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Accurate determination of gravitational wave source parameters relies on transforming between the
source and detector frames. All-sky searches for continuous wave sources are computationally expensive,
in part, because of barycentering transformation of time delays to a solar system frame. This expense is
exacerbated by the complicated modulation induced in signal templates. We investigate approximations for
determining time delays of signals received by a gravitational wave detector with respect to the solar system
barycenter. A highly nonlinear conventional computation is transformed into one that has a pure linear sum
in its innermost loop. We discuss application of these results to determination of the maximal useful
integration time of continuous wave searches.
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I. INTRODUCTION

The hunt for the first detection of continuous gravitational
waves (CW) is under way with many searches published
[1–28] or in progress. Some searches target known potential
sources, such as the Crab Pulsar, but other searches look for
unknown sources over a broad frequency band and cover
large parameter spaces. These algorithms make use of
substantial computational resources, so any reduction in
computational demands is helpful. In this paper, we examine
one aspect of the searches amenable to simplification:
calculation of the time delays of signals received by a
gravitational wave detector with respect to the solar system
barycenter for an ensemble of assumed source sky positions.
The barycentric time corrections play an important part

in the signal-space geometry because the signal templates
have the general form Aðt; pÞ expðiΦðt; pÞÞ, where ampli-
tude terms Aðt; pÞ are slowly varying, but the phaseΦðt; pÞ
can vary rapidly. Accurate determination of the phase relies
on precise positioning of the detectors in space and time, as
this dictates the signal arrival time. Thus most of the
influence of sky position mismatch comes through bar-
ycentric corrections that act mostly on phase.
We investigate approximate models for time delays,

characterized here by “emission time,” the inferred time
of signal emission in the solar system barycenter frame
for a given signal reception time at the detector and
the distance to the source. In addition, our semianalytic

formula provides an efficient way to compute sets of
barycentric corrections for nearby templates using piece-
wise polynomial approximations. The analysis of bary-
center timing corrections for the Earth-Sun system serves in
addition as a model for a general circularized binary with
small modulation depth. As the modulations of source and
detector add independently, such an analysis could, in
principle, be applied to a binary source simply by doubling
the number of terms for an assumed signal model.
A recently published paper [29] explored reduced order

modeling with respect to time of barycentering for a
targeted search of a single sky location. To simplify
computation the authors of the paper did not model
Shapiro delays which add considerable nonlinearity to
emission time correction. Our approach addresses spatial
dependence of barycentering for discrete time intervals,
including all terms, in particular Shapiro delays, and
produces models with corrections smaller than any prac-
tical tolerances in the wide-parameter searches. We specify
our basis vectors explicitly, in terms of well-understood
time periods and explicit sky-position dependent functions.
The decomposition is performed with factor analysis. Our
ability to tackle highly nonlinear corrections is largely due
to modeling of differential emission times.
Traditional computation of emission times involves

trigonometric functions, square roots, and divisions which
are very expensive operations on any modern hardware.
The decomposition presented in this paper transforms this
computation into a bilinear product of a few hundred
precomputed terms. This computation is performed using
only addition and multiplication and is easily vectorized.
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While our algorithm involves fewer operations than tradi-
tional computation, the fact that no trigonometric or other
special functions are used places it in a class of its own,
with speed not dependent on the efficiency of system
libraries, resulting in speedup of barycentering calculations
of potentially several orders of magnitude for applications
to all-sky searches.
While this improved computational efficiency is most

welcome, the most expensive all-sky broadband searches
have inner loops that iterate over frequency and spindown,
and the cost of computing barycentric corrections is largely
amortized away. In these situations the algorithm’s greater
contribution is enabling loosely coherent methods. The
loosely coherent algorithms [30–32] used in recent CW
searches [33–35] are constructed to process sets of signal
templates close in sky position, spindown and frequency. In
the limit of infinitely dense placement these template sets
form a manifold, the geometry of which influences the
efficiency of the algorithm and, of course, its technical
implementation. The model discussed here provides
explicit expressions for the type of degeneracies exploited
by the loosely coherent algorithms.
Lastly, the explicit identification of basis vectors, in

particular the dependence of phase on sky position mis-
match, permits us to show that fully coherent single-
interferometer large-parameter-space searches are not
optimal. Rather, a semicoherent search maximizes detection
efficiency, and increasing integration time further can
actually decrease detection efficiency.
Even for analysis of data from multiple interferometers

this result still holds in cases for which there are additional
search parameters, such as frequency derivatives. For
example, when data from two interferometers is analyzed
the dimension of the fully coherent data considered as a
vector space over real numbers is four. Any search iterating
over initial signal phase, right ascension, declination, and
first frequency derivative (spindown) will have four inde-
pendent parameters to fit to the fully coherent data. In other
words, the effective bandwidth of the signal is larger than is
naively assumed in a fully coherent search.
In the following, Sec. II summarizes the exact mathemati-

cal model we use for barycentering and themotivation for an
approximate version. Section III outlines the structure of a
practical implementation of the approximation procedure.
Section IV describes in detail a particular demonstration
example of an approximation implementation. Section V
summarizes results from applying the example implementa-
tion to the time span of the first Advanced LIGO data run.
Section VI discusses the implications of the results.

II. MATHEMATICAL MODEL

Precise barycentering has been important to pulsar
astronomy for decades. A widely used expression for
emission time in the pulsar frame (tpsre ) is given by
Edwards et al. as [36] [Eq. (7)]

tpsre ¼ tobsa − Δ⊙ − ΔIS − ΔB; ð1Þ

where tobsa is the arrival time at the observatory, Δ⊙ is the
time delay from transforming from the detector frame to the
SSB, ΔIS is the travel time in the interstellar medium, and
ΔB includes transformation to the pulsar frame for binary
systems.
We reframe this in terms of searches for continuous

gravitational waves:

Tðt; u; pÞ ¼ t − Δ⊙ðt; uÞ − ΔIS − ΔBðt; pÞ: ð2Þ

The emission time T is a function of detector local time t,
source location u and intrinsic source parameters p (for a
source in motion). Because modern computer architectures
are vector-based, it is typically more efficient to compute
arrays of values of Tðt; u; pÞ for sets of times T ¼ ftig and
templates S ¼ fðuj; pjÞg.
For a single template ðu0; p0Þ the function Tðt; u0; p0Þ

has a very nontrivial behavior due to several nearly periodic
influences from the Sun, planets, and the Moon as well as
contributions from general relativity.
Because any analysis method must overlap templates

ðu; pÞ closely enough to provide sufficient detection cover-
age, we can expect to compute arrays TðT ; u; pÞ for
nearby ðu; pÞ.
Therefore, we separate the problem into two parts:

computation of TðT ; u0; p0Þ for a fixed template ðu0; p0Þ;
and computation of differences ΔðT ;u;p;u0;p0Þ¼
TðT ;u;pÞ−TðT ;u0;p0Þ. When sets T and S are finite the
isomorphism of vector spaces R½T × S� and R½T� ⊗ R½S�
implies there exists the following decomposition:

Δðti; uj; pjÞ ¼
XN
k¼1

fkðtiÞgkðuj; pjÞ ð3Þ

where fkðtiÞ and gkðuj; pjÞ are, in general, arbitrary single-
valued functions. Such decompositions in more general
situations such as continuous or algebraic functions have
been studied extensively. The work goes back to the 13th
problem by Hilbert, with one of the main results being the
Kolmogorov-Arnold representation theorem [37,38]. These
decompositions are often used for data compression and
work well even in the case of very wideband signals such as
compact binary coalescences [39].
The key to our approach is that it is possible to find an

approximate version of Eq. (3) with a number of terms N
much smaller than the dimensionality of space spanned by
Δðti; uj; pjÞ. The well-understood equations of motion of
the Solar system allow us to use explicit time and space
dependent factors and perform a simple linear regression to
find the coefficients.
Besides providing computational efficiency this analysis

identifies analytical functions fk and gk, paving the way for
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developing advanced loosely coherent [30–32] semianalytic
statistics.

III. PRACTICAL IMPLEMENTATION

We wish to find a function approximating Δðti; uj; pjÞ,
which varies smoothly in time and sky coordinates. In this
section, we outline a procedure for finding such a function
using terms commonly applicable to astronomical analysis.
We describe sky mismatch using small shifts in right

ascension and declination. For right ascension these shifts
correspond to rotations about the Earth’s equatorial axis. A
shift in declination is not a rotation, but is a flow diverging
from one pole and converging to the other. Because we use
finite shift values, the declination flow is not defined in the
pole vicinity, so a negligible region around each is excised
from the input data. We define the following procedure:
(1) Pick a set of signal arrival times T .
(2) Construct a coarse sky grid Gt with minimum point

separation of ϵ in spherical distance. Add to these a
grid of points in a neighborhood B⊙ around the
Sun’s position at each time t ∈ T .

(3) For every time t ∈ T and every point in the
coarse sky grid Gt, compute the emission times
te ∈ Tðt; GtÞ, where T is a function returning a
vector of emission times corresponding to each
arrival time and source location.

(4) Introduce a displacement grid ΔG of small sky
rotations.

(5) Compute emission times Tðt; Gt;rÞ for each grid Gt;r
displaced by rotation r ∈ ΔG.

(6) Compute the difference Δðt; Gt; rÞ≡ Tðt; Gt;rÞ −
Tðt; Gt;0Þ in emission times for each rotated and
unrotated point at each time. This function varies
smoothly in time and sky-direction.

(7) Define a function Δ̃ðt; Gt; rÞ≡P
k akxk with a set

of coefficients fakg for parameters fxkg, and use
least-squares fitting to compute fakg. Ideally, we
would want to find fakg such that maxðjΔ̃ðt; Gt; rÞ−
Δðt; Gt; rÞjÞ is minimized, but the computa-
tional costs of such a search are too high. The
parameters fxkg can be chosen for implementa-
tion convenience and are usually derived from
easily computed (or precomputed) quantities (see
Appendix A).

IV. APPLICATION EXAMPLE

We now illustrate the algorithm with an application to
real data. The regression factors are listed explicitly. We
group them into several categories for ease of exposition.
The grid parameters and other static inputs are listed in
Table I.
The categories group terms with similar composition:
(i) Direction-independent terms depending on GPS

time and shift in sky position.

(ii) Direction difference-independent terms depending
on source sky position and GPS time.

(iii) Time-independent terms depending on source sky
position and shift in position.

In a practical implementation the direction-independent
and time-independent terms could be precomputed, as the
arrays needed to store them are relatively small. The
direction difference-independent terms can be easily fac-
torized into a product of precomputed arrays. All the terms
are listed in Appendix A.
The algorithm was applied to the time range covered by

O1 data [40–42] for 40 separate 250 000 second chunks,
overlapping by 50 000 seconds each. As reference data, we
use the tools included in the LIGO Analysis Library [43],
which have been checked by comparison with the widely
used radio astronomy timing package, TEMPO2 [36,44].
As a maximum acceptable error on timing, we used a

30-degree phase difference for a 2-kHz signal, or 42 μs, in
order to lose no more than ∼15% SNR in all-sky CW
searches reaching as high as 2 kHz. The SNR loss is less
than 8% for a 1.5 kHz signal.
An explicit fit formula for one of the chunks is listed in

Appendix B. This fit has the largest maximum error among
the fits, 20.3 μs. The fit expression is a bilinear product of
precomputed fit coefficients and monomials in Δα, Δδ and
Δt. In a practical implementation the grid of displacements,
and thus monomial coefficients, is kept static inside the
loop that computes Δt. The actual computation of Δt easily
vectorizes and takes few instructions on modern computers.
Note that it is not necessary to keep the grid static with
respect to all variables. For example, the grid can be static
in Δδ and depend on t and α—the monomial grid
recomputation cost will be amortized away.
Some fitting factors were necessary only because

demodulation of high-frequency (≈2 kHz) signals demands
fine time resolution. Their influence on fit error is summa-
rized in Table II. For lower-frequency signals the time

TABLE I. Input parameters used in fits.

Parameter Value

T Every hour between tmin and tmax
tmin From start to end of O1, spaced every

200 000 seconds
tmax tmin þ 250 000 seconds
ϵ 0.1040524 rad
ΔG All combinations of Δα and Δδ
Gt;r Random subset of Gt with 7.5 × 105 points
Δα f−0.01;−0.00667;−0.00333;0;0.00333;0.00667;0.01g
Δδ f−0.01;−0.00667;−0.00333;0;0.00333;0.00667;0.01g
ϵ⊙ 0.001 rad
N⊙ 5
SðtÞ Sun position at time t
B⊙ A grid of N⊙ × N⊙ points centered on SðtÞ, evenly

spaced in α and δ with step ϵ⊙
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resolution requirements are much looser, and some terms
can be omitted from the fit.

V. RESULTS

The fits were tested using the following procedure. We
chose 16 × 8 ¼ 128 points on the sky, evenly spaced in
right ascension and declination, to serve as patch centers.
For each patch, we shifted the central point by a random
value in ½−0.01; 0.01� for right ascension, and another for
declination. A total of 50 shifted points were generated for
each patch. The even spacing of test points resulted in
overcoverage at the poles, but this was tolerated in favor of
code simplicity.
We divided the span of the first Advanced LIGO data run

(∼4 months), O1, into 200 000 second chunks, and took
time points from each chunk at 30-minute intervals. We
obtained reference values for all points, then applied the fit
model to each patch’s points as a deflection from its center.

A plot of the maximum absolute residual for eachΔt and
Δϕ is shown in Fig. 1. The maximum absolute residual for
each reference time is shown in Fig. 2. All points fell below
the error threshold. We also show a histogram of all errors
in Fig. 3. The bulk of the errors are well below the
threshold, and for a search of this length, any particular
point would spend only a small fraction of time in a high-
error region.
A prototype implementation of the method was opti-

mized using SSE vector instructions, and a test was
performed to compare the speed of the new method to
the existing implementation in the LAL library. The older
SSE instruction set was chosen to demonstrate gains even
on older computing hardware. We observed a 10x speedup
relative to LAL implementation. An implementation based

TABLE II. Term significance analysis. The max error column
shows errors when the specified terms are omitted.

Term Group Equation Max Fit Error (s)

2nd Order Sinusoids (A12) 3.4319967642
1st Order Sinusoids (A11) 0.4335595581
Δt (A8) 0.0235629364
Δt2 (A9) 0.0010017764
Sun Direction (A10) 0.0002486640
Sidereal Rotation (A7) 0.0001820357
Direction-difference (A6) 0.0001655650

FIG. 1. Maximum absolute residual over all test patches.
Angular distance is calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔαÞ2 þ ðΔδÞ2

p
.

FIG. 2. Maximum absolute residuals. Each point represents the
fit for a 250 ksec interval. The fact that no periodicity is evident
suggests that the fits are able to match the function behavior
piecewise.

FIG. 3. Distribution of residual magnitude. For large-timebase
searches, only the bulk of the distribution matters, which is well
below the error threshold.
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on newer AVX512 instructions should show an additional
4x speedup. The prototype code computed sums

P
k akxk

for each template. In realistic search codes much of this
computation can be reused, resulting in still larger speed
improvements.

VI. DISCUSSION

The loosely coherent method of detecting signals ana-
lyzes sets of templates. For the set based on nearby sky
locations it is important to understand the evolution of
signal phases for nearby templates. The fit described in this
paper explicitly demonstrates that relatively few parameters
are needed to describe time arrival differences between
nearby templates. While the benefits of reduced parameter
count are clear for loosely coherent searches, the reduced
count also has implications for conventional fully coherent
searches.
It is well known that a mathematically optimal detection

statistic consists of a linear filter followed by a power
detector [45]. The linear filter is chosen to match expected
signal properties and to reject noise outside of the signal
bandwidth. The presence of sky position difference terms in
the example (Appendix B) shows that the sky position
mismatch is equivalent to phase modulation of the incom-
ing signal and the corrections span a 2-dimensional vector
space. Thus for any search where sky position uncertainty
requires multiple templates, the bandwidth of signals
searched for is wider than the inverse of the integration
time, and the fully coherent search is not the most efficient
[30] detection statistic from both computational and detec-
tion viewpoints.
For example, if such a search uses one year’s worth of

data from a single interferometer, the maximal sensitivity is
reached at 6 months integration time, or even earlier if
parameters other than sky position are uncertain. For a
search using many interferometers a fully coherent search
can be more sensitive, but the gain in sensitivity is smaller
than predicted from the increase of integration time alone.
This development provides an efficient method to

compute emission time corrections, provides a basis for
extension of the PowerFlux cache to longer integration
times and lays the groundwork for future development of
loosely coherent algorithms.
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APPENDIX A: REGRESSION FACTORS

In this section we list factors used in the regression fit.

1. Definitions of variables

The sky position variables are defined as

e1 ¼ cosðδÞ cosðαÞ
e2 ¼ cosðδÞ sinðαÞ
e3 ¼ sinðδÞ ðA1Þ

with α ∈ ½−π; π� and δ ∈ ½− π
2
þ 0.01; π

2
− 0.01�. The adjust-

ment by 0.01 radians prevents flow over the poles, which
would lead to ambiguous right ascension. The change in ei
for a shift in right ascension Δα, and in declination Δδ can
be approximated via Taylor expansion:

Δe1 ¼
�
−
1

2
Δα2 cos α cos δ −

1

2
Δδ2 cos α cos δ

þ 1

4
Δα2Δδ2 cos α cos δ − Δα cos δ sin α

þ 1

2
ΔαΔδ2 cos δ sin α − Δδ cos α sin δ

þ 1

2
Δα2Δδ cos α sin δþ ΔαΔδ sin α sin δ

�

Δe2 ¼
�
Δα cos α cos δ −

1

2
ΔαΔδ2 cos α cos δ

−
1

2
Δα2 cos δ sin α −

1

2
Δδ2 cos δ sin α

þ 1

4
Δα2Δδ2 cos δ sin α − ΔαΔδ cos α sin δ

− Δδ sin α sin δþ 1

2
Δα2Δδ sin α sin δ

�

Δe3 ¼ ðΔδ cos δ − 1

2
Δδ2 sin δÞ ðA2Þ

For each time point we define,

S⃗ Vector pointing from Sun to Earth

v⃗ Detector velocity vector

Δt Time since reference point

Ω⊕ 2π=sidereal day: ðA3Þ

We also define an array of the sin/cos of the reference
point’s right ascension and declination:

z ¼ fsin α; sin δ; cos α; cos δg ðA4Þ

and the second-order terms, excepting sin2 terms because
they can be expressed as 1 − cos2:

z0 ¼ fcos2α; cos2δ; sin α sin δ; sin α cos α;
sin α cos δ; sin δ cos α; sin δ cos δ; cos α cos δg ðA5Þ
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2. Direction-independent terms

The following terms are constant in sky-direction, and
can be precomputed for every GPS time, and direction
difference.

X
i

a1;iΔei ðA6Þ

3. Difference-independent terms

The following terms are constant in direction-difference.

X
i

a2;i sinðΩ⊕ΔtÞz0i þ b2;i sinðΩ⊕ΔtÞz0i ðA7Þ

a3;1Δt cos δþ a3;2Δt2 cos δþ a3;3Δt cos2 δ ðA8Þ
X
i

a4;iΔt2z0i ðA9Þ

X
i

a5;iSiei ðA10Þ

4. Time-independent terms

The following terms vary only in sky-direction.

X
i

a6;izi ðA11Þ

X
i

a7;iz0i ðA12Þ

Each of the terms in Eqs. (A6)–(A12) is multiplied by
Δα;Δδ;Δα2;Δδ2;ΔαΔδ. In addition, we include direction-
time differential terms

X
i

a8;iΔtΔei ðA13Þ

without Δα=Δδ factors. Each term goes to zero when the
rotation angle goes to zero. Note that Sun-Earth and
detector velocity vectors are those for the saved points.
In each term, any parts greater than order 3 in Δα and Δδ
are removed. The effects of removing sets of terms are
shown in Table II.

APPENDIX B: EXAMPLE FIT

As an example, we list below the resulting formula
from a fit for GPS time 1127833121. The expression is a
bilinear product between precomputed fit coefficients and
monomials in Δα, Δδ and Δt. Only significant terms are
shown. This fit has the largest maximum error among the
fits, 20.3 μs.

ΔT ¼ ½−1.69�10−5ΔtΔe1 þ ½8.98�10−5ΔtΔe2 þ ½−495e2 þ 71.2e1�Δαþ ½30.8 cosðδÞ − 71.2e3 sinðαÞ − 495e3 cosðαÞ�Δδ
þ ½3.89 cosðδÞ�10−5ΔδΔtþ ½8.14e2 þ 83e1�Δα2 þ ½0.0132e2 − 0.00634e1� sinðΩ⊕ΔtÞΔα
þ ½0.00644e2 þ 0.0132e1� cosðΩ⊕ΔtÞΔαþ ½−35.6e2 − 248e1 − 0.5e3S3�Δδ2
þ ½0.00634e3 sinðαÞ þ 0.0132e3 cosðαÞ� × sinðΩ⊕ΔtÞΔδþ ½0.0972e2 − 0.0157e1�10−10ΔαΔt2
þ ½−0.0132e3 sinðαÞ þ 0.00644e3 cosðαÞ� × cosðΩ⊕ΔtÞΔδþ ½−0.00686 cosðδÞ þ 0.0157e3 sinðαÞ
þ 0.0972e3 cosðαÞ�10−10ΔδΔt2 þ ½43.7�ΔαΔe1 þ ½−331�ΔαΔe2 þ ½83.2�Δα2Δe1 þ ½−82.2�Δδ2Δe1
þ ½165e3 sinðαÞ − 27.4e3 cosðαÞ�ΔαΔδþ ½−0.0972e3 sinðαÞ�10−10ΔαΔδΔt2
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