
The paper is organized as follows. In Sec. II a brief

overview of the properties of the γ metric is outlined.
Section III is devoted to the study of electromagnetic fields
in γ spacetime in the presence of external asymptotically
uniform magnetic field. In Sec. IV, we consider the motion
of charged particles in the γ spacetime in the presence of a
magnetic field. In Sec. V, we study the center of mass
energy for collisions of test particles in the γ spacetime.
Finally, in Sec. VI we summarize our obtained results and
outline some possible connections with observable quan-
tities for astrophysical black hole candidates. Throughout
the paper we use a signature ð−;þ;þ;þÞ, a system of units
in which G ¼ c ¼ 1. Greek indices run from 0 to 3 and
Latin indices from 1 to 3.

II. THE γ METRIC

The γ metric can be described in Erez-Rosen coordinates
[60] by the line element,

ds2 ¼ −Fdt2 þF−1½Gdr2 þHdθ2 þ ðr2 − 2mrÞsin2θdϕ2�;
ð1Þ

with

F ¼
�
1 −

2m
r

�
γ

; ð2Þ

G ¼
�

r2 − 2mr
r2 − 2mrþm2sin2θ

�
γ2−1

; ð3Þ

H ¼ ðr2 − 2mrÞγ2
ðr2 − 2mrþm2sin2θÞγ2−1 ; ð4Þ

where γ is the mass density parameter which is related to
the axially symmetric deformations. The Schwarzschild
solution is immediately obtained when γ ¼ 1. However,
one needs to be careful not to consider the coordinates as
spherical when γ ≠ 1. Performing the multipole expansion
of the line element (1) and considering up to monopole
moment of the spacetime one might conclude that the
spacetime in relatively good approximation is a vacuum
Schwarzschild one with a total mass (monopole moment of
the spacetime),

M ¼ γm; ð5Þ

while the nonvanishing quadrupole moment is given by

Q ¼ ð1 − γ2Þ γm
3

3
: ð6Þ

Notice that in the case γ ¼ 1 all higher multipole moments
vanish identically [61,62]. Interior solutions for the γ metric
have been studied in [63–65], showing that there exist
viable interiors describing oblate and prolate spheroids that
match the vacuum exterior.
The most peculiar property of the γ metric is the fact that

the curvature invariants such as the Kretschmann scalar
diverge (at least directionally) for r → 2m [66]. This shows
that, with the exception of the Schwarzschild case when
γ ¼ 1, the surface r ¼ 2m is not an event horizon, in
accordance with what expected from the no hair theorem,
but it is a genuine singularity.
The behavior of geodesics in the γ spacetime was studied

in [67], and the application to accretion disks around
astrophysical compact objects was studied in [68,69]. As
expected, the trajectory of test particles differs from the
Schwarzschild case. In particular the deviations become
more pronounced when the departure from spherical
symmetry is larger and also in the vicinity of the
Cauchy horizon. This last fact is particularly important
as, even for values of γ very close to one, one can obtain a
significantly different trajectory for the motion of the test
particle when the particle approaches r ¼ 2m.
In the following we will implement a similar analysis for

the case where the source of the γ metric is immersed in an
external magnetic field.

III. ELECTROMAGNETIC FIELD PRODUCED
BY AN EXTERNAL MAGNETIC FIELD

In the following we shall assume that the γ spacetime is
immersed in an external magnetic field. For simplicity, we
will consider the case where the source of the γ metric is
placed in a magnetic field chosen to be asymptotically
uniform and aligned in the direction of the axis of
symmetry of the metric. Due to the curvature of the
spacetime the structure of the electromagnetic field induced
near the source will change. Using the Lorentz gauge
(Aα

;α ¼ 0) one can rewrite the Maxwell equations in
vacuum as

Aα;β
;β ¼ □Aα ¼ 0; ð7Þ

where Aα is the four vector potential of the electromagnetic
field. On the other hand one can rewrite the Killing
equation for this spacetime,

ξα;β þ ξβ;α ¼ 0; ð8Þ

as

ξα;β ;β ¼ Rα
βξ

α: ð9Þ
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For the vacuum spacetime the Ricci tensor vanishes
Rα

β ¼ 0 and for Killing vectors one gets

□ξα ¼ 0: ð10Þ
Note that here we are interested in the particular case of the
external magnetic field configuration: asymptotically uni-
form magnetic field. From an astrophysical point of view
this is most relevant configuration (see e.g., [1–13]). Using
the similarity of Eqs. (7) and (10) and the existence of the
timelike ξαðtÞ ¼ ð−1; 0; 0; 0Þ and spacelike ξαðϕÞ ¼ ð0; 0; 0; 1Þ
Killing vectors for the metric (1) one can rewrite the
solution of Eq. (7) as

Aα ¼ C1ξ
α
ðtÞ þ C2ξ

α
ðϕÞ; ð11Þ

where the constants C1 ¼ 0 and C2 ¼ B=2 can be found
from the asymptotic properties of the spacetime and the
electromagnetic field. The constant B is the asymptotic
value of the uniform magnetic field aligned along the axis
of symmetry. Finally the covariant components of the four
potential of the electromagnetic field are

A0 ¼ A1 ¼ A2 ¼ 0;

A3 ¼
B
2
ðr − 2mÞ1−γr1þγsin2θ: ð12Þ

As the next step we calculate the components of the
electric and magnetic field, namely Eα and Bα respectively,
by using the expressions

Eα ¼ Fαβuβ; ð13Þ

Bα ¼ 1

2
ηαβμνFβμuν; ð14Þ

where Fαβ ¼ Aβ;α − Aα;β is the electromagnetic field tensor
and ηαβμν is the Levi-Civita tensor. The four velocity of the
observer uα can be chosen as

uα ¼
�
1 −

2m
r

�
−γ=2

ð−1; 0; 0; 0Þ; ð15Þ

uα ¼
�
1 −

2m
r

�
γ=2

ð1; 0; 0; 0Þ; ð16Þ

and nonzero orthonormal components of the electromag-
netic field will take the form

Br̂ ¼ B cos θffiffiffiffi
G

p ; ð17Þ

Bθ̂ ¼ B sin θffiffiffiffi
H

p ðr −m −mγÞ: ð18Þ

One can easily check that in the limiting case when
m=r → 0, the nonzero components of the magnetic field
coincide with their Newtonian values: Br̂ ¼ B cos θ,
Bθ̂ ¼ B sin θ. In Figs. 1–3 the radial dependence of the
components of the magnetic field in the γ spacetime have

FIG. 1. Radial dependence of the azimuthal component of the magnetic field in γ spacetime for the different values of γ and the
azimuthal angle θ.

CHARGED PARTICLE MOTION AND ELECTROMAGNETIC … PHYS. REV. D 99, 044012 (2019)

044012-3



been shown. From the figures one can easily see that the
magnetic field components are not affected by the value of
the parameter γ towards asymptotic infinity, and they tend
to the Newtonian limits. The difference in the magnetic
field strength becomes more pronounced as the radius
decreases. With increasing the value of γ one can observe

an increase of the absolute value of the magnetic field
components. In the case when γ < 1 one can see that the
azimuthal component of the magnetic field does not cross
the surface of infinite redshift r ¼ 2m, which is similar to
the Meissner effect, when the magnetic field does not
penetrate the surface of a superconductor.

FIG. 2. Radial dependence of the radial component of the magnetic field in γ spacetime for different values of γ and the azimuthal
angle θ.

FIG. 3. Radial dependence of the total magnetic field Btot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBrÞ2 þ ðBθÞ2

p
in γ spacetime for different values of γ and the azimuthal

angle θ.
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IV. CHARGED PARTICLE MOTION

In this section, we will consider the motion of charged
particles in the γ spacetime in the presence of the external
magnetic field described above. For this purpose we will
use the Hamilton-Jacobi equation which in our case can be
written as

gαβ
� ∂S
∂xα þ eAα

�� ∂S
∂xβ þ eAβ

�
¼ −m2

0; ð19Þ

where m0 and e are the mass and the electric charge of the
test particle, respectively. Due to existence of the timelike
and spacelike Killing vectors, the action for the test particle
in Eq. (19) can be written as

S ¼ −Etþ Lϕþ Srθðr; θÞ; ð20Þ

where the conserved quantities E and L are understood as
representing the energy and angular momentum of the test

particle, respectively, and Srθðr; θÞ is the part of the action
depending on r and θ coordinates.
For the line element (1) the Hamilton-Jacobi equa-

tion (19) with the action (20) is, in general, not separable.
However, one can easily find the equation of motion for the
charged particle for the particular case where the motion is
restricted to the equatorial plane θ ¼ π=2. In this case we
obtain

dt
dτ

¼ E
F
; ð21Þ

�
dr
dτ

�
2

¼ F

�
r2 − 2mr

r2 − 2mrþm2

�
1−γ2

×

�
E2

F
−

F
r2 − 2mr

�
Lþ r2 − 2mr

2F
β

�
2

− 1

�
;

ð22Þ

FIG. 4. Radial dependence of the effective potential for a charged particle on the equatorial plane for different values of γ and magnetic
parameter β.
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dϕ
dτ

¼ F
r2 − 2mr

Lþ 1

2
β; ð23Þ

where E and L are now normalized to the mass of the
particle and β ¼ eBm=m0 is the magnetic parameter related
to the interaction of the charged particle with the magnetic
field. One may define the effective potential V for the radial
motion of the charged particle from

�
r2 − 2mr

r2 − 2mrþm2

�
γ2−1�dr

dτ

�
2

þ V2 ¼ E2; ð24Þ

and the explicit form of V becomes

V2 ¼ F þ F2

r2 − 2mr

�
Lþ r2 − 2mr

2F
β

�
2

: ð25Þ

The radial dependence of the effective potential of the
charged particle’s motion is shown in Fig. 4. As expected at
large distance from the Cauchy horizon the effect of the
magnetic field becomes dominant and the latter starts to
play the role of barrier preventing the charged particles
from falling towards smaller radii from infinity. Near the
surface r ¼ 2m the effects of deformation become more
significant, and with increasing value of the γ parameter the
effective potential decreases and stable-bound orbits starts
to become unstable.
Now we shall consider particles moving on circular

orbits. In order for circular orbits to exist two conditions are
required, namely, E2 − V2 ¼ 0 and V 0ðrÞ ¼ 0, where 0

denotes the derivative with respect to the radial coordinate.
Using these conditions one can find the values of the energy
E and angular momentumL for charged particles in circular
orbits. These are

Lc� ¼ r2F1−γ

2ðr − 2γm −mÞ
�
βγm

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2ðr − γm −mÞ2 þ 4γmFγðr − 2γm −mÞ

r2 − 2mr

r �
;

ð26Þ

Ec� ¼ Vðr;Lc�Þ: ð27Þ

In (26) and (27) the sign � corresponds to the different
orientation of magnetic field or/and different sign of the
electric charge of the test particle. This means that on the
same circular orbits a charged particle, in principle, may
have two different sets of energy and angular momentum,
depending on the sign of the particle’s charge. In Fig. 5 we
show the radial dependence of the angular momentum of
charged particles in circular orbits for different values of the
γ parameter. One can see that with increasing value of γ the
angular momentum of a test particle at a fixed circular orbit
increases while the radius of minimal circular orbits
decreases.
Note that the left and right panels of Figs. 4 and 5

correspond to vanishing and nonvanishing external mag-
netic field, respectively. In the presence of magnetic field
the value of effective potential increases (see Fig. 4). This

FIG. 5. Radial dependence of the angular momentum of the charged particle moving along circular orbit on equatorial plane for
different values of γ and magnetic parameter β.
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corresponds to the case when magnetic field starts to play a
role of a potential barrier for charged particles and Lorentz
force changes the direction of radially infalling charged
particles. Similarly the presence of a magnetic field
increases the value of angular momentum of charged
particles on circular orbits (see Fig. 5). Charged particles
need higher angular momentum in order to stay in circular
orbits in the presence of a magnetic field.
Circular orbits on the equatorial plane are used to

describe particle’s motion in accretion disks around

astrophysical objects. In particular, concerning astrophysi-
cal black holes, the spectrum of light coming from
accretion disks is often used to suggest the presence of a
black hole candidate. One of the most important features of
such accretion disks around black holes is the possible
existence of an innermost stable circular orbit (ISCO),
which determines the inner boundary of the disk. The study
of the properties of the ISCO around exotic sources can
then be used to determine if such sources can in principle be
distinguished from black holes (see e.g., [70–72]).
Therefore, as the next step we will consider the ISCO of
the γ metric, which can be defined as a inner edge of the
solution of inequality V 00ðrÞ > 0. In the case without an
external magnetic field the ISCO was studied in [69]. The
dependence of the ISCO radius upon the γ parameter for
neutral particles is shown in Fig. 6. Here we can distinguish
four different regions depending on the values of γ:
(i) γ < 1=

ffiffiffi
5

p
, (ii) 1=

ffiffiffi
5

p
< γ < 1=2, (iii) 1=2 < γ < 1,

and (iv) γ > 1. In Fig. 6 these regions are separated by
vertical dotted lines. The dashed line corresponds to the
border for the real and imaginary values of angular
momentum. Above that dashed line the angular momentum
of the particles remains real, whereas below the line the
value of the latter is imaginary. The infinite redshift
(singular) surface is noted by the dotted line. In region
(i) we have no ISCO, which means above the singular
surface there exist stable circular orbits at every radius. In
region (ii) we have two regions for the existence of stable
circular orbits. Notice that the existence of a second region
close to the singular surface seems to suggest the presence
of repulsive effects that are capable of holding a particle on

0.0 0.5 1.0 1.5 2.0

2

4

6

8

10

r is
co

/m

FIG. 6. Value of the ISCO for neutral particles on circular orbits
in the equatorial plane for different values of γ. Vertical dotted
lines define the borders of regions with different ISCO structure
(see text for details). The corresponding values of γ are:
γ ¼ 1=

ffiffiffi
5

p
; 1=2; and 1. The horizontal dotted line corresponds

to the radius of singular surface r ¼ 2m. The dashed line
corresponds to the radius of photon sphere.
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FIG. 7. Value of the ISCO radius for charged particles on circular orbits in the equatorial plane for different values of γ and different
values of the magnetic parameter β. Vertical dotted lines are the borders of the regions, significant in the neutral case, corresponding the
following values: γ ¼ 1=

ffiffiffi
5

p
; 1=2; and 1. It can be seen that the values of γ defining region (ii) change with β. The horizontal dotted line

corresponds to the radius of singular surface r ¼ 2m. In the case of the motion of charged particles we have two separate curves for the
location of the ISCO, depending on the sign of the charge of the particle (solid and dashed lines correspond to positive and negative
charges, respectively).
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the circular orbit. In regions (iii) and (iv) we have only one
region (above the solid line) with stable circular orbits,
similarly to the black hole case. The numerical results for
the ISCO radius depending on the value of γ are shown in
Fig. 7 for different values of a magnetic parameter. From
Fig. 7 one can easily see that the radius of the ISCO
decreases with increasing values of β. The dashed and solid
curves in Fig. 7 correspond to the “−” and “þ” types of
circular orbits, respectively [see Eq. (26)].

V. PARTICLE COLLISIONS IN THE PRESENCE
OF MAGNETIC FIELD

In this section we consider collisions of charged and
neutral particles in the vicinity of the Cauchy horizon of the
γ spacetime in the presence of a magnetic field. We shall
consider several scenarios with particles collision: (i) two
neutral particles—when there is no effect due to the
external magnetic field, (ii) two charged particles, and
(iii) one charged particle and one neutral particle, where
there is no effect due to the magnetic field on the neutral
particle’s motion. In general, we calculate the center of
mass energy of two colliding particles with four momenta
pα
1 and pα

2. The energy of the center of mass of this system
can be found from the relation,

E2
cm ¼ −gαβpα

totp
β
tot ¼ 2m2

0ð1 − gαβuα1u
β
2Þ; ð28Þ

where uαi is the four velocity of the particle (i ¼ 1, 2) and
the total momentum of the system is defined as

pα
tot ¼ pα

1 þ pα
2: ð29Þ

Within this section for simplicity we consider particles
with E ¼ 1, corresponding to the situation where the
particle is at rest at spatial infinity. For simplicity we also
consider particles with the same rest mass and the motion of
particles restricted to the equatorial plane.

A. Collision of neutral particles with opposite
angular momentum

First we consider the case of two neutral particles, where
both particles fall from infinity with opposite angular
momentum. The four velocities of the particles take the
form,

uα1;2¼
�
1

F
;

�
r2−2mr

r2−2mrþm2

�1−γ2
2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−F

�
1þ FL2

r2−2mr

�s
;0;� F

r2−2mr
L
�
: ð30Þ

The center of mass energy for this case becomes

E2
cm

4m2
0

¼ 1þ F
r2 − 2mr

L2: ð31Þ

Using the expression for the metric function F, we can
rewrite Eq. (31) in the form,

E2
cm

4m2
0

¼ 1þ ðr − 2mÞγ−1
rγþ1

L2: ð32Þ

From Eq. (32) one can see that if we take the
Schwarzschild limit when γ ¼ 1 we get the standard
expression for Ecm [14]:

E2
cm

4m2
0

¼ 1þ L2

r2
; ð33Þ

and in the limit of r → 2m we get a finite value for the
center of mass energy. This is given by Ecm ¼ 2

ffiffiffi
5

p
m0,

when we take the critical value of the angular momentum
for the particle to be captured by the central object L ¼ 4m.
On the other hand, when γ > 1 we observe that the second
term on the right-hand side of Eq. (32) tends to zero when
r → 2m and we get Ecm ¼ 2m0 irrespectively of the value
of L. Finally, in the case of γ < 1 the center of mass energy
of two colliding particles tends to infinity Ecm → ∞
when r → 2m.

B. Head-on collision of charged
particles at circular orbits

Now we consider the head-on collision of charged
particles in circular orbits. The four velocity of a charged
particle moving along a circular orbit has the following
general form,

uαc ¼ ðΓF−1=2; 0; 0;Γv=rÞ; ð34Þ

where v is the velocity of the charged particle at the radius r
and Γ is the Lorentz factor. Using the normalization
condition uαuα ¼ −1 and dϕ=dτ ¼ Γv=r, one can easily
find the relations,

Γ2 ¼ 1þ r2 − 2mr
F

B2; ð35Þ

v ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bðr2 − 2mrÞ=F

p ; ð36Þ

where we have used the notation,

B ¼ F
r−2mr

Lc þ
1

2
β: ð37Þ

Consider two charged particles in equatorial circular
obits moving in opposite directions with four velocities,
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uα1;2 ¼ ðΓF−1=2; 0; 0;�Γv=rÞ: ð38Þ

The center of mass energy for this system will be

E2
cm

2m2
0

¼ 2Γ2; ð39Þ

or

Ecm ¼ 2m0Γ: ð40Þ

In Fig. 8 the radial dependence of the center of mass
energy of two colliding charged particles is shown for
different values of γ and β. The plots have been made for
two classes of circular orbits: with plus and minus signs

FIG. 8. Radial dependence of the center of mass energy of two charged particles moving on circular orbits for the different values of γ
parameter and magnetic parameter β. Here we considered both “þ” and “−” type of circular orbits for charged particles corresponding to
angular momentum Lþ and L−, respectively.
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corresponding to the different values of momenta of the
charged particles [see Eq. (26)]. From Fig. 8 one can see
that by increasing the value of the magnetic field the center
of mass energy of the system also increases. The magnetic
field, in principle, plays the role of an accelerator for the
particles. Moreover the effect of the γ parameter is also very
important. First of all it is worth noting that the distance at
which the particle’s energy diverges changes with the value
of γ: when γ > 1 it becomes closer to the center, whereas
for γ < 1 the radius of this position increases. This behavior
is related to the radius of the infinitely red-shifted surface,
which, in terms of the total gravitational mass M, is given
by r ¼ 2M=γ. On the other hand, we observe that the center
of mass energy of the system increases for both γ < 1 and
γ > 1 with respect to Schwarzschild case (γ ¼ 1) for any
fixed value of the radial coordinate. This can be explained
with the decrease the value of risco=M for both γ < 1 and
γ > 1 cases. The ISCO radius for the Schwarzschild black
hole is the maximum in terms of total gravitational massM
(risco ¼ 6M), and for γ ≠ 1 we get risco < 6M.

C. Collision of charged particles on circular orbit
with neutral particles infalling from infinity

Finally we shall consider the case of the collision
between a charged particle and a neutral particle, where
the charged particle is moving on a circular orbit and the
neutral particle is infalling from infinity. The four velocities
of the colliding neutral particle infalling from the infinity
and charged particle in the circular orbit can be expressed

with Eqs. (30) and (34), respectively. The center of mass
energy then takes the form,

E2
cm

2m2
0

¼ 1 − LnB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

F
þ r2 − 2mr

F2
B

r
; ð41Þ

where Ln is the angular momentum of the neutral particle
infalling from infinity.
Figure 9 shows the radial dependence of the above center

of mass energy for different values of the magnetic
parameter β and the deformation parameter γ. One can
see that both the magnetic field and the presence of
deformation increase the center of mass energy of colliding
particles acting as particle accelerators. Physically, this is
related to the decrease in value of innermost stable circular
orbits as the magnetic field and γ parameter increase.

VI. CONCLUSION

In the present work we have studied the structure and
properties of asymptotically uniform magnetic field in the γ
spacetime. In particular, in the vicinity of the singular
surface we studied the motion of charged particles and the
center of mass energy for particles collisions. The obtained
results can be summarized as follows:
The electromagnetic field structure in γ spacetime has

been considered in the presence of an asymptotically
uniform magnetic field. The asymptotic values of the
components of the magnetic field for different values of
the γ parameter tend to the Newtonian limit. The difference

FIG. 9. Radial dependence of the center of mass energy for the collision of a charged particle moving on circular orbit with a neutral
particle infalling from infinity for the different values of γ and β parameters.
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in the magnetic field strength becomes very important with
decreasing radius. Also, with increasing value of γ one can
observe an increase of the absolute value of the magnetic
field components. For γ < 1 one can see that the azimuthal
component of the magnetic field does not cross the surface
of infinite redshift r ¼ 2m, which is similar to Meissner-
like effect.
We studied circular orbits of charged particles in the

equatorial plane in the presence of an external magnetic
field. The analysis in the absence of magnetic fields had
shown that for γ ≥ 1=2 there is only one region above the
r ¼ 2m singular surface where stable circular orbits are
allowed. The location of the ISCO increases with increas-
ing value of γ. For γ ∈ ð1= ffiffiffi

5
p

; 1=2Þ we observe two
regions for stable circular orbits, suggesting the appearance
of repulsive effects in the vicinity of the singular surface.
For γ < 1=

ffiffiffi
5

p
there is no limit for the existence of circular

orbits. The presence of a test magnetic field increases the
size of the region where no ISCO is present and decreases
the size of the region where two ranges for circular orbits
are present. In other words, the special value of γ separating
the two regions (which without magnetic field is
γ ¼ 1=

ffiffiffi
5

p
) increases with an increase of β tending to

1=2, whereas the value of γ for which only one ISCO exists
(γ ¼ 1=2) remains unchanged. The magnetic field also
affects the location of the ISCO by decreasing the value of
its radius for fixed values of γ > 1=2. This may have
important implications for astrophysics because the mea-
surements of ISCO have been used to estimate the spin of
some astrophysical black hole candidates [73–79]. The
main idea relies on the possibility of comparing observa-
tions coming from the light spectrum of accretion disks
with the theoretical results on the ISCO’s dependence upon
the spin of the black hole [73,74]. However, as we have
seen, the location of the ISCO radius depends on several
factors. For example, in different theories of gravity the
ISCO location can be used to get constraints on other
parameters of the central object [7,8,71,80–82]. Similarly
here we have shown that both the γ parameter and the
presence of a magnetic field affect the location of the ISCO
radius. Therefore, in principle, observations of black holes
with a fixed value of the angular momentum can be
mimicked by the γ metric with corresponding values of
γ and β. On the other hand, measurements obtained with
different methods can be used to constrain the values of γ
and β, thus testing the astrophysical validity of these
models.
The authors of [14] have shown that two infalling

particles in the Kerr spacetime can be accelerated to
extremely high (infinite) energies for fine-tuned values
of the spin parameter of the black hole and angular
momentum of the particles. Here we have shown that
the acceleration of the particles to extremely high energies,
in principle, is possible without any fine tuning in the case
of a prolate geometry corresponding to γ < 1. In this case

the center of mass energy of particles diverges near the
r ¼ 2m singular surface for any value of the particles’
angular momentum. However, the situation dramatically
changes for γ ≥ 1. For γ ¼ 1 (Schwarzschild case) we get
the same result as in [14]: the center of mass energy of the
particles increases but does not diverge near the event
horizon (r ¼ 2M). For γ > 1 the center of mass energy of
the particles remains finite and becomes small for r
approaching the singular surface. The situations with the
particle acceleration near the singular surface are totally
different in the cases of prolate and oblate spacetimes: in
the first case we observe the divergence of the center of
mass energy without fine-tuning of angular momentum,
whereas in the second case the center of mass energy is
decreasing with decreasing r.
The analysis of charged and neutral particle acceleration

near the singular surface r ¼ 2m in the γ spacetime showed
that the role of deformations and external magnetic fields is
important in these processes. Energetically the most inter-
esting case is the collision of neutral particles coming from
infinity with charged particles in circular orbits. In general,
with the increase of the magnetic field, the center of mass
energy of the system is also increasing. The magnetic field,
in principle, plays the role of a particle accelerator.
Moreover the effect of the deformation parameter is also
very important. First, it is natural that the distance where the
particle’s energy diverges changes with the change of the
parameter γ. When γ > 1 it is close to the center, whereas
for γ < 1 the radius of this position increases. This is
related to the radius of the infinite redshift surface of the
spacetime with a corresponding value of the γ parameter.
Observations of the near horizon regime are now

becoming experimentally possible. For example, the gravi-
tational redshift in the orbit of the star S2 passing at the
point of closest approach (i.e., 1400 Schwarzschild radii)
from the supermassive black hole located at the center of
the Milky Way galaxy (kmown as SgrA*) was measured
[83]. However in order to probe the true nature of the
geometry one needs to observe closer to the supposed
location of the horizon. Recently, the GRAVITY-Very
Large Telescope Interferometer (VLTI) observed the
motion and polarization variability of bright flares (hot
spots) in the near-infrared range around SgrA*. These
observations of features located at the distance of approx-
imately 6-10 times the gravitational radius are the closest
observational evidences of motion in the vicinity of the
ISCO. They confirm the existence of clockwise looped
orbital motion possibly due to the presence of a strong
poloidal magnetic field, on scales of typically 150 μas over
a few tens of arcminutes, corresponding to velocities of
about 30% the speed of light [84]. Therefore it is possible
that in the near future such observations could be used to
constrain the values of magnetic fields in the geometry
surrounding SgrA*. Therefore the comparison of the
motion in the black hole spacetime with the corresponding
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motion in the γ metric could allow one to test the robustness
of the conclusion that such an object must be a black hole.
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