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We generalize the fðRÞ theory of anti-evaporation and evaporation for a Reissner-Nordström black hole
in n-dimensional spacetime. We consider nonlinear conformally invariant Maxwell field. By perturbing
the fields over Nariai-like spacetime associated with degenerate horizon, we describe the dynamic behavior
of the horizon. We show that fðRÞ gravity can offer both anti-evaporation and evaporation in an
n-dimensional Reissner-Nordström black hole depending on the dimension n and the functional form of
fðRÞ. Furthermore, we argue that, in one class of a nonoscillatory solution, stable and unstable anti-
evaporation and evaporation exist. In the other class of oscillatory solutions, anti-evaporation and
evaporation exist only with instability. The first class of solutions may explain a long-lived black hole.
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I. INTRODUCTION

One possible candidate which facilitates in exploring the
current universe and delving into the early universe is
primordial black hole. In the early universe, black hole can
be formed due to nonlinear metric perturbations [1–3],
density perturbations [4,5], the evolution of gravitational
bound objects [6] etc. The observation of such black holes
depends on its mass and anti-evaporation or evaporation
properties. Primordial black hole could be .a possible
component of dark matter [7–10]. Primordial black
hole could explain current dark matter density better if
one considers a wide range of mass of such black hole
not limited only in a particular range. Dark matter may
be explained by considering a lower mass range
(106Mp–10

11Mp) [7], where Mp is the Planck mass. So
far, not much attention was given for primordial black hole
with masses smaller than 1015 g in explaining dark matter
since they are considered evaporated. The phenomenon of
anti-evaporation offers a wider range of mass, since primor-
dial black hole with lower masses may exist in the current
universe. The black holes with low masses may survive and
hence contribute to dark matter density today. Contrary to
that, evaporation reduces the chance of the presence of
primordial black hole in the current universe and hence its
contribution to dark matter density. However, whether anti-
evaporation exists is debatable.

The existence of evaporation of a black hole was first
proposed by Hawking [11]. Later on, in contrast to that,
Hawking and Bousso introduced anti-evaporation which is
due to quantum correction [12] and appears for Nariai
spacetime [13,14] where cosmological horizon and event
horizon coincide. In the evaporation process, the black hole
reduces its horizon size by emitting radiation through the
quantum effect. The phenomenon of anti-evaporation, as its
name, has the properties reverse to that of evaporation
[15,16]. Grand unified theory is also a theory which
explains anti-evaporation [17,18]. However, we will follow
fðRÞ theory in higher dimensions for a black hole with
multihorizons, in particular, where these horizons become
degenerate.
In Refs. [12,19,20], anti-evaporation due to quantum

correction is studied by considering two-dimensional one-
loop effective action. Here, the calculation is done in
s-wave approximation. In addition to that, the appearance
of conformal anomaly in four dimensions may provide anti-
evaporation [15,20,21]. However, anti-evaporation is also
possible at the classical level in fðRÞ gravity [22–25]. fðRÞ
gravity may prevent a primordial black hole to be evapo-
rated and assist to be long-lived even having small masses.
Some recent efforts are made in Refs. [26–28]. Despite the
fact that anti-evaporation is associated with instability at the
classical level in some theories, e.g., in Ref. [23], attention
should be given at the classical level in addition to the
quantum level to the search for a stable solution. In this paper,
we generalize the possibility of anti-evaporation and evapo-
ration in fðRÞ gravity in n dimensions at the classical level.
Kaluza-Klein theory was the first theory, where higher

dimensions were introduced first [29–31] to unify gravity
and electromagnetism. Later on, the idea of higher
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dimensions became a platform in supergravity [32] and
string theory [33,34] in constructing a unified theory of
gravity and other fundamental forces. Inspiring from these
higher-dimensional theories, a lot of progress towards black
hole physics have been made [35,36]. Some of the
interesting results were found if one studies black hole
physics in higher dimensions. For example, there is some
possibility of creation of a mini higher-dimensional black
hole at LHC [37]. String theory can calculate the black
hole entropy statistically [38]. Furthermore, Schwarzschild,
Reissner-Nordström and Kerr solutions were found in
higher dimensions [39]. Higher dimensions were later
considered in charged black holes [40], charged black
holes in (a)dS spaces [41], the Banados-Teitelboim-Zaneli
black hole [42,43], the radiating black hole [44], etc. In this
paper, we explore the possibility of evaporation and anti-
evaporation of a black hole in fðRÞ gravity in higher dime-
nsions.We generalize the fðRÞ-theory of anti-evaporation for
Reissner Nordström black hole [23]. To work with exact
analytical solution, we consider a conformally invariant
Maxwell action in n dimensions which constrains the
dimension n [45]. The electric field is obtained in this case
the same as in four dimensions.
Section II briefly discusses the realization of anti-

evaporation in fðRÞ gravity. We discuss analytical solutions
of the Reissner-Nordström black hole in fðRÞ gravity in
higher dimensions in Sec. III, and we also mention
solutions for extreme black holes. In Sec. IV, we write
modified equations up to the first order of perturbations and
obtain solutions in n dimensions. We explain the anti-
evaporation and evaporation for different values of n and
other parameters of the theory. Finally,we conclude inSec.V.

II. ANTI-EVAPORATION IN FðRÞ GRAVITY

Generalizing the theory of Bousso and Hawking [12] for
anti-evaporation, Odintsov and Nojiri showed its possibility
even at the classical level [22]. In this construction, the
authors considered fðRÞ gravity, which is the basic require-
ment in explaining anti-evaporation. We can obtain a
Nariai-like solution, where cosmological horizon and event
horizon coincide, and this solution is associated with the
solution for anti-evaporation. In the following, we present
this formalism briefly in the same way as that of Ref. [27].
The action corresponding to fðRÞ gravity and matter with
gravitational constantG and Ricci scalar R can be written as

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Sm; ð1Þ

and the corresponding field equation of the metric to the
action (1) is

f0ðRÞRμν−
1

2
fðRÞgμν−∇μ∇νf0ðRÞþgμν□f0ðRÞ¼8πGTμν;

ð2Þ

where Tμν ¼ − 2ffiffiffiffi−gp δLm
δgμν is the energy momentum tensor.

One can consider the energy-momentum of Maxwell field.
However, to show the mechanism in this section, we
assume no matter (Tμν ¼ 0) and covariantly constant
Ricci tensor, i.e., Ricci tensor is proportional to the metric
gμν. The field equation in this case reduces to

fðRÞ − 1

2
Rf0ðRÞ ¼ 0: ð3Þ

Eq. (3) provides a solution,

AðrÞ ¼ 1 −
R0r2

12
−
M
r
; ð4Þ

for the spacetime given by

ds2 ¼ −AðrÞdt2 þ 1

AðrÞ dr
2 þ r2dΩ2; ð5Þ

where R0 is the constant Ricci scalar and M is the mass of
the black hole. This spacetime can be written similar as
Nariai spacetime,

ds2 ¼ 1

Λ2

1

cosh2x
ðdτ2 − dx2Þ þ 1

Λ02 dΩ
2; ð6Þ

where we defined new coordinates τ and x related to t and r
via t ¼ 2r20τ=½ð1 − R0r20=2Þϵ� and r ¼ r0 þ ϵ

2
ð1þ tanh xÞ

with Λ2 ¼ 1−r2
0
R0=2
r2
0

; Λ0 ¼ 1
r0
(Λ2 can be positive and neg-

ative). Here, in Nariai spacetime, two horizons are sepa-
rated by a small distance ϵ → 0 (r1 ¼ r0 þ ϵ) at r0 and r1.
Λ becomes 1=r0 for R0 ¼ 0. To understand the behavior of
horizon we consider a more general spacetime in terms of
perturbations as follows,

ds2 ¼ e2ρðx;τÞ

Λ2
ðdτ2 − dx2Þ þ e−2ϕðx;τÞ

Λ02 dΩ2; ð7Þ

where ρðx; τÞ and ϕðx; τÞ are given by

ρ ¼ − lnðcosh xÞ þ δρ; ð8Þ

ϕ ¼ δϕ: ð9Þ

We perturb the modified Einstein equations up to the first
order. By considering F00ðR0Þ ≠ 0, these first order equa-
tions offer a solution which is given by

δρ ¼ ρ0 coshωτcoshβx; δϕ ¼ ϕ0 coshωτcoshβx;

ð10Þ

where ω and β are constants determined by the field
equations. The horizon radius rh is defined by

gμν∇μϕ∇νϕ ¼ 0: ð11Þ
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Discussion of the above equation, which defines the
dynamic horizon, can be found in Refs. [12,23]. Here
we give a more physically intuitive explanation. With
spherical symmetric perturbations, we can replace the
coordinates ðx; τÞ with “physical coordinates” ðt; rÞ where
r is defined by r≡ e−ϕðx;τÞ

Λ0 , and t is chosen such that the
metric has the form ds2 ¼ gttðt; rÞdt2 þ grrðt; rÞdr2þ
r2dΩ2. If the metric component grr has different signs
inside and outside a surface r ¼ rh, no timelike trajectory
can cross the surface, thus defining a horizon. The change
of signature of grr at r ¼ rh then implies grrðrhÞ ¼ 0. Note
that in this coordinate system, ϕ ¼ − lnðΛ0rÞ and on the
horizon gμν∂μϕ∂νϕ ¼ grr∂rϕ∂rϕ ¼ 0 trivially holds. From
the solution δϕ ¼ ϕ0 coshωτ coshβ x and horizon condition
(11), we obtain tanh2 ωτ ¼ tanh2 x because of ω2 ¼ β2

[22]. It further simplifies the perturbation as δϕ ¼ δϕh ¼
ϕ0ðcosh βτÞβþ1 at the horizon and hence the horizon radius
rh ¼ e−δϕh

Λ0 turns out to be

rh ¼
e−ϕ0ðcosh βτÞβþ1

Λ0 : ð12Þ

The horizon radius in Eq. (12) can be increasing, decreas-
ing or oscillatory depending on the parameters β or ω and
ϕ0. For real positive values of β þ 1, we have increasing or
decreasing horizon for ϕ0 negative or positive respectively.
For ϕ0 < 0, the anti-evaporation occurs for β þ 1 positive.
However, instability occurs in this case of anti-evaporation.
For the other case ϕ0 > 0 with β þ 1 negative, we obtain
stable anti-evaporation. For β imaginary, we can get
oscillatory solution. Using this formalism, we study the
anti-evaporation problem in n-dimensional spacetime. It is
possible to include quantum corrections, however, we will
consider only the classical phenomenon in this paper. In
Sec. III, we consider the Maxwell field and obtain a
solution in n dimensions. The analytical solution may
not be obtained as long as we consider nonconformal
invariant action. In order to get analytical solutions for
perturbations, we require an analytical form of background
solution. Therefore, we consider conformal invariant action
for Maxwell field [45].

III. FIELD EQUATIONS IN N-DIMENSIONAL
SPACETIME

As long as we assume conformally symmetric action for
Maxwell field, the analytical solution can be obtained. We
choose nonlinear form of action corresponding to Maxwell
field to achieve such possibility. In this section we present
the field equations and discuss the solution for fðRÞ gravity
with conformally invariant Maxwell field in n-dimensional
spacetime. We consider the following action,

S ¼
Z

dnx
ffiffiffiffiffiffi
−g

p ½fðRÞ − ðFμνFμνÞp�: ð13Þ

Here R is Ricci scalar, Fμν is electromagnetic field tensor
and p is a positive integer. By varying the action with
respect to the metric gμν and the Maxwell field Aμ

respectively, we obtain

f0ðRÞRμν−
1

2
fðRÞgμνþgμν∇ρ∇ρf0ðRÞ−∇μ∇νf0ðRÞ¼

Tμν

2
;

ð14Þ

∇μðFp−1FμνÞ ¼ 0; ð15Þ

where f0ðRÞ is the derivative of fðRÞ with respect to R and
the energy momentum tensor may be written as

Tμν ¼ 4

�
pFp−1FμλFλ

ν −
1

4
gμνðFÞp

�
: ð16Þ

We seek for a constant curvature solution, i.e.,
R ¼ R0 ¼ constant. For such a case, the trace of the
energy-momentum tensor should be zero. Under this con-
dition, we find n ¼ 4p. In addition, from Eq. (14), we also
have

R0f0ðR0Þ −
n
2
fðR0Þ ¼ 0: ð17Þ

Eq. (17) simplifies Eq. (14) as

f0ðR0Þ
�
Rμν −

gμν
n

R0

�
¼ Tμν

2
: ð18Þ

In n-dimensional spacetime, we consider the following line
element,

ds2 ¼ −NðrÞdt2 þ 1

NðrÞ dr
2 þ r2dΩ2

n−2; ð19Þ

where dΩ2
n−2 is the metric of an unit (n − 2)-sphere andNðrÞ

is a static spherically symmetric function. In n-dimensional
spacetime, the Ricci scalar turns out to be

R ¼ −N00ðrÞ − 2ðn − 2ÞN0ðrÞ
r

þ ðn − 2Þðn − 3Þ
r2

−
ðn − 2Þðn − 3ÞNðrÞ

r2
¼ R0: ð20Þ

The solution for NðrÞ corresponding to Eq. (20) can be
written as

NðrÞ ¼ 1 −
2m
rn−3

þ C1

rn−2
− C2r2; ð21Þ

whereC1 ¼ q2ð−2q2Þðn−4Þ=4
f0ðR0Þ ,C2 ¼ R0

nðn−1Þ,m and q are constants

associated to the mass and the charge of black hole
respectively. It is noted that in this framework, the electric
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field behaves as in its standard form [45]. The electric field in
this case is given by E ¼ q

r
n−2
2p−1

and takes its standard form for

n ¼ 4p. In the following subsection, we obtain the con-
ditions for degenerate horizon.

A. Extreme black hole

To investigate the instabilities and the evaporation and
anti-evaporation, we consider a spacetime near the degen-
erate horizon. In general, the black hole has n horizons in
this theory. Depending on the values of parameters, fðRÞ
black hole may have degenerate horizons where two or
more horizons coincide. For such degenerate horizon, we
have Nðr0Þ ¼ N0ðr0Þ ¼ 0 which provides the following
equations,

Nðr0Þ ¼
rn−20 − 2mr0 þ C1 − C2rn0

rn−20

¼ 0; ð22Þ

or,

rn−20 − 2mr0 þ C1 − C2rn0 ¼ 0; ð23Þ

and

N0ðr0Þ ¼ −2mð3 − nÞr2−n0 þ C1ð2 − nÞr1−n0 − 2C2r0 ¼ 0;

ð24Þ

or

−2ð3 − nÞmr0 þ ð2 − nÞC1 − 2C2rn0 ¼ 0: ð25Þ

We choose the value of C2 from Eq. (23),

C2 ¼
rðn−2Þ0 − 2mr0 þ C1

rn0
; ð26Þ

and we use this in Eq. (25) to obtain the value of m,

m ¼ rðn−2Þ0 þ nC1=2
ðn − 1Þr0

: ð27Þ

Substituting Eq. (27) in Eq. (26), we obtain

C2 ¼
1

ðn − 1Þ
�
n − 3

r20
−
C1

rn0

�
; ð28Þ

which leads to

R0 ¼ n

�
n − 3

r20
−
C1

rn0

�
: ð29Þ

To define a nearly extreme black hole, we transform r
and t in terms of x and τ as

r ¼ r0 þ ϵ cosðxÞ; ð30Þ

t ¼ 2τ

ϵN00ðr0Þ
; ð31Þ

where ϵ is very small. A nearly extreme black hole will
have the following form of function NðrÞ [46,47],

NðrÞ ≈ N00ðr0Þ
2

ðr − rcÞðr − rhÞ; ð32Þ

where rc ¼ r0 þ ϵ with x ¼ 0, rh ¼ r0 − ϵ with x ¼ π. For
such an extreme black hole, we can write the metric in the
following form,

ds2 ¼ 2

N00ðr0Þ
ðsin2xdτ2 − dx2Þ þ r20dΩ2

n−2: ð33Þ

In Fig. 1, we plotNðrÞwhere we set parameters such that
we get the degenerate horizon Nðr0Þ ¼ N0ðr0Þ ¼ 0. In
Sec. IV, we study the perturbations around the solution
for the extreme black hole. These two cases with positive

FIG. 1. Left and right plots are for NðrÞ with respect to r for positive and negative N00ðr0Þ respectively with a degenerate horizon at
r0 ¼ 1.
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and negative N00ðr0Þ will be considered while discussing
the solution of perturbations in Sec. IV.

IV. ANTI-EVAPORATION AND EVAPORATION

In Fig. 1, the plots for NðrÞ are given for different values
of N00ðr0Þ and dimension n with a degenerate horizon at
r0 ¼ 1. The analytical definition of NðrÞ near the degen-
erate horizon is given by Eq. (32). Near the degenerate
horizon, the spacetime is written as in Eq. (33) in n
dimensions in different coordinate system. In this section,
we study the anti-evaporation of an n-dimensional black
hole near the degenerate horizon. Here we implement
perturbation analysis up to the linear order. It will be
shown that fðRÞ theory is relevant for the dynamic nature
of the perturbation δϕ. Setting f00ðR0Þ ¼ 0, one obtains
δϕ ¼ 0, which indicates the constant horizon. Working
with fðRÞ, the perturbation δϕ becomes proportional to δR

and it gives a possibility of dynamic δϕ. In simplifying
constants, we use the background equations. Maxwell field
tensor is defined by ∇μðFp−1FμνÞ ¼ 0 and is modified in n
dimensions.

A. Perturbation

To know the behavior of the horizon, we introduce the
fields ρðτ; xÞ and ϕðτ; xÞ in the spacetime around the
extreme black hole solution as follows,

ds2 ¼ ðsin2xdτ2 − dx2Þ e
2ρðτ;xÞ

Λ2
þ e−2ϕðτ;xÞ

Λ02 dΩ2
n−2; ð34Þ

where 1
Λ2 ¼ 2

N00ðr0Þ and
1
Λ02 ¼ r20. With this metric, the term

∇ρ∇ρf0ðRÞ in Eq. (14) turns out to be

∇ρ∇ρf0ðRÞ ¼ e−2ρΛ2

�
1

sin2x
∂2f0ðRÞ
∂τ2 − cot x

∂f0ðRÞ
∂x −

∂2f0ðRÞ
∂x2 þ ðn − 2Þ

�
−

_ϕ

sin2x
∂f0ðRÞ
∂τ þ ϕ0 ∂f0ðRÞ

∂x
��

ð35Þ

and the components of the Ricci tensor take the forms as

Rττ ¼ −ρ̈þ ρ00sin2xþ sin x cos xρ0 − sin2xþ ðn − 2Þðϕ̈ − _ϕ2Þ − ðn − 2Þ _ϕ _ρ

− ðn − 2Þ sin x cos xϕ0 − ðn − 2Þsin2xρ0ϕ0; ð36Þ

Rxx ¼
ρ̈

sin2x
− ρ00 þ 1þ ðn − 2Þðϕ00 − ϕ02Þ − ðn − 2Þ

�
_ρ _ϕ

sin2x
þ ϕ0ρ0

�
− ρ0 cot x; ð37Þ

Rτx ¼ ðn − 2Þ½ _ϕ0 − _ϕρ0 − ϕ0 _ρ − _ϕϕ0 − _ϕ cot x�; ð38Þ

Rθ1θ1 ¼
Λ2

Λ02 e
−2ðρþϕÞ

�
1

sin2x
ðϕ̈þ ð2 − nÞ _ϕ2Þ − ϕ00 − ϕ0 cot xþ ðn − 2Þϕ02

�
þ ðn − 3Þ; ð39Þ

Rθ2θ2 ¼ sin2θ1Rθ1θ1 ð40Þ

Rθ3θ3 ¼ sin2θ1sin2θ2Rθ1θ1…:so on: ð41Þ

Ricci scalar in n-dimensional spacetime may be written as

R ¼ Λ2e−2ρ

sin2x
½−2ρ̈þ 2ρ00sin2xþ 2ðn − 2Þϕ̈ − 2ðn − 2Þsin2xϕ00 þ 2ρ0 sin x cos x − 2ðn − 2Þϕ0 sin x cos x

− ðn − 1Þðn − 2Þ _ϕ2 þ ðn − 1Þðn − 2Þsin2xϕ02 − 2sin2x� þ ðn − 2Þðn − 3ÞΛ02e2ϕ ð42Þ

Here, primes and dots over ϕ or ρ are derivatives with respect to “x” and “τ”, respectively. In this spacetime, from Eq. (15),
the electric field is given by

Fxτ ¼ Cq
1

2p−1e
ðn−2Þϕ
2p−1 e2ρ sin x; ð43Þ

where C is a constant defined by C≡ Λ−2½ð−1Þp21−pΛ0n−2� 1
2p−1, and q is the charge of black hole. The components of

energy-momentum tensor can be written as
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Tττ ¼ 2

�
p −

1

2

�
ð−2q2Λ02ðn−2Þe2ðn−2ÞϕÞ p

2p−1
sin2xe2ρ

Λ2
; ð44Þ

Txx ¼ 2

�
p −

1

2

�
ð−2q2Λ02ðn−2Þe2ðn−2ÞϕÞ p

2p−1

�
−
e2ρ

Λ2

�
; ð45Þ

Txτ ¼ 0; ð46Þ

Tθ1θ1 ¼ −ð−2q2Λ02ðn−2Þe2ðn−2ÞϕÞ p
2p−1

�
e−2ϕ

Λ02

�
; ð47Þ

Tθ2θ2 ¼ sin2θ1Tθ1θ1 ð48Þ

Tθ3θ3 ¼ sin2θ1sin2θ2Tθ1θ1…:so on: ð49Þ

This leads the components of Eq. (14) to

Λ2

sin2x
e−2ρf0ðRÞ½−ρ̈þ ρ00sin2xþ sin x cos xρ0 − sin2xþ ðn − 2Þðϕ̈ − _ϕ2Þ − ðn − 2Þ _ϕ _ρ−ðn − 2Þ sin x cos xϕ0

− ðn − 2Þsin2xϕ0ρ0� − 1

2
fðRÞ þ e−2ρΛ2

�
−
∂2f0ðRÞ
∂x2 þ ðn − 2Þ

�
−

_ϕ

sin2x
∂f0ðRÞ
∂τ þ ϕ0 ∂f0ðRÞ

∂x
��

þ Λ2

sin2x
e−2ρ

�
_ρ
∂f0ðRÞ
∂τ þ sin2xρ0

∂f0ðRÞ
∂x

�
¼

�
p −

1

2

�
ð−2q2Λ02ðn−2Þe2ðn−2ÞϕÞ p

2p−1; ð50Þ

−
Λ2

sin2x
e−2ρf0ðRÞ½ρ̈ − ρ00sin2xþ sin2xþ ðn − 2Þsin2xðϕ00 − ϕ02Þ − ðn − 2Þð _ϕ _ρþϕ0ρ0sin2xÞ − ρ0 sin x cos x�

−
1

2
fðRÞ þ e−2ρΛ2

�
1

sin2x
∂2f0ðRÞ
∂τ2 − cot x

∂f0ðRÞ
∂x þ ðn − 2Þ

�
−

_ϕ

sin2x
∂f0ðRÞ
∂τ þ ϕ0 ∂f0ðRÞ

∂x
��

−
Λ2

sin2x
e−2ρ

�
_ρ
∂f0ðRÞ
∂τ þ sin2xρ0

∂f0ðRÞ
∂x

�
¼

�
p −

1

2

�
ð−2q2Λ02ðn−2Þe2ðn−2ÞϕÞ p

2p−1; ð51Þ

ðn − 2Þf0ðRÞ½ _ϕ0 − _ϕρ0 − ϕ0 _ρ − _ϕϕ0 − _ϕ cot x� −
�∂2f0ðRÞ

∂τ∂x − ðρ0 þ cot xÞ ∂f
0ðRÞ
∂τ − _ρ

∂f0ðRÞ
∂x

�
¼ 0; ð52Þ

Λ2

sin2x
e−2ρf0ðRÞ½ϕ̈þ ð2 − nÞ _ϕ2 − sin2xϕ00 − ϕ0 sin x cos xþ ðn − 2Þsin2xϕ02� þ ðn − 3Þe2ϕΛ02f0ðRÞ − 1

2
fðRÞ

þ Λ2e−2ρ
�

1

sin2x
∂2f0ðRÞ
∂τ2 − cot x

∂f0ðRÞ
∂x −

∂2f0ðRÞ
∂x2 þ ðn − 2Þ

�
−

_ϕ

sin2x
∂f0ðRÞ
∂τ þ ϕ0 ∂f0ðRÞ

∂x
��

− e−2ρΛ2

�
−

_ϕ

sin2x
∂f0ðRÞ
∂τ þ ϕ0 ∂f0ðRÞ

∂x
�

¼ −
1

2
ð−2q2Λ02ðn−2Þe2ðn−2ÞϕÞ p

2p−1: ð53Þ

We now perturb the fields ϕ ¼ δϕðτ; xÞ and ρ ¼ δρðτ; xÞ around Nariai-like spacetime. We also perturb Ricci scalar R
around its constant background R0. From Eq. (52), we obtain

δR ¼ ðn − 2Þf0ðR0Þ
f00ðR0Þ

δϕ: ð54Þ

Here, we note that the perturbation δϕ vanishes if f00ðR0Þ ¼ 0, indicating no possibility of evaporation or anti-evaporation
even in n dimensions. Equation (53) provides a differential equation of the perturbation δϕðτ; xÞ,
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ðn − 1ÞΛ2

�
δ̈ϕ

sin2x
− δϕ00 − cot xδϕ0

�
þ
�
nðn − 3ÞΛ02 −

ðn − 2Þf0ðR0Þ
2f00ðR0Þ

þ pðn − 2Þ
f0ðR0Þð2p − 1Þ q

0
�
δϕ ¼ 0; ð55Þ

and Eq. (50) or (51) can be written as

−
δ̈ρ

sin2x
þδρ00 þ cotxδρ0 þ2δρþðn−2Þ

�
δ̈ϕ

sin2x
−δϕ00− cotxδϕ0

�
− ðn−2Þ

�
1þ f0ðR0Þ

2f00ðR0ÞΛ2
þ pq0

f0ðR0ÞΛ2

�
δϕ¼ 0; ð56Þ

where q0 ¼ ½−2q2Λ02ðn−2ÞÞ� p
2p−1.

Under the coordinate transformation dx ¼ sin xdu, Eq. (55) becomes

δ̈ϕ − δϕ;uu þ αcosh−2ðuþ cÞδϕ ¼ 0; ð57Þ

where “ ;u” denotes ∂=∂u, c is an integral constant and α is a constant given by

α ¼ 1

ðn − 1ÞΛ2

�
nðn − 3ÞΛ02 −

ðn − 2Þf0ðR0Þ
2f00ðR0Þ

þ pðn − 2Þ
f0ðR0Þð2p − 1Þ q

0
�
: ð58Þ

A solution for Eq. (57) is δϕ ¼ ðAeωτ þ Be−ωτÞ×
coshβðuþ cÞ, with

ω2 − β2 ¼ 0; 0 ¼ αþ βðβ − 1Þ; ð59Þ

which gives

ω ¼ �β; β ¼ β� ≡ 1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p
Þ: ð60Þ

Using the horizon condition from Eq. (11), we have

tanh ðuþ cÞ ¼ Aeωτ − Be−ωτ

Aeωτ þ Be−ωτ
: ð61Þ

Then we find that

δϕ ¼ ðAeβτ þ Be−βτÞβþ1

ð2 ffiffiffiffiffiffiffi
AB

p Þβ : ð62Þ

To know the behavior of δϕ, we consider a case where
A ¼ B, which leads to the expression of δϕ as

δϕ ¼ 2A½cosh ðβτÞ�βþ1; ð63Þ

and according to the description given in Sec. II, which is
also valid for n-dimensional spacetime, the radius of the
horizon is given by

rh ¼
e−2A½cosh ðβτÞ�βþ1

Λ0 : ð64Þ

The negative value of β þ 1 can be obtained with negative
root of β. It is noted that if β þ 1 is negative which we can

see in case (a) discussed below (where Λ2 is negative) by
setting, e.g., n ¼ 8 and n0 ¼ −1, the perturbation δϕ
decreases and thus the horizon size increases for positive
values of A, which is the case in anti-evaporation. After a
certain time, the horizon size becomes a constant, rh ¼ 1

Λ0.
For positive β þ 1, e.g., n ¼ 4 and n0 ¼ −1 with positive
root in case (a), evaporation occurs. The positive value of
β þ 1 can also explain anti-evaporation with negative A.
However, in this case of positive β þ 1, instability occurs.
We can also have solution for δρ in terms of δϕ, given
by δρ ¼ γδϕ satisfying Eqs. (55) and (56), where
γ ¼ ðn−2ÞðC3þαÞ

ð2þαÞ and C3 is given by

C3 ¼ 1þ f0ðR0Þ
2f00ðR0ÞΛ2

þ pq0

f0ðR0ÞΛ2
: ð65Þ

The perturbation δρ evolves in the sameway as δϕ. One can
eliminate q0 from the background equation. From the
background Einstein equation, one can find

pq0 ¼ −f0ðR0ÞðΛ2 þ ðn − 3ÞΛ02Þ; ð66Þ

which results in

α ¼ −
2

n − 1
−

ðn − 2Þf0ðR0Þ
2ðn − 1Þf00ðR0ÞΛ2

þ ðn − 2Þðn − 3ÞΛ02

ðn − 1ÞΛ2
;

ð67Þ

where we used n ¼ 4p. Here the constants can be com-
puted at an extreme horizon,

Λ2 ¼ −
ðn − 3Þ

r20
þ C1n

2rn0
; ð68Þ
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Λ02 ¼ 1

r20
: ð69Þ

Now we consider two cases (a) and (b). In the first case, we
assume the condition ðn−3Þ

r2
0

≫ C1n
2rn

0

, and in the second case we

consider the opposite way.

1. Case (a)

In this case, we have Λ2 ≈ − ðn−3Þ
r2
0

. If one considers a

theory fðRÞ ∼ Rn0, then n0 and the dimension of spacetime
n can determine the value of constant α as follows,

α ¼ −
n

ðn − 1Þ þ
nðn − 2Þ

2ðn − 1Þðn0 − 1Þ ; ð70Þ

and the term 1 − 4α in Eq. (60) can be positive if

n0 ≥
ð2n − 1Þðnþ 1Þ

ð5n − 1Þ and n0 ≤ 1: ð71Þ

For n ¼ 4, we get n0 ≥ 1.84 for real value of β. We can get
positive and negative values of 1þ β with different choices
of n and n0. For example, as already mentioned, n0 ¼ −1
can explain both anti-evaporation and evaporation for
negative and positive values of β þ 1 with positive A.
For imaginary values of β, we have an oscillatory solution
which we will discuss bellow.

2. Case (b)

In this case where C1

2rn
0

≫ ðn−3Þ
r2
0

, under similar theories,
we find

α¼−
2

ðn−1Þþ
ðn−2Þ
ðn−1Þ

�
1

ðn0−1Þþ
2ðn−3Þrðn−2Þ0

nC1

�
: ð72Þ

For n ¼ 4 and n0 ¼ 2, we obtain very small positive value
of α resulting only decreasing horizon for positive and
negative roots with positive A. We plot 1 − 4α with respect

to dimension n in the left panel in Fig. 2 for n0 ¼ �3. It is
observed on the left panel of Fig. 2 that initially, for lower
n, the first negative term is dominant and becomes smaller
after a certain value of n, making the whole term 1 − 4α
nearly constant for both the positive and negative value of
n0. However, for the negative value of n0, the term 1 − 4α
remains positive for all large values of n. For large value n0,
both curves approach to each other for both positive and
negative values and converge to nearly unity since α
becomes very small as shown in the right panel of Fig. 2.
For negative value of 1 − 4α, i.e., imaginary value of β,

we observe the oscillatory solution. Let us considerffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p ¼ iy, where y takes positive and negative values.
We can write the real solution of δϕ as

δϕ ¼ 2Ae
3γ
2
−yθ

2 cos
�
yγ
2
þ 3θ

2

�
; ð73Þ

where

γ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2

yτ
2
cosh2

τ

2
þ sin2

yτ
2
sinh2

τ

2

r
; ð74Þ

and θ is given by

θ ¼ tan−1
�
tan

yτ
2
tanh

τ

2

�
þ θ1; ð75Þ

where θ1 is the phase term given by

θ1 ¼ π; for cos
yτ
2
cosh

τ

2
< 0 and sin

yτ
2
sinh

τ

2
≥ 0;

θ1 ¼ −π; for cos
yτ
2
cosh

τ

2
< 0 and sin

yτ
2
sinh

τ

2
< 0;

θ1 ¼ 0 for cos
yτ
2
cosh

τ

2
> 0: ð76Þ

However, we can remove the phase term θ1 as it is a
constant term in the solution of δϕ. The solution given in
Eq. (73) is oscillatory. The amplitude of the oscillation

FIG. 2. The plot of 1 − 4α with dimension n of spacetime for r0 ¼ 0.1 and C1 ¼ 10.
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increases exponentially in this case, thus exhibiting insta-
bility. We can see that the given solution is independent of
the sign of y and τ. The same solution can be obtained with
the negative root, i.e., with −y. We note that the instability
can not be controlled by parameter β (or y).
We have discussed above the nonoscillatory and oscil-

latory solutions. Both solutions can explain anti-evaporation
and evaporation. However, nonoscillatory solutions are
stable and unstable; on the other hand, oscillatory solutions
are only unstable. In the nonoscillatory case, the phenomena
of anti-evaporation and evaporation can survive for a long
time with some specific values of parameters, e.g., for very
small β þ 1.

V. CONCLUSION

General relativity predicts a constant horizon around the
Nariai-like spacetime for the Reissner-Nordström black
hole during its evolution at the classical level. In contrast,
fðRÞ gravity offers a possibility of dynamic behavior of the
degenerate horizon in this black hole which could even be
possible in the Schwarzschild black hole [23]. In this work,
we generalize the theory in n dimensions to broaden the
implications of fðRÞ gravity. First, it was found that general
relativity with n dimensions still does not explain anti-
evaporation and evaporation. This can be realized if one

sets f00ðR0Þ ¼ 0 in the perturbation equations. Therefore,
despite n dimensions being richer, it does not help in anti-
evaporation and evaporation unless we replace general
relativity with fðRÞ gravity. Considering fðRÞ gravity, we
obtain the dynamic equation for the degenerate horizon,
and we categorize solutions in three types—one in which
we obtain an increasing solution for the horizon with
positive constant A and negative β þ 1, which indicates
anti-evaporation and is stable. After a certain time, the
horizon size becomes a constant. Anti-evaporation also
occurs with the negative value of A with positive β þ 1;
however, instability is associated with anti-evaporation in
this case. The second type, where evaporation occurs, is a
decreasing solution for the horizon. The stable evaporation
can be explained with negative A and β þ 1. As with anti-
evaporation, evaporation can also occur for positive A and
positive β þ 1with instability. The last type is an oscillating
solution with increasing amplitude. Both the degenerate
horizon and Ricci scalar oscillate in the same way, since the
perturbation of the degenerate horizon is proportional the
perturbation field of the Ricci scalar. In this paper, it is
noted that a black hole can have anti-evaporation at the
classical level, and this effect can remain for a long time.
This offers the possibility of a long-lived primordial black
hole even with smaller mass.
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